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Classical View of an Earthquake

Tectonic plates try to slide past each around
faults

The faults resist this motion due to friction

This builds up energy in the medium and
iIncreases stress on the faults

Once the stresses exceed frictional
resistance the plates slide past each other

as the fault ruptures (unzips)

This leads to a sudden release of the stored
energy called an Earthquake

Video courtesy USGS
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Rupture Speed

As the fault ruptures (unzips) it radiates P -waves and S -waves into the medium

Thus, three different speeds come into action

* rupture speed

« S-wave speed (~3.5 km/s)

- P-wave speed (~5 km/s)

A vast majority of earthquakes have rupture speed slower than the S-wave speed, around
2.5 km/s to 3 km/s







S-waves P-waves

Fault

Rupture Front




Rupture Speed



Rupture Speed

However, occasionally, the rupture tends to go faster than the S-wave speed (but slower than
the P-wave speed)




Rupture Speed

However, occasionally, the rupture tends to go faster than the S-wave speed (but slower than
the P-wave speed)

Such class of earthquakes are called Supershear Earthquakes
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https://www.nasa.gov/image-feature/stark-beauty-of-supersonic-shock-waves



Supersonic Supershear

Shock / Mach Front

P. Salcher

https://www.nasa.gov/image-feature/stark-beauty-of-supersonic-shock-waves

Photographische Fixirung der durch Projectile in der Luft eingeleiteten Vorgénge," Sitzungsber. k. Akad. Wiss., math.-naturwiss. Classe, 95 (1887) 764-80
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Earthquake ruptures modelled as dynamic shear fractures

Craggs (1960) : Solution for a steady state semi-infinite crack, subjected to combined mode | and mode Il loading

e Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip
* Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

* Energy will be radiated out from the crack tip if the rupture speed lies between the Rayleigh and shear
wave speeds of the surrounding linear elastic medium. Thus forbidden.

* Mode Il shear crack will tend to propagate in the sub-Rayleigh rupture speed regime

Weertman (1969) : Treated the crack as smeared-out dislocations

* Supershear velocity is forbidden

0 Rayleigh Shear Pressure
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Earthquake ruptures modelled as dynamic shear fractures

Burridge (1973) : Solution for a self-similar mode |l crack

* Showed how to by-pass the forbidden speed regime

* A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a
secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation
* Propagation velocity increases monotonically up to the P-wave speed

Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

Validated Burridge mechanism of bypassing forbidden regime
* |[dentified mechanically stable portion of the supershear rupture speed regime
* Introduced the notion of a 'transition’ length

0 Rayleigh Shear \/2 Pressure
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Earthquake ruptures modelled as dynamic shear fractures

Das (1976) , Das & Aki (1977) : Numerically simulated a sub-Rayleigh to supershear rupture transition

 Introduced the § - ratio , a non-dimensional measure of the strength of a fault

 Showed that for S < 1.77 results in supershear rupture

Burridge (1979) : Stability analysis of a steady-state shear crack driven by a point load

*Verified the various admissible speed regimes

Freund (1979) : Solutions for the stress and particle velocities due to a 2D steady state shear crack

 Stability of sub-shear crack propagation

0 Rayleigh Shear \/2 Pressure
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(b) Amplitude Decay of sub-Rayleigh Velocity Fields
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2D Steady State Singular Elastic Model : Supershear
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2D Steady State Singular Elastic Model : Supershear \ﬁ C, case

Eshelby 1949
Mello, Bhat et al. 2016
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2D Steady State Cohesive Zone Model : Supershear Stress Field

i5 v, = L.5¢ v, = 1.6¢y v, = 1.7¢cq
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Bhat et al. 2007
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Mello, Bhat et al. 2016

Theory

2D Spontaneous Rupture Model : Supershear
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3D Steady State Cohesive Zone Model : Supershear
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> Shear Mach fronts
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3D Steady State Cohesive Zone Model : Supershear

eRupture tip causes
medium to bulge on the
compressional side and
dimple on the extensional
side

e Jo maintain the traction-
free surface, Rayleigh
waves are generated

o|f rupture Is supershear =>
superRayleigh =>
Rayleigh Mach fronts

Dunham & Bhat 2008
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3D Steady State Cohesive Zone Model : Supershear

-Rup’fure tip causes (AG +AG )/Ac
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Sub to Supershear Transition

Burridge (1973) & Andrews (1976) : Mother-Daughter transition mechanism
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Sub to Supershear Transition : Off-Fault Damage
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* As Weertman (1969) theory disallowed supershear, it was forgotten. Probably!
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* First recorded image of a supershear rupture!
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Rosakis et al. (1999) : Shear impact experiments
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Experiments

Xia et al. (2004) : Spontaneous shear ruptures along a frictional interface a.k.a Laboratory Earthquakes
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* First laboratory evidence of Supershear Ruptures
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Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes
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Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes
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Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes
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* Fault Parallel Motion > Fault Normal Motion for Supershear ruptures
e Supershear rupture front is followed by a "Trailing Rayleigh Rupture”
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Mello, Bhat et al. (2014) : Scaled Reproduction of the 2002 Denali, Alaska Supershear Earthquake
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Mello, Bhat et al. (2014) : Scaled Reproduction of the 2002 Denali, Alaska Supershear Earthquake
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Passelegue et al. (2013) : Experimental Evidence of Supershear Rupture Speed in Rocks
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Passelégue et al. (2013) : Experimental Evidence of Supershear Rupture Speed in Rocks

/\ 220

-
-
Py
-~ -
-~ -

Length

100

120F- - - - - - - """" """" """"""""

;': I’. C
O=sin' [
\/r
10 {5 20 55 30

Diameter Distance from the fault [mm]

|
35

40

—h

Distance from the fault [cm
N

V)

TJ"V”W‘:’:WT‘V"V‘W

S

C

°V° 5—013 — - 1.3]
L C,

120 160 200 240 280
Time [microseconds]



Experiments



Experiments

Passelegue et al. (2013) : Experimental Evidence of Supershear Rupture Speed in Rocks



Experiments

Passelegue et al. (2013) : Experimental Evidence of Supershear Rupture Speed in Rocks

0.18 1
— - 1.0
o | AL B
. Supershear N ]
0.14 | 0.8 1.6 1 o oUpe : o :::::: @)
los o B 2R G 10
"= 0.10 = ; U NS )}
- L = OO . 5
— TSN 0N > e S ST e - e
S 0.4 o 06
0.06 | G S '
| /o > SR
el 0.2 Sub-Rayleigh
0.02 | 2 S
5 L 0.4
| 1 | | | | | O 101
0] 20 40 60 80 100 120

Initial Normal Stress [MPa] Shear Stress Drop [MPa]



Experiments

Passelegue et al. (2013) : Experimental Evidence of Supershear Rupture Speed in Rocks
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Yue et al (2013): 2013 M., 7.5 Craig, Alaska earthquake
Zhan et al (2014) : 2013 Mw 6.7 Okhotsk, Kamtchatka earthquake. Deepest and fastest earthquake recorded

Bao et al (2019) Socquet et al (2019) Amlani et al (2021): 2018 My, 7.5 Palu, Sulawesi earthquake
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Supershear earthquakes in the wild
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Supershear earthquakes in the wild

Amlani et al. (2021) : First observation of Supershear Earthquake on a GPS station
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Dynamic shear ruptures, including earthquakes,
can indubitably attain supershear speeds

- Supershear ruptures are stable above the Eshelby speed, \/ECS

» The near field particle velocity is dominated by the fault parallel component for such ruptures. The
opposite is true for sub-Rayleigh/ sub-shear ruptures.

* There Is a clear separation of the dilatational and the shear fields which manifest in the ground
motion.

- Supershear ruptures are, usually, trailed by a pulse traveling exactly at the Rayleigh wave speed. This
pulse has dominantly fault normal motion.

 In 3D, supershear ruptures manifest Rayleigh Mach fronts, in addition to the shear ones. The Rayleigh
Mach fronts suffer no attenuation with distance from the fault for an ideal medium.

- At the location of transition from sub to supershear speeds, severe Lorentz-like contraction of the
stress field should lead to minimal off-fault damage.
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We developed simple rules for rupture branching
(forward & backward), in a fault network

We developed new algorithms to model earthquake
cycles on realistic fault networks

We showed that slow slip events and earthquakes

emerge naturally in non-planar faults

We showed that the off-fault damage dynamically
interacts with rupture
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We co-developed numerical algorithms to
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We showed that the off-fault damage dynamically
interacts with rupture
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networks for mechanical & hydraulic evolution

We showed that high frequency ground motion
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We were able to explain migration of tremors by
non-linear fluid diffusion mechanism

We showed that thrust faults can actually open
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Hierarchical Nature of Fault 10 km
Networks and Off-Fault Frac-| p
ture Networks (Damage
Z.ones)

We developed simple rules for rupture branching
(forward & backward), in a fault network

We developed new algorithms to model earthquake

cycles on realistic fault networks
100 km

We showed that slow slip events and earthquakes
emerge naturally in non-planar faults

We showed that the off-fault damage dynamically
interacts with rupture
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We co-developed numerical algorithms to
spontaneously activate off-fault fracture networks

We were able to explain migration of tremors by
- 2m  non-linear fluid diffusion mechanism
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