Training Scientists

Python for Beginners using ChatGPT &

Claude

Basics

By the end of this section, you will be able to:

1. Understand the concept of Integrated Development Environments (IDEs)

2. Know how Al tools can help you learn faster but also realize their limitations

3. Differentiate between Python scripts and Jupyter Notebooks

4. Write and execute a basic "Hello World" program

5. Recognize the importance of code readability and PEP 8 guidelines

Comparison of Python, MATLAB, C++, and R

Aspect

Learning
Curve

Performance

Use Cases

Data
Analysis &
Visualization

Community
& Ecosystem

Cost

Python

Easy, clean
syntax (Most
beginner-
friendly)

Slower than C++,
optimizable with
NumPy

General-
purpose, web
dev, data
science, Al/ML
(Most Versatile)

Strong libraries
(Pandas,
Matplotlib)

Large, active,
vast library
ecosystem
(Largest
community)

Free, open-
source

MATLAB

Moderate, good for
math background

Good for matrix
operations

Engineering,
scientific computing,
signal processing

Excellent built-in
capabilities

Smaller, strong in
academia/engineering

Proprietary, licensed
(expensive)

C++

Steep, requires
low-level
understanding

Typically fastest

System/software
dev, games,
resource-
intensive apps

Limited built-in,
needs external
libraries

Large, extensive
domain libraries

Free compilers,
some paid IDEs

R

Moderate,
can be
challenging
for beginners

Can be slow
for large
datasets,
optimized for
stats

Statistical
computing,
data analysis,
bioinformatics

Excellent
tools (e.g.,
ggplot2)

Strong in
statistics and
data science

Free, open-
source

Aspect Python MATLAB C++ R

Easy with C/C++

Language and others Can integrate with Integrates with Can integrate

Integration (Excellent C/C++, Java, Python most languages with C/C-++
. - and Python
interoperability)
Excellent Good for
(TensorFlow, Good support, less Used for low- statistical
ML & Al . . .
Support PyTorch, scikit- extensive than level ML and learning, less
learn) (Leader in Python optimization for deep
AI/ML tools) learning

| focus mainly on the science and engineering applications of Python but e.g.

e Netflix uses Python extensively for its recommendation engine, data analysis,
and backend services.

e YouTube uses Python for video sharing and viewing functionality

¢ Instagram uses Python (Django framework) for its backend

e BitTorrent used Python for the original BitTorrent client

Integrated Development Environments

| recommend either using Jupyter Lab Desktop (available for all operating systems)
or Anaconda Cloud which doesn't require installation. Jupyterlab Desktop will run
faster, however Anaconda Cloud has Anaconda Al Assistant built in for free. And if
you are on a university computer where you can't install anything Anaconda Cloud is
a good choice.

If you want to know about the other options for IDEs and why | decided to choose
Jupyterlab for this and my other courses check out these two videos:

¢ 13 Beginner-Friendly Python IDEs Compared in 2024: Jupyter Lab, VS Code,
PyCharm, Wing, Zed and More

e Choosing the Best Beginner Friendly Python IDE in 2024: VS Code vs.
JupyterLab vs. Anaconda Cloud

Jupyter

TOP 3 PYTHON IDEs 2024

WHICH IS RIGHT FOR YOU?

Jupyter Lab

For a detailed video about the installation of JupyterLab Desktop check out this
video:

e Jupyter Lab Desktop: Installation, Configuration, and Best Practices for Windows
& Mac
‘ r\nr——q/\n H f'\

11'

TO AVOID

Line Width and Limiter Lines (PEPS8)

In this notebook, you'll notice two limiter lines: one at 80 characters and another at
100 characters. These lines relate to an important aspect of Python coding style.

PEP 8: The Style Guide for Python Code

PEP 8 is the official style guide for Python code. It provides guidelines to improve
code readability and consistency across the Python community. One key
recommendation concerns line length:

& Guideline: Keep lines of code between 79-99 characters long.
Why Limit Line Length?

1. Readability: Shorter lines are easier to read and understand.
2. Side-by-Side Viewing: Allows multiple files to be open side-by-side.
3. Printing: Ensures code prints well on standard paper or small screens.

Example

This is a very long line of code that exceeds the recommended
79-character limit and might be hard to read

result = some_long_function_name(first_long_parameter_name,
second_long_parameter_name, third_long_parameter_name)

Better: Split into multiple lines
result = some_long_function_name (
first_long_parameter_name,
second_long_parameter_name,
third_long_parameter_name

)

More on Pep8 and good programming principles in the advanced courses:

e Python Basics
e Python for Scientists & Engineers

e Python for Biologists

You can download this Jupyter Notebook from the video description
(as PDF or as a Jupyter Notebook).

There are exercises that you can get on my course website
https://training-scientists.com (Python Beginner Course using Al)

Anaconda Cloud
For Anaconda Cloud
https://anaconda.cloud

no installation is necessary, you can just create an Account on their website and start
coding.

While Jupyter Notebooks run perfectly, running Python scripts with graphical output
does not work.

Al Tools

We will use ChatGPT, Claude and Anaconda Assistant in this course to help you learn
programming faster.

Al Tools are great at explaining code and concepts so you can 2X your learning
curve.

To use Claude go to https://claude.ai create an account and start
chatting with it.

To use ChatGPT do the same on: https://chatgpt.com
E.g. Ask Claude & (- :

1. Can you tell me how Python compares to Matlab, C++
and R?

2. Can you reformat that into a visually appealing
table that I can copy paste into a Jupyter Notebook

markdown cell?

Using Al tools is not cheating. Cars will look like cheating for someone who sells

horse carriages. Or dinosaurs who don't want to learn something new.

The code Al tools generate is not always working so we still need to learn
programming ourselves. If you want to know more check out:

e Can Claude 3.5 | ChatGPT 4o | GitHub Copilot build Snake & Electron Cloud
simulation in Python? #GPT

) r/lycombinator
u/lapurita - 9h

Feeling very powerful &
Claude Sonnet 3.5

It's mindblowing how quick

literally 10x fastg
iteration speed.

Python Scripts vs Jupyter Notebooks

Scripts always run completely top to bottom, so if there is an error somewhere in the
end you will need to change the code and run everything again.

Whereas Notebooks you can run code cell by cell (line by line if you want to). This
makes debugging and overall development a lot faster.

e You can show multiple plots, add text like this and structure the Notebook with a
Table of Contents

e Jupyter Notebooks allow you to structure your code with markdown cells,
headings etc.

e Scripts are better though if you want to run games (like snake) or simulations
with a video like output

e Jupyter Notebooks have a lot of advantages but also some pitfalls like cell state

we will look at later

N\

Hello World (Jupyter) <

This would not be a programming tutorial without a Hello World script

print("Hello World")
Hello World

Hello World (Script)

Variables & Data Types

By the end of this section, you will be able to:

. Define and use variables in Python
. Identify and work with different data types (int, float, string, boolean)

1

2

3. Understand and use f-strings for string formatting

4. Create and manipulate lists, tuples, and dictionaries
5

. Recognize the appropriate use cases for different data structures

z "Hello World" # string

x = 16 # integer

u=1.3 # float

complex_number = 5+3j # complex
on_or_off = True # boolean

print(z)

print(x)

print(u)
print(complex_number)
print(on_or_off)

Hello World
16

1.3

(5+37)

True

Use type() function to give you variable type
print(type(complex_number))

<class 'complex'>

<) | BOOLEAN TRUE (FALSE
INTEGER

STRING COMPLEX

Strings

Let's look at an example to understand what variables are what they are useful
for

print("Tim is 4 and loves to play.")
print("He builds with blocks every day.")
print("4-year-old Tim stacks them high,")
print("Tim's towers almost touch the sky.")

Tim is 4 and loves to play.

He builds with blocks every day.
4-year-old Tim stacks them high,
Tim's towers almost touch the sky.

What if we want to change the name or the age though? We would have to
change it in multiple places manually

name = "Max"
age = 4

We can use f-strings to insert our variables into the text:
print(f"{name} is {age} and loves to play.")

print(f"He builds with blocks every day.")
print(f'{age}-year-old {name} stacks them high,")
print(f"{name}'s towers almost touch the sky.")

Max is 4 and loves to play.

He builds with blocks every day.
4-year-old Max stacks them high,
Max's towers almost touch the sky.

We do need to execute both cells for the output to update

f-strings are useful e.g. when creating file names and you want to store variable
data (like a temperature) to the filename

more on f-strings in the advanced courses

Single and double quoted strings are the same
text = 'I am a cheetah'
print(text)

I am a cheetah

with double quoted strings you can still use apostrophes inside of the
print("Tim's towers almost touch the sky.")

Tim's towers almost touch the sky.

Integer variables & Basic Math

a=>5
print(a)

5

instead of using the print statement, we can just use the variable name
This works for only one variable per cell though

b=3
b

3
c=a+b
C

8

X =5

y =2

If the cells are executed top to bottom everything is working

If you execute this cell without the previous one Python will not know
Z=X+Yy

z

~

One common mistake | see beginners do is name all their variables x and y which
leads to different results depending on the order in which cells are executed.

X 10
y = 15

This is still an issue even if you delete the cell because the variables you define are
kept in memory.

You need to restart the kernel to clear the memory and rerun the cells to add the
variables that you do want to memory again.

Comments

You see me use comments throughout the Notebook to add context, clarify things
and for explanations.

Comments are text that Python ignores when running code. They make your code
more readable and understandable.

Start with #

This is a single-line comment
x =5 # Comment at the end of a line

Best Practices for Using Comments

¢ Be Clear and Concise: Write comments that are easy to understand and to the
point.

e Update Comments: Always update comments when you change your code to
avoid misleading information.

¢ Avoid Obvious Comments: Don't state the obvious. Focus on explaining 'why'
rather than 'what'.

Bad: Increment x by 1
X += 1

Good: Increment age after birthday
age += 1

¢ Use Comments for Complex Logic: Explain tricky, non-obvious, or important
parts of your code.

e Code Sectioning: Use comments to divide your code into logical sections. (in
Jupyter you can use markdown cells and headings for that)

Data Preprocessing

Model Training

Results Analysis

¢ TODO Comments: Mark areas that need future work.

TODO: Implement error handling for invalid inputs
Remember: While comments are important, clear and self-explanatory code is

even better. Use descriptive variable and function names to reduce the need for
excessive commenting.

Tuples &

Tuples cannot be changed after creation, so they are constants

Create by using round brackets ()
coordinates = (5, 2)
coordinates

(5, 2)

This will not work:
#coordinates[1] = 5

If a function (section 5) has more than 1 return value it will be returned as a tuple

Lists
templ = 5
temp2 = 7
temp3 = 10

Create a list by using square brackets []
temp = [5, 7, 10]

temp

[5, 7, 10]

Appending

temp.append(15) # add 15 to list at the end
temp

[5, 7, 10, 15]

Mixing of datatypes is possible:
testlist_1 = [1,'x"',4,6,8]

print(testlist_1)
[1, 'x', 4, 6, 8]

Indexing, Slicing
print(testlist_1[1]) # Use indexing, in python indices start at 0

print(testlist_1[0:2]) # Use slicing, :2 means 'until but not including 2

print(testlist_1[2:]1) # 2: means from index 2 until the end

X
[1, 'x']
[4, 6, 8]

®

List : [1, X, 4, 6, 8]

Index : O 1 2 3 4

Concatenating
testlist 2 = ['boat', 42, 39.9, 'x']

merged_list = testlist_1 + testlist_2
print(merged_1list)

[1, 'x", 4, 6, 8, 'boat', 42, 39.9, 'x']
Remove by value

merged_list.remove('x"') # remove 'x'
print(merged_1list)

[1, 4, 6, 8, 'boat', 42, 39.9, 'x']

Remove by index
merged_list.pop(1l) # remove item with index 1
print(merged_list)

[1, 6, 8, 'boat', 42, 39.9, 'x'l]

Sorting

list_of_strings = ['car', 'house', 'boat', 'cow', 'pig'l
list_of_strings.sort() # Can use sort to sort alphabetically or numerical
print(list_of_strings)

['boat', 'car', 'cow', 'house', 'pig'l]

We will mostly be using numpy arrays and pandas dataframes in the advanced
courses

so if you want to know more about lists,

ask Claude @ ;= : Tell me about python lists and
everything I can do with them

Dictionaries L

A dictionary in Python is a collection of key-value pairs. Each key is unique, and it is
associated with a value. You can think of a dictionary as a real-world dictionary where
you look up a word (the key) and find its definition (the value).

Dictionaries are created using curly braces {} and the key-value pairs are separated
by a colon :

In [27]1: # Creating a dictionary to store a person's details
person = {
"name": "Alice",
"age'": 30,
"phone": "+49 178 12345"
¥

Accessing values using keys
print(person["name"])
print(person["age"])

alternatively use the .get() function which defaults to none if the key
print(person.get("phone"))

Alice
30
+49 178 12345

@ dictionaries

+49 178 12345

Dictionaries are for example useful when we are plotting (more later)

Ask Claude & = : What are the main differences between
lists, tuples, and dictionaries in Python?

Why Use Dictionaries?

Dictionaries are particularly useful when:

¢ You need to look up values by a unique key.
For example, if you have an employee ID and you want to quickly find the
corresponding employee name, a dictionary is ideal.

¢ You want to store data with named properties.
This is common in cases where you have related information (like user data) and
need to access parts of it frequently.

Comparison of Data Structures

Here's how dictionaries differ from other data structures:
e Lists:

= Lists are ordered collections of items that are accessed by their index (a
position number starting from 0).

= Useful when the order of elements is important or you want to store multiple
items of the same type.

= Example: my_list = [1, 2, 3, 4]

= Dictionaries are better when you need named access to items rather than
indexed access.

o Tuples:

= Tuples are similar to lists, but they are immutable (cannot be changed after
creation).

m Useful for fixed collections of items.

» Example: my_tuple = (1, 2, 3)

= Dictionaries provide more flexibility as they allow for dynamic
modifications (adding/removing key-value pairs).

e NumPy Arrays: (later)

= NumPy arrays are specialized for numerical data and mathematical
operations. They offer fast processing for large amounts of numerical data.
= Example: np.array([1, 2, 3, 4])
= Dictionaries are better for mixed data types (like strings and numbers) and
quick lookups by key.
o Pandas DataFrames: (in advanced course)

= DataFrames are 2-dimensional tabular data structures in the pandas library.
They are great for handling and analyzing structured data.

» Example: pd.DataFrame({"Name": ["Alice", "Bob"], "Age":
[30, 251})

= Dictionaries are simpler and more lightweight for cases where you just
need a quick lookup table or small, unstructured data.

Note: Lists [] use square brackets, Tuples () use round brackets,
dictionaries {} use curly brackets.

For numpy arrays it depends whether we convert a list to an array or if
we create an array from scratch (more later)

If statements E4J

By the end of this section, you will be able to:

1. Write basic conditional statements using if, elif, and else

2. Use comparison operators (==, !=, <, >, <=, >=) in conditional statements
3. Combine conditions using logical operators (and, or, not)

4. Understand and apply boolean logic in programming contexts

IF I'M HUNGRY,
I'LL GO EAT.

Indentation

Indentation indicates blocks of code

i=20
if (i==0):

print('i is 0')
else:

print('i is not 0')
iis 0
Arbitrary use of indentation creates error
f=1
This will not work:
#g=1

If statements control the program flow:

If you only want parts of the code executed in case a certain condition is met then
use if statements.

The if statement checks for a boolean variable (True/False)
We can define it beforehand:

is_sunny = True

if is_sunny:
print("Enjoy the sunny day!'")
else:
print("Don't forget your umbrella!")

Enjoy the sunny day!
"and" operator

"and" to check for multiple conditions
is_sunny = False
is_warm = False

if is_sunny and is_warm:
print("Enjoy the warm, sunny day. Take sunglasses.'")
else:

print("It is either not sunny or not warm or neither")

It is either not sunny or not warm or neither
"or" operator

"or" to check for multiple conditions:
is_sunny = False
is_warm = False

if is_sunny or is_warm:

print("It is either sunny or warm or both")
else:

print("It is neither sunny nor warm. Just stay home")

It is neither sunny nor warm. Just stay home

Boolean Logic Weather example

Let's explore how boolean variables work using two weather conditions: sunniness
and warmth.

Key:

e X means True (Yes)
e O means False (No)

All Possible Combinations:

Weather Condition Case1 Case2 Case3 Case4
Is it sunny? X X 0] (0]

Is it warm? X (0] X (0]

Logical Operations:

Case Case Case Case

Operation 1 2 3 a Explanation
Is it sunny AND X 0 0 0 True only when both are
warm? true
Is it sunny OR warm? X X X (0] True if at least one is true

CASE 1 CASE 2

(SUNNY AND WARM) (SUNNY AND COLD)

g9 g9
g9 ' X 4

CASE 3 CASE 4
(CLOUDY AND WARM) (CLOUDY AND COLD)

elif

Let's catch all four cases:
is_sunny = False
is_warm = True

if is_sunny and is_warm: # case 1

print("Enjoy the warm, sunny day. Take sunglasses.')
elif is_sunny and not(is_warm): # case 2

print("It is sunny but it isn't warm. Take a jacket")
elif is_warm: # case 3

print("It is not sunny but it is warm. Take an umbrella")
else: # case 4

print("It is neither sunny nor warm. Just stay home")

for case 3 there is no need to check again whether it is sunny because
we already checked the 2 cases where it 1is sunny

It is not sunny but it is warm. Take an umbrella

Ask Claude & = : Explain this code cell to me. How do
these if statements work? Why did we not have to check
again for is_sunny in case 37

Creating booleans by comparison

Comparing two numbers with > < == != <= >= creates booleans

print(1 > 0)
print(1 < 0)
print(1 == 0)

True
False
False

You can create booleans by comparison:

i=5
if (i==0):
print('i is 0')
elif(i < 0):
print('i is smaller than 0')
else:
print('i greater than 0')

i greater than 0

As a beginner, it's enough to understand the following concepts:

1. Boolean Variables: What they are and how they work

2. Conditional Statements: The syntax and logic behind if ... elif ...

3. Logical Operators: Combining multiple conditions with:

e and
e Or
e not(..)
4. Comparison Operators: Used to compare values
e == (equalto)
e != (notequalto)

e < (lessthan)

e > (greater than)

e <= (lessthan or equal to)

e >= (greater than or equal to)

else

% This foundational knowledge is all you need for the advanced courses:

e Python Basics
e Python for Scientists & Engineers
e Python for Biologists

Functions

By the end of this section, you will be able to:

. Define and explain the purpose of functions in Python

. Create functions using the def keyword

. Understand the concept of function parameters and return values
. Call functions and use their return values

. Explain the difference between local and global scope in functions

O o b~ WN -

. Recognize and apply best practices in function naming and design

To define a function we need to use the "def" specifier, the name of th
and in parenthesis the input arguments + a colon at the end
all the code that will be inside the funtion needs to be indented

def hello_world():
print("Hello World")

We need to call the function for something to happen
hello_world()

Hello World

Input Arguments X

\d

FUNCTION f:

L

def square_function(x):
return xxx2

square_function(3)

9

We can save the return value of the function in another variable:

result = square_function(3)

result

A function can have multiple input values:
def multiple_input(x,y):
return xk*2 + y*x*2

z = multiple_input(2,3)
z

"Ask ChatGPT: Can you explain the concept of return values in
functions in Python and why they're important?"

Why Use Functions?

Functions are fundamental building blocks in programming that offer several
advantages:

1. Organize Code: Functions help structure your program into logical, manageable
chunks.

2. Avoid Repetition: Instead of copy-pasting code, functions allow you to reuse
code efficiently.

3. Enhance Readability: Well-named functions make your code self-documenting
and easier to understand.

4. Improve Maintainability: When code is organized into functions, it's easier to
update and debug.

Pro Tip: Whenever you find yourself copy/pasting parts of code,
there's usually a better way — and that way often involves functions!

Here's an example of how functions can simplify our code:

templ = 30
result_1 = templxx2 + templ + 5
print(f"Result for {templ}: {result_1}")

Result for 30: 935

temp2 = 40
result_2 = temp2xx2 + temp2 + 5
print(f"Result for {temp2}: {result_2}")

Result for 40: 1645

def polynomial_function(x):
return (x*x2 + X + 5)

polynomial_function(templ)

935

polynomial_function(temp2)

1645

Multiple return values

def min_max_average(numbers):
minimum = min(numbers)
maximum = max(numbers)
average = sum(numbers) / len(numbers)
return minimum, maximum, average

numbers = [4, 2, 9, 7, 5, 1, 8]
min_max_average(numbers)

(1, 9, 5.142857142857143)

Note, how this returns a tuple: (min, max, average)

We can "unpack" the tuple like this:
min_val, max_val, avg_val = min_max_average(numbers)

print(f"Minimum: {min_val}")
print(f"Maximum: {max_val}")
print(f"Average: {avg_val:.2f}")

Minimum: 1
Maximum: 9
Average: 5.14

Note: For math operations like this we will be using numpy
(section 8) and numpy arrays. Numpy has a lot of built in functions
that have multiple return values

Understanding Scope in Python &

In Python, the scope of a variable determines where it can be accessed in your code.
Let's explore two main types of scope:

Global Scope

e Variables defined outside of functions
e Accessible throughout the entire code
e Can be read from anywhere, but modifying them requires special handling

Local Scope

e Variables defined inside functions
e Only accessible within that specific function

e Helps prevent naming conflicts and unintended modifications

. Best Practice: Keep the scope of variables as small as possible.
This helps prevent errors and makes your code more maintainable.

®

Scopes

Global
Scope

def my_function():
X=64 —

Local
Scope

print(x)

my_function()

print(x) OUTPUT
\.

64
16

Why Scope Matters

1. Prevents Naming Conflicts: Local variables can have the same name as global
variables without interfering with each other.

2. Improves Code Organization: Clearly defined scopes make it easier to
understand where variables are used and modified.

3. Enhances Debugging: Limiting scope makes it easier to track down issues in
your code.

In [52]: # Let's look at an example of global vs. local variables
global_var = "I'm global"

def scope_example():

local_var = "I'm local"
print(global_var + " - inside the function") # Can access global var
print(local_var + " - inside the function") # Can access local vari

scope_example()
print(global_var) # This works
#print(local_var) # This would raise an error because local_var is not a

I'm global - inside the function
I'm local - inside the function
I'm global

Good Programming Practice

While global variables are sometimes necessary, it's generally considered good
programming practice to avoid accessing them directly within functions. Instead:

e Pass required data as input parameters to your functions
e Return modified values from functions rather than changing global state

This approach, known as "passing parameters," offers several benefits:

1. Improved Readability: It's clear what data the function needs to operate.

2. Better Testability: Functions that don't rely on global state are easier to test.

3. Reduced Side Effects: Functions don't unexpectedly modify global variables.

4. Enhanced Reusability: Functions can be used in different contexts without
relying on specific global variables.

Example of good practice:

Instead of this:
global_data = 10

def process_data():
global global_data
return global_data * 2

Prefer this:

def process_data(input_data):
return input_data * 2

result = process_data(10)

Error messages &

def polynomial_function(x):
return (xxx2 + x + 5)

test_list = [1, 2, 3]
#polynomial_function(test_list)

We will see later how to apply mathematical functions to numpy arrays (so multiple
values at once). It does not work with lists

"Ask Anaconda Cloud & (= : Why are we getting an error message

here?

Common Errors (How to Handle Them)

When learning Python, encountering errors is part of the process. Here are some
common errors you might face and how to address them:

1. SyntaxError

e (Cause: Incorrect Python syntax
e Example: print "Hello World" (missing parentheses in Python 3)
e Fix: Correct the syntax: print("Hello World")

2. IndentationError

e Cause: Incorrect indentation of code blocks
e Example:

if True:

print("This is incorrectly indented")
e Fix: Properly indent the code:

if True:
print("This is correctly indented")
3. NameError

e Cause: Using a variable or function name that hasn't been defined

e Example: print(undefined_variable)

e Fix: Ensure the variable is defined before use or check for typos in the name
4. TypeError

e Cause: Performing an operation on an inappropriate data type

e Example: "2" + 2 (trying to add a string and an integer)

e Fix: Convert types appropriately: int("2") + 2 or "2" + str(2)
5. IndexError

e Cause: Trying to access a list index that doesn't exist
e Example: my_list = [1, 2, 3] then print(my_list[3])
e Fix: Ensure your index is within the valid range: print(my_list[2])
(remember, indexing starts at 0)
6. KeyError

e Cause: Trying to access a dictionary key that doesn't exist

e Example: my_dict = {"a": 1, "b": 2} then
print(my_dict["c"])

e Fix: Check if the key exists before accessing or use the .get() method:
my_dict.get("c", "Key not found")

When you encounter an error:

1. Read the (end of the) error message carefully - it often points to the line where
the error occurred and gives a description of the problem.

2. Check the line number and surrounding code for issues.

3. If you're unsure, try searching the error message online or ask Al tools for help.

Remember, errors are not failures - they're opportunities to learn and improve your
code!

Loops

By the end of this section, you will be able to:

1. Understand the concept of iteration in programming

2. Write and use while loops for indefinite iteration

3. Implement for loops to iterate over sequences (like lists or strings)
4. Avoid and handle infinite loops

while loop

i=20

while i < 6:
print(i)
i=1i+1

print("Have fun")

ave fun

careful when defining your criteria, if it is always true the loop will never end

this can be useful in generators though that we cover in the advanced courses

use kernel interrupt should you be stuck
Keyboard shortcut: Esc i 1

#while True:
print("This is an infinite loop that will never end")

for loop

for letter in "Hello World":
print(letter)

print("Have fun")

Note that "letter" is not a keyword in Python, we could give it another
Jupyter marks Python keywords in green

O —~~ M T

W
o
r
1
d
Have fun

binaries = [2, 4, 8, 16, 32, 64]

for number in binaries:
print(f"I am at {number} now")

am at 2 now
am at 4 now
am at 8 now
am at 16 now
am at 32 now
am at 64 now

o - H -

Ask Claude & = : Explain the difference between a for
loop and a while loop in Python. When would you use
one over the other?

Ask ChatGPT e .-
use a for loop to iterate over a dictionary in Python?

: Can you give me an example of how to

WHILE LOOP @ FOR LOOP

For Each Item In

Enter While Loop Sequence
Test False Last Item True
) Expression) Reached?
True False
Statements — Statements
Exit Exit
While Loop For Loop

Note: The shortcuts shown here also work in VS Code by the way.

General Shortcuts

Shortcut Action
[ESC] Go to command mode

[Enter] Enter edit mode for the selected cell

Command Mode Shortcuts

Shortcut Action
ii Interrupt Kernel
a Insert cell above
b Insert cell below
m Convert cell to Markdown
y Convert cell to Code
dd Delete selected cells
Shift Enter Execute cell and select below
Ctrl Enter Execute cell and stay
T/l Select cell above/below
Shift + /1 Extend selection above/below
Shift m Merge selected cells
Ctrl Shift - Spilit cell at cursor
(@ Copy selected cells
v Paste cells below
X Cut selected cells

Edit Mode Shortcuts

Shortcut Action
Comment/uncomment selected lines (Windows/Linux); On Mac use
Ctrl /
Cmd /
Ctrl z Undo (within a Cell); On Mac use Cmd z

Ctrl Shift

P Redo (within a Cell); On Mac use Cmd Shift z

For more shortcuts, visit: Jupyter Notebook Shortcuts

Virtual Environments &

By the end of this section, you will be able to:

1. Explain the purpose and benefits of virtual environments in Python

2. Create and activate a virtual environment using conda

3. Install and manage libraries within a virtual environment

4. Understand the difference between conda and pip for package management
5. Create, use and export environment.yml files for project reproducibility

Libraries

A library in Python (like NumPy or Matplotlib) is simply a collection of pre-written
code that someone has created to solve specific problems. You can use this code in
your own programs without having to write it from scratch.

The vast number of available libraries is a great strength of Python because they
enhance the functionality and versatility of Python.

import numpy as np

Convert a list to a numpy array

test_list = [1, 2, 4, 8, 16]
print(test_list)

[1, 2, 4, 8, 16l

test_list_converted = np.asarray(test_list)
print(test_list_converted)

[1 2 4 8 16]

import matplotlib.pyplot as plt

plt.plot(test_list_converted)

[<matplotlib.lines.Line2D at 0x10fe809b0>]

16

14 -

12 4

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Why use virtual environments?

In a nutshell: Think of environments like sandboxes and the libraries (like Numpy)
like children. If you put too many children in one sandbox there will be conflicts. So it
is better to have separate sandboxes (environments) to keep it civil.

Ask Claude & = : Why are virtual environments important
in Python development?

In Python, virtual environments are used to create isolated environments for your
projects, allowing you to manage dependencies and packages separately for each
project. They are used to solve a common problem in software development:
conflicting dependencies and package versions.

In Detail:

¢ Isolation: Virtual environments provide a sandboxed environment for your
Python projects. Each virtual environment is self-contained, meaning it has its
own directory structure and doesn't interfere with other Python projects or the
system-wide Python installation. This isolation helps prevent conflicts between
packages and dependencies.

e Dependency Management: In a virtual environment, you can install and manage
specific versions of Python packages and libraries independently of the global
Python environment. This allows you to specify the exact package versions
required for your project.

e Collaboration: When collaborating on a Python project, you can share the
project's virtual environment configuration with others. They can then create the
same virtual environment, ensuring that everyone is working with the same
packages.

¢ Testing and Development: Virtual environments are crucial for testing and
development. They allow you to create an isolated environment where you can
experiment with different package versions and configurations.

¢ [f you install everything in your base environment installing new packages can

lead to conflicts

Anaconda environments

Anaconda environments are the go to solution when you are on your own computer
and you can install anaconda or if you are in Anaconda Cloud.

Very nice cheat sheet about the commands:

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c68!

cheatsheet.pdf

Advantages:

— Anaconda automatically checks dependencies for your
packages and installs the necessary additional libraries
- It is easy to switch environments

Disadvantages:

- Anaconda is a bit intrusive
— Not available on every machine

Benchmarks have shown that since anaconda uses packages that use the Intel MKL
(Math kernel library) they can often be faster on Intel CPUs than when using PIP:

https://www.youtube.com/watch?v=AWWalL6pZieo

Pip is nevertheless used a lot. Often when you google how to install a package, you
will find the pip install command first.

DO NOT MIX Conda and pip installs in the same environment, as both package
managers cannot cross check for compatibiltity with the packages installed by the
other one.

You will not get an error message and the installation will most likely go through BUT
you might get unexpected behavior later.

Only use pip install in a conda environment as a last resort. By now 95% of packages
available in pip are also available in conda. Just google "conda install packagename"

Yaml files

The best and easiest way to install virtual environments is by creating .yaml files that
contain all the packages of your virtual environment. This way, the conda package
manager can check beforehand which version numbers of all the packages work
together.

They are regular text files with a .yml or .yaml file ending and look like this:

name: lab_python_course_env channels:

e conda-forge
e defaults

dependencies:

- jupyterlab

- matplotlib

- numpy

- scipy

— pandas

- altair

— h5py

- openpyxl

- vega_datasets

— Sympy

- dask

- ipywidgets

- ipympl

- nodejs

- conda-forge:: ffmpeg

- conda-forge::jsonschema-with-format—-nongpl
— conda-forge: :webcolors

install by running this command in the command line while in the same folder as the
yml file:

conda env create ——file lab_python_course_env.yml

In .yml files name specifies the environment name, channels tell conda where to look
for the packages, dependencies are the libraries that you want.

Add Conda to Powershell

In Windows out of the box you unfortunately have to deal with multiple shells. To add
the functionality of conda commands in Windows Powershell use these two
commands.

In Anaconda Prompt:
conda init powershell
In Powershell:

Set-ExecutionPolicy —-ExecutionPolicy RemoteSigned -
Scope CurrentUser

Activating environments

After installation you need to activate the environment, it does not activate
itself

conda activate python_course_env

You need to do this every time you start a new shell as the default environment is the
base environment

Default environments in Jupyter Lab

¢ Click on your active environment in the top right
e Click on the gearicon

conda: lab_python_course_env —

Current environment: ~/anaconda3/envs/lab_python_course_env/bin/python LD

Restart session with a different Python environment

/Users/mauricemaurer/anaconda3/envs/lab_python_c...conda: lab_python_course_env (current)

/Users/mauricemaurer/Library/jupyterlab-desktop/jlab_server/bin/... conda: jlab_server (bundled)

/Users/mauricemaurer/anaconda3/bin/python conda: anaconda3

/Users/mauricemaurer/anaconda3/envs/test_python_course_... conda: test_python_course_env

/Users/mauricemaurer/anaconda3/envs/lab_python_course_e... conda: lab_python_course_env

e Copy the Python Path from the environment you want to make default

Manage Python environments

Environments Python paths for compatible environments discovered on your system are listed below. You can add other

environments by selecting a Python executable path on your system, or create new environments. 'jupyterlab’

Create new Python package needs to be installed in an environment to be compatible with JupyterLab Desktop.

X Add existing Create new
Settings

conda (6)
/Users/mauricemaurer/anaconda3/bin/python conda: anaconda3

/Users/mauricemaurer/anaconda3/envs/lab_python_cour conda: lab_python_course_env (default)
Copy Python path

/Users/mauricemaurer/anaconda3/envs/lab_python_course_env/t conda: lab_python_course_env Copy environment info
Launch Terminal
/Users/mauricemaurer/anaconda3/envs/python_course_env/bin/pythol conda: python_course_env Launch JupyterLab Web App

Reveal in Finder
/Users/mauricemaurer/anaconda3/envs/test_python_course_env, conda: test_python_course_env

/Users/mauricemaurer/Library/jupyterlab-desktop/jlab_server/bin/pytt conda: jlab_server (bundled)

¢ In the settings, paste it into the first box

Manage Python environments

TS Default Python path for JupyterLab Server ©)

Updates available for the bundled environment installation = Update
Create new

. Use bundled Python environment installation
Settings

@ Use custom Python environment
/Users/mauricemaurer/anaconda3/envs/lab_python_course_env/bin/python» Select path

New Python environment install directory ®

/Users/mauricemaurer/Library/jupyterlab-desktop/envs Select path

conda path ®

/Users/mauricemaurer/anaconda3/bin/conda Select path

conda channels @

conda-forge ‘

Python path to use when creating venv environments ©)

/Users/mauricemaurer/anaconda3/bin/python3 Select path

Installed environment are available everywhere on your computer, not just in the
folder you installed them

Ask Claude & = : Give me a machine learning example in
Python + the YAML file with the necessary libraries

Anaconda Cloud

Anaconda cloud has pre-installed environments but you can't install additional
libraries into them.

You can install your own environment with a .yaml file the same way you can do on
your computer.

However: for free you only get 5GB of storage, so make sure to clear
the cache after installation (Disk usage->Clear Cache).

Exporting environments

You can export your current environment with the exact version numbers of all the
libraries using

conda env export > export_env.yml
This will guarantee that the other person has the exact same setup as you.

When you are using a version control software like GIT (we cover gid in the advanced
courses), you can put the .yaml file for your Python code into the repository

Word of advice

Once you have a working environment, do not update/change it. If you need more
modules later it is generally a better idea to create a new environment with the
additional packages such that conda can check again which version numbers are
compatible

First steps with numpy

By the end of this section, you will be able to:

1. Understand the basic concept and benefits of NumPy arrays

2. Create and manipulate NumPy arrays

3. Perform basic mathematical operations on NumPy arrays

4. Use NumPy's built-in functions for array manipulation and analysis

5. Recognize the performance benefits of NumPy over standard Python lists

Numpy arrays are stored continuously in memory. Processing can therefore be 100x
faster than lists.

Built in functions for fast computation are written in C or C++

import numpy as np

Initialize an array

Initialize 1D array

test_array = np.array([1, 2, 3, 4, 5])
print(test_array)

[1 23 45]

Convert a list to a numpy array

test_list = [1, 3, 5, 7, 9]

print(test_list)

[1, 3, 5, 7, 9]

test_list_converted = np.asarray(test_list)
print(test_list_converted)

[135709]

Create an array with a range of values and the step in between

arrl = np.arange(start=-5, stop=5, step=0.5)
arrl

array([-5. , -4.5, -4. , -3.5, -3. , -2.5, -2. , -1.5, -1. , -0.5, O.
.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])

’

Create an array in a range with a fixed number of values (symmetric)
arr2 = np.linspace(start=-5, stop=5, num=21)
arr2

array([-5. , -4.5, -4. , -3.5, -3. , -2.5, -2. , -1.5, -1. , -0.5, O.
0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.1)

’

Accessing array elements

Numpy arrays start counting at 0 (like in C):

Accessing 1D array
arr = np.array([2, 4, 8, 16])

print(f'First element: {arr[0]l}')

First element: 2
Accessing array counting from the end (negative indexing)

print(f'Last element: {arr[-11}")

Last element: 16

Array Iteration

Simple iteration on 1D array similar to lists
for x in arr:
print(x)

= 00 ~N

6

Or use enumerate, if you want the loop iteration index
for idx, x in enumerate(arr):
print(f'index {idx}: {x}")

index
index
index
index

W NNRFR S
= 00 ~N

numpy.where for searching

Suppose you want to find the indices where the value of an array is 4:
np.where(arr == 4)

(array(I[11),)

np.min() np.max() etc.

arr = np.array([16, 8, 32, 1024, 64])
minimum = np.min(arr)

maximum = np.max(arr)

min_idx = np.argmin(arr)

max_idx = np.argmax(arr)

print(f"The minimum of arr is {minimum} at index {min_idx}")
print(f"The maximum of arr is {maximum} at index {max_idx}")

The minimum of arr is 8 at index 1
The maximum of arr is 1024 at index 3

np.min() @ np.max()

N

array: | 16 8 32 |1024| 64

index: 0 2 @)\4

np.argmin() Np-argmax()

num = 16
print(f"The squareroot of {num} is {np.sqrt(num)}")

The squareroot of 16 is 4.0
np.pi

3.141592653589793

np.exp(2)

7.38905609893065

np.abs(-4.9)

4.9

Summary

This is not a full tutorial on Numpy, this is just a quick look at what external libraries
can do.

In the advanced courses (https://training-scientists.com) we look at

e multidimensional array initialization, access, slicing and iteration

e joining [stacking of arrays

e Filtering arrays (e.g. give me all values in the array larger than a certain value, or
all even numbers)

e Performance comparisons between numpy arrays and lists

e pre-allocation of arrays

e linear algebra

e statistics

e Fourier Transforms
and a lot more hands on examples of everything numpy can do like

e interpolation
e fitting
o filtering noise out of large data sets

Ask Claude & = : What are the main advantages of using
NumPy arrays over Python lists for numerical
computations?

First steps with matplotlib il

By the end of this section, you will be able to:

1. Create plots using Matplotlib (line plots, scatter plots, histograms)
2. Customize appearance (colors, labels, titles, legends)
3. Generate and understand different types of visualizations

import numpy as np
import matplotlib.pyplot as plt

x |y plot:

Generate two arrays to be plotted as x-values

X = np.linspace(start=0, stop=10, num=11)
x_fine = np.linspace(start=0, stop=10, num=101)

Polynomial function from functions section DO NOT define a function twice in a
production script

def polynomial_function(x):
return (xxx2 + x + 5)

Calculate the y values running the polynomial function on the x values

polynomial_function(x)
ne = polynomial_function(x_fine)

y:
y_fi
Create a figure to plot these two x/y sets
plt.figure()

plt.plot(x,y,'o")

plt.plot(x_fine, y_fine)

[<matplotlib.lines.Line2D at 0x10ff40a10>]

120

100

B0 1

60 1

40 -

20 1

Customize the plot
plt.rcParams.update({'font.size': 14}) # Increase font size (for entire n
plt.figure(figsize = (6,6)) # Change figure size and aspect ratio

plt.plot(x,y, 'x', label='Discrete') # Add labels
plt.plot(x_fine, y_fine,ls='--"', label='Quasi-continuous"')

plt.xlabel('x') # Use LaTeX notation
plt.ylabel('$sy = x*2 + x + 5%')

plt.legend(loc="upper left') # Add legend

<matplotlib. legend.Legend at 0x109aadce0d>

120 -
* Discrete s
---- Quasi-continuous /
100 - ’
F
.l"f‘f

80 - ;
L r;
+ g
> /!
+ 60 - f‘;‘
> 4
I f
> f“f

40 A /

!*
ff//
20 A *’Jf
HH’#!‘F
-
D - T T I I I |
X

Scatter plots

Generate array of random numbers with normal distribution for x values:

x_rand = np.random.normal(loc=3, scale=1.0, size=2000)
The same for y values:
y_rand = np.random.normal(loc=3, scale=1.0, size=2000)

define the dictionaries for plotting options:
random_dict = {"color": 'gray', "label": 'Random values'}
mean_dict = {"s":200, "color":'blue', "marker":'x', "label":

Plot as scatter

plt.figure(figsize=(6,6))

'Average'}

plt.scatter(x_rand, y_rand, sxrandom_dict) # all values as orange points

The mean (x,y) as a blue star:
plt.scatter(np.mean(x_rand), np.mean(y_rand), s**mean_dict)
plt.xlabel('x")

plt.ylabel('y")

plt.xlim([-1 , 71)

plt.ylim([-1 , 71)

plt.legend(loc="upper left')

Out[88]:

In [89]:

Out[89]:

<matplotlib. legend.Legend at 0x109ffe2a0d>

7

Plotting the same data in a different way using the same plot style

plt.figure(figsize = (6,6))
plt.hist(x_rand, bins=50, *krandom_dict)
plt.xlabel('x")

plt.ylabel('occurences')

Text(0, 0.5, 'occurences')

e Random values
61 W Average
- []
5' & ®
L]
]
- ® ®
4 o O®
*
1 ° ! 4
> 3 . e
[]
27 °
[]
1 Qe »
L .-
0- I -
—1 T T
0 2 6
X
Histogram

In [90]:

Out[90]:

120~

100 A

80 1

60 A

occurences

40 A

20 A

when we change the dictionary, all we need to do is rerun the code

Contour plots

x_contour = np.arange(0, 11, 0.1)
y_contour = np.arange(0, 11, 0.1)

Create 2D meshgrid of x and y values:
X,Y = np.meshgrid(x_contour, y_contour)
zZ=XxY

plt.figure(figsize = (6,6))
plt.contourf(X, Y, z) ##
cbar = plt.colorbar() ##
cbar.set_label('z = xxy') ##

plt.xlabel('xs")
plt.ylabel('y")

Text(0, 0.5, 'y"')

120

- 105

Pie charts

sizes = [20, 80]

labels ['Actual Programming', 'Debugging'l]
colors = ['gold', 'lightcoral'l

explode = (0.1, @) # explode 1st slice

plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%
plt.axis('equal')

plt.title('Time spent programming')

plt.show()

Time spent programming

Actual Programming 20.0%
Debugging

Summary
Matplotlib is a powerful plotting library that can produce professional looking plots.
In the advanced courses we will look at

e inset Plots

e interactive plots & widgets

e creating videos from a series of plots
e advanced plotting options

e making plots publication ready

If you are interested:

e Python Basics
e Python for Scientists & Engineers
e Python for Biologists

Ask Claude & - : What are the key components of a
matplotlib figure and what does each do?

Ask ChatGPT & = : Create a matplotlib plot with multiple
y axes

FAQ ? & Common issues | see beginners struggle
with

Whenever | look at your code it makes sense, when | try it |
geterrors ™ ?

Learning programming is like learning anything else. Think of learning a new
language or a music instrument.

It is one thing to watch someone else play the piano and think "He plays well". It is
another thing entirely to be able to play yourself.

A few tips:

e keep the code cells small. It is easier to find a bug in a cell with 3 lines of code
than to find the needle in the haystack

e work your way forward with as small increments as possible. Write a line of code,
execute. Write another line, execute etc.

e |earn how to read error messages (the important stuff is always in the last line)

e use Al tools. Copy/paste buggy code to ChatGPT/Claude or use Anaconda Cloud.
With basic errors they can usually help

How to think like a programmer?

Tricky question. In this video | showed you the tools you need to get started. Imagine
you're a handyman and just learned how to use a screwdriver, hammer, saw etc. X
Instead of trying to build an entire house now, start small. Build a birds house. Then
build a dogs house. Then a garage. And THEN try to build a house.

A few tips <~

e programmers usually have a "divide and conquer" approach to solving problems.
Break the project you have into as many small parts as possible and then solve
them one by one. You climb a mountain one step at a time. Don't try to jump to
the top in one go. Al tools might help you get there faster and be your Sherpa but
they might also lead you on the wrong path. Divide and Conquer example:

= FilelOM™
o What format is the data in that in want to read in?
o How do | read that type of data in?
o In what kind of data structure do | want to store the data in Python?
o Read in the data
o Was the data read in correctly? (Compare the array in Python with the
data in the file)
= Data analysis 4
o Here it might make sense to work backwards and start with the
question: how do | want the end result to look like?
o decide for the method of data processing: interpolation, fitting, filtering
etc.
o process the data
o check if the result makes sense
= Visualization pl
o decide for the type of plot (histogram, contour plot etc.) that best
represents your result and the point you are trying to make with it

o plot the end result of the data analysis
o make the plot publication ready
e Learn from other people. Like watching DIY home improvement videos you can
learn from how other people solve problems. | will create some videos like this in

the future, so subscribe ;)

Naming Variables: XX X Avoid Keywords and Built-in
Functions = == =

Basically, if the name turns green, it is a reserved name

Absolutely do not do this:
#for = 3

Python Keywords and Built-in Functions Reference Z,

Keywords /-

Keywords Keywords Keywords Keywords
False None True and
await break class continue
else except finally for
import in is lambda
pass raise return try

Common Built-in Functions &

Functions Functions Functions
abs() all() any()
classmethod() compile() complex()
filter() float() format()
id() input() int()
max () memoryview() min()
property() range() repr()
str() sum() super()

Note:

Keywords

as assert

def del

from global

nonlocal not

while with

Functions

ascii()
delattr()

frozenset()
isinstance()
next()
reversed()

tuple()

e Keywords are reserved and cannot be used as identifiers.

Keywords Keywords

async
elif
if

or

yield

Functions
bin()
dict()
getattr()
issubclass()
object()
round ()

type()

e Built-in functions are predefined but can be overwritten (not recommended).
e True, False, and None are constants but treated as keywords.

e This list is based on Python 3.x and may vary slightly in different versions.

What's the difference between = and

[] =]
X = 5 assigns the value 5 to the variable x.
[] ——

equal. Example: if x

checks if the value of x is equal to 5.

Which one of the Al tools should | be using?

in Python?

is the assignment operator. It's used to assign a value to a variable. Example:

is the equality comparison operator. It's used to check if two values are

o |f you don't want to spend any money | would use all 3 and take advantage of the

free usage per day limits

¢ Anaconda Cloud is great for in-place debugging

e Claude is great with its Artifacts and versions
e ChatGPT just released ChatGPT o1 which takes more time to "think" which
probably just overtook Claude 3.5 Sonnet

How do | choose between using a list, tuple, or dictionary?

e Use a list when you have a collection of related items that may change (mutable)
and order matters. Example: todo_list = ['Study', 'Exercise',
'Cook"']

e Use a tuple for collections of items that shouldn't change (immutable) and order
matters. Example: coordinates = (4, 5)

e Use a dictionary when you want to store key-value pairs for quick lookup.
Example: person = {'name': 'Alice', 'age': 30, 'city': 'New
York'}

What are some common Python libraries for data analysis
and when should | use them?

Answer:

e NumPy: For numerical computing and working with arrays. Use when you need
to perform mathematical operations on large datasets efficiently.
e Pandas: For data manipulation and analysis. Great for working with structured
data in tables or time series.
e Matplotlib: For creating static, animated, and interactive visualizations. Use
when you need to create basic plots and charts.
e SciPy: For scientific and technical computing. Use for more advanced statistical
functions, optimization, and signal processing.
e We cover all of them in the advanced courses
= Python Basics
= Python for Scientists & Engineers
= Python for Biologists

How can | collaborate on Python projects with others using
version control?

Use Git as your version control system and GitHub, GitLab, or Bitbucket as your
remote repository host. We set this up in the advanced courses, try it out and use it
together with practical examples.

How can | improve my skills further?

1. The exercises for this course are available on https://training-scientists.com. To
get a 50% discount, leave a like and a comment under the video and contact me
on LinkedIn.

2. Go ahead and play around with this notebook. If anything is unclear, delete it and
see what happens. Break things and understand what they are good for. If you

are afraid of breaking things, just create a copy of the notebook.

3. Try solving small problems (that ideally are relevant to you) and start coding. Use

Al tools to help you but always understand what you are copy pasting.

4. Consider signing up for one of my advanced courses with lots of hands-on

exercises, live Zoom sessions to discuss exercises, ask questions and discuss

topics beyond the course

"Ask ChatGPT: Can you suggest some small Python projects for

beginners to practice their skills?"

Glossary &

Term

Variable

Data Type

Function
List

Tuple
Dictionary

Loop

Conditional
Statement

Scope

Indentation

String

Boolean

Index

Slice

Iteration

Definition
A named storage location in computer memory that holds data.

A classification of data which tells the compiler or interpreter how the
programmer intends to use the data.

A block of organized, reusable code that performs a specific task.
An ordered, mutable collection of elements in Python.

An ordered, immutable collection of elements in Python.

An unordered collection of key-value pairs in Python.

A programming construct that repeats a group of commands.

A programming language construct that performs different
computations or actions depending on whether a boolean condition
evaluates to true or false.

The region of a program where a variable is recognized and can be
used.

The spaces at the beginning of a code line used to determine the
grouping of statements in Python.

A sequence of characters in Python, typically used to represent text.
A data type that has one of two possible values: True or False.

A number representing the position of an element in a sequence (like a
list or string).

A portion of a sequence, specified by a range of indices.

The process of repeatedly executing a set of statements.

Best Practices Summary

Throughout this course, we've covered several best practices for Python

programming. Here's a summary of key points to remember:

1. Code Readability

e Use descriptive variable and function names
e Follow PEP 8 guidelines for code style (covered in more detail in the
advanced courses)
e Keep lines of code between 79-99 characters long
e Use comments to explain 'why', not 'what'
2. Function Design

e Keep functions small and focused on a single task
e Use parameters instead of relying on global variables
e Return values rather than modifying global state

3. Variable Scope

e Keep variable scope as small as possible
¢ Avoid using global variables within functions
4. Data Structures

e Choose the appropriate data structure (list, tuple, dictionary) for your needs
e Use NumPy arrays for numerical computations when performance is crucial
5. Virtual Environments

e Use virtual environments to manage dependencies for different projects
e Keep your base Python installation clean

Remember, writing clean, readable, and maintainable code is a skill that develops
with practice. Keep these best practices in mind as you continue your Python
journey!

"Ask ChatGPT: Can you explain the concept of DRY (Don't Repeat
Yourself) in programming and give an example in Python?"

