contraction_net.data
Classes
A Dataset class for creating training data objects for ContractionNet training. |
Module Contents
- class contraction_net.data.DataProcess(source_dir, input_len=512, normalize=False, val_split=0.2, aug_factor=10, aug_p=0.5, noise_amp=0.2, random_offset=0.25, random_outlier=0.5, random_drift=(0.01, 0.2), random_swap=0.5, random_subsampling=None)[source]
Bases:
torch.utils.data.Dataset
A Dataset class for creating training data objects for ContractionNet training.
- Parameters:
source_dir (Tuple[str, str]) – Tuple containing paths to the directories of training data [images, labels]. Images should be in .tif format.
input_len (int, optional) – Length of the input sequences (default is 512).
normalize (bool, optional) – Whether to normalize each time-series (default is False).
aug_factor (int, optional) – Factor for image augmentation (default is 10).
val_split (float, optional) – Validation split for training (default is 0.2).
noise_amp (float, optional) – Amplitude of Gaussian noise for image augmentation (default is 0.2).
aug_p (float, optional) – Probability of applying augmentation (default is 0.5).
random_offset (float, optional) – Amplitude of random offset applied to the input sequences (default is 0.25).
random_outlier (float, optional) – Amplitude of random outliers added to the input sequences (default is 0.5).
random_drift (Tuple[float, float], optional) – Parameters for random drift: (frequency, amplitude) (default is (0.01, 0.2)).
random_swap (float, optional) – Probability of randomly swapping the sign of the input sequences (default is 0.5).
random_subsampling (Tuple[int, int], optional) – Range for random subsampling intervals (default is None).
- source_dir
- data = []
- is_real = []
- input_len = 512
- val_split = 0.2
- normalize = False
- aug_factor = 10
- aug_p = 0.5
- noise_amp = 0.2
- random_offset = 0.25
- random_drift = (0.01, 0.2)
- random_outlier = 0.5
- random_subsampling = None
- random_swap = 0.5
- mode = 'train'
- __load_and_edit()
Loads and preprocesses the input data files from the source directory.
- __augment()
Applies data augmentation techniques to the loaded data.