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Abstract Active faults release elastic strain energy via a whole continuum of modes of slip, ranging
from devastating earthquakes to slow slip events (SSEs) and persistent creep. Understanding the
mechanisms controlling the occurrence of rapid, dynamic slip radiating seismic waves (i.e., earthquakes) or
slow, silent slip (i.e., SSEs) is a fundamental point in the estimation of seismic hazard along subduction zones.
Using the numerical implementation of aGilplelaiesweakeningifaulamods, (veshowthaathesimplesuof
fault geometrical complexities with uniform rate-weakening friction properties give rise to both SSEs and
(asmearthouakeswithousappealingioicomplexrheclogiesionmeshanismsd Ve argue that the spontaneous

occurrence, the characteristics and the scaling relationship of SSEs and earthquakes emerge from
geometrical complexities. The geometry of active faults should be considered as a complementary
mechanism to current numerical models of SSEs and fast earthquakes.

Plain Language Summary Active faults release elastic strain energy via a whole continuum

of modes of slip, ranging from devastating earthquakes to slow slip events (SSEs) and persistent creep.
Understanding the mechanisms controlling the occurrence of rapid, dynamic slip radiating seismic waves
(i.e., earthquakes) or slow, silent slip (i.e., SSEs) is a fundamental point in the estimation of seismic hazard
along subduction zones. In this paper, we use numerical models of the seismic cycle (interseismic, coseismic,
and postseismic) that account for the geometry and stress transfers of faults. WelaiguEkNattNe
spontaneous occurrence, the characteristics, and the scaling relationship of SSEs and earthquakes emerge

flomgeometricalicomplexitie® The geometry of active faults should be considered as a complementary
mechanism to current numerical models of SSEs and fast earthquakes.

1. Introduction

Since their discovery in the late nineties, slow slip events (SSEs) have been widely observed along various sub-
duction zones (Cascadia, Dragert et al., 2001; Central Ecuador, Vallee et al., 2013; Douglas et al., 2005; Guerrero,
Lowry et al., 2001; Hikurangi, Northern Chile, Ruiz et al., 2014; Rogers & Dragert, 2003, 2001; Southwest Japan,
Hirose et al., 1999; and others). The discovery of SSEs mainly came from the development and the installation
of networks of permanent GPS stations around subduction zones. Although GPS is still nowadays the main
SSE detection tool, new observations now allow for the detection of slow slip, like interferometric synthetic
aperture radar (INSAR) (Jolivet et al.,, 2013; Rousset et al., 2016), networks of sea bottom pressure gauge (Ito
etal., 2013; Wallace et al., 2016) or, indirectly, via the migration of microseismicity, repeating earthquakes and
tremors (Igarashi et al., 2003; Kato et al., 2012), thus increasing significantly the probability of their detection.

SSEs, like earthquakes, correspond to an accelerating slip front propagating along a fault. However, unlike
earthquakes, SSEs themselves do not radiate any detectable seismic waves and are hence sometimes nick-
named “silent events.” Until the discovery of SSEs, it was thought that only earthquakes release the accu-
mulated strain energy along a fault. Since SSEs also contribute to this release of energy, they should play an
important role in the estimation of seismic hazard along subduction zones (Obara & Kato, 2016). In addition,
SSEs exhibit very specific characteristics. Their propagation speed along the fault (about 0.5 km/h in Cascadia,
Dragert et al., 2004, to about 1 km/day in Mexico, Franco et al., 2005) contrasts with the rupture propaga-
tion speed of earthquakes (at about 3 km/s). The slip velocity of SSEs (from about 1 mm/year in the Bungo
Channel, Japan, to about 1T m/year in Cascadia) is around 1 or 2 orders of magnitude greater than plate
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convergence rates but orders of magnitude smaller than earthquakes slip rates (of the order of 1 m/s; Schwartz
& Rokosky, 2007).

Although the exact influence of SSEs in the seismic cycle is not yet fully understood, they seem closely related
to earthquakes. Several seismic and geodetic observations suggest that SSEs may have happened just before
and in regions overlapping with earthquakes. The 2011 M,, 9.0 Tohoku-Oki event and the 2014 M,, 8.1 Iquique
event are two examples in subduction zones where a SSE apparently occurred just before the earthquake,
within a region overlapping with the area where seismic slip nucleated (Brodsky & Lay, 2014; Kato et al., 2012;
Mavrommatis et al., 2015; Ruiz et al., 2014). More recently, geodetic evidence of a large SSE triggering an earth-
quake was pointed out in the Guerrero subduction zone (Radiguet et al., 2016). There are also suggestions
that SSEs may be triggered by earthquakes either by stress waves and/or static stress transfer (| (EiISEANCS)
0mnKEtoETanRoEaalscEETaN2oNZZigonSEnalm20mR). On the other hand, some SSEs occur without an
accompanying large earthquake as in the Cascadia subduction zone, where SSEs occur periodically (Rogers &
Dragert, 2003), or in the Hikurangi subduction zone (Wallace et al., 2016). From the above examples, it seems
that there may or may not be a connection between SSEs and fast earthquakes. Some authors (e.g., Obara &
Kato, 2016) have suggested that SSEs, because of their sensitivity to very small stress perturbations, can act as
a stress meter of the current stress in the crust. However, this still needs to be confirmed. Also, the exact role of
SSE’s in hazard assessment remains largely unknown. All SSEs have the same direction of slip as earthquakes,
that is, opposite to the plate convergence direction, and are accompanied by a positive stress drop which
corresponds to a reduction in the accumulated strain energy. In the absence of external forcing mechanism,
this necessitates SSEs to occur in a slip, or slip rate, weakening region which is also prone to rupture as a fast
dynamic event. These observations, put together, raise the first question. What physical mechanism explains
slowslip and fast, dynamic earthquakes occurring under similar frictional boundary conditions along active faults?
Our key finding is that fault geometrical complexity gives rise to the variety of modes of slip along an active
fault without any other complex mechanism involved.

Furthermore, earthquakes and SSEs seem to follow different scaling laws (Ide et al., 2007), which remain out of
reach of numerical models until now (Ide, 2014). The seismic moment of earthquakes scales with the cube of
their duration (M « T3), whereas the corresponding moment of SSEs is proportional to their duration (M « T),
raising the second question. Is such different scaling a general feature of earthquakes and SSEs, highlighting
different physical mechanisms (Ide et al., 2008; Ide, 2014; Peng & Gomberg, 2010)? We address the above ques-
tions using physics-based numerical modeling of active faults governed by rate-and-state friction (Dieterich,
1978) and develop a unified framework that addresses all the observations about earthquakes and SSEs
mentioned above.

2. Modeling Slow, Aseismic Slip

SSEs were discovered to emerge spontaneously from numerical models in the rate-and-state framework for
the modeling of subduction zones (Liu & Rice, 2005; 2007). In this framework, fault areas with weakening
properties will preferentially host seismic slip (i.e., earthquakes), while strengthening regions will host sta-
ble continuous creep or postseismic slip. Numerical experiments and theoretical works have shown that the
main physical control on the emergence of SSEs in models is how the characteristic length of a weakening
patch (Dieterich, 1992; Rice, 1983; Rubin & Ampuero, 2005; Ruina, 1983) compares to the specific nucleation
length scale (Liu & Rice, 2005; Rubin, 2008). If the length of a fault patch is large compared to the nucleation
length scale, earthquakes have enough room to grow and become dynamic, so this fault patch will generate
only dynamic, seismic events. If the length of the fault is small compared to this length scale, earthquakes can
never grow large enough to become dynamic or no events will occur at all (i.e., permanent creep). It is there-
fore necessary, under this framework, to tune for the right fault length compared to the nucleation length
scale to allow modeling of both slow and fast ruptures. Given the observed spatial size over which some SSEs
propagate, that is, on the order of tens of kilometers, this would lead to unrealistically large nucleation sizes,
preventing the occurrence of any earthquakes. A possible explanation for such large nucleation lengths could
be the presence of high-pressure pore fluids released during metamorphic dehydration reactions. However,
it has been shown recently that regions of high fluid pressure and SSEs do not always overlap along all the
subduction zones (Saffer & Wallace, 2015). One solution to overcome this issue is to appeal to other com-
peting frictional mechanisms like dilatant strengthening (Rubin, 2008; Segall & Rice, 1995; Segall et al., 2010)
with or without thermal pressurization (Segall & Bradley, 2012). Although we do not include these additional
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frictional mechanisms in our modeling below, we acknowledge that it would broaden the range over which
we are able to observe slow slip.

As the above models suggest, a set of competing mechanisms are required for slow slip and earthquakes to
coexist. However, there is one ubiquitous feature that is often ignored for computational reasons: the geo-
metric complexity of active faults. Indeed, faults are rarely planar over length scales of tens of kilometers
and in fact, fault segmentation and geometric complexity are visible at multiple scales (Candela et al., 2012).
Subduction zones also show geometrical complexities like subducting seamounts (Das & Watts, 2009). It is
also known that subduction zones have large normal faults that connect the main slab and can sometimes
be reactivated during seismic events (Hicks & Rietbrock, 2015; Hubbard et al., 2015).

This nonplanarity of faults should introduce a natural stress-based interaction between faults. Several lines of
evidence suggest that geometric complexity should be considered in conjunction with various observed slip
dynamics. Aseismic slip has been observed with earthquake swarms in the northern Apennines (Italy) along
splay faults (Gualandi et al., 2017). It has been detected along the Haiyuan fault (China; Jolivet et al., 2013),
the North Anatolian Fault (Bilham et al., 2016; Rousset et al.,, 2016), and, in earlier publications, along the San
Andreas Fault (Murray & Segall, 2005). SSEs have been observed in the very shallow part of subduction zones,
such as in Hikurangi (Wallace et al., 2016) and Nankai (Araki et al., 2017). The only known common ingredient
of all of these different seismotectonic settings is the geometrical complexity of faults across scales.

In this work, we have restricted ourself to only one type of geometric complexity, that is, two overlapping
faults. Of course, this geometry cannot be interpreted directly as a subduction zone or any other natural set-
ting. However, we suggest that if this simple geometry can give rise to a complex slip behavior in the seismic
cycle, then a more realistic description of fault zones with multiple slip surfaces should not be ignored.

3. Model Setup

Our aim is to test the influence of fault geometry on the behavior of slip along a fault. We build a conceptual
model in which fault slip is controlled by an unstable frictional rheology (rate weakening) without any lateral
variation. Doing so, we introduce no a priori complexity in initial and boundary conditions. We load the faults
with constant stress loading rate and observe the variety of modes of slip.

In our conceptual model, we consider two overlapping faults of the same length L (see geometry in Figure 1).
This geometry is chosen to illustrate the effect of complex stress interactions between neighboring faults or
fault segments and is in no way supposed to be interpreted as the only geometrical configuration of faults in
a fault network. Friction on both faults is controlled by rate-and-state friction with aging state evolution. Fric-
tional resistance decreases with increasing slip rate and is spatially uniform, that is, the fault is rate weakening.
Loading is imposed using a constant rate of shear stress increase on the fault. We model elastic interactions
using out-of-plane static stress interactions with a radiation damping approximation (Rice, 1993). The com-
putation of static stress interactions is accelerated using the Fast Multipole Method, allowing us to compute
all stages of the earthquake cycle in a tractable computational time (Carrier et al., 1988; Greengard & Rokhlin,
1987, see Methods section for more details).

To better understand the role of multifault interactions, we explore the influence of the distance between
faults, D, the length of the faults, L, and the ratio of the constitutive frictional parameters, a/b. For
rate-weakening faults, a/b ranges between 0 and 1. Because of the importance of the nucleation length scale
L, in this problem, all geometrical parameter are nondimensionalized by L

nuc’

2 uD,
L, ==-—".; b 1 1
e = o pa—apr - Y07 M

where g and b are rate-and-state constitutive friction parameters, D, is the characteristic slip distance, y is the
shear modulus of the medium, and ¢, the normal stress acting on the fault (Rubin & Ampuero, 2005; Viesca,
2016). This formulation provides good insights on the nucleation phase of earthquakes along a fault that is
mildly rate weakening (a/b — 1).

For computational reasons, we restrict our experiments to fault lengths L/L, . € {1,2,3,4}. Our parameter
space includes also distances between faults D/L,, . € {0.1,0.5, 1, 2, 3,4}, and constitutive parametersa/b €
{0.7,0.8,0.85,0.90, 0.95}. For illustrative purposes we provide a table of dimensional values of L and D in the
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5 2.15 1.94 2.30
Fault 1 6 0.04 0.08 0.73
7 0.59 0.75 0.86
L)Ly 8 2.42 2.21 2.63

Figure 1. Example of a calculation that gives rise to complex slip behavior on faults. Here L/L,,,. = 2,D/L,,c = 0.1 and
a/b =0.9. To avoid any artifact from initial conditions, the first 10 events of the simulation were removed. Left panel
shows the maximum slip velocity for Fault 1 (blue) and Fault 2 (red). Right panel represents the space-time evolution of
slip velocity on the faults. The highlighted duration of events corresponds respectively for earthquakes and slow events
to the time when the slip velocity exceeds 1 mm/s or 1 pm/s for the first time to the time when it decelerates below

1 mm/s or 1 pm/s. Bottom panel gives the geometry used for this example. Events 2, 3, and 6 are SSEs. Events 1,4, 5, 7,
and 8 are earthquakes. Events 5 and 7 are small earthquakes that did not rupture the entire fault. Events 1 and 7 clearly
show afterslip contrary to Events 4 and 8. The table lists the seismological (Acy,), spatially averaged (Ac,) and
slip-averaged (Aoy) stress drops for the events.

supporting information. The smallest faults are 200 m long separated by distance of 21 m. The largest faults are
about 20 km long separated by a distance of about 2 km. In fact, it is possible to distinguish between different
domains of behavior that mainly depend on a/b, L/L,,. and the scaled distance between the faults D/L,, ..

4, Results

For each of the parameters identified above, we initiate the model and compute slip velocity over time
(Figure 1). We observe cycles of quiescence and earthquakes as expected for a rate-weakening rheology,
but, unlike in a model with a single, flat fault with no geometrical complexity, we also observe episodes
during which slip is slow. In our conceptual model, we see regular earthquakes with a clear nucleation and
dynamic and afterslip phases, and these events happen without any evident periodicity. We observe what
would be considered in nature as the slow nucleation of earthquakes, the slow phase of recovery following an
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earthquake, earthquakes of variable slip duration and velocity, and SSEs. It appears then that the sole intro-
duction of a simple geometrical complexity leads to the emergence of the complete range of modes of slip,
even with a uniform rate-weakening rheology. SSEs emerge spontaneously without prescribing the neces-
sary conditions for slow slip. In our model, a fault that slipped seismically can also potentially host slow slip,
as in the region of overlap of coseismic and postseismic slip or along the shallow portion of a creeping fault
(Rousset et al., 2016; Wallace et al., 2016). Once again, without the introduction of a second fault, and its asso-
ciated stress perturbations, the fault behaves like a simple spring-slider system with weakening properties,
with similar earthquakes happening periodically (see Figure S3 in supporting information).

We believe that the choice of such geometry brings realistic perturbations in stress along the fault, and these
perturbations lead to the emergence of the observed variety of modes of slip. Figure 1 illustrates the com-
plexity that emerges by only appealing to stress perturbations from a neighboring fault and/or nonplanarity
of the fault. Now considering that faults are geometrically complex at all scales, it appears natural to extend
this conclusion and consider that the whole range of modes of slip observed in nature may result, among
other mechanisms, from these geometrically induced stress complexities. In addition, it may be safe to think
that models that do not include such complexities will require ad hoc tuning, which might not be necessary,
to reproduce observations. We have not yet identified the precise conditions leading to an earthquake or a
SSEs, but clues should be found in the analysis of the evolution of stresses and state variable along the fault.

4.1. A Phase Diagram of Slip

We allow our model to undergo multiple earthquake cycles before measuring slip and rupture velocity of
each slow and dynamic event. We identify SSEs and earthquakes based on their slip and rupture velocity.
SSEs are events with a slip velocity V in the range of 1 pm/s to 1 mm/s and a rupture velocity V,,, lower than
0.001¢,, where ¢ is the shear wave speed. Earthquakes are events with a slip velocity greater than T mm/s
and a rupture velocity greater than 0.001¢,. We also define nucleation as the moment before an earthquake,
where slip velocity is higher than 1 um/s until it reached T mm/s. We purposefully chose a relatively small
threshold value for rupture velocity, because quasi-dynamic simulations lead to much slower rupture velocity
than dynamic simulations (Thomas et al., 2009). As our faults are one dimensional, we define the equivalent
moment for a seismic or aseismic event as M = uDL,,, X 1 km, where L, is the total length of the fault
that slipped during an event (SSE or earthquake) and D is the slip averaged over the length L. For earth-
quakes, we compute separately the seismic moment during the nucleation phase and the dynamic phase.
For SSEs, moment accounts for the entire duration when the slip velocity exceeds 1 pm/s. We obtained about
3,000 individual earthquakes and about 500 SSEs in our calculations when the faults hosted both earthquakes

and SSEs.

We identify five different domains of fault slip behavior (Figure 2). For small faults (L < L), there isa damped
domain in which the fault experiences no events at all as the fault length is too small for any type of instability
to grow. For long faults (L > L, ) with strongly rate-weakening properties (a/b < 0.5), we observe periodic
earthquakes, similar as in a case with no geometric complexity. This is perfectly normal as both our faults are
flat and the longer they are, the larger the portion that is left unaffected by the geometrical complexity (i.e.,
if the faults are long, their edges are independent and dominate the general behavior of slip, reducing this
setting to a case with no geometrical complexity). For mildly rate-weakening faults (1 > a/b > 0.6) and what-
ever the length of the fault, we observe a complex behavior with a mixture of slow and rapid slip for fault
sizes between 1 and 4 times the nucleation length and only complex earthquakes (partial ruptures, aperiodic
events, and variable afterslip) for longer faults. That is, although the length over which we observe SSEs is
increased compared to the case where there is no additional fault, we are still limited by the nucleation length
scale. Therefore, like in other studies, we will require another mechanism. This can just be low effective normal
stress, additional frictional mechanisms like dilatant strengthening, or even stronger geometrical complexi-
ties. The domain where both slow and fast earthquakes coexist shrinks when the distance between the faults
is increased. All this put together confirms our intuition that stress perturbations from one fault to another
help modulate the mode of slip along faults.

4.2. Scaling
Geodetic and seismological observations in nature suggest two different scaling relationships for moment of
slow slip on one side and rapid, dynamic slip events on the other side (Ide et al., 2007; Peng & Gomberg, 2010).
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Figure 2. Phase diagram showing the evolution of mode of slip along the two-fault system given the distance between
the faults. This figure includes a broader set of simulations in comparison to the paper. Damped domain is a domain
within which the fault experiences no event at all. SSE & EQ is the domain of coexistence of both slow events and
earthquakes. Complex EQ is a domain within which we get only earthquakes but with spatiotemporal complexities.
Periodic EQ is a domain within which earthquakes are periodically rupturing the entire fault. And finally, Slip Bursts is a
domain within which the entire fault is destabilized at the same time, there is no propagation of the rupture. This
corresponds for small faults compared to the nucleation length scale and small a/b. This domain is called the
no-healing regime (Rubin & Ampuero, 2005). SSE = slow slip event.

Considering the statistics of slip events produced by our model, we also find that the moment of both seismic
and aseismic events modeled by rate-and-state friction law follows two different scaling laws as observed in
nature (Figure 3). Because we conducted our calculations in 2-D, the moment of a dynamic slip event should
scale with its duration squared: M « T?2. This scaling emerges naturally from our conceptual model without
imposing any complexity in the spatial variation of frictional properties. If we do not include any geometrical
complexity, periodic, identical earthquakes are observed impeding our ability to observe any potential scal-
ing. Although we do not preclude the possibility that other models that have produced SSEs and earthquakes
also reproduce such scaling laws, geometrical complexities give rise to a wide range of modes of slip and the
resulting events obey similar scaling laws as in nature.

We note the moment of our simulated events clearly depends on the ratio of constitutive parameters a/b.
Since the nucleation length L, increases with a/b and since we compare models with nondimensionalised
fault length, the real length of the fault, L, also increases when a/b—1, leading to bigger moment release
and longer duration for events. To verify the robustness of this scaling law, we changed the maximum slip
velocity criteria used to distinguish SSEs and earthquakes by 1 order of magnitude. This does not change the
observed scaling.

Another interesting feature that emerges from our calculations is that the moment of the nucleation phase
of earthquakes also follows the same linear scaling with duration as SSEs. However, we cannot argue that this
similarity in scaling may be preserved in 3-D. We finally notice that by adding the nucleation and afterslip
moment of earthquakes, the clear scaling distinction between earthquakes and SSEs starts vanishing (see
Figure S1 in the supporting information). This observation is in favor of a continuum of modes of slip ranging
from slow to rapid, dynamic slip.

We can find some physical intuition about this relative scaling between SSEs and earthquakes in the temporal
evolution of rupture length and slip for each event (Figure 4). For earthquakes, the average growth of both
rupture length and slip are linear with event duration, independent of a/b, hence independent of the actual
length of the fault as we nondimensionalized length scales by L, .. As a consequence, seismic moment grows
quadratically with event duration. In other words, earthquakes propagate as an expanding crack: slip and
rupture length are proportional to each other.

For SSEs, however, the temporal evolution of slip and rupture length shows a clear dependence on the fault
length. For a given a/b, final rupture length is constant; that is, it is independent of event duration. However,
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Figure 3. Comparison of the scaling law for observational data (Gao et al.,, 2012; Gomberg et al., 2016; Sekine et al.,
2010, top panel) and from our all our calculations (bottom panel). We only used the seismic moment of the dynamic

part of an earthquake. The original scaling (Ide et al., 2007) also included data from tremors, very low frequency
earthquakes, and low-frequency earthquake. However, because we are not reproducing any of these events, we cut the

data to show only slow slip events.

slip grows linearly with duration. If we now increase the fault length (i.e., increase a/b), the accumulated slip
decreases (compared to the low a/b case), while the final rupture length increases. These two effects exactly
counterbalance each other, such that the final moment scales linearly with duration and is independent of
fault length (i.e,, for different a/b). This highlights an interesting fact that SSEs are not necessarily self-similar

in our calculations.

Finally, we observe that the moment of the nucleation phase scales linearly with its duration. The evolution of
slip and rupture length for the nucleation phase is scale independent contrary to SSEs. Slip and final rupture
length for nucleation phases evolve, individually, with the square root of the event duration, which might

point to a significant difference between these processes.
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Figure 4. Final moment, slip, and rupture length with time for slow slip events, earthquakes, and nucleation phase of
earthquakes.

4.3. Stress Drop

Interestingly, static stress drops of both slow and rapid slip events in our model are comparable (see Figure
S4 in the supporting information). We evaluate this parameter in three different ways following Noda et al.
(2013; see supporting information for more details). Regardless of the method, stress drops of SSEs and
earthquakes are of similar order of magnitude. Earthquake stress drops are on an average about twice
as large as those for SSEs. This is not completely in agreement with observations where SSEs stress drop
is generally 1 or 2 orders of magnitude smaller than for earthquakes (Gao et al., 2012). However, it has
also been shown that earthquake stress drops can vary by several orders of magnitude (Goebel et al.,
2015). Finally, and as expected, the stress drop scales with the moment of individual earthquakes and
SSEs. Such observation emphasizes the relative importance of slow events in the stress/energy budget of
active faults.
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5. Conclusion

We have shown that one simple geometrical complexity (two overlapping faults) can naturally result in a
complex seismic cycle (with SSEs, earthquakes, partial ruptures, etc.), without appealing to complex friction
rheology on the fault. We believe that geometry of fault systems that have been shown to control the dynam-
ics of ordinary earthquakes (Lay & Kanamori, 1981) are also a primary cause of the source of complexity in the
seismic cycle.

In recent years, many models have attempted to explain the nearly ubiquitous presence of SSEs in subduc-
tion zone. Current models using rate-and-state friction can only produce slow and fast dynamics in a very
narrow range of parameters. Extension of this range required considering additional competing frictional
mechanisms. Our work here suggests that complex stress interaction due to geometric complexity of faults
could also act as a complementary mechanism to enhance the presence of slow slip in models. This work is
an exploratory work on the role of fault geometric complexities in an earthquake cycle. We think that the role
of fault geometry in earthquake cycle models has been underemphasized compared to the role of friction
laws in earthquake cycle modeling probably because of the inherent computational limitation of model-
ing on nonplanar geometries. We argue that a unified model that would explain all observations needs to
account for geometric segmentation and/or the nonplanar nature of active faults as this is a first-order and
well-documented feature that results in a spatiotemporally inhomogeneous stress accumulation rate (Li &
Liu, 2016; Matsuzawa et al., 2013; Mitsui & Hirahara, 2006). As this work shows, the simplest of geometrical
complexity can lead to very complex modes of slip on a fault network.
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