Source code for sarcasm.meta_data_handler

# -*- coding: utf-8 -*-
# Copyright (c) 2025 University Medical Center Göttingen, Germany.
# All rights reserved.
#
# Patent Pending: DE 10 2024 112 939.5
# SPDX-License-Identifier: LicenseRef-Proprietary-See-LICENSE
#
# This software is licensed under a custom license. See the LICENSE file
# in the root directory for full details.
#
# **Commercial use is prohibited without a separate license.**
# Contact MBM ScienceBridge GmbH (https://sciencebridge.de/en/) for licensing.


import json
import os
from pathlib import Path
from typing import Union, Tuple, List, Optional, Dict

import PIL.Image
import numpy as np
from tifffile import TiffFile, imread

from sarcasm.exceptions import MetaDataError
from sarcasm.ioutils import IOUtils


[docs] class MetaDataHandler: def __init__(self, sarc_obj) -> None: self.sarc_obj = sarc_obj # Store metadata in the sarc_obj self.sarc_obj.metadata = {} self.data_folder: Path = Path(self.sarc_obj.data_dir) # On initialization, load existing metadata if available and not restarting, otherwise create new metadata. if self.get_meta_data_file().exists() and not self.sarc_obj.restart: self.load_meta_data() else: self.create_meta_data()
[docs] @staticmethod def check_meta_data_exists(tif_file: str, channel: Optional[int]) -> bool: try: # Attempt to extract required metadata; ignore the returned values. MetaDataHandler.extract_meta_data(tif_file=tif_file, channel=channel) return True except MetaDataError: return False
[docs] @staticmethod def extract_meta_data(tif_file: str, channel: Optional[int], use_gui: bool = False, info: Dict = {}) -> Tuple[ Optional[int], Optional[Tuple[int, ...]], Optional[float], Optional[float], Optional[List]]: # Open the TIFF file and try to extract ImageJ metadata if available. with TiffFile(tif_file) as tif: imagej_md = getattr(tif, "imagej_metadata", None) if imagej_md: # frame number (fallback to shape if not provided) if 'frames' in imagej_md: frames = imagej_md['frames'] elif 'slices' in imagej_md: frames = imagej_md['slices'] else: frames, _ = MetaDataHandler.__get_shape_from_file(tif_file, channel) # Try to obtain frametime via various keys. frametime = ( imagej_md.get('finterval') or imagej_md.get('Frame interval') or imagej_md.get('frame_interval') ) if frametime is None: fps = ( imagej_md.get('fps') or imagej_md.get('Frames per second') or imagej_md.get('frame_rate') ) if fps: try: frametime = 1 / float(fps) except (ValueError, ZeroDivisionError): frametime = None # Try to load timestamps, attempt JSON-decoding if needed. if 'timestamps' in imagej_md: try: timestamps = json.loads(imagej_md['timestamps']) except Exception: timestamps = imagej_md['timestamps'] else: timestamps = None else: frames, _ = MetaDataHandler.__get_shape_from_file(tif_file, channel) frametime = None timestamps = None # Determine pixelsize and image size. if 'pixelsize' in info: pixelsize = info['pixelsize'] _, size = MetaDataHandler.__get_shape_from_file(tif_file, channel) else: with PIL.Image.open(tif_file) as img: img_info = img.info if 'resolution' in img_info: try: res = float(img_info['resolution'][0]) pixelsize = 1 / res if res != 1 else None except (ValueError, TypeError): pixelsize = None else: pixelsize = None size = img.size if 'size' in img_info else MetaDataHandler.__get_shape_from_file(tif_file, channel)[1] if pixelsize is None and not use_gui: raise MetaDataError(f"Pixel size could not be extracted from {tif_file}. " f"Please enter manually (e.g., Structure(filename, pixelsize=0.1)).") # Allow manual override of frametime. if 'frametime' in info: frametime = info['frametime'] elif frametime is None and frames and frames > 1: print('Warning: frametime could not be extracted from tif file. ' 'Please enter manually if needed (e.g., SarcAsM(file, frametime=0.1)).') return frames, size, pixelsize, frametime, timestamps
@staticmethod def __get_shape_from_file(file: str, channel: Optional[int] = None) -> Tuple[ Optional[int], Optional[Tuple[int, ...]]]: data = MetaDataHandler.__read_image(file, channel) if data.ndim == 2: return 1, data.shape elif data.ndim == 3: return data.shape[0], data.shape[1:] else: return None, None @staticmethod def __read_image(filename: str, channel: Optional[Union[int, str]] = None, frame: Optional[int] = None) -> np.ndarray: """Load a TIFF file and optionally select a channel. If channel is 'RGB', the image is converted to grayscale. Otherwise, if channel is an int, the specified channel is selected. """ # Read the image (all frames by default) data = imread(filename) if frame is None or frame == 'all' else imread(filename, key=frame) if channel is not None: if channel == 'RGB': # Convert RGB image or stack of RGB images to grayscale if data.ndim == 3 and data.shape[-1] == 3: data = np.dot(data[..., :3], [0.2989, 0.5870, 0.1140]) elif data.ndim == 4 and data.shape[-1] == 3: data = np.dot(data[..., :3], [0.2989, 0.5870, 0.1140]) elif isinstance(channel, int): if data.ndim == 3: data = data[:, :, channel] elif data.ndim == 4: data = data[:, :, :, channel] else: raise ValueError('Parameter "channel" must be either an int or "RGB".') return data
[docs] def load_meta_data(self) -> None: meta_file = Path(self.get_meta_data_file()) temp_meta_file = Path(self.get_meta_data_file(is_temp_file=True)) errors = [] # Try to load persistent file first, then the temporary file. for file in (meta_file, temp_meta_file): if file.exists(): try: self.sarc_obj.metadata = IOUtils.json_deserialize(str(file)) break except Exception as err: errors.append(f"Error loading {file}: {err}") else: raise Exception(f"Loading of metadata failed. Errors: {'; '.join(errors)}") # Backward compatibility updates for metadata keys. if 'resxy' in self.sarc_obj.metadata: self.sarc_obj.metadata['pixelsize'] = self.sarc_obj.metadata['resxy'] if 'tint' in self.sarc_obj.metadata: self.sarc_obj.metadata['frametime'] = self.sarc_obj.metadata['tint'] if 'resxy' in self.sarc_obj.metadata or 'tint' in self.sarc_obj.metadata: self.store_meta_data() self.commit()
[docs] def get_meta_data_file(self, is_temp_file: bool = False) -> Path: filename = "metadata.temp.json" if is_temp_file else "metadata.json" return Path(self.sarc_obj.data_dir) / filename
[docs] def create_meta_data(self) -> None: print("Creating metadata...") frames, size, pixelsize, frametime, timestamps = MetaDataHandler.extract_meta_data( tif_file=self.sarc_obj.filepath, channel=self.sarc_obj.channel, use_gui=self.sarc_obj.use_gui, info=self.sarc_obj.info ) time_array = np.arange(0, frames * frametime, frametime) if frametime is not None else None self.sarc_obj.metadata = { "file_name": os.path.basename(self.sarc_obj.filepath), "file_path": self.sarc_obj.filepath, "size": size, "pixelsize": pixelsize, "frametime": frametime, "frames": frames, "time": time_array, "timestamps": timestamps } # Merge any additional info from sarc_obj. self.sarc_obj.metadata.update(self.sarc_obj.info) self.store_meta_data(override=True)
[docs] def store_meta_data(self, override: bool = True) -> None: meta_file = Path(self.get_meta_data_file()) if override or not meta_file.exists(): IOUtils.json_serialize(self.sarc_obj.metadata, str(meta_file)) self.commit()
[docs] def commit(self) -> None: """ Commit metadata by renaming the temporary file to the persistent file, ensuring an atomic update. """ meta_file = Path(self.get_meta_data_file()) temp_meta_file = Path(self.get_meta_data_file(is_temp_file=True)) if temp_meta_file.exists(): if meta_file.exists(): meta_file.unlink() temp_meta_file.rename(meta_file)