contraction_net.training
Attributes
Classes
Class for training of ContractionNet. Creates Trainer object. |
Module Contents
- contraction_net.training.device
- class contraction_net.training.Trainer(dataset, num_epochs, network=ContractionNet, in_channels=1, out_channels=2, batch_size=16, lr=0.001, n_filter=64, val_split=0.2, save_dir='./', save_name='model.pt', save_iter=False, loss_function='BCEDice', loss_params=(1, 1))[source]
Class for training of ContractionNet. Creates Trainer object.
- Parameters:
dataset – Training data, object of PyTorch Dataset class
num_epochs (int) – Number of training epochs
network – Network class (Default Unet)
in_channels (int) – Number of input channels
out_channels (int) – Number of output channels
batch_size (int) – Batch size for training
lr (float) – Learning rate
n_filter (int) – Number of convolutional filters in first layer
val_split (float) – Validation split
save_dir (str) – Path of directory to save trained networks
save_name (str) – Base name for saving trained networks
save_iter (bool) – If True, network state is save after each epoch
load_weights (str, optional) – If not None, network state is loaded before training
loss_function (str) – Loss function (‘BCEDice’, ‘Tversky’ or ‘logcoshTversky’)
loss_params (Tuple[float, float]) – Parameter of loss function, depends on chosen loss function
- network
- model
- data
- in_channels = 1
- out_channels = 2
- num_epochs
- batch_size = 16
- lr = 0.001
- best_loss
- save_iter = False
- loss_function = 'BCEDice'
- loss_params = (1, 1)
- n_filter = 64
- dim
- train_loader
- val_loader
- smooth_loss
- optimizer
- scheduler
- save_dir = './'
- save_name = 'model.pt'
- __iterate(epoch, mode)