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Abstract
Tidal stress is a globally acting perturbation driven primarily by the gravitational forcing of the Moon and the Sun. Understanding how
tidal stresses can trigger seismic events is essential for constraining tectonic environments that are sensitive to small stress perturbations.
Here, employing a spring–block with rate-and-state friction, we investigate tidal triggering on velocity-weakening stable sliding faults
with stiffness slightly exceeding the critical stiffness. We first apply idealized step-like and boxcar normal stress perturbations to
demonstrate a resonance-like amplification of slip rate when the perturbation period approaches the intrinsic frictional timescale of state
evolution. Next, we perform nondimensional analyses and numerical simulations with harmonic tidal-like perturbations to identify the
key parameters controlling tidal triggering and their admissible ranges. Triggered slip events are further characterized using physically
interpretable quantities, including radiation efficiency and tidal phase. Our results show that even small stress perturbations can trigger
periodic as well as complex slip events on stable sliding faults. The triggering behavior is primarily controlled by the normalized
perturbation period and the normalized perturbation amplitude. An increase in the normalized period shifts event timing from the peak
of tidal stress toward the peak of stress rate, whereas increasing the normalized amplitude promotes a transition from slow to fast events.
The parameter space permitting triggered events suggests that the parameter which characterizes the instantaneous frictional strength
of an interface, should not exceed tens to hundreds of kilopascals, and that the characteristic slip distance for frictional weakening is
likely on the order of micrometers.

Plain Language Summary
Earth’s crust experiences tiny but continuous stress changes caused by the gravitational pull of the Moon and Sun, known as tidal
stresses. Although these stresses are very small, typically of the order of a few kilopascals and comparable to the pressure from a gentle
hand press, they have been observed to trigger slow earthquakes on some faults. This raises an important question about the physical
conditions under which faults become sensitive to such weak, periodic forces. Here, we show that even very weak tidal stresses can
induce faults to slip through a process called resonance, much like pushing a swing at the right rhythm makes it move higher. We find
that when the period of tidal stress perturbations matches the natural response timescale of a fault, the fault becomes significantly more
sensitive to triggering. Using theoretical analysis and numerical simulations, we identify the specific combinations of fault properties
and tidal characteristics that lead to slip events. Our work helps explain why some faults are unusually sensitive to tiny tidal forces and
provide a way to infer fault properties from observations of tidally triggered slow earthquakes.
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Keypoints
• Small persistent stress perturbations can trigger temporally complex slip events in otherwise stable sliding faults.

• Nondimensional framework presented can be generalized to various time-dependent perturbations, friction laws and continuum
fault.

• Methodology to connect numerical events with observable quantities like: radiation efficiency and tidal phase.

1 Introduction

Slow earthquakes are a class of fault slip phenomena that release tectonic stress over timescales much longer than regular
earthquakes, but shorter than long-term stable sliding. Over the past two and a half decades, slow earthquakes have
been detected widely in many subduction zones around the Pacific Rim (Schwartz & Rokosky 2007; Peng & Gomberg
2010). Since they are predominantly observed both updip and downdip of megathrust seismogenic zones (Obara & Kato
2016; Nishikawa et al. 2023), slow earthquakes provide valuable insights into stress accumulation and release along plate
interfaces and are therefore highly relevant for assessing the rupture potential and spatial extent of future megathrust
earthquakes (Obara 2025).

Slow earthquakes can be broadly classified into five types, which are commonly grouped according to their detection
methods as either seismic or geodetic. Seismically detected events, identified through ground shaking recorded by seis-
mometers, include low-frequency earthquakes (LFEs), tectonic tremors (hereafter referred to as tremors), and very low-
frequency earthquakes (VLFEs). Geodetically detected events, identified through crustal deformation measured by GNSS,
strainmeters, or tiltmeters, include short-term and long-term slow slip events (SSEs). Among these phenomena, tremor
is characterized by weak seismic signals lacking clear P- and S-wave arrivals (Obara 2002), with dominant frequencies
in the 1–10 Hz range (Shelly et al. 2007b; Obara 2020). A key feature of tremor is its frequent spatial and temporal
association with short-term SSEs, a coupled phenomenon now widely known as episodic tremor and slip (ETS) (Rogers
& Dragert 2003; Obara et al. 2004). Because tremor is the most frequently detected signal, it is often used as a proxy for
studying ETS (Bartlow et al. 2011; Wech & Gomberg 2025).

Another important feature of slow earthquakes, particularly tremors, is their high correlation with tidal stresses (Ide &
Tanaka 2014; Yabe et al. 2015; Ide et al. 2015; Hirose & Kobayashi 2025). Tidal stress acting on the Earth arises from
gravitational forcing by the Moon and the Sun, manifested through both solid Earth tides and ocean tidal loading, and pro-
duces well-characterized periodic stress perturbations with dominant periods of approximately 12 hours and amplitudes
on the order of kilopascals (∼ kPa). Early observations in southwest Japan and Cascadia showed that tremor occurrences
often peak at intervals of about 12 and 24 hours, reflecting tidal periodicity (Shelly et al. 2007a; Rubinstein et al. 2008;
Nakata et al. 2008). Motivated by these findings, subsequent studies have employed a variety of statistical approaches
to quantify the relationship between tides and tremor occurrence, commonly by analyzing the distribution of tremors and
LFEs with respect to tidal phase (Thomas et al. 2012; Royer et al. 2015; Van Der Elst et al. 2016).

A clear understanding of the physical mechanisms responsible for tidal modulation on tremor is therefore essential. Only
with such an understanding can the observed sensitivity of tremor activity to tidal loading be meaningfully interpreted
and used to constrain fault mechanical properties. Indeed, observational studies have shown that tremor exhibits a strong
sensitivity to tidal loading and have argued, based on model-based interpretations, that this sensitivity implies very low
effective normal stress, significantly lower than typical lithospheric megapascal-scale values, in regions hosting slow
earthquakes (Nakata et al. 2008; Thomas et al. 2009; Thomas et al. 2012; Yabe et al. 2015). These inferences, however,
critically depend on the assumed physical mechanisms linking tidal stress perturbations to tremor generation, motivating
a range of modeling studies aimed at explaining the observed tidal correlations.

To address this model dependence, substantial efforts have been made in recent years to explore possible tidal triggering
mechanisms using rate-and-state friction (RSF) models. In the RSF framework, fault behavior is primarily governed by
the friction parameter a− b (Ruina 1983). When a− b < 0, the fault exhibits velocity-weakening (VW) behavior, which
favors stick-slip instabilities for stiffness below the critical value but stable sliding for stiffness above it. By contrast, when
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a− b > 0, velocity-strengthening (VS) behavior promotes stable sliding. A larger class of studies is based on the classical
RSF formulation and focuses on VW faults or fractures that exhibit stick–slip behavior (a − b < 0). These frameworks
primarily explore how tidal stress modulates background seismicity. These models build on the seismicity rate theory of
Dieterich (1994), which provides a time-dependent relationship between stress history and earthquake occurrence rate,
and have been widely applied to explain periodic variations in seismicity at tidal and seasonal timescales (Ader et al.
2014; Heimisson & Segall 2018; Heimisson & Avouac 2020; Dublanchet 2022; Udell-Lopez et al. 2026). It is important
to note that this class of models is primarily concerned with variations in event occurrence rates, rather than changes in
event size or moment release. In a related but distinct line of work, Mercuri & Rudnicki (2025) examined the response
of a single VW fault system to periodic perturbations from a dynamical perspective, explicitly resolving slip velocity
and stick-slip cycles using a spring-block framework. This analysis focus on how periodic forcing amplifies or reshapes
the slip dynamics of individual events, showing that the system response is controlled by the ratio Tp between the pore-
pressure period and the intrinsic RSF timescale. For small Tp, pore pressure perturbations dominate and slip rate peaks
align with pressure maxima, whereas for large Tp, intrinsic RSF instabilities dominate, leading to multiple slip events
within a single perturbation cycle and a loss of phase locking.

Another class of models emphasizes the role of surrounding stable sliding in modulating seismic activity, based on the
widely discussed view that LFEs occur on small VW patches embedded within predominantly VS fault zones. In this
framework, tidal stresses may indirectly trigger LFEs by modulating the surrounding stable sliding, which in turn loads
the patches and causes the seismicity rate to scale with the background stable sliding rate (Ader et al. 2012). Ader et al.
(2012) investigated this mechanism using a spring-block model, focusing on the dynamical response of a stable sliding VS
fault segment to periodic stress perturbations. Their results showed that periodic loading can strongly amplify slip velocity
variations in near-velocity-neutral regions, and proposed that the tremor or LFE rate scales with the induced stable sliding
velocity. This mechanism is supported by observations of deep LFEs on the San Andreas Fault (SAF) (Beeler et al. 2013),
but it requires the presence of a sufficiently large, low-stiffness velocity-neutral region (a− b ≈ 0+, k ≪ kc), which may
not exist in all tectonic environments.

Alternatively, Perfettini et al. (2001) studied perturbations acting directly on stable sliding of VW faults, without the need
for modulation by surrounding creep, and identified a resonance phenomenon in which periodic loading can significantly
amplify slip oscillations when the system is close to critical stiffness. This resonance behavior has been demonstrated
experimentally by Boettcher & Marone (2004) and Pignalberi et al. (2024) and supported in observations (Lowry 2006;
Panda et al. 2018; Senapati et al. 2024; Sahoo et al. 2024). Furthermore, some other physical processes have also been
proposed to investigate tidal correlations. These include velocity-dependent transitions between VW and VS behavior
(Hawthorne & Rubin 2013), dilatancy-induced strengthening (Beeler et al. 2018; Sakamoto & Tanaka 2022; Zhao et al.
2025); related studies have also examined slow slip and tremor associated with fluid-driven processes tremor in fault
zones (Yamashita & Suzuki 2011; Yamashita 2013).

Building on the resonance mechanism identified by Perfettini et al. (2001) for VW faults undergoing stable sliding,
our study moves beyond the identification of the mechanism itself and systematically investigates whether tidal stress
perturbations can directly trigger slip events using a spring-block model. While Perfettini’s work showed clearly the
existence of the resonance phenomena in certain parameter sets, our study aims to explore more quantitatively, especially
in the complex pattern of the triggered event in correlations to perturbation. We also clarify how resonance arises and
becomes amplified during the triggering process. To this end, we first examine the response of a stable sliding VW
fault to instantaneous normal stress perturbations, in order to characterize its fundamental transient behavior (Section 2).
We then investigate the response to harmonic stress perturbations representative of tidal loading (Section 3). To capture
the controlling mechanisms in a generalized form, a nondimensional framework is developed to identify the key control
parameters that couple the properties of stress perturbations with the intrinsic frictional and dynamical properties of the
fault (Section 3.2). Using spring–block simulations, we subsequently explore fault responses systematically across this
parameter space, providing a unified physical interpretation of tidally triggered stable slip (Section 3.3). Then, we discuss
the relationship between triggered events and tidal stress perturbations in the model, assess the robustness of these results
to additional model parameters, and examine our model to tidal correlations observed in natural slow earthquakes in
section 4. Finally, the main findings and their implications are summarized in section 5.
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2 Fundamental response of stable sliding VW faults to instantaneous pertur-
bations

A harmonic perturbation can be mathematically approximated by a boxcar perturbation that retains the same period
and amplitude characteristics. A single boxcar perturbation, in turn, can be represented as two consecutive step-like
perturbations of opposite sign, capturing the essential amplitude variations of the original harmonic perturbation. As a
first step toward understanding the tidal response of a stable sliding VW fault, this section investigates the behavior under
instantaneous normal stress changes, including both step and box loadings, to elucidate the fundamental mechanisms
governing the system’s response.

2.1 Governing equations of the spring-block model

We employ a spring–block model under stress perturbations (Figure 1), which allows for clear theoretical analysis. Under
a constant normal stress σ0, the fault, modeled as a point and elastically loaded by a spring, is subjected to normal stress
perturbations σp(t) (positive in compression) and shear stress perturbations τp(t) (positive in the direction of slip), result-
ing in a slip velocity V . We restrict our analysis to quasi-dynamic fault motion, as our focus is on the conditions under
which tidal-like stress perturbations can trigger slip events, rather than on the detailed dynamics of rupture propagation.

The linear momentum balance of the spring-block system gives:

τf = σf = k(Vss t− δ)− ηV + τp(t) (1)

σ = σ0 + σp(t) (2)

where τf is the frictional resistance, σ is the total normal stress, f is the friction coefficient, k is the spring stiffness,
Vss is the slip velocity of the loading point, δ is the slip of the block and V = dδ/dt is the slip velocity of block.
η represents the radiation damping coefficient, which approximates inertial effects and prevents the slip velocity from
becoming unbounded during instabilities, and is given by η = µ/2cs, where µ is the shear modulus and cs is the shear
wave velocity (Rice 1993).

We adopt the rate-and-state friction law (RSF) using the aging evolution law (Dieterich 1979):

f = f0 + a log

(
V

V0

)
+ b log

(
V0θ

dc

)
(3)

dθ

dt
= 1− V θ

dc
(4)

Here, f0 is a reference friction coefficient when the fault is sliding at reference velocity V0, as determined from laboratory
rock friction experiments (Marone 1998). θ is a state variable that characterizes the state of the sliding surfaces and
has units of time. dc is the characteristic slip distance for the evolution of θ. The parameters a, b are positive material
constants. a represents the “direct effect”, such that for fixed θ, the friction increases logarithmically with slip velocity,
∂f/∂ lnV > 0. b characterizes the “evolution effect”, describing the time-dependent weakening of friction through the
evolution of the state variable. For a− b = ∂fss/∂ lnVss > 0 (VS regime; equivalently a/b > 1), friction increases with
slip velocity, promoting stable sliding, whereas when a−b < 0 (VW regime; equivalently 0 < a/b < 1), friction decreases
with slip velocity and the fault may undergo unstable slip, if the spring stiffness is lower than a critical value (k < kc);
otherwise, stable sliding still occurs, characterized by smooth, quasi-static slip without sudden accelerations (Ruina 1983;
Rice & Ruina 1983).

In this study, we focus on a stable sliding VW fault, so we adopt a/b = 0.9 with k/kc = 1.1. Although both normal
stress σp(t) and shear stress τp(t) perturbations are considered in the nondimensionalization (Sections 3.1), all subsequent
simulations involving step, box and harmonic normal stress perturbations set τp(t) = 0 for simplicity. The details of the
model parameters used in in Sections 2.2 and 2.3 are shown in Table 1.
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Figure 1: Spring–block model under stress perturbations. The block slides with velocity V under a constant normal stress σ0, subject
to an imposed normal stress perturbation σp(t) and an applied shear stress perturbation τp(t). The elastic loading is provided by a
spring of stiffness k, driven at a constant velocity Vss. The resisting frictional shear stress is denoted by τf .

Table 1: Parameters used in numerical simulations of step and boxcar normal stress perturbation.

Parameter Symbol Value Unit
Reference stable sliding friction coefficient f0 0.6
Reference velocity V0 10−6 m/s
RSF parameters a/b 0.9
Direct effect coefficient a 0.0008
Loading velocity Vss 10−9 m/s
Characteristic slip distance dc 1× 10−6 m
Background (constant) normal stress σ0 1 MPa
Radiation damping coefficient η 8× 105 Pa · s/m
Spring stiffness k 9.8× 107 Pa/m

2.2 Response to a step change in normal stress

We examine the response of a stable sliding VW fault to instantaneous step changes in normal stress, prescribed as
σp(t) = ∆σH(t), where H(t) is the Heaviside function. Both downward (tensile, ∆σ < 0) and upward (compressive,
∆σ > 0) step changes are considered. As the spring stiffness exceeds the critical stiffness, for both types of step changes
the system exhibits a common response pattern: following the stress perturbation, the slip velocity displays a damped
oscillatory evolution with progressively decaying amplitude toward stable sliding, as illustrated by the inset in Fig. 2a.
Similar damped oscillatory behavior is also observed for a boxcar perturbation. Here, we focus in the following on the
maximum slip velocity induced by each stress perturbation, which for step changes corresponds to the first peak in slip
velocity following the perturbation.

2.2.1 Response to a tensile step change

Figure 2a shows the slip velocity response to a downward step change in normal stress (∆σ < 0). The response consists
of two stages: an instantaneous increase in slip velocity at the moment of stress change (see Appendix A for a linear
theoretical analysis of this instantaneous response), followed by a gradual acceleration toward a peak velocity. As the
perturbation amplitude increases, the peak velocity becomes larger and is reached over a shorter time. This behavior is
consistent with the results of Paul et al. (2024), who studied landslide dynamics using a block model without an elastic
spring in the system. In contrast to that system, our model includes an elastic spring, which allows the slip velocity to
recover after the peak, thereby preventing immediate runaway instabilities.

2.2.2 Response to an compressive step

Figure 2b shows the response to an upward step change in normal stress (∆σ > 0). In this case, the slip velocity decreases
instantaneously at the time of the stress change, followed by an evolution phase during which the velocity reaches a local
minimum before accelerating toward a peak. Larger compressive perturbations lead to higher peak velocities that occur
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Figure 2: Responses of slip velocity to step changes in normal stress. (a) Downward step change and (b) Upward step change. Red
dashed and blue solid curves correspond to |∆σ| = 1 kPa and 2 kPa, respectively. The dark gray line with circles indicates the
reference case without stress perturbation. The inset in panel (a) illustrates the decaying oscillatory behavior of slip velocity following
the transient step change. The other model parameters are listed in Table 1.

after longer times.

The contrasting (asymmetic) responses to tensile and compressive step changes reflect the opposite instantaneous effects
of normal stress perturbations on frictional resistance. A sudden increase in normal stress strengthens the fault while the
shear stress remains unchanged, causing the system to become more locked and delaying acceleration toward the peak
slip velocity. In contrast, a tensile step reduces frictional resistance, facilitating slip and shortening the time required to
reach the peak slip velocity.

2.3 Response to a boxcar change in normal stress

In this section, we examine the response of a stable sliding VW fault to finite-duration normal stress perturbations,
prescribed as boxcar perturbations. A boxcar perturbation consists of two consecutive step changes of opposite polarity
separated by a finite duration, σp(t) = ∆σ [H(t− t1)−H(t− t2)], where H(t) is the Heaviside function, t1 < t2,
and Tbox = t2 − t1 denotes the duration of the perturbation. Depending on the sign of the initial step, the perturbation
corresponds to either a box-up (∆σ > 0) or a box-down (∆σ < 0) loading. Here, we fix |∆σ| = 1 kPa. As in the step-
change case (Section 2.2) and we characterize the fault response by the first peak slip velocity following the termination
of the boxcar perturbation.

2.3.1 Response to a compressive change

We first consider the response to a box-up perturbation (∆σ > 0), in which an upward (compressive) step in normal stress
is followed by a downward (tensile) step after a finite duration Tbox. Figure 3a shows the imposed normal stress histories
for Tbox = 15.6 hours and 22.8 hours, together with the reference response to an upward step. The corresponding slip
velocity responses are shown in the lower panel of Figure 3a.

As indicated by the dark gray curve with circles, an upward step change produces an initial peak in slip velocity, followed
by a gradual decay toward stable sliding. This first peak defines the maximum slip velocity associated with the step
response, V step

max ∼ 10−8 m/s. For Tbox = 15.6 hours (red curve), the first peak slip velocity following the termination of
the box-up perturbation reaching values of the order of 10−5 m/s, significantly larger than V step

max . After this peak, the slip
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Figure 3: Responses of slip velocity to a box-up change in normal stress with |∆σ| = 1.0 kPa (the other model parameters are listed
in Table 1). (a) Upper: imposed normal stress histories for Tbox = 22.8 hours (blue) and 15.6 hours (red), compared with a single
upward step (dark gray line with circles). Lower: corresponding slip velocity responses. (b) Maximum slip velocity Vmax as a function
of Tbox. The shaded region highlights the range of Tbox associated with amplified responses compared to the upward step change.

velocity again decays gradually, so that this post-termination peak defines the maximum slip velocity for this box-up case,
V box
max. In contrast, for Tbox = 22.8 hours (blue curve), the first peak slip velocity following the termination of the box-up

perturbation is lower than V step
max , and the slip velocity subsequently decays. As a result, the maximum slip velocity in this

case is given by the step-response peak, V step
max .

To generalize these observations, Figure 3b shows the maximum slip velocity Vmax as a function of Tbox. For a fixed
perturbation amplitude, an increase in slip velocity, relative to the step change response, occurs only over a limited range
of perturbation periods, highlighted by the shaded region in the figure. Outside this range, the maximum velocity remains
comparable to or smaller than V step

max .

2.3.2 Response to a tensile change

We next consider the response to a box-down perturbation (∆σ < 0), in which a downward (tensile) step in normal stress
is followed by an upward (compressive) step after a finite duration. The imposed normal stress histories for Tbox =

13.9 hours and 22.8 hours are shown in the upper panel of Figure 4a, together with the reference response to a downward
step. The corresponding slip velocity evolutions are shown in the lower panel.

As indicated by the dark gray curve with circles, a downward step produces a peak in slip velocity followed by a gradual
decay toward stable sliding, defining the maximum slip velocity associated with the step response, V step

max . For Tbox =

13.9 hours (red curve), the post-termination peak exceeds the step response peak, whereas for Tbox = 22.8 hours (blue
curve), the post-termination peak remains lower than V step

max . Figure 4b summarizes the maximum slip velocity Vmax as
a function of Tbox. As in the box-up case, the enhancement of slip velocity relative to the step response occurs only for
a limited range of perturbation periods, although the degree of enhancement and the corresponding Tbox interval differ.
Outside this range, the maximum slip velocity is controlled by the step response.

2.3.3 Summary: Resonance and velocity amplification

The analysis of step and finite-duration (boxcar) normal stress perturbations clarifies how transient stress changes are
translated into slip acceleration on a stable sliding VW fault. Importantly, for a stable sliding VW fault, the slip response
is strongly dependent on both the perturbation amplitude ∆σ and its duration Tbox. Within some finite range of Tbox,
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Figure 4: Responses of slip velocity to a box-down change in normal stress with |∆σ| = 1.0 kPa. (a) Upper: imposed normal stress
histories for Tbox = 22.8 hours (blue) and 13.9 hours (red), compared with a single downward step (dark gray line with circles).
Lower: corresponding slip velocity responses. (b) Maximum slip velocity Vmax as a function of Tbox.

boxcar perturbations lead to a pronounced amplification of slip velocity relative to the corresponding step response, with
peak velocities reaching up to several times larger than those of the corresponding response of the step change. Outside
this range, the maximum slip velocity is largely controlled by the step-like response and no significant amplification
occurs. This selective amplification indicates that when the duration of a finite-time stress perturbation approaches the
intrinsic timescale of the fault system, the slip response can be strongly enhanced. Such behavior represents a clear
manifestation of a resonance-like mechanism, in which the matching between the perturbation timescale and the system’s
internal timescale leads to amplified slip. This motivates the examination of harmonic, tidal-like stress perturbations in
the following section.

3 Harmonic stress perturbation response of stable sliding VW faults

Building on the resonance-like behavior identified for step and boxcar perturbations, we now extend our analysis to
tidal-like harmonic stress perturbations. Our goal is to determine the conditions under which such periodic forcing can
generate observable slip acceleration on a stable sliding VW fault. It is noteworthy that, in stress perturbation problems,
the system’s response does not simply scale with the perturbation amplitude or period, but exhibits strong sensitivity
to the fault’s intrinsic properties. To capture this dependence in a general and physically transparent manner, we first
perform a nondimensional analysis to identify the key control parameters that combine fault properties with perturbation
characteristics. We then use numerical simulations to systematically explore the slip response across this parameter space,
thereby delineating the regimes in which harmonic stress perturbations can effectively trigger significant slip events.

3.1 Scaling and nondimensional parameters

To identify the key factors controlling tidal triggering, we consider periodic, in-phase perturbations in both normal and
shear stresses, expressed as σp(t) = ∆σ sin (2πt/T ), τp(t) = ∆τ sin (2πt/T ), where T is the tidal stress perturbation
period. ∆σ is the amplitude of tidal normal stress (compression positive), and ∆τ is the amplitude of tidal shear stress
where an increase in shear stress in the direction of slip is assumed to be positive.

Building on the above model, we perform a nondimensional analysis to clarify the key factors controlling tidal triggering.
Details of the derivation are given in Appendix B. The resulting formulation yields six nondimensional parameters (Rab,
κ, N , ϵ, Pσ and PT ), each playing a critical role in governing fault dynamics.
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The first nondimensional parameter is

Rab =
a

b
(5)

which controls the relative importance of frictional weakening and strengthening effects, where a, b are parameters in
RSF framework. In steady state, the frictional response depends on the difference (a− b), which governs whether friction
increases or decreases with slip velocity. Steady-state VS occurs when Rab > 1, velocity-neutral when Rab → 1, and VW
when 0 < Rab < 1. Laboratory experiments indicate that Rab typically exceeds 0.9 for VW surfaces (Kilgore et al. 1993;
Blanpied et al. 1998). Moreover, in subduction zones, where constitutive properties vary primarily with temperature, the
value of Rab is expected to be close to 1 in the transition zone between locked and creeping regions, that is, between VW
and VS regimes. This parameter Rab is directly related to the quantity Rb = (b − a)/b introduced by Barbot (2019).
Physically, it is associated with the ratio between the stress drop, τ0 − τr ∼ (b − a)σ0, and the frictional strength drop,
τp − τr ∼ b σ0 (Madariaga 1998; Erickson et al. 2008). This quantity can be related to the commonly used S-ratio
associated with the linear slip-weakening friction law, S = (τp − τ0)/(τ0 − τr) ∼ a/(b − a) = Rab/(1 − Rab) (Das
1976; Andrews 1976).

The second nondimensional parameter is

κ =
k

kc
(6)

which controls the slip stability. Ruina (1983) showed that the critical spring stiffness is kc = (b− a)σ0/dc. The system
undergoes stable slip when κ > 1 and is unstable when κ < 1, showing stick-slip behavior .

The third nondimensional parameter is

N =
Vdyn

Vss
(7)

which quantifies the relative importance of the radiation damping term in the model. The denominator is the stable sliding
slip rate of the fault. The numerator Vdyn = aσ0/η is a slip rate threshold beyond which the radiation damping term
becomes effective, making the quasi-static assumption invalid (Rubin & Ampuero 2005, Eq. A.8), leading to the radiation
of elastic seismic waves. This quantity can be interpreted as a metric that captures the relative importance of instantaneous
frictional change to instantaneous elastic stress change.

The fourth nondimensional parameter is

ϵ =
∆σ

σ0
(8)

which represents the ratio of tidal normal stress to the background (or constant) normal stress (Perfettini et al. 2001).
Since the tidal normal stress is of the order of kPa, and the background (or constant) normal stress is usually of the order
of MPa, this parameter is much smaller than 1, and it is not the controlling parameter for tide-induced triggering.

The fifth nondimensional parameter is

Pσ =
|∆τ − f ss

∗ ∆σ |
aσ0

(9)

which represents a normalized perturbation amplitude. The term fss denotes the steady-state friction coefficient at the
background slip rate Vss, is given by f∗

ss = f0 + (a− b) log (Vss/V0). |∆τ − f ss
∗ ∆σ | is the magnitude of tidal Coulomb

stress change in the direction of slip in the context of the RSF. The tidal stress is a persistent loading and alternates
periodically between positive and negative values. We are only interested in the long-term response of the fault and
the sign of the tidal Coulomb stress change is inconsequential for understanding the dynamics of the system. The aσ0
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is the instantaneous frictional resistance offered by the fault. Thus, Pσ represents the ratio of Coulomb stress change
and the instantaneous frictional strength change due to tidal perturbation. Pσ is closely related to the parameter T =

(fsσ0 − τ0)/(fs∆pc) used in studies of induced seismicity, for which Pσ ∼ 1/T (Garagash & Germanovich 2012;
Sáez et al. 2022). The parameter T represents the ratio between the distance to failure (fsσ0 − τ0) and the Coulomb
stress change induced by fluid pressure fs∆pc. Under this interpretation, the quantity aσ0 in RSF plays a role analogous
to the distance to failure (fsσ0 − τ0), where fs is the static friction coefficient, τ0 and σ0 are the in-situ shear stress
and background (or constant) normal stress, respectively. A smaller value of aσ0, therefore implies that faults are more
susceptible to small stress perturbations. Because aσ0 is a material parameter and is independent of the in-situ shear stress
state of the fault, faults operating above steady state, θV/dc > 1, and characterized by very small aσ0 may be regarded as
critically stressed faults in RSF framework (Garagash 2021).

The last nondimensional parameter is

PT =
T

t∗
=

T Vss

dc
(10)

which represents the perturbation period normalized by the characteristic state evolution timescale t∗ = dc/Vss. Here,
T denotes the period of the imposed tidal-like sinusoidal stress perturbation, and t∗ characterizes the timescale over
which the state variable evolves in response to changes in slip rate (Perfettini et al. 2001; Ader et al. 2012; Paul et al.
2024). When PT ≪ 1, the perturbation period is short compared to the state evolution timescale, so the state variable
remains effectively frozen over a forcing cycle. In this regime, the fault response is dominated by the direct velocity
effect, characterized by the parameter a. In contrast, for PT ≫ 1, the perturbation varies slowly relative to state evolution,
allowing the state variable to evolve during each cycle. As a result, the response approaches the steady-state frictional
behavior controlled by (b− a).

Analogously to PT = T/t∗, the perturbation period can also be normalized by the elastic timescale as

PT2 =
T

ta
=

TkVss

aσ0
, (11)

which quantifies whether the external forcing varies slowly or rapidly compared to the elastic stress relaxation process.
Here, an elastic–frictional timescale ta = aσ0/(kVss) characterizes the rate at which stress perturbations are elastically
transmitted and relaxed through the direct velocity effect under loading by a spring of stiffness k. This timescale governs
the relaxation of the system following a stress perturbation and is responsible for the Omori-type decay predicted by the
RSF framework (Dieterich 1994).

Among these parameters, the first three (Rab, κ, N ) play key roles in controlling fault slip behavior and are already well
understood in the absence of any external perturbations (Barbot 2019; Wang 2024). The remaining two parameters, Pσ

and PT , therefore emerge as the primary control parameters governing the fault response to stress perturbations. Although
ϵ = ∆σ/σ0 appears explicitly in the governing equations, we find that the system response is only weakly sensitive to
this parameter over the range considered here. Accordingly, ϵ is fixed in the following analysis, allowing us to focus on
the dominant control parameters Pσ and PT .

Table 2: Model parameters used in numerical simulations of harmonic normal stress perturbations

nondimensional Parameter Symbol Value
Friction parameter Rab 0.9
Stiffness κ 1.1
Radiation damping N 106

Stress perturbation ϵ 10−3

Perturbation amplitude Pσ 0.1− 1
Perturbation period PT 1− 100
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Figure 5: Normalized slip velocity V/Vss as a function of time under periodic normal stress perturbations. Panels (a)-(c) show cases
with fixed perturbation amplitude Pσ = 0.892 and increasing perturbation period PT = 1.995, 10.000, and 94.496, respectively,
illustrating a transition from creeping to episodic slip and back to quasi-creeping behavior. Panels (d)-(f) show cases with fixed
perturbation period PT = 10.000 and increasing perturbation amplitude Pσ = 0.208, 0.406, and 0.946, demonstrating progressively
stronger slip responses. Dashed horizontal lines indicate velocity thresholds for stable sliding (V/Vss = 1), slow events (103), and fast
events (106). Time is normalized by t∗ (bottom axis) and by the elastic timescale ta (top axis).

3.2 A phase diagram of slip behavior due to perturbations

We systematically explore the fault response to harmonic stress perturbations in the parameter space Pσ ∈ [0.1, 1] and
PT ∈ [1, 100]. All other nondimensional parameters (Rab, κ, N , and ϵ) are held constant (Table 2). Because tidal
stress amplitudes and periods are relatively well constrained (we adopt representative tidal values ∆σ = 1 kPa and
T = 12 hours here), varying Pσ and PT effectively corresponds to exploring faults with different rheological charac-
teristics. Slip behavior is analyzed within the time window t/t∗ = 10000 − 20000 to ensure statistically steady con-
ditions. Following previous studies, responses are classified based on the normalized slip velocity V/Vss: creeping for
V/Vss < 103, slow slip events for 103 ≤ V/Vss ≤ 106, and fast events for V/Vss > 106. Numerical implementation
details, including the solver configuration and error control strategy, are provided in Appendix D.

Figure 5 illustrates representative normalized slip velocity responses under harmonic normal stress perturbations. Fig-
ures 5a–c show time series responses for different normalized perturbation periods PT at a fixed amplitude Pσ = 0.892.
As PT increases, the fault response evolves non-monotonically, transitioning from creeping to slip events and eventu-
ally returning to a creeping state. This non-monotonic dependence reflects the competition between the timescale of
the external forcing and the intrinsic timescale of the fault. For small PT , the perturbation varies rapidly relative to the
state evolution timescale, limiting the response to small, nearly instantaneous velocity oscillations that closely track the
imposed stress. At intermediate PT , where the forcing period becomes comparable to the state evolution timescale, the
response is strongly amplified, producing slip events indicative of resonance-like behavior. For large PT , the perturba-
tion varies slowly enough for the state variable to fully adjust within each cycle, leading to quasi-static responses and
suppression of dynamic slip instabilities.

Figure 5d-f presents slip velocity responses for a fixed perturbation period PT = 10 and increasing perturbation amplitude
Pσ . With increasing Pσ , the fault response evolves from weakly modulated creeping to slow slip events, and eventually to
fast slip events, reflecting the progressively stronger influence of stress perturbations. In addition, intermediate amplitudes
may produce complex or irregular slip patterns (as illustrated by case e), suggesting that the system can exhibit rich
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Figure 6: Response phase diagrams of a stable sliding VW fault in the (Pσ, PT ) parameter space under harmonic normal stress
perturbations. (a) Phase diagram colored by the normalized maximum slip velocity Vmax/Vss. Light blue indicates creeping behavior,
brown denotes slow slip events, and red corresponds to fast events.(b) The same parameter space colored by the average radiation
efficiency ⟨ηR⟩, computed only for cases where slip events occur. An event is defined as a slip episode with Vmax/Vss > 103, and
⟨ηR⟩ represents the mean value averaged over all events in each simulation.

nonlinear dynamics even under purely harmonic forcing.

To synthesize the time series results described above, we construct a response phase diagram in the (Pσ, PT ) space
(Figure 6a). The color scale represents the normalized maximum slip velocity, Vmax/Vss, which allows us to distinguish
creeping behavior (light blue), slow slip events (brown), and fast slip events (red). The phase diagram reveals well-defined
triggered events regimes, only within a confined region of parameter space, approximately Pσ ≳ 0.2 and 2 ≲ PT ≲ 70.
Outside this window, the fault response remains creeping, with no detectable slip events. This result demonstrates that
neither perturbation amplitude nor period alone is sufficient to trigger slip; instead, both must fall within specific ranges.
By consolidating the transient responses into a single framework, the phase diagram provides a systematic and quantitative
characterization of the conditions under which stress perturbations can trigger observable slip events on a stable sliding
VW fault.

3.3 The radiation efficiency of triggered events

In the last section, we classified fast and slow events based on Vmax/Vss. Although the maximum slip velocity can indicate
whether events occur under given tidal stress perturbations, it does not provide insight into the detailed slip dynamics, such
as whether they are all fast or slow events. To address this limitation, we compute the average radiation efficiency, ηR, of
all events (see Appendix C for details). This provides an alternative description of slip instabilities and is directly linked to
the seismic energy radiated during an event (Kostrov 1974). Fast events exhibit high ηR, as a large fraction of the released
potential energy is converted into seismic waves, whereas slow events have low ηR because almost all the available energy
is dissipated on the fault. This distinction allows radiation efficiency also to provide insight into the relative proportion
of fast versus slow events. Hereafter, we define events as slip events satisfying V/Vss > 103 within the time window
t/t∗ = 10000–20000, and compute the average radiation efficiency over all such events in each catalog. Because ηR

spans several orders of magnitude, we use the geometric mean rather than the arithmetic mean: ⟨ηR⟩ = 10⟨log ηR⟩, where
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Figure 7: (a) Schematic showing the determination of the tidal phase θ. In the calculation of tidal phase, the stress peak closest to the
event origin time is defined as 0°, while the adjacent troughs are set to –180° and +180°. The intervals from –180° to 0° and from 0°
to +180° are evenly divided in time, allowing each moment to be assigned a corresponding phase. (b) Determination of the mean tidal
phase θ̄ and the resultant vector length R.

⟨log ηR⟩ is the average of log ηR over all events in each catalog for a fixed duration.

Figure 6b presents the phase diagram of the average radiation efficiency within the event area of Figure 6a (here, the
events as slip events satisfying V/Vss > 103, no distinguish slow and fast). We can find that larger Pσ systematically
yields higher radiation efficiency, indicating that a greater fraction of the released energy is radiated as seismic waves.
The values of PT at which higher ηR (purple) occurs exhibit a comb-like distribution. This behavior can be understood
in terms of the response to box stress perturbations. As discussed in Section 2.3, a box perturbation can be viewed as
an upward stress step followed by a downward step. The timing of the downward step, which strongly influences the
final response, is determined by the perturbation period PT . For very small PT , the system is still in the rising phase
of the upward step response and has not yet reached its first peak when the downward step occurs, so the combined
perturbation remains too weak to exceed the event threshold. For very large PT , the peak response to the upward step has
already relaxed back toward stable sliding before the downward step is applied, leaving the combined perturbation again
ineffective. Only for intermediate values of PT does the interaction between the upward and downward step responses
produce sufficient amplification, giving rise to a series of discrete peaks in ηR (Figures 3b and 4b).

4 Discussion

4.1 The correlation between triggered events and tidal-like perturbations

In our simulations, tidal-like stress perturbations can trigger events on stable sliding VW fault due to resonance. A key
subsequent question is whether the timing of these events correlates with the tidal stress, its rate of change, or shows no
systematic relation. Addressing this issue is essential for assessing whether such resonance-driven triggering could be
identified in natural observations.

Similar to the approaches used to study tidal correlations in natural (slow) earthquakes (Thomas et al. 2012; Royer et al.
2015; Van Der Elst et al. 2016; Zhao et al. 2025), we quantify the correlation using the tidal phase distribution. The tidal
phase θ indicates the position within the tidal stress cycle at which an event occurs, distinguishing whether the event takes
place near a tidal stress peak, a trough, or during the rising or falling stage. The definition of the tidal phase is illustrated
in Figure 7a.

Because phase is a circular variable, the arithmetic mean is inappropriate (e.g., phase at 179◦ and −179◦ are close, yet
their arithmetic mean would misleadingly give 0◦). So to characterize the phase distribution, we employ two standard
parameters from circular statistics: the mean tidal phase θ̄ and the resultant vector length R. As shown in Figure 7b, each
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Figure 8: Correlation distribution of triggered events. (a) Phase concentration parameter R as a function of normalized perturbation
amplitude Pσ and duration PT , with color indicating the degree of phase clustering (larger R corresponds to stronger concentration
around the mean phase). Red squares mark cases with R = 1. (b) Mean tidal phase θ̄ as a function of PT . Each circle corresponds to
the mean tidal phase calculated from a catalog of triggered events generated by a single simulation run at a given (Pσ, PT ) parameter
combination. Vertical dashed lines indicate the peak stress phase 0◦ and the peak stress rate phase −90◦.

phase θ is represented as a unit vector, and the components of the mean resultant vector are computed as:

x̄ =
1

N

N∑
i=1

cos θi, ȳ =
1

N

N∑
i=1

sin θi, (12)

from which the mean tidal phase θ̄ is obtained as:

θ̄ = tan−1
( ȳ
x̄

)
(13)

which identifies a typical phase within the tidal cycle at which events preferentially occur. For example, θ̄ = 0◦ indicates
that events tend to occur near the peak tidal stress. θ̄ = −90◦ corresponds to events occurring near the peak tidal stress
rate.

The resultant vector length R quantifies the concentration of the phase distribution around θ̄:

R =
√
x̄2 + ȳ2, 0 ≤ R ≤ 1 (14)

A value of R = 1 indicates that all events occur at the same tidal phase. In contrast, smaller values of R indicate weaker
phase clustering, with events distributed over a broader range of phases.

4.1.1 Evidence for resonant triggering

Figure 8a shows the tidal phase concentration R of triggered events. Overall, the events exhibit complex yet systematic
tidal phase correlations across the explored parameter space. A particularly notable feature is the presence of cases with
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R = 1 (red squares), indicating strong phase locking, where events repeatedly occur at the same tidal phase (though
not necessarily in every tidal cycle). These phase-locked cases form a comb-like pattern along the PT axis that largely
coincides with the intervals of enhanced radiation efficiency ηR (Figure 6b), suggesting a close association between phase
locking and amplified dynamic response. Notably, similar comb-like amplification is also identified in simulations with
boxcar stress perturbation (e.g., Figure 3), where perturbations with specific perturbation periods produced pronounced
slip velocity amplification. Together, these consistent patterns point to a common mechanism: when the perturbation
period approaches a resonant timescale of the fault, slip amplification, increased radiation efficiency, and phase locking
tend to emerge simultaneously. This consistency provides strong evidence that resonance governs tidal triggering in this
regime.

4.1.2 Phase dependence of triggered events on PT

When examining the mean tidal phase θ̄ of triggered events as a function of PT , a clear systematic trend emerges (Fig-
ure 8b). For relatively large PT (typically PT ≳ 40), θ̄ clusters around −90◦, indicating preferential occurrence near the
phase of peak tidal stress rate. In contrast, for smaller PT (approximately PT ≲ 40), θ̄ shifts toward around 0◦, suggest-
ing a tendency for events to occur closer to the peak tidal stress. This dependence of phase preference on PT provides
a natural framework for interpreting tidal correlations observed in LFEs along the SAF (Van Der Elst et al. 2016). In
that study, events cluster near −90◦ when phases are evaluated using a longer-period (fortnightly) tidal stress envelope,
whereas clustering near 0◦ is observed when phases are computed from semidiurnal tidal stresses. Our results further
support one interpretation proposed by Van Der Elst et al. (2016) for the apparent 0◦ phase at semidiurnal periods. As
illustrated by the time-series examples in Figure 5b, where small oscillations correspond to individual tidal cycles, in
the small-PT regime, instability may require multiple tidal cycles to develop, leading to an apparent alignment with the
peak tidal stress rather than with the stress rate. A similar phase dependence was reported by Bhatnagar et al. (2016)
for microseismicity at the East Pacific Rise, where seismicity preferentially occurred during phases of rapidly increasing
fortnightly tidal stress. This behavior is consistent with the large-PT regime identified in our simulations.

4.2 Influence of additional model parameters

All results presented above are obtained using the aging law for state evolution within the RSF framework. We also
performed simulations using the slip law. As shown in B.2, the nondimensional parameters governing the triggering
behavior remain unchanged when the slip law is adopted. Figures E1 and E2 (Appendix E) show that, compared to the
aging law, the overall parameter range over which triggered events occur is nearly the same. The primary difference is
that, in contrast to the aging law, the slip law tends to produce fast events, or events with higher radiation efficiency, at
smaller normalized perturbation amplitude Pσ , that it is more easy to become instablity.

In addition, to account for variable normal stress, we additionally consider the formulation of Linker & Dieterich (1992), in
which normal stress variations are coupled to the RSF evolution law. In this formulation, the modified state evolution law
is θ̇L = θ̇ − αθσ̇/bσ, where α characterizes the sensitivity of the state variable to changes in normal stress. The detailed
nondimensional derivation is presented in B.3. After nondimensionalization, the parameter α enters the definition of the
normalized perturbation amplitude, Pσ = (∆τ − (fss

∗ −α)∆σ)/(aσ0). One extra nondimensional parameter, L = αϵ/b,
appears in the evolution law, while all other nondimensional parameters remain unchanged. In the simulations presented
above, we set α = 0, such that L = 0 ≪ 1, and the inclusion of this effect does not qualitatively alter our results. For
practical values of α such that L ∼ O(1), the influence of this parameter on the phase diagrams has yet to be quantified,
but a systematic exploration of this regime is beyond the scope of the present study.

Moreover, a strong correlation with small-amplitude shear stress perturbations, but a comparatively weak correlation with
large-amplitude normal stress variations, has been documented for LFEs along the SAF and for SSEs in Cascadia (Thomas
et al. 2009; Hawthorne & Rubin 2010). As discussed by Hawthorne & Rubin (2010) and Houston (2015), one possible
explanation for this weak response to normal stress variations is that fault slip occurs under undrained conditions, such
that changes in normal stress are accompanied by compensating pore pressure variations. Let hw [m] denote the hydraulic
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width in the fault-normal direction and cd [m
2 s−1] is the hydraulic diffusivity. The characteristic diffusion timescale in

the fault-normal direction is then Td ∼ h2
w/cd. For the undrained approximation to be valid, this diffusion timescale must

be much longer than both the tidal period, Td ≫ T , and the characteristic RSF timescale, Td ≫ dc/Vss (Segall et al.
2010; Rudnicki & Mei 2025). If poroelastic effects are included (see B.4 for details), we find that the normalized stress
perturbation amplitude can be written as Pσ = |∆τ − fss

∗ (1 − B)∆σ|/(aσ′
0), and that the normal stress perturbation

parameter becomes ϵ = (1−B)∆σ/σ′
0, where B is Skempton’s coefficient and σ′

0 denotes the reference effective normal
stress. Consequently, the analysis presented above remains valid in the presence of poroelastic effects, provided that the
nondimensional parameters Pσ and ϵ are redefined as above.

We further tested additional parameter combinations to examine the sensitivity of the triggering behavior, including vari-
ations in Rab, κ, and N . These variations do not alter the main qualitative conclusions reported here, and the detailed
results are presented in Appendix F.

4.3 Relevance to tidal correlations in natural slow earthquakes

4.3.1 Constraints on frictional parameters

In this study, we have shown that tidal stresses can trigger events on stable sliding VW faults within a specific range of
the nondimensional parameters PT and Pσ (Pσ ≳ 0.2, and 2 ≲ PT ≲ 70). A key question is: within what range of
structural and frictional parameters do these triggered events actually occur, and are these parameter regimes realistic in
natural fault systems?

As discussed above, tidal stress in natural settings reflects the combined contributions of solid Earth tides and ocean
tidal loading. It is well established that solid Earth tides typically induce stress changes of 0.1–5 kPa, while ocean tidal
loading can generate stress perturbations reaching up to ∼ 100 kPa in subduction zones (Cochran et al. 2004; Zaccagnino
et al. 2022). Taken together, these observations indicate that the effective tidal stress perturbation generally falls within
the range 0.1–100 kPa. Here, we do not distinguish between the individual contributions from shear and normal stress
perturbations, but instead consider their combined effect through the quantity |∆τ − fss

∗ ∆σ|. Combining this estimate
with the normalized stress amplitude defined in our framework, Pσ = |∆τ − fss

∗ ∆σ|/aσ0, we constrain aσ0 to be
in the range 0.5–500 kPa, where the lower (upper) bound corresponds to the lower (upper) end of the estimated tidal
stress amplitude. This is consistent with the range inferred from tidal correlation analyses of real slow earthquakes. As
shown in Table 3, observational studies involving tidal stress perturbations of order kilopascals (typically ∼0.1–a few kPa)
consistently indicate low values of aσ0, generally well below the MPa range. These estimates are consistent with the low
aσ0 values inferred from our modeling framework.

Table 3: A summary of aσ0 values constrained from observation studies

References Catalogs Tidal stress (kPa) Model aσ0 (kPa)

Nakata et al. (2008) Nankai trough tremors Coulomb stress ∼ 1 Dieterich (1994) 1.3

Thomas et al. 2009; 2012 Parkfield tremors shear stress ∼ 0.1 Dieterich (1994) 0.1−1

Beeler et al. (2013) SAF LFEs shear stress ∼ 0.4 Ader et al. (2012) 500

Yabe et al. (2015) Nankai & Cascadia tremors Coulomb stress 0−4 Ader et al. (2012) 3

Royer et al. (2015) northern Cascadia LFEs shear stress ∼ 2 Beeler et al. (2013) 7.6

Nakamura & Kakazu (2017) Ryukyu Trench VLFEs shear stress ∼ 0.4 Beeler et al. (2013) 1−2

We now consider the nondimensional parameter PT = TVss/dc, where T is the period of a tidal-like sinusoidal perturba-
tion. Here, we consider the dominant tidal component with T = 12 hours. We assume that the event-generated patch is
loaded by a quasi-steady background slip at rate Vss, such that the characteristic timescale of the background slip is much
longer than both the tidal period and the duration of the triggered slip events. This separation of timescales allows us to
treat the background loading rate as effectively constant during tidal triggering. We consider two representative cases for
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Vss. The first case corresponds to the plate convergence rate (DeMets et al. 2010) or the long-term fault creep rate (the
creeping section of the central SAF creeps at about 10−9 m/s (Thomas et al. 2018). For this case, dc is estimated to lie
between approximately 0.6 and 20 µm, consistent with values reported in laboratory rock-friction experiments (Marone
& Kilgore 1993; Marone 1998). The second case corresponds to local slow slip velocities inferred from ETS, with Vss in
the range 10−8–10−6 m/s (Thomas et al. 2018; Rubin 2011). For this case, the inferred values of dc span approximately
6 µm to 2 cm. Although the upper bound of this estimate is relatively large, similar values have been proposed in the
literature; for instance, Maury et al. (2014) estimated that a critical slip distance of 5 cm can reproduce the observed SSE
in Mexico.

A lot of numerous studies consistently support a scale dependence of the characteristic slip distance dc with event-
generated patch size (Gabriel et al. 2024). Rubin & Ampuero (2005) demonstrated that fracture energy is approximately
proportional to dc within the RSF framework. Ide & Aochi (2005) proposed a hierarchical structure of patches in which
the characteristic slip weakening distance, and hence the fracture energy (Abercrombie & Rice 2005), scales with patch
size and controls earthquake nucleation and rupture propagation. Subsequently, Hori & Miyazaki (2010), Nakata et al.
(2023), Gerardi et al. (2024), and Almakari et al. (2025) incorporated size-dependent dc in RSF simulations of earthquake
sequences. Laboratory experiments provide additional evidence for this scaling relationship: Ohnaka (2003) showed that
the characteristic slip-weakening distance scales with fault heterogeneity or roughness, which itself increases with fault
size.

The recent observation of Zhao et al. (2025) offers compelling support for this framework. They reported that ordinary
earthquakes (OEs) at greater depths on the Central SAF are more sensitive to long-period hydrological loading, while shal-
low LFEs respond more strongly to short-period tidal loading. This dichotomy naturally aligns with size-dependent dc:
LFEs occur on small patches with correspondingly small dc values, making them susceptible to shorter-period stress per-
turbations such as tides. In contrast, OEs rupture larger patches with larger dc values and therefore respond more strongly
to longer-period seasonal hydrological loading. This interpretation is consistent with our nondimensional framework, in
which the sensitivity to periodic loading is controlled by the ratio PT ∼ T/dc. Seasonal loading has a characteristic period
of T ∼ 1 year, approximately two orders of magnitude longer than the semidiurnal tidal period of T ∼ 12 hours. For OEs
to exhibit similar triggering sensitivity (i.e., similar values of PT in our phase diagram), patches responding to seasonal
loading must have dc values approximately two orders of magnitude larger than those responding to tidal loading. This
prediction agrees with the scaling of dc with patches size if we accept that OEs occur on substantially larger patches than
LFEs.

4.3.2 Implications, limitations, and observational consistency

In our simulations, the triggered catalogs are more appropriately interpreted as LFE-like events rather than tremors. LFEs
are generally understood as repeating failures on a single patch, which is consistent with our modeling framework. Tremor,
in contrast, is often interpreted as the superposition of many such LFEs occurring within a localized region (Shelly et al.
2007b; Yabe & Ujiie 2025; Shelly et al. 2026). It should be noted, however, that the present simulations consider a single
patch in isolation and do not include interactions among multiple patches. As a result, collective effects that may be
important for tremor generation are not explicitly captured in our model.

In this study, we focus on slip events that are distinct from creeping. Fast and slow events in our simulations are defined
purely based on their slip velocities and are therefore model-based classifications, they do not necessarily correspond
directly to fast or slow earthquakes observed in nature. It is worth noting, however, that the absence of such observations
in nature does not necessarily imply that the phenomenon does not exist. As described by Perfettini & Schmittbuhl (2001),
faults hosting fast earthquakes are not composed of a single homogeneous patch, and small variations in frictional and
geometric properties can lead to substantial phase dispersion, making tidal correlations difficult to observe. Similarly, in
our simulations, even for triggered events, the phase distribution can be highly scattered, which may explain why such
correlations of fast earthquakes are rarely detected in natural observations.

Several observational studies have reported statistically significant tidal periodicities at subharmonic periods, most com-
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monly near ∼ 6 h and ∼ 8 h, in catalogs of tremors in Taiwan and icequakes on the Ross Ice Shelf, even though these
components are weak or nearly absent in the corresponding tidal stress records (Chen et al. 2018; Yi-Chu et al. 2025;
Udell-Lopez et al. 2026). Our simulations demonstrate that enhanced radiation efficiency and phase locking emerge only
at a discrete set of normalized perturbation periods, forming a comb-like pattern (Figures 6b and 8a). This indicates
that, for a given frictional patch, triggered events can exhibit periodicity only under specific forcing conditions, rather
than across a continuous range of periods. This suggests that, for a given frictional patch, triggered events can occur
preferentially at specific forcing periods rather than across a continuous range, consistent with the isolated subharmonic
periodicities reported in observations.

The phase relationship between events and tidal stresses in our simulations depends on PT : for larger PT , events are in
phase with the tidal stress rate, while for smaller PT , they are in phase with the tidal stress itself. Observationally, it is
widely recognized that the tidal correlations of tremors during ETSs are weak in the early stages and become stronger
in the later stages, both in the Nankai trough and Cascadia (Houston 2015; Yabe et al. 2015). Moreover, Royer et al.
(2015) reported that on southern Vancouver Island, the phase relationship between LFEs and tidal stresses evolves from
about −90◦ in the early stage to nearly 0◦ in the later stage. These evolutions can plausibly be attributed to a progressive
decrease in the background slip velocity Vss, for example from 10−6 to 10−8 m/s, corresponding to a decrease in PT in
our model. One discrepancy is that in our simulations the correlation with the tidal stress rate remains high even at large
PT , whereas in nature such a clear in-phase relation with the stress rate is not generally observed. This difference may
arise because, in nature, the tidal stress rate signal is masked by the much stronger triggering influence of the underlying
SSE itself.

A particularly noteworthy finding in our study is that periodic stress perturbations can even trigger complex slip events
on faults that are otherwise stable sliding. This behavior arises from the intrinsic nonlinearity and history dependence of
the RSF system. This behavior can be understood from the response to stress step changes. A stress step instantaneously
displaces the system away from steady state, either to slip velocities above or below the steady state. Although the system
tends to relax back toward steady state in both cases, upward and downward stress steps follow inherently different
transient recovery paths, as discussed in Section 2.2.2.

Although this resonance-based framework is intentionally idealized and natural event catalogs are influenced by multiple
interacting processes, it establishes the physical plausibility of resonance as a triggering mechanism and delineates the
conditions under which it becomes effective. This mechanism may operate across a range of natural fault environments,
from creeping segments such as the central creeping section of the SAF to regions characterized by ETS. Accordingly, the
nondimensional parameter ranges identified here, together with local tidal characteristics and background slip rates, pro-
vide a practical framework for interpreting observed tidal correlations and for placing constraints on frictional parameters
such as dc and aσ0. Therefore, while isolating resonance effects in natural observations remains challenging, revisiting
this mechanism is nevertheless important given its potential role in shaping event triggering processes.

5 Conclusions
Building upon the seminal work of Perfettini et al. (2001), we here identify two key nondimensional parameters, nor-
malized perturbation period PT and stress amplitude Pσ , as controls of tidal triggering of instability on a stable velocity
weakening fault. Within this framework, resonance emerges as a plausible mechanism linking tidal stress to slow earth-
quake activity identified ranges of these parameters. We further show that phase relationship depends systematically on
PT : for large PT , triggered events occur in phase with the peak tidal stress rate, whereas for small PT , they align with
the peak tidal stress. Finally, the frictional parameters constrained by the nondimensional parameter ranges required for
triggering are physically reasonable in natural fault conditions.
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Appendix A Response of a stable sliding RSF fault to instantaneous shear and
normal stress perturbations

The instantaneous increase in system velocity (i.e., the amplitude of the instantaneous velocity perturbation during the
first phase) originates from the requirement to satisfy quasi-static equilibrium between the background shear traction and
the frictional strength at the moment of a stress step. Here, we consider an instantaneous change in shear stress from τ0

to τ0 +∆τstep, accompanied by a normal stress change from σ0 to σ0 +∆σstep, following Paul et al. (2024).

Under RSF with the Linker–Dieterich evolution law(Linker & Dieterich 1992), both the friction coefficient and the state
variable undergo instantaneous changes in response to a shear and normal stress step. The friction coefficient responds
through the direct effect associated with a sudden change in sliding velocity, while the state variable experiences an
instantaneous jump induced by the normal stress perturbation. Immediately before the stress perturbation, the fault is in
quasi-static equilibrium and sliding at steady state (θssVss/dc = 1), such that

τ0 = fss σ0, (A1)

where

fss = f0 + (a− b) log

(
Vss

V0

)
, (A2)

and Vss is the steady-state sliding velocity prior to the perturbation and θss is corresponding state variable.

Immediately after the stress step, equilibrium requires

τ0 +∆τstep = f2 (σ0 +∆σstep) , (A3)

where f2 = f0 + (a − b) log

(
V2

V0

)
+ b log

(
θ2V2

dc

)
. Subtracting the pre-step equilibrium condition from the post-step

condition yields

∆τstep = (f2 − fss)(σ0 +∆σstep) + fss∆σstep (A4)

During the instantaneous normal stress step, the slip is zero. Consequently, the state variable does not evolve through

slip but changes according to the Linker-Dieterich normal-stress effect, which can be obtained by solving
∫ θ2
θss

dθ

θ
=

−α

b

∫ σ0+∆σstep

σ0

dσ

σ
, across the normal step,

θ2 = θss

(
σ0 +∆σstep

σ0

)−
α

b
, (A5)

Substituting Eq. (A5) into RSF framework yields

f2 − fss = a ln

(
V2

Vss

)
− b log

(
σ0 +∆σstep

σ0

)−
α

b (A6)

Substituting Eq. (A6) into the Eq. (A4) yields

V2 = Vss exp

∆τstep − fss ∆σstep + α(σ0 +∆σstep) log

(
σ0 +∆σstep

σ0

)
a(σ0 +∆σstep)

 (A7)
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Under the assumption of small perturbations |∆σstep| ≪ σ0, Eq. (A7) reduces to

V2 ≈ Vss exp

(
∆τstep − (fss − α)∆σstep

aσ0

)
(A8)

In the main text, we neglect the normal-stress dependence of the state variable by setting α = 0, which simplifies the
expression without affecting the key scaling of the instantaneous velocity response. Also, ∆τstep−fss ∆σstep > 0 means
positive Coulomb stress transfer, which will lead to increase in slip rate, whereas ∆τstep − fss ∆σstep < 0 is negative
Coulomb stress transfer leading to decrease in slip rate of the fault.

The nondimensional tidal perturbation amplitude Pσ = |∆τ − fss
∗ ∆σ|/aσ0 characterizes this instantaneous response of

the fault due to tidal loading. However, due to the persistent nature of the tidal loading, the sign of the Coulomb stress
∆τ − fss

∗ ∆σ for the tidal loading doesn’t affect the long-term dynamics of the model and hence the absolute sign of it is
taken while defining this nondimensional parameter.

Appendix B Nondimensional equations for the Spring-block model

Balance equations and the friction law for the quasi-dynamics of a spring-block system :

τf = σf = k(Vss t− δ)− ηV + τp(t) (B1)

σ = σ0 + σp(t) (B2)

f = f0 + a log

(
V

V0

)
+ b log

(
V0θ

dc

)
, (B3)

where tide-induced normal stress perturbations σp(t) and shear stress perturbations τp(t) are given by:

σp(t) = ∆σ sin

(
2π

t

T

)
; τp(t) = ∆τ sin

(
2π

t

T

)
(B4)

By taking the time derivative of the shear stress balance equation B1, we obtain the governing equation for the rate of
change of shear stress,

σ̇f + ḟσ = k(Vss − V )− ηV̇ + τ̇p

σ̇f + σ
∂f

∂V
V̇ + σ

∂f

∂θ
θ̇ = k(Vss − V )− ηV̇ + τ̇p

f∆σ
2π

T
cos

(
2π

t

T

)
+ σ

aV̇

V
+ σ

b

θ
θ̇ = k(Vss − V )− ηV̇ +∆τ

2π

T
cos

(
2π

t

T

)
(B5)

We introduce θ∗ = t∗ = dc/Vss as the state variable timescale, V∗ = Vss as the velocity scale, fss
∗ = f0 + (a −

b) log (Vss/V0) as the friction coefficient scale. Let tildes denote nondimensional quantities. Thus, V , t and θ in Eq. (B5)
are replaced by their nondimensional forms: V = V∗Ṽ = VssṼ , t = t∗t̃, and θ = t∗θ̃

2π∆σ

T
cos

(
2π

t∗t̃

T

)[
f0 + a log

(
VssṼ

V0

)
+ b log

(
V0θ̃t∗
dc

)]
+

aσ
˙̃
V

t∗Ṽ
+

bσ
˙̃
θ

θ̃t∗

= kVss(1− Ṽ )− ηVss

t∗

˙̃
V +∆τ

2π

T
cos

(
2π

t∗t̃

T

)
(B6)

Multiplying each side of the equation by t∗/aσ0, substituting f0 + (a − b) log (Vss/V0) = fss
∗ , bringing in kc =
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(b− a)σ0/dc and Vdyn = aσ0/η into the above equation, we get:

∆σ

σ0

2πt∗
T

cos

(
2π

t∗t̃

T

)
log Ṽ +

b∆σ

aσ0

2πt∗
T

cos

(
2π

t∗t̃

T

)
log θ̃ +

σ
˙̃
V

σ0Ṽ
+

bσ
˙̃
θ

aσ0θ̃

=
k

kc

(
b− a

a

)
(1− Ṽ )− Vss

Vdyn

˙̃
V +

(
∆τ −∆σfss

∗
aσ0

)
2πt∗
T

cos

(
2π

t∗t̃

T

)
(B7)

We can now clearly identify six nondimensional parameters: PT = T/t∗ (normalized period), Pσ = |∆τ−fss
∗ ∆σ|/(aσ0)

(normalized stress perturbation amplitude), ϵ = ∆σ/σ0 (normalized normal stress perturbation), κ = k/kc (normalized
stiffness), Rab = a/b (RSF parameter), and N = Vdyn/Vss (normalized radiation damping). Rewriting the above equation
in terms of these parameters, we obtain following nondimensional equation:

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

+
˙̃
θ

Rabθ̃

[
1 + ϵ sin

(
2πt̃

PT

)]
= κ

(
1−Rab

Rab

)
(1− Ṽ ), (B8)

with six nondimensional parameters Rab, κ, N , ϵ, PT , and Pσ .

B.1 Aging law

The evolution of the nondimensional state variable as governed by the aging law,

˙̃
θ = 1− Ṽ θ̃ (B9)

Now using Eq. (B8), substituting the above definition of evolution aging law, we get:

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

+
1

Rabθ̃

(
1− Ṽ θ̃

)[
1 + ϵ sin

(
2πt̃

PT

)]
= κ

(
1−Rab

Rab

)
(1− Ṽ ) (B10)

When we have only shear stress perturbation and ϵ → 0,

˙̃
V =

Ṽ

1 + Ṽ /N

[
κ

(
1−Rab

Rab

)
(1− Ṽ )− 1

Rabθ̃

(
1− Ṽ θ̃

)
+ Pσ

2π

PT
cos

(
2πt̃

PT

)]
, (B11)

When there is no stress perturbation, i.e., ϵ = 0 & Pσ = 0, the above equation reduces to:

˙̃
V =

Ṽ

1 + Ṽ /N

[
κ

(
1−Rab

Rab

)
(1− Ṽ )− 1

Rabθ̃

(
1− Ṽ θ̃

)]
, (B12)

with three nondimensional numbers Rab, κ, and N .
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B.2 Slip law

The evolution of the nondimensional state variable as governed by the slip law,

˙̃
θ = −Ṽ θ̃ log(Ṽ θ̃) (B13)

Now using Eq. (B8), substituting above definition of evolution slip law, we get

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

− 1

Rab
Ṽ log(Ṽ θ̃)

[
1 + ϵ sin

(
2πt̃

PT

)]
= κ

(
1−Rab

Rab

)
(1− Ṽ ) (B14)

Note that only one term is modified, but it has no impact on the nondimensional parameters.

B.3 Linker-Dieterich evolution law

When we consider the Linker and Dieterich evolution law (Linker & Dieterich 1992):

θ̇L = 1− V θ

dc
− α

b
θ
σ̇

σ
(B15)

The evolution of the nondimensional state variable as follows:

˙̃
θ = 1− Ṽ θ̃ −L θ̃

2π

PT

[
1 + ϵ sin

(
2πt̃

PT

)] cos

(
2πt̃

PT

)
, (B16)

where L = αϵ/b. Now using Eq. (B8), substituting Equation (B15), we get:

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

+
1

Rabθ̃

1− Ṽ θ̃ − 2παϵθ̃

bPT

[
1 + ϵ sin

(
2πt̃

PT

)] cos

(
2πt̃

PT

)
[
1 + ϵ sin

(
2πt̃

PT

)]
(B17)

= κ

(
1−Rab

Rab

)
(1− Ṽ ), (B18)

where Pσ = [∆τ − (fss
∗ − α)∆σ]/aσ0 is modified nondimensional perturbation amplitude in presence of Linker (Linker

& Dieterich 1992) effects, which controls the instantaneous response of Coulumb stress transfer to the fault due to the
harmonic perturbation.

Rearranging the above equation, we obtain:

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

+
1

Rabθ̃

(
1− Ṽ θ̃

)[
1 + ϵ sin

(
2πt̃

PT

)]
= κ

(
1−Rab

Rab

)
(1− Ṽ ) (B19)

As pointed out by Rice et al. (2001), and as can be observed in Eq. (A8), (fss
∗ −α) acts as an effective friction coefficient
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during an instantaneous normal stress change, which comes automatically from above nondimensionalization. Note that
the nondimensionalized equilibrium equations remains the similar has 6 nondimensional numbers, however evolution law
gives us additional nondimensional number L = αϵ/b which controls the evolution of state variable in presence of normal
stress variation.

B.4 Consideration of poroelastic effects in undrained limit

In this undrained limit, the effective normal stress, σ′ can be written as

σ′ = σ − p = σ0 + σp(t)− (p0 +∆p(t)) = σ0 − p0 + (1−B)σp(t) = σ′
0 + (1−B)σp(t), (B20)

where σ denotes the total normal stress, decomposed into a background component σ0 and a time-dependent perturbation
σp(t), and p is the pore fluid pressure, consisting of an initial pore pressure p0 and a perturbation ∆p(t). The quantity
σ′
0 = σ0 − p0 represents the initial effective normal stress. Under undrained conditions, the pore pressure change induced

by the normal stress perturbation satisfies ∆p(t) = Bσp(t), where B is the Skempton’s pore pressure coefficient, defined
as the ratio of induced pore pressure change to the applied confining stress change (Segall 2010, Eq. 10.1).

Now using Eq. (1) of the main text, substituting above definition of effective normal stress and and nondimensionalizing,
we get

2π

PT
cos

(
2πt̃

PT

)(
ϵ log Ṽ +

ϵ

Rab
log θ̃ − Pσ

)
+

˙̃
V

Ṽ

[
1 + ϵ sin

(
2πt̃

PT

)
+

Ṽ

N

]

+
1

Rabθ̃

(
1− Ṽ θ̃

)[
1 + ϵ sin

(
2πt̃

PT

)]
= κ

(
1−Rab

Rab

)
(1− Ṽ ) (B21)

where Pσ = |∆τ − fss
∗ (1−B)∆σ|/aσ′

0, and ϵ = (1−B)∆σ/σ′
0

which gives exactly same nondimensional equation as shown in main text. Therefore, entire analysis of main text holds
for this case with new definition of nondimensional parameters Pσ and ϵ.

Appendix C Radiation efficiency of a quasi-dynamic spring-block system

While the governing quasi-dynamic equation for the spring-block system Eq. (1) holds at every instant of the time, our
primary interest lies in the energy changes accumulated over a finite time window [t1, t2], which is identified as a single
event based on a velocity threshold criterion. The threshold is chosen such that V (t1), V (t2) ≪ Vdyn = aσ0/η so that
we attain quasi-static equilibrium at end of time windows of an event. To analyze the energy budget of such an event,
we subtract the quasi-dynamic governing equation evaluated at time t2 from the Eq. (1). This yields an incremental force
balance relative to the window endpoint,

k [(Vsst− δ)− (Vsst2 − δ2)] = (τf − τf2) + η(V − V2)− (τp − τp2), (C1)

where δ2 = δ(t2), τp2 = τp(t2), τf2 = τf (t2) and V2 = V (t2).

The term on the left side in Eq. (C1) can be rewritten as

k [(Vsst− δ)− (Vsst2 − δ2)] = k(δ2 − δ) + kVss(t− t2). (C2)
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Multiplying Eq. (C1) by the slip rate V (t) gives the incremental power balance,

k(δ2 − δ)V + kVss(t− t2)V = (τf − τf2)V + η(V − V2)V − (τp − τp2)V. (C3)

Integrating Eq. (C3) over the event duration [t1, t2] yields the incremental energy balance. The first spring-related term
can be evaluated as ∫ t2

t1

k(δ2 − δ)V dt =
1

2
k(δ2 − δ1)

2, (C4)

where δ1 = δ(t1).

The second spring-related term involves the background loading and is evaluated using integration by parts,∫ t2

t1

kVss(t− t2)V dt = − kVss

∫ t2

t1

(δ − δ1) dt. (C5)

Similarly, collecting other terms and using integration by parts, the incremental energy balance over the event window
can be written as

−
∫ t2

t1

(τ̇p + kVss)(δ − δ1) dt+
1

2
k (δ2 − δ1)

2 =

∫ t2

t1

(τf − τf2)V dt+

∫ t2

t1

η(V − V2)V dt. (C6)

Equation (C6) represents the energy budget of a velocity-threshold-defined event, expressed in terms of energy increments
relative to the window endpoint t2. This formulation follows directly from quasi-dynamic governing equation and no
assumption are made to obtain the above equation. Above equation can be compared to Kostrov (1974, Eq. 2.24). The
main feature of this equation is that all the terms can be calculated using incremental quantities.

Assuming A [m2] is the rupture area of the event, the last term in Eq. (C6) corresponds to the radiated energy [Nm] for
quasi-dynamic approximation, ER = A

∫ t2
t1

η (V − V2)V dt ≈ A
∫ t2
t1

η V 2 dt (Senatorski 2014, Eq. 7), if we assume at
t2 the fault satisfy static equilibrium or V2 ≪ V (t) ∀ t ∈ (t1, t2). Kostrov (1974, Eq. 2.1) defined the radiated energy
as additional work done by a seismic source to its surrounding when the source is active. This energy is the one that is
felt in terms of seismic waves on Earth’s surface and is present irrespective of speed of the event. The continuum form of
the radiated energy and its derivation for quasi-dynamic simulations has been presented in Kheirdast et al. (2025). The
radiated energy in principle can be calculated from spectra for earthquakes using data from Abercrombie & Rice (2005).

The first term on the right side is an observable energy dissipated due to the frictional work [Nm], Do = A
∫ t2
t1
(τf −

τf2)V dt = −A
∫ t2
t1

τ̇f (δ − δ1) dt. It is not possible to calculate this quantity directly from observations unless we
perform numerical modeling. The second term on the left side is an observable elastic strain energy [Nm], released during

the event, ∆Wo = A
1

2
k (δ2 − δ1)

2, which depends on the static stress drop, k(δ2 − δ1), and the slip during the event

(δ2 − δ1). Note that total strain energy release [Nm] due to an event is ∆WT = A
1

2
(τf1 + τf2)(δ2 − δ1), however it

cannot be directly calculated by observations.

Kostrov (1974) originally derived the energy budget equation for ordinary earthquakes with typical duration a few sec-
onds/minutes, and the work done by the external perturbations and tectonic loading [Nm], ∆Wext = A

∫ t2
t1
(τ̇p+kVss)(δ−

δ1) dt, during the event is assumed zero in his derivation. For SSEs, which can have duration of days/months, the ex-
ternal work done can be non-negligible. However, it will be difficult to constrain the exact details of loading in natural
observations. Therefore, we write above energy balance as

∆Wo = Do + ER +∆Wext,

≈ Do + ER. (C7)
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Do is sometimes incorrectly attributed as the ”fracture energy” of an event [N/m], G′ := Do/A ≈ (∆Wo − ER)/A,
which is only true if we assume a crack model in an infinite fault with slip weakening friction and most of the frictional
dissipation per unit area is happening near the tip of the rupture (Abercrombie & Rice 2005). However Kheirdast et al.
(2025), with their seismic cycle simulation of the fault zone, show that in the presence of off-faults, Do can contain the
contribution due to the interaction of the damage zone with the main fault. Also, rupture arrest mechanisms, incorporating
additional physics like thermal pressurization, can significantly contribute to the net magnitude of observable Do of an
event (Gabriel et al. 2024).

Venkataraman (2002, Ch. 3.2) and Kanamori & Heaton (2000) recommend a working definition of radiation efficiency in
terms of observable quantities,

ηR =
ER

∆Wo
≈ ER

Do + ER
, (C8)

which is calculated in our numerical simulations for all the events and average ηR of all events for particular parameters
(PT , Pσ) is shown in Figure 6b. In our numerical simulations, all the terms in the Equation (C6) are computed by
defining the path dependent integrands of Do, ER, and ∆Wext as state variables of the ODE system so that the running
energy balance can be computed in postprocessing between any interval t1 and t2. We explicitly verify the validity of the
incremental energy balance for each events defined by velocity thresholds and examine the external work term ∆Wext

and find that its contribution is negligible in our simulations.

Appendix D Numerical Methods
We solved the governing equations using the DifferentialEquations.jl package in Julia (v1.11.0, DifferentialE-
quations.jl v7.15.0). Time integration was performed with an adaptive explicit Runge–Kutta method (ExplicitRK),
using the Cash-Karp Butcher table (tableau=constructCashKarp) (Cash & Karp 1990).

The solver was configured with an absolute tolerance of abstol = 10−14 and a relative tolerance of reltol = 10−12,
together with a maximum iteration limit of maxiters = 109. Error control was applied only to the physically relevant
state variables (τ, V, σ), excluding auxiliary integral variables. The integration interval was set to t ∈ [0, 20000 t∗], where
t∗ = dc/Vss.

In a few simulations, we observe that long sequences of slip events are followed by a transition to persistent stable
oscillations. Upon verification, these late-time oscillations are attributed to numerical error accumulation, which cannot
be eliminated by further increasing the time-step tolerance. Since such cases are rare, we control for them by requiring a
minimum number of slip events so that our overall conclusions remain unaffected.

Appendix E Analysis of slip law
Using the same set of nondimensional parameters as in the aging law case, we find that the overall trends remain consistent
for slip law. Triggered events occur only for a limited range of normalized loading periods and when the normalized
perturbation amplitude is sufficiently large. However, for identical parameter values, the slip law tends to produce events
with systematically higher values of ηR, indicating a greater propensity for high-ηR triggering.

Appendix F Effect of intrinsic nondimensional parameters
In addition to the primary control parameters associated with external stress perturbations, we further investigate the
influence of several intrinsic, nondimensional system parameters, including the quasi-dynamic radiation damping N , the
nondimensional stiffness κ, and the RSF frictional ratio Rab. These analyses aim to assess the robustness of the main
results with respect to variations in fault rheology and dynamic resistance.

Three values of the radiation damping parameter, N = 103, 106, and 109 are tested, which may be interpreted as rep-
resenting background slip velocity ranging from slow slip rates, through typical tectonic plate convergence rates, to an
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Figure E1: Response phase diagrams of a stable sliding VW fault in the (Pσ, PT ) parameter space under harmonic normal stress
perturbations for slip law. (a) Phase diagram colored by the normalized maximum slip velocity Vmax/Vss. Light blue indicates
creeping behavior, brown denotes slow slip events, and red corresponds to fast events.(b) The same parameter space colored by
the average radiation efficiency ⟨ηR⟩, computed only for cases where slip events occur. An event is defined as a slip episode with
Vmax/Vss > 103, and ⟨ηR⟩ represents the mean value averaged over all events in each simulation.

Figure E2: Correlation distribution of triggered events for slip law. (a) Color coded by R, indicating the dispersion of phase values;
the closer R is to 1, the higher the concentration around the mean phase. (b) The horizontal axis represents the mean phase, and the
vertical axis denotes PT .

32 Feb. 6, 2026 at 13:43



manuscript submitted to Journal of Geophysical Research

Figure F1: Dependence of the normalized maximum slip velocity Vmax/Vss on the normalized perturbation period PT for (a) different
values of N , (b) different values of κ, and (c) different values of Rab. Pronounced fluctuations of Vmax/Vss, particularly in the range
PT 1 − 10, are observed in several cases. These irregular variations are related to the tomb-like structures discussed in the main text,
although a detailed analysis of this behavior is beyond the scope of the present figure. Here, the focus is on illustrating how variations
in individual parameters affect the overall magnitude and trend of Vmax/Vss. In each panel, only one parameter is varied, while all
other parameters are fixed and consistent with those listed in Table 2.

almost stable sliding regime. As shown in Fig. F1a, Vmax/Vss increases systematically with N . Although the scaling is
not strictly linear, the overall trend suggests a strong positive dependence of Vmax/Vss on N . The effect of system stiff-
ness is examined by varying κ = 1.1, 2.5, and 10. As illustrated in Fig. F1b, larger values of κ systematically suppress
the velocity amplification, indicating a stabilizing influence of increased stiffness. The friction ratio is varied between
Rab = 0.4 and 0.75. As shown in Fig. F1c, increasing Rab toward unity enhances the slip velocity amplification, indi-
cating that as the system approaches the velocity-neutral transitional regime (a ≈ b) within the VW domain, the effective
frictional resistance to perturbations is reduced, making the fault more susceptible to large slip velocity amplifications.
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