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Abstract Adequate representations of brittle deformation (fracturing and faulting) are essential ingredients
of long‐term tectonic simulations. Such models commonly rely on Mohr‐Coulomb plasticity coupled with
prescribed softening of cohesion and/or friction with accumulated plastic strain. This approach captures
fundamental properties of brittle failure, but is overly sensitive to empirical softening parameters that cannot be
determined experimentally. Here we design a brittle constitutive law that captures key processes of brittle
deformation, and can be straightforwardly implemented in standard geodynamic models. In our Sub‐Critically‐
Altered Maxwell (SCAM) flow law, brittle failure begins with the accumulation of distributed brittle damage,
which represents the sub‐critical lengthening of tensile micro‐cracks prompted by slip on pre‐existing shear
defects. Damage progressively and permanently weakens the rock's elastic moduli, until cracks catastrophically
interact and coalesce up to macroscopic failure. The model's micromechanical parameters can be fully
calibrated against rock deformation experiments, alleviating the need for ad‐hoc softening parameters. Upon
implementing the SCAM flow law in 2‐D plane strain simulations of rock deformation experiments, we find that
it can produce Coulomb‐oriented shear bands which originate as damage bands. SCAMmodels can also be used
to extrapolate rock strength from laboratory to tectonic strain rates, and nuance the use of Byerlee's law as an
upper bound on lithosphere stresses. We further show that SCAM models can be upscaled to simulate tectonic
deformation of a 10‐km thick brittle plate over millions of years. These features make the SCAM rheology a
promising tool to further investigate the complexity of brittle behavior across scales.

1. Introduction
Tectonic plates tend to be almost rigid and primarily deform within narrow boundary zones. In the upper crust
(above ∼15 km depth), deformation occurs in the brittle regime through nucleation and growth of fractures and
faults, which profoundly affect the shape of geological structures and planetary topography. Accurate de-
scriptions of brittle deformation processes are therefore key to answer fundamental questions such as: How and
when does a new fault break? How long can it stay active and under what conditions can tectonic stresses
reactivate previously active faults? Which mechanisms promote brittle strain localization and modulate off‐fault
deformation?

Laboratory experiments have long been used to learn about rock deformation mechanisms in the brittle regime
(Paterson & Wong, 2005). The brittle behavior of low‐porosity crustal rocks (Figure 1) has some defining
characteristics. First and foremost, the differential stress that must be applied to break a rock (the rock's strength)
increases with pressure (Byerlee, 1967) (Figure 1a, squares and circles). The stress required to slip on a pre‐
existing discontinuity is also pressure dependent, and both stresses weakly depend on lithology (Bye-
rlee, 1978). The contrast between these two stresses (intact vs. pre‐cut) is typically on the order of hundreds of
MPas (Figure 1a). Experiments further reveal a number of phenomena that precede macroscopic failure of a rock
sample, such as: a reduction of effective elastic moduli, volume expansion, and acoustic emissions (Figures 1b–
1d). Failure is a catastrophic phenomenon that occurs when stresses reach a peak strength which is greater when
the imposed strain rate is faster (e.g., Lockner, 1998; Paterson & Wong, 2005). Failure manifests as a transition
from distributed to localized strain along macroscopic fractures oriented in a systematic manner with respect to
the stress field. It is also well documented that rocks can creep when subjected to a constant stress below their
peak strength (e.g., Baud & Meredith, 1997; Brantut et al., 2013; Carter et al., 1981; Heap et al., 2009;
Kranz, 1979; Figure 1d). Such brittle creep is typically described as involving three phases: A first phase (primary
creep) where strain rate decelerates, a prolonged second phase (secondary creep), during which creep rate remains
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nearly steady, and a final stage (tertiary creep) when deformation accelerates until macroscopic failure (Figure 1e,
note that the log time representation does not convey the long duration of the secondary phase).

This seemingly complex phenomenology is reasonably well understood as the macroscopic manifestation of the
growth and interaction of microcracks that nucleated on pre‐existing defects (Tapponnier & Brace, 1976). Crack
growth first occurs in a distributed fashion across the sample (Figure 1b). Macroscopic failure then results from
the sudden coalescence of interacting microcracks (Figure 1b), whose growth is enabled by differential stress
(e.g., Lockner, 1998; Lockner et al., 1991; McBeck et al., 2019). Sample dilatancy points to the tensile nature
(mode‐I) of some of these cracks, which are susceptible to radiate acoustic energy as they grow (Figure 1d). The
time and strain rate dependence of these phenomena further suggests that the speed of crack propagation in the

Figure 1. (a) Experimental constraints on brittle rock strength as a function of increasing pressure for intact (squares and circles) and pre‐cut (crosses) samples. (b–d)
Schematic illustration of axial stress, volumetric strain and acoustic energy versus axial strain, in triaxial experiments performed at a constant strain rate. Point C′marks
the onset of dilatancy. Sample cross sections showing the spatial pattern of acoustic emissions are reproduced from Lockner et al. (1991). (e) Typical pattern of axial
strain versus time in a brittle creep experiment in which the differential stress Δσ is imposed and maintained. Colors correspond to values of Δσ close to (red) or far from
(yellow) the rock's peak strength. Here compressive axial strains, strain rates and stresses are plotted as positive numbers for clarity.
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bulk rock depends on the forces acting at crack tips, which is typical of sub‐critical crack growth processes. The
main underlying mechanism in the brittle regime is known as stress corrosion (Atkinson, 1984). It refers to re-
actions occurring between a chemically active fluid and the strained atomic bonds at the tip of microcracks, which
induce stress‐dependent kinetics of bond breaking (Eppes & Keanini, 2017). While other mechanisms such as
pressure‐solution (e.g., Gratier et al., 2013), can also contribute to rate‐dependent deformation as pressure in-
creases, sub‐critical crack growth has been identified as a key contributor to the strain rate (i.e., time‐) dependent
behavior of brittle rocks in the brittle regime that is particularly well highlighted by brittle creep experiments
(Brantut et al., 2013).

Though the phenomenology of brittle failure was well known long before geodynamicists harnessed the
power of microprocessors, most tectonic simulations currently rely on a simplified treatment that consists in
capping stresses at a rate‐independent Mohr‐Coulomb yield envelope (e.g., Gerya, 2010; Poliakov &
Buck, 1998). This has the advantage of being numerically efficient, adequately capturing the pressure‐
dependent frictional strength of pre‐cut rocks, and spontaneously localizing plastic strain through the
bifurcative properties of the Mohr‐Coulomb plastic flow rule (e.g., Kaus, 2010; Lemiale et al., 2008;
Rudnicki & Rice, 1975; Vermeer & De Borst, 1984). In this framework, strain localization is typically
accompanied by a rotation of the principal stresses inside the incipient shear band, which leads to a reduction
of the remote stresses (Le Pourhiet, 2013). By itself, this rotation‐induced “structural” softening does not
account for the 100 s of MPas that separate the strength of intact rocks from their residual strength once
faulted (Figure 1a). An approach commonly used to promote sustained strain localization in tectonic sim-
ulations (Figure 2) is to weaken the material friction μ and cohesion C, from {μmax, Cmax} to {μmin, Cmin}
over a certain amount of non‐recoverable (plastic) strain ΔepII (e.g., Lavier et al., 2000; Poliakov &
Buck, 1998; Figure 2a). This amounts to enforcing a contrast between intact and broken rocks reminiscent of
the strength contrast observed experimentally.

Strain‐weakened Mohr‐Coulomb plasticity however presents several drawbacks. This parameterization typically
ignores the strain rate dependence of rocks' intact strength, and relies on a single value of intact friction and
cohesion to determine the intact yield strength. Further, the critical plastic strain ΔepII is meant to represent a wide
range of possible weakening mechanisms, and is therefore not easily quantified through laboratory experiments.
These limitations can be problematic since the choice of weakening parameters can have major consequences on
the outcome of a tectonic simulation. Lavier et al. (2000) for example, pointed out the spectacular effect of ΔepII on
tectonic styles produced in a rifting simulation (Figures 2b vs. 2c). While some recent studies have investigated
the effects of various weakening parameterizations (e.g., Duretz et al. (2021); Meyer et al. (2017); Naliboff

Figure 2. (a) Schematic representation of an elastic‐plastic rheology with strain weakening, under constant applied strain rate.

The difference between initial (σ(MAX)
y ) and final (σ(MIN)

y ) yield stresses are caused by a prescribed decrease of frictional

properties μ andC over a specified amount of plastic strain ΔePII . (b–c) Example simulation of extension in a 10 km‐thick elastic‐
plastic upper crust overlying an inviscid medium (Lavier et al., 2000). The only difference between the two panels is the choice
of ΔePII , which is small in b, producing a large‐offset normal fault (detachment), and large in c, producing two conjugate faults
that outline a graben structure. In this example the difference between σ(MAX)

y and σ(MIN)
y is caused by a drop in material cohesion

while friction is kept constant.
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et al. (2020); Pan et al. (2023)), it remains common practice to rely on ad‐hoc softening rules in geodynamic
simulations without assessing their impact on model behavior.

One path toward remedying this issue is to improve the way geodynamic simulations parameterize the transition
from intact to broken rock, in a manner that allows more direct comparison with experimental data and can be
interpreted in terms of underlying deformation mechanisms. An adequate parameterization of progressive brittle
failure should indeed account for standard observations such as the pre‐peak reduction in elastic moduli, the
evolving spatial pattern of acoustic emissions, or sample dilatancy which ceases upon failure (Figures 1b–1d). It
should also account for the strain rate dependence of brittle yielding and the occurrence of brittle creep. Finally, it
should include a representation of the ever‐evolving internal state of the rock to include a memory of past
deformation events. A promising alternative is to turn to models that describe brittle yielding as the accumulation
of damage which ultimately leads to macroscopic failure.

A first family of such models are Continuum Damage Mechanics models. They treat failure as a progressive
phenomenon indexed on the alteration of a rock's internal state (damage), and can produce strain rate‐dependent
brittle strengths, as well as pre‐peak softening. Some are built on thermodynamic descriptions of energy dissi-
pation during inelastic deformation (e.g., Hamiel et al., 2004; Karrech et al., 2011; Lyakhovsky et al., 1997),
others simply index damage growth on excess stresses above a yield stress, and strain (e.g., Manaker et al., 2006).
They do not assume a specific microstructure, which makes them flexible but also not directly interpretable in
terms of deformation processes.

In that regard, micromechanics‐based models have been particularly successful at capturing the broad range of
behaviors associated with brittle deformation (Paterson & Wong, 2005). In this family of damage models, as-
sumptions about the distribution and geometry of pre‐existing defects in the material allow the analytical
determination of stress concentrations around them, using linear elastic fracture mechanics. Motion along defects
cause the stress intensity factors (i.e., a measure of the stress state at the edge of discontinuities) at their tips to
increase up to the fracture toughness of the rock, allowing tensile crack propagation. Drivers of such stress
heterogeneities can be planar flaws such as grain boundaries, pre‐existing microcracks (e.g., Ashby & Sam-
mis, 1990; Kachanov, 1982a, 1982c; Nemat‐Nasser & Horii, 1982), pores (Sammis & Ashby, 1986), moduli
contrasts across grains in contact (Dey & Wang, 1981), or can even be left undetermined (e.g., Costin, 1985).
Tensile cracks, in turn, alter the effective elastic properties of the rock as they lengthen, in an anisotropic fashion
(Budiansky & O'connell, 1976; Deshpande & Evans, 2008; Kachanov, 1993; Walsh, 1965a, 1965b). This
framework has been used to model high strain rate deformation (e.g., during seismic rupture, Bhat et al., 2012;
Thomas et al., 2017) assuming critical fracture propagation, as well as slow deformation assuming sub‐critical
crack growth (Kachanov, 1982b). The latter class of models has also been used to describe brittle creep,
assuming pre‐existing planar defects (Brantut et al., 2012), successfully accounting for the multi‐phased dy-
namics of brittle creep (Figure 1e).

One drawback of this approach is its computational cost, because it requires to accurately resolve the kinetics of
fracture lengthening, which crack interactions ultimately render unstable close to macroscopic failure. This may
explain why it has not yet been implemented in long‐term, large scale tectonic simulations, even though the
processes it describes are clearly central to the initiation and evolution of crustal faults. By representing specific
deformation mechanisms that can be studied in the laboratory, these models can indeed be calibrated against
experiments and need not resort to ad‐hoc macroscopic parameters (e.g., Bhat et al., 2011; Brantut et al., 2012;
Costin, 1983, 1985).

As a first step in this direction, this study aims at constructing a constitutive brittle rheology rooted in the
subcritical growth of microcracks from pre‐existing rock defects. We seek a formulation that (a) captures the
essence of brittle rock behavior at the expense of a few simplifications, (b) has a straigthforward micromechanical
interpretation, (c) can be calibrated against experimental data, and (d) is usable in standard 2‐D plane strain
numerical geodynamic models. We propose such a constitutive law in Section 2, and describe its fundamental
behavior in terms of stress‐strain curves in Section 3. This allows us to calibrate its parameters using experimental
data from both constant strain rate and brittle creep tests. We then implement our constitutive law in 2‐D plane
strain numerical simulations that reproduce experimental conditions (Section 4), and discuss the model's key
features in Section 5. Finally, we implement our constitutive law in a crustal‐scale tectonic simulator and compare
it to the standard elasto‐plastic approach (Section 6).
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2. A Sub‐Critically Altered Maxwell (SCAM) Constitutive Law for Brittle
Deformation
2.1. Generic Stress‐Strain Relation

Our constitutive model builds upon an isotropic, incompressible elastic stress‐strain relationship:

eij =
sij
2G

, (1)

linking the deviatoric strain and stress tensors, eij and sij, through shear modulusG. In the following, we adopt the
convention of summed repeated indices. Our fundamental assumption is that the shear modulus is altered as a
function of the internal state of the material, which leads to path‐dependent behavior. Specifically, we assume that
G decreases as a function of a scalar state variable D, a measure of rock damage, to be defined in Section 2.2:

G = G0 f(D). (2)

In Equation 2,G0 denotes the shear modulus of the material in its least damaged state, and f(D) a decreasing scalar
function of D, hereafter referred to as “weakening function,” satisfying f(D) ∈ [0,1] and f′(D) < 0. The
incompressible elastic relationship Equation 1 can be recast as a damaged‐elastic constitutive law

eij =
sij

2G0 f(D)
, (3)

which takes the form of a Maxwell visco‐elastic constitutive law upon time differentiation:

ėij =
ṡij

2G0 f(D)
+

sij
2ηD

. (4)

In Equation 4 ηD is a viscosity associated with damage growth:

ηD =
f2(D) G0
| f′ (D)| Ḋ

. (5)

The damage state variable is related to the lengthening of mode‐I microfractures, an intrinsically dilatant process.
Throughout this study, inelastic dilatancy is neglected in favor of a purely deviatoric description of the damaged
rheology, focusing on the role of microcracking on shear modulus alteration, and on fault nucleation. A strategy to
account for damage‐induced dilatancy within the SCAM framework will nonetheless be outlined in Section 7. In
the following, we detail the micromechanical interpretation of the damage variable, the model governing its
growth rate, as well as the weakening function.

2.2. Micromechanical Representation of Rock Damage

Our goal is to model the accumulation of damage in the upper crust, which is primarily composed of low‐porosity
(<1%) magmatic and metamorphic silicate rocks. These units lie in an overall compressive stress state, with
pressures up to hundreds of MPas. Yet, distributed brittle deformation typically involves the opening of mode‐I
microcracks (Figure 1), which is made possible by stress concentrations around defects or grain boundaries. To
describe these processes, we adopt the damage framework developed by Ashby and Sammis (1990) which has
been used successfully to predict the brittle strength of several rocks (e.g., Bhat et al., 2011; Baud et al., 2000; X.
Wu et al., 2000) at low confining pressure, and the dynamics of fracturing during seismic ruptures (Bhat
et al., 2012; Thomas et al., 2017). This model considers the growth of tensile “wing”‐cracks from the tips of
penny‐shaped shear defects distributed within the rock (Figures 3a–3d).

The damage variable represents the relative volume occupied by cracks as the wings lengthen in the direction of
the most compressive stress (Figure 3d). It is defined as
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D =
4
3
πNv(αa + l)3, (6)

where Nv is the number of shear defects per unit volume, a and l are the radius of the shear defects and the length
of the wing cracks, respectively. α = cos ψ is the cosine of the angle ψ between the shear defects and the most
compressive stress (Figure 3d). The least damaged state (D = D0) corresponds to the state of a rock containing
only shear defects, where no wing crack has nucleated (i.e., l = 0). The most damaged state occurs at D = 1 when
the volume of the spheres enclosing each wing crack has grown to match the characteristic volume defined by the
spacing of defects (Vc= 1/Nv). This upper bound is the result of the formulation of the interaction between cracks,
detailed in Section 2.3. It represents a stage at which coalescence of cracks becomes unavoidable. For simplicity,
we only consider shear defects with normal vectors lying in the plane of the two extreme principal stresses σ1 and
σ3. This allows us to index their activity on a 2‐D Mohr‐Coulomb yield criterion.

2.3. Damage Growth

We assume that under low strain rates and on long time scales, wing cracks lengthen in a sub‐critical manner, that
is, with stress intensity factors (KI) lower than the fracture toughness (KIC) of the material (Atkinson, 1984). To
capture this process in our constitutive law, we adopt the stress corrosion law introduced by Charles (1958), which
has proven successful at explaining experimental data (e.g., Atkinson, 1984; Brantut et al., 2012; Deshpande &
Evans, 2008; Kachanov, 1982c). Specifically, the crack growth rate writes

l̇ = l̇0(
KI

KIC
)

n

, (7)

Figure 3. (a–c) Cross‐sections in the (σ1, σ3) plane showing the array of cracks growing in a rock, in the model of Ashby and Sammis (1990). These cracks initially grow
from a shear defect of radius a, oriented at an angle ψ to σ1. At its tips, “wing” tensile cracks of length l (d) may preexist. Under differential stresses unable to overcome
the frictional resistance along shear defects (a), the stress concentration (KI) at their edges is negative (e) and the material deforms elastically. Once stresses overcome
the frictional resistance, the sliding shear defects exert a wedging force Fw increasing KI (f). Positive KI promotes stable tensile cracks growth (b). As cracks lengthen,
they begin to interact (c). At this point damage growth enters an unstable, accelerating regime (g). (h) Alteration of the shear modulus as a function of damage.
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where l̇0 is a characteristic crack growth rate and n the Charles law exponent. The damage growth rate is then
retrieved from the wing‐crack tip speed

Ḋ =
∂D
∂l
l̇ =

3D2
3D

1
3
0 l̇0

αa
(
KI

KIC
)

n

. (8)

This equation applies only when KI > 0, otherwise Ḋ = 0. Using Equation 7 requires an expression for KI, the
stress intensity factor at the tip of the wing cracks. Following Ashby and Sammis (1990), we assemble KI as the
sum of three terms:

KI = K(w)I + K(σ3)I + K(i)I . (9)

The first term (K(w)I ) represents the stress concentration due to frictional slip on the shear defects wedging open

the wing cracks. Following Tada et al. (1973), it can be expressed as the action of a tensile wedging force Fw at the
center of an equivalent penny‐shaped crack. The radius of this circular crack is that of the sphere enclosing one
entire wing crack (shear defect+ tensile wings, Figure 3d). However, instead of writing it l+ αa, as in Equation 6,
we write it l + βa, where β is a regularization factor. This approach was adopted by Ashby and Sammis (1990) to
ensure that in the absence of wing cracks (l = 0, D = D0), KI matches the stress intensity factor at the tip of shear
defects as derived by Ashby and Hallam (1986). This yields β = 1/π (Bhat et al., 2011) and the following
expression for K(w)I :

K(w)I =
Fw

[π(l + βa)]3/2
. (10)

The wedging force relates to the excess shear stress acting on the defects (of area πa2) relative to their frictional
resistance. Following Ashby and Sammis (1990), we write:

Fw = (σ3A3 − σ1A1) a2. (11)

A1 and A3 are constants that depend on the friction and orientation of the shear defects. In the following, we
assume ψ = 45° as Ashby and Hallam (1986) showed that this orientation maximizes the wedging force over a
wide range of wing crack lengths. This yields:

A1 = π
̅̅̅
β
3

√

[
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + μ2

√
− μ] (12)

A3 = A1[
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + μ2

√
+ μ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + μ2

√
− μ

]. (13)

Overall, K(w)I strongly depends on the differential stress Δσ = σ3 − σ1 that develops in the rock, as it allows

frictional slip on the defects and wedging of the wings. By contrast, the second term in Equation 9 (K(σ3)I )

represents remote wing‐normal compression σ3 acting to close tensile cracks. Bhat et al. (2011) estimated it based
on results from Tada et al. (1973) as:

K(σ3)I =
2
π
(σ3)

̅̅̅̅
πl

√
. (14)

Finally, the third term (K(i)I ) serves to describe the interaction between cracks as they lengthen, and is a core

feature of this micromechanical model. Ashby and Sammis (1990) required that the wedging forces applied to
cracks be compensated by an internal stress (σ(i) in Figure 3) to satisfy mechanical equilibrium. The internal stress
is applied on an effective area perpendicular to σ3 that separates neighboring cracks (Ab). The sum of this area with
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the characteristic area of each wing crack (π(l + αa)2) amounts to the area Ac that is obtained by projecting the
spherical volume Vc = 1/Nv along σ3. Therefore, Ab = Ac − π(l + αa)2, with

Ac = π1/3(
3
4Nv

)

2/3

. (15)

This leads to the following expression for the internal stress acting in the direction of least compression, σi3:

σi3 =
Fw
Ab

. (16)

Internal stress σi3 increases dramatically as wings lengthen (D approaches 1) and the areas between fractures (Ab)
shrink. This is when crack interactions become dominant. K(i)I is readily obtained from σi3 by analogy with
Equation 14:

K(i)I =
2
π
(σi3)

̅̅̅̅
πl

√
. (17)

The full expression of KI then reads

KI =
Fw

[π(l + βa)]3/2
+
2
π
(σ3 + σi3)

̅̅̅̅
πl

√
. (18)

It can be recast as a function of damage rather than crack length, following Bhat et al. (2011), yielding

KI =
̅̅̅̅̅
πa

√
[(σ3A3 − σ1A1) (c1 + c2) + σ3c3], (19)

where c1, c2, and c3 are functions of the damage state that write

c1 =
1

π2α3/2[(D/D0)
1/3 − 1 + β/α]

3/2 (20)

c2 =
2

π2α3/2
[(D/D0)

1/3 − 1]
1/2

[
D2/3
0

1 − D2/3] (21)

c3 =
2

̅̅̅
α

√

π
[(D/D0)

1/3 − 1]
1/2
. (22)

2.4. Weakening Function

We next turn to the formulation of the function f(D) used to weaken the shear modulus as damage accumulates.
The simplest effective medium representation of a cracked isotropic material assumes non‐interacting
cracks (Kachanov, 1993). Within this approximation, the change in elastic strain energy due to a population of
cracks can be inferred by summing their individual contribution. This amounts to elastic compliances scaling
linearly with damage. Elastic stiffnesses therefore scale as (1 + CD)− 1, where C is a constant that depends on the
orientation distribution and geometry of cracks. Linearization of this form provides a reasonable estimate of
elastic stiffnesses at low damage values. Because the damage framework of Ashby and Sammis (1990) sets an
upper bound on damage at 1, we use this approximation and postulate a linear weakening of G with respect to
damage D:

f(D) =
γ − 1
1 − D0

D +
1 − γD0

1 − D0
, (23)
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such that G(D0) = G0 and G(D= 1) = γG0. The weakening parameter γ∈ [0,1] can be thought of as a property of
the material representing the stiffness of a fully damaged rock (e.g., a fault zone) normalized by its maximum
possible stiffness in a low‐damage state. The derivative of our weakening function with respect to D is:

f ′ =
γ − 1
1 − D0

. (24)

It should be noted that for simplicity our model weakens the shear modulus isotropically, even though damage
grows in a highly anisotropic fashion.

To recap, Equations 4 and 5, combined with Equations 8, 19, and 23 make up the complete SCAM constitutive
law, which is akin to Maxwell visco‐elasticity with a strongly non linear dependence of viscosity on stress, and
progressive alteration of the elastic modulus with increasing damage. These equations are reiterated below:

ėij =
ṡij

2G0 f(D)
+

sij
2ηD

ηD =
f2(D) G0
| f′ (D)| Ḋ

Ḋ =
3D2

3D
1
3
0 l̇0

αa
(
KI

KIC
)

n

KI =
̅̅̅̅̅
πa

√
[(σ3A3 − σ1A1) (c1 + c2) + σ3c3]

f(D) =
γ − 1
1 − D0

D +
1 − γD0

1 − D0

Figure 4. 0‐D simulations based on the SCAMmodel in a typical triaxial setup with a confining pressure of 150 MPa (stress
state shown in Panel a). (a and b) Differential stress and damage versus strain in a constant strain rate experiment (10− 5 s− 1).
(c and d) Deviatoric axial strain rate and damage versus time in an experiment where stress is kept constant after reaching the
stress and damage state pictured by the stars in panels. (a) and (b) Here strains and stresses are represented positive in
compression for clarity.
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3. Application to a 0‐D Triaxial Loading Setup
3.1. Constitutive SCAM Equations in a Triaxial Setup

To illustrate the behavior of the SCAM flow law, we implement it in a geometry typical of rock deformation
experiments (Figure 4a): Compression along the axis of a cylindrical sample (σ1, along direction x1) subjected to
axially symmetric confining stress (σ3, along directions x2 and x3). The corresponding stress tensor writes

σ
=
=

⎡

⎢
⎢
⎢
⎢
⎣

σax 0 0

0 − pc 0

0 0 − pc

⎤

⎥
⎥
⎥
⎥
⎦
, (25)

where σax is the axial stress and pc the confining pressure surrounding the curved surface of the sample. We use a
simplified point‐wise formulation of our differential constitutive relationship Equation 4 assuming homogeneous
deformation within the sample. As stated previously, we ignore volumetric strain and focus solely on the rela-
tionship between the deviatoric axial strain rate ėax and the deviatoric axial stress sax. The constitutive equations
reduce to the following ordinary differential equation (ODE):

ėax =
ṡax

2G0 f(D)
+
sax
2ηD

, (26)

to be solved jointly with the damage evolution equation (Equation 8).

A first type of experiment consists of applying a constant axial strain rate and measuring the axial stress. In our
framework, sax verifies:

ṡax = 2G0 f(D)(ėax −
sax
2ηD

), (27)

with sax(t = 0) = 0 and D(t = 0) = Di ≥ D0.

Another class of experiments (brittle creep tests) consists of applying a constant axial stress and measuring the
axial strain. In our model, the latter is given by

ėax =
sax
2ηD

, (28)

In this case, the initial value of D cannot be chosen arbitrarily and must be consistent with the imposed stress. To
ensure this, we first integrate the constant strain rate and damage growth ODEs (Equations 8 and 27) up to the
desired value of axial deviatoric stress sax assuming a known strain rate. The damage value reached at the end of
this preliminary step is used as initial condition for Equations 8 and 28, along with eax(t= 0)= 0. These equations
are integrated up to D close—but not equal—to 1, due to the singular behavior at this limit, coming from the c2
term in Equation 21.

The above ODEs are integrated numerically using a 5/4th order Runge‐Kutta method (Tsitouras et al., 2009). This
is done within the DifferentialEquations.jl Julia package (Rackauckas & Nie, 2017) using adaptive time‐stepping
with absolute and relative tolerance of 10− 6 and 10− 4 respectively.

3.2. Stress‐Strain Curves and Creep Regimes

We illustrate the fundamental behavior of the SCAM model in triaxial experiments using reference micro-
mechanical parameters appropriate for Westerly granite (Table 1), which will be rigorously determined in
Section 3.3. Constitutive equations are integrated up to D = 0.95.

Figures 4a and 4b correspond to a constant strain rate setup at 10− 5 s− 1, under 150MPa of confining pressure. The
axial stress‐strain curve displays an initial elastic phase followed by visible weakening of the effective modulus
when differential stress exceeds ∼700 MPa. This is accompanied by damage growth (Figure 4b) which
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accelerates catastrophically as the sample reaches its peak stress. The post‐peak stress drop is similarly abrupt as
damage approaches 1.

Figures 4c and 4d correspond to a constant stress simulation starting at the yellow star shown in panels A and B.
Strain rate first decelerates, then remains steady for hours, and ultimately accelerates up to the macroscopic failure
of the material, consistent with the subsequent phases of brittle creep observed experimentally (Figure 1e). What
is usually referred to as secondary creep would here be associated to the transition between decelerating and
accelerating creep, and was not depicted in Figures 4c and 4d because of the clear bimodal dynamics of brittle
creep expressed by the SCAMmodel. This strain rate behavior is associated with dynamics similar to those of the
damage growth rate, visible through the slope of damage evolution with respect to time in Figure 4d.

The effect of various model parameters and experimental conditions on the behavior of the SCAM model under
constant strain rate is shown in Figure 5. The black curves correspond to a strain rate of 10− 5 s− 1, a confining
pressure of 150 MPa and the reference set of micromechanical parameters for Westerly granite (Table 1).
Figures 5a and 5b shows that a reduction of the imposed axial strain rate leads to a lower peak stress due to
damage having more time to accumulate under lower axial stress, precipitating failure (Figure 5b). Increasing the
radius of the shear defects (Panel e) while keeping D0 constant leads to a decrease of the peak stress. This is
because the stress intensity factor at the wing crack tips increases with increasing shear defect size, prompting
faster crack growth. Thus, significant damage can build under lower stresses, and the peak stress is reached
sooner. Increasing D0 while keeping the shear defect size constant (Panel f) also leads to a lower peak stress, but
limits the amount of softening that takes place pre‐peak. This is because cracks arranged in a denser array will
interact and coalesce sooner. The stress decrease additionally does not display the abrupt drop seen with the
reference case, which we attribute to the larger reduction of shear modulus per damage increment. A decrease of
the Charles law exponent n (Panel g) or friction coefficient (Panel d) similarly lowers the peak stress, by enabling
damage build‐up under lower stress intensity factors Equation 7 and under lower differential stress, respectively.
Finally, a greater degree of modulus weakening (via a reduced γ parameter) leads to more pre‐peak softening but
has a limited impact on the peak stress (Panel h). It also stabilizes the stress drop by limiting the unstable growth
of damage as it gets close to 1. In this case of extreme loss of elastic stiffness, the larger negative stress increment
associated with damage increment post‐peak tends to reduce the catastrophic increase in damage growth.

To better visualize the dynamics of damage growth in the SCAM model, we represent constant strain rate ex-
periments in a plot of differential stress versus damage (Figure 6a). This representation allows us to map the stress
intensity factor at the wing‐crack tip (colors and contours in panel a), which gives us a proxy for damage growth
rate. We specifically highlight two sets of experiments. The first set is performed at a laboratory strain rate
ε̇ax = 10− 5 s− 1, and the second at a tectonic strain rate of 10− 15 s− 1, both under a confining pressure
pc= 150 MPa. In each set, we vary the initial damageDi, using values of 0.136 (D0), 0.227, 0.318, 0.409, and 0.5.

Each experiment follows a specific trajectory in differential stress versus damage space. For example, in the case
of no initial tensile cracks (Di = D0), differential stress first increases while damage remains constant. This is
because in the initial elastic regime,KI <= 0 and wing cracks cannot grow. Once the system reaches the domain of
positive KI, damage can start growing, and increases with stress. The system appears to follow a contour of

Table 1
Inverted Parameters

Symbol Description Westerly granite Darley Dale sandstone

G0 Shear modulus at D = D0 (GPa) 28.72 ± 0.02 5.202 ± 3

γ Residual ratio G/G0 at D = 1 0.432 ± 0.004 0.281 ± 0.003

μ Friction coefficient of the shear flaws 0.703 ± 0.001 0.5093 ± 0.0003

a Shear flaws radius (μm) 6.66 ± 0.16 656.8 ± 4.3

n Charles law exponent 11.82 ± 0.03 24.96 ± 0.07

l̇0 Charles law reference crack growth rate (mm s− 1) 16.44 ± 0.19 0.0029 ± 0.0001

KIC Fracture toughness (MPa m1/2) 1.29 ± 0.01 1.412 ± 0.004

D0 D associated to the shear flaws only 0.1358 ± 0.0003 0.3724 ± 0.0008

Di Initial value of D 0.1361 ± 0.0003 0.27 ± 0.05
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constant KI up to the peak differential stress (∼1,140 MPa). Past this point, the differential stress starts to decrease
while damage keeps increasing at an accelerating pace. This is due to the fact that KI, which sets the rate of
damage growth, now increases with increasing damage. This final phase of rapid failure manifests as an abrupt
post‐peak stress drop in the stress‐strain curve (Panel b).

These three regimes, characterized by the absence of growth, the stable and then the unstable growth of damage is
illustrated in Figure 3 with the three numbered stars respectively. Simulations carried out under the same strain
rate, but with greater initial damage show the same behavior, and their trajectories tend to align along the same
iso‐KI (∼0.3KIC) path as followed by theDi=D0 case. This forms an envelope that materializes an upper bound of
the differential stress value with respect to damage. This envelope corresponds to (KI ∼ 0.05KIC) for tectonic
strain rates, and therefore lies at lower stress values. If, however, a simulation is initiated with damage in excess of
∼0.45 (e.g., orange paths in panel A), damage will immediately start growing in the unstable regime, where ∂KI/
∂D > 0. In this case, the system reaches a peak stress which is lower than that of the other simulations.

Figure 5. Effect of strain rate (a), (b), confining pressure pc (c), friction coefficient μ (d), shear defect radius a (e), shear crack density D0 (f), corrosion index n (g) and
residual shear modulus γ (h) on differential stress with respect to deviatoric axial strain for 0‐D SCAM simulations. Black lines correspond to the best fitting parameters
for Westerly granite detailed in Section 3.3. Here strains and stresses are represented positive in compression for clarity.
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3.3. Calibration of SCAM Parameters With Laboratory Experiments

The ability of the SCAM model to reproduce both constant strain rate and constant stress experiments suggests
that laboratory data can be used to constrain its micromechanical parameters (Table 1). Specifically, stress‐strain
curves from constant strain rate experiments under various confining pressures can help constrain elastic and
frictional properties, while strain rates and time to failure in brittle creep tests contain information about the
kinetics of damage build‐up.

To leverage this information, we use the 0‐D “forward” models presented in the previous section in a Bayesian
inversion framework (Tarantola, 2005, see Appendix A for details). We expect 0‐D models to be representative of
the homogeneous deformation stage up to the peak stress (prior to localization), as micro‐cracking is known to
first develop in a distributed fashion (Figure 1).

3.3.1. Experimental Data

We apply the Bayesian inversion method to experimental data corresponding to two lithologies. The first is
Westerly granite, a rock type widely used in experiments that is representative of the continental upper crust in
term of mineralogy and low porosity. This rock has been shown to experience the type of diffuse cracking and
catastrophic fracture coalescence that our model seeks to capture (e.g., Lockner et al., 1991; Tapponnier &
Brace, 1976). We specifically use constant strain rate ( ε̇ax = 10− 5s− 1) experiments under confining pressures of
20, 30, 80, and 150 MPa in dry conditions from Wawersik and Brace (1971) (Figure 7a). We complement these
data with minimum brittle (secondary) creep strain rates measured under seven imposed differential stresses
ranging from 77% to 93% of the short‐term strength (meaning the peak strength at a laboratory strain rate) of the

Figure 6. (a) Trajectories of differential stress with respect to damage at ε̇ax = − 10− 5 s− 1 and ε̇ax = − 10− 15 s− 1 for various initial damages (color code) and at constant
confining pressure pc = 150 MPa. The background is colored according to KI/KIC, with the two iso‐values pictured with black dashed contours representing KI = 0 and
KI = KIC respectively. The near‐vertical dashed black line highlights damage values where ∂KI/∂D = 0 under constant Δσ. (b) Same trajectories plotted as standard
deviatoric axial strain versus differential stress, along with the color code for initial damage state. Strains and stresses are represented positive in compression for clarity.
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rock subjected to an effective confining pressure of 30 MPa in water‐saturated samples by Brantut et al. (2012)
(Figure 7b).

The second rock type we consider is Darley Dale feldspar‐rich sandstone, another widely studied lithology. While
its properties are likely less representative of the upper crust than that of Westerly granite, inferring its micro‐
mechanical parameters can provide helpful comparisons to assess the validity of our model. One caveat of this
choice is that porous sandstone may deform according to mechanisms other than the growth of tensile cracks from
shear defects, such as Hertz‐contact driven microfracturing (e.g., Zhang et al., 1990), tensile cracks nucleating
from pores (e.g., Sammis & Ashby, 1986), or distributed cataclastic flow where microcracking grows along grain
boundaries (e.g., Menéndez et al., 1996). Heap et al. (2009) however report that for confining pressures up to their
maximum of 50 MPa, stress‐induced damage grows predominantly in a direction subparallel to the axis of
compression. Additionally, dilatancy patterns at constant strain rate are very similar to what is observed in low‐
porosity rocks such as Westerly granite (e.g., X. Wu et al., 2000; Zoback & Byerlee, 1975). These observations
suggest that the wing‐crack model remains a relevant conceptual framework for the brittle deformation of Darley
Dale sandstone, at least below 50 MPa of effective confining pressure.

Figure 7. SCAMmodel fit to experimental data on Westerly granite. (a) Constant strain rate experiments with ε̇ax = − 10− 5 s− 1 and confining pressures of 20 (orange),
30 (red), 80 (blue) and 150 MPa (black). Dots show the data and lines the best fitting models. (b) Dataset of minimum brittle creep strain rate as a function of imposed
differential stress (black dots), with relationship derived from best fitting model (red line). (c) Prior (gray) and posterior (black) distributions of inverted
micromechanical parameters.
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Friction coefficient μ, fracture toughness KIC and pre‐existing crack length a were previously estimated for
Darley‐Dale by X. Wu et al. (2000) within the Ashby and Sammis (1990) wing‐crack framework, but assuming
critical crack growth (i.e., at KI = KIC). Here, we additionally use entire time series of brittle creep strain rates
from Heap et al. (2009) to provide strong constraints on the kinetics of crack growth. We specifically use
experimental results performed under constant stresses of 80%, 85% and 90% of the short‐term strength from
Heap et al. (2009) (Figure 8b). We combine these time series with stress‐strain curves determined under a constant
strain rate of 10− 5 s− 1 and confining pressures of 10 and 50MPa in water‐saturated samples from the same authors
(Figure 8a). While data was also available for a confining pressure of 30MPa, it displayed a significantly different
shear modulus compared to the other two. We thus decided to exclude it from the joint inversion procedure.

It should be noted that because our constitutive law is based on incompressible elasticity, we remove the volu-
metric component of elastic deformation (i.e., the Poisson effect) from constant strain rate experimental data. In

Figure 8. SCAM model fit to experimental data on Darley Dale sandstone. (a) Constant strain rate experiments with ε̇ax = − 10− 5 s− 1 and confining pressures of 10
(orange) and 50 MPa (blue). Dots show the data and lines the best fitting models. Larger circles and squares indicate experimentally determined and modeled peak
stress, respectively. Horizontal dashed lines show the imposed stress levels for the experiments shown in Panel (b). (b) Brittle creep tests shown as time series of axial
strain rate under imposed differential stress and confining pressure pc= 30MPa (dots and lines correspond to data and models, respectively). A simulated constant strain
rate curve at this confining pressure is included in Panel a (red dashed curve with red square marking the peak stress). (c) Prior (gray) and posterior (black) distributions
of inverted parameters. The posterior distribution of the initial damage state Di is the same as its prior because the inversion kept lowering the Di value to below D0,
which was not permitted. This resulted in a null gradient of the log‐likelihood with respect to Di and thus no change of the parameter nor of its posterior distribution
relative to the prior.
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practice, this means that the reported strain rate is converted to a deviatoric axial strain rate ε̇ax' = 2
3 (1 + ν)ε̇ax,

with ν the Poisson's ratio, in order to compare our simulations with laboratory results.

3.3.2. A‐Priori Parameters

The a‐priori value of G is chosen based on the initial slope of the elastic (linear) portion of available stress‐
strain curves. The initial value of the friction coefficient μ is set to the standard value of 0.65 (Byerlee, 1978).
We initially assume KIC to fall between values determined experimentally in quartz (1 MPa ⋅ m1/2) and wet
Westerly granite (1.74 MPa ⋅ m1/2) from the compilation of Atkinson (1984). We initialize γ at an inter-
mediate value of 0.5, and a at the mean grain size of Westerly granite: 0.5 mm. We also set D0 = Di at 0.2,
n = 12 (Atkinson, 1979), and l̇0 = 10− 2 m s− 1. This set of a‐priori guesses on the parameter values is first
used to invert only the data from constant strain rate experiments. The results of this step are used to
construct new priors on the model parameters, shown as gray shadings in the right columns of Figures 7 and
8. These priors are then used for a combined inversion of constant strain rate and brittle creep experiments,
using a step multiplier κ = 0.1 (See Appendix A for details). A hundred steps were typically sufficient to
reach convergence, yielding the posterior model parameter distributions shown in black in the right column of
Figures 7 and 8.

3.3.3. Results

Figure 7 shows the results of our joint inversion of constant strain rate and brittle creep data in Westerly granite.
Panel a compares the SCAM‐simulated stress‐strain curves (plain lines) and the experimental data points. The
agreement is good at confining pressures of 30, 80, and 150 MPa. At 20 MPa, however, the model slightly over‐
estimates the peak stress. The Wawersik and Brace (1971) study also contains data at atmospheric, 3.5 and
10 MPa confining pressures, but under these conditions our model was not able to accurately represent the
pressure dependence of the peak stress. Figure 7b also shows secondary creep strain rates as a function of imposed
differential stress from our simulations (red line), which are in good agreement with experimental data (black
dots). The relationship between brittle creep strain rate and stress is effectively a power law with a stress exponent
of ∼18.

The best fitting parameter values as well as their log‐normal standard deviations are listed in Table 1, and shown
as probability distributions (in black) in Figure 7. Because the prior distributions (in gray) were determined by
fitting only constant strain rate data, the differences between prior and posterior distributions highlight the in-
formation provided by brittle creep data. This information specifically constrains the initial damage state, as well
as parameters related to the kinetics of damage growth such as l̇0 or n. It also strongly constrains the size of shear
defects (to∼7 μm), which influences KI and therefore the damage growth rate. Parameters such as KIC, μ and γ are
also slightly re‐evaluated.

Best‐fitting stress‐strain curves for Darley Dale sandstone are shown in Figure 8a for 10 and 50 MPa of confining
pressure as plain lines, along with experimental data (points). Larger markers mark the peak stress of simulations
(squares) and experiments (circles). The red dashed line shows an additional simulated curve at an intermediate
pressure of 30 MPa. This pressure corresponds to that of the brittle creep tests (Figure 8b), which were conducted
under three axial stresses indicated as dashed lines in Figure 8a. It can be seen that the greatest applied differential
stress (141 MPa) is very close to the inferred peak stress at 30 MPa of confining pressure. Figure 8b compares
simulated and measured strain rates in the brittle creep experiments. Our best fitting parameters do a good job at
reproducing the shape of the strain rate curves as well as the time to macroscopic failure (the final, near‐vertical
portion of the curves).

Similarly to our results in Westerly granite, joint inversions of brittle creep tests and constant strain rate ex-
periments provide strong constraints on parameters such as shear defect size, initial damage, Charles law
exponent, and l̇0. Our inversions yield a significantly greater defect size (∼700 μm vs. ∼7 μm) and Charles law
exponent (∼25 vs. ∼12) in sandstone compared to granite, as well as a lower shear modulus and greater degree of
elastic weakening (lower γ). The initial damage state of sandstone also appears greater. We however find
comparable fracture toughness in both lithologies, and a slightly greater coefficient of (defect‐scale) friction in
granite (0.7 vs. 0.5).
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4. Application to a 2‐D Plane‐Strain Numerical Press
4.1. Conservation Equations and Numerical Methodology

In order to perform 2‐D simulations of material deformation governed by the SCAM constitutive equations, we
adapt the long‐term tectonic modeling code SiStER (Simple Stokes solver with Exotic Rheologies, Olive
et al. (2016)), which solves for conservation of mass, momentum (and energy if needed), in a 2‐D continuum
assuming elastic incompressibility and planar deformation. Conservation of mass and momentum write:

∂vi
∂xi

= 0, (29)

and

∂sij
∂xj

−
∂P
∂xi

+ ρgi = 0, (30)

where vi are velocities, P = − 1/3 σkk is pressure, ρ is density and gi the gravitational acceleration. Deviatoric
stresses sij are related to velocities in Equation 30 using a Maxwell visco‐elastic constitutive relationship between
deviatoric stresses and strain rates (e.g., Gerya, 2010; Moresi et al., 2003):

ėij =
1
2G

ṡij +
1
2η
sij (31)

where ṡij is discretized using a first‐order backward finite difference scheme with time step Δt, so that the
deviatoric stress at time t becomes

stij = 2Zηėtij + (1 − Z)st− Δtij , (32)

with ėij = (∂vi/∂xj + ∂vj/∂xi)/2 and

Z =
GΔt

η + GΔt
. (33)

The effective viscosity in Equation 31 can represent a range of rheologies. A very high value sets a very long
Maxwell time, which effectively renders the material elastic. In the viscous regime, η can represent brittle
plasticity (e.g., as detailed in Section 4.2.2), or a specific creep mechanism of known flow law. In practice, η is
constructed as the harmonic average of several viscosities, each representing individual flow mechanisms.

The mass Equation 29 and momentum Equation 30 conservation equations, expressed in terms of velocities
Equation 32 and pressure, are discretized with a conservative finite difference scheme formulated on a staggered
grid (e.g., Gerya & Yuen, 2003). This leads to a linear system that is solved for velocities and pressure over the
entire domain using a direct solver. Retroactions between the viscosity and velocity fields require the use of non‐
linear iterations (here approximate‐Newton, described as Algorithm 2 in Spiegelman et al. (2016)) to reach
convergence, which is assessed by comparing the L2 norm of the residual vector to a specified tolerance (relative
tolerance between 10− 7 and 10− 2, see readme documentation in the code repository linked in the Acknowl-
edgments section).

Once a reasonably converged solution is found, the time evolution is performed explicitly using the time step Δt
introduced in Equation 32. This is specifically done by advecting Lagrangian markers which carry material
properties such as density, viscosity and friction. Markers are advected within the velocity field interpolated from
the nodes. Marker properties are then passed back to the nodes to prepare the next solve of the conservation
equations at the next time step. Markers also carry material stresses in order to solve Equation 32. In addition to
being advected, these stress components are also rotated according to the local rotation rate determined from the
velocity field at each timestep (Gerya, 2010).
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4.2. Numerical Implementation of the SCAM Rheology

The implementation of the SCAM model in the 2‐D code was performed as described in the following sub-
sections. First, a damage property and its evolution rules are implemented, along with the shear modulus
dependence on damage. Then, a smooth transition to long term plastic behavior in fully damaged parts of the
material is introduced.

4.2.1. Damage Growth and Viscosity

The damage state D is added as an additional variable discretized on both markers and nodes. Its evolution
Equation 8 is solved with a finite difference method. The damage rate Ḋ and its associated viscosity ηD
(Equation 5) are evaluated on nodes at each non‐linear iteration using previous stresses and interpolated damage
values from markers. The shear modulus is also altered according to the damage state.

When stepping through time, marker damage is incremented by interpolating the damage rate from nodes to
markers. Due to the non‐linearity of Equation 8, damage is prone to catastrophic growth, which can be chal-
lenging for a numerical solver. We therefore adapt the time step to the dynamics of damage growth by limiting the
maximum increment of damage on a node at each time iteration by an amount ΔDmax.

4.2.2. Switching From Damaged to Plastic Rheology After Crack Coalescence

D values approaching 1 can be thought of as a state when the rock looses its macroscopic cohesion through crack
coalescence. Our damage rheology is not well suited to represent large strains that may develop beyond this point,
for example, within localized fault zones. Mohr‐Coulomb plasticity, on the other hand, is perfectly relevant to
model the frictional rheology of such fault gouges. Crack coalescence is however a necessary condition to the
formation of macroscopic fault zones, such that damage growth up to 1 has to precede Mohr‐Coulomb plastic
deformation. Our damage model being formulated as an effective Maxwell rheology, we choose to retain this
framework in our implementation of plasticity. We therefore implement a continuous effective viscosity that
smoothly switches from our damage viscosity ηD to the standard plastic viscosity ηp (Duretz et al., 2021) as D
approaches 1.

Because in our micromechanical model crack normals lie in the {σ1, σ3} plane, plastic deformation beyond
coalescence should be confined to that same plane, and can therefore be modeled with a Mohr‐Coulomb yield
criterion ensuring that

sII ≤ σy, (34)

where sII =
̅̅̅̅̅̅̅̅̅̅̅
J2(σ)

√
, with J2(σ) = 1/2 sijsij the second invariant of the deviatoric stress tensor. sII is also the radius

of Mohr's circle in 2‐D incompressible plane strain:

sII =
1
2
(σ3 − σ1). (35)

In Equation 34, the plastic yield stress σy writes:

σy = sinϕm P + cosϕm Cm. (36)

The yield stress is a function of the macroscopic friction angle ϕm = arctan μm and cohesion Cm, as well as of the
in‐plane pressure P:

P = −
1
2
(σ1 + σ3), (37)

which in elastically incompressible 2‐D plane strain is also equal to total pressure. Satisfying the Mohr‐Coulomb
yield criterion within a Maxwell visco‐elastic framework can be done through an effective “plastic viscosity”
approach (e.g., Gerya (2010); Duretz et al. (2021)). As fully damaged areas become incompressible elastic‐plastic
zones, Equation 4 becomes:
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ėij =
ṡij

2G0 f(D)
+

sij
2ηp

. (38)

The plastic viscosity ηp is set to guarantee that stresses satisfy the Mohr‐Coulomb criterion Equation 34 once
“broken” material starts behaving as a plastic fault zone. If sII lies below σy, ηp is effectively infinite (plasticity is
not activate), otherwise ηp reads (see Appendix B):

ηp =
sII

2(ėII −
σy − sII

2G0 f (D)Δt))
, (39)

where ėII =
̅̅̅̅̅̅̅̅̅̅̅
J2 (ε̇)

√
is the second invariant of the strain rate tensor. A smooth transition from damage to plastic

viscosity is implemented using a hyperbolic tangent function S(x) that goes from 0 to 1 as its argument goes from
negative to positive. We set the lowest viscosity to the plastic viscosity and thus write the continuously differ-
entiable effective viscosity:

ηeff = S(ηD − ηp)ηD + (1 − S(ηD − ηp))ηp. (40)

To ensure that the effective viscosity remains plastic when material is fully damaged, we set ηD(D = 1) to the
smallest viscosity that can be resolved by our numerical solver (see Section 4.3).

Including the transition to large‐strain plasticity, the complete set of differential equations that constitute the
SCAM model can be summarized as

ėij =
ṡij

2G0 f(D)
+

sij
2ηeff

. (41)

When subjected to loading, the material first responds elastically with D = Di (its initial damage state ≥D0), until
KI becomes positive and damage starts growing (Figure 3). At that moment damage‐driven alteration of the shear
modulus generates an effective damage viscosity which affects the material behavior. Up to peak stress, the
damage viscosity is greater than the plastic viscosity since it allows stress build‐up, therefore ηeff ∼ ηD. During the
post‐peak stress drop, ηD quickly drops below the plastic viscosity which then becomes the effective viscosity.
This allows the accumulation of large strains under stresses capped by the Mohr‐Coulomb yield stress. Said yield
stress is computed according to Equation 36. In the following, we adopt a macroscopic friction angle that matches
the frictional properties of the shear defects, that is, ϕm = tan− 1μ. We also assume that the fully damaged material
is cohesionless, that is, Cm = 0. It should be noted that a fully damaged material may also return to an elastic
behavior if sII happens to drop below σy. However, its shear modulus will have been permanently reduced by
damage (G = γG0).

4.3. 2‐D Setup: The Numerical Press

We construct a 2‐D plane‐strain analog to the triaxial experimental setup described in Section 3, following the
geometry shown in Figure 9. This allows us to simulate constant strain rate deformation of a Westerly granite
sample, with micromechanical properties determined in Section 3.3 (Table 1), up to large strains and including
localization. The axial symmetry of triaxial tests allows us to only consider half of the sample's cross‐section. Our
geometry thus consists of a half‐sample 10 cm tall and 2 cm wide on the right side of a wider box (10.5 × 6 cm)
that includes confining fluid left of the sample, and a 0.5 mm‐thick “piston” above the sample (Figure 9). Constant
strain rate conditions are enforced by pushing material inward from the top of the domain at a constant velocity.
The piston is here to ensure that new material flowing in during deformation is not of sample type. Outward
velocities are prescribed along the left boundary to preserve a constant volume in the computational domain. The
confining fluid is modeled as a low‐viscosity Newtonian medium, with pressure imposed at the lower left corner
of the domain. Gravity is ignored. The initial sample damage fluctuates spatially between Di = 0.136 and 0.236
with an isotropic Perlin noise structure that represents material heterogeneities. The spatial domain is discretized
using cell sizes of 2 × 0.5 mm within 3 cm of the left wall, and 0.5 × 0.5 mm within 3 cm of the right wall, that is,
the part of the domain containing the sample.

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011229

PETIT ET AL. 19 of 41

 15252027, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011229 by E

cole N
orm

ale Supérieure de Paris, W
iley O

nline L
ibrary on [05/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The convergence of Stokes solvers being very sensitive to viscosity
contrasts, we restrict the maximum variation in viscosity across the
domain to five orders of magnitude. We do so by setting an upper bound
on viscosity ηmax such that its associated Maxwell time ηmax/G is 50
times longer than the time required to elastically reach the peak stress at
the imposed axial strain rate. This large viscosity is initially assigned to
the sample, rendering it effectively elastic at the beginning of the
simulation. A lower bound on viscosity in the numerical domain is ob-
tained through ηmin = 10− 5 × ηmax. This low viscosity is assigned to the
confining fluid, ensuring that it behaves viscously throughout the simu-
lation. Because the damage viscosity ηD drops significantly as damage
accumulates, the effective viscosity of the sample will decrease as it
begins to fail. As ηD approaches ηp, a smooth transition toward plastic
viscosity is performed over a viscosity range |ηD − ηp| ≈ ηmin/50.
Regardless of the viscosity transition, damage keeps increasing until
reaching 1. At this point, it stops evolving and ηD is fixed at ηmin. Once
parts of the sample are fully damaged, they effectively behave as a Mohr‐
Coulomb plastic solid with no cohesion and the same (macroscopic)
friction coefficient as that determined to act on the microscopic shear
defects (0.7).

Finally, the comparisons of simulated constant strain rate experiments with
laboratory data requires the evaluation of macroscopic axial strains and
deviatoric stresses. The axial strains are measured by tracking the displace-
ment of the top boundary of the sample through time, and normalizing it by
the initial size of the sample. Axial deviatoric stresses are obtained by aver-
aging the vertical deviatoric stress sax in a horizontal “stress gauge,” that is, a
0.5 cm thick band at the bottom of the numerical sample (Figure 9), excluding
a cell size length near the left boundary, to avoid any influence from in-
terpolations at the interface between sample and fluid.

4.4. Results

Figure 10 shows results from the numerical press performed under a constant
axial strain rate of 10− 5 s− 1 (Panels a and b) and 10− 15 s− 1 (Panel b), and
confining pressures of 30, 80, and 150MPa. Figure 10c illustrates the patterns
of damage growth and plastic strain for the simulation performed under
150 MPa of confining pressure (black lines in Panels a and b), on the left and
right halves of each snapshot, respectively. The timing of each snapshot is

indicated by the numbers on the stress‐strain curve in Panel b. Up to snapshot 3, damage grows in a distributed
fashion, which smoothes the initial heterogeneities. Damage increases homogeneously up to ∼0.45 during that
stage. Just prior to the peak stress, damage growth starts to localize close to the sample border, forming fast‐
growing damage bands at angles of ∼30° with respect to the compression direction. They develop within a
strain range of less than 0.01% (snapshots 5, 6, 7). Plastic strain is estimated by integrating the second invariant of
the inelastic deviatoric strain rate tensor through time (once Mohr‐Coulomb plasticity has been activated), and
accumulates within fully damaged bands. Plastic shear banding first lags behind damage banding. Once a sample‐
scale damage band has grown, it effectively becomes a plastic shear band. This process begins as the axial stress
drops abruptly (snapshots 6–7). Interestingly, off‐band distributed damage does not evolve significantly during
shear band development.

Figure 10a compares the stress‐strain curves produced in our 2‐D simulations to the experiments ofWawersik and
Brace (1971) described in Section 3.3, performed under the same conditions. To facilitate comparisons between a
2‐D plane strain and an axisymmetric setup, we normalize the differential stress Δσ = σ3 − σ1 by its value at
KI = 0 and D = D0, which is the criterion for the onset of tensile crack growth (even though the crack growth rate
is infinitely slow at KI = O+):

Figure 9. Geometric setup used to simulate experimental deformation in 2D
plane‐strain. Exploiting the axial symmetry of triaxial experiments, we only
model the left‐half of a cross section containing the sample axis. The half‐
sample has a length of 10 cm and a width of 2 cm. It is initially seeded with a
noisy damage field. A small piston one cell tall (with the same mechanical
properties as the sample) is pushed in above the sample. Left of this
assemblage lies the confining fluid kept at a constant pressure. Top and left
borders are associated with Dirichlet boundary conditions on the velocity
component normal to the borders, while the tangential components are left
free. The right and bottom borders are free slip. Axial stress is evaluated by
averaging vertical stresses in a 0.5 cm thick slice at the bottom of the sample.
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Δσc = pc(1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + μ2

√
+ μ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + μ2

√
− μ

) (42)

The above expression is obtained by applying the Mohr‐Coulomb criterion to optimally oriented planes in a
principal stress field. The axial deviatoric strain is then normalized by the deviatoric strain needed to reach Δσc

elastically with the reference shear modulus G0 that corresponds to D = D0:

ecax =
1
2G0

scax. (43)

In Equation 43, scax is the deviatoric axial stress at the onset of microcraking, and is equal to Δσ
c/2 in a 2‐D plane

strain configuration, and to (2/3)Δσc for a triaxial configuration. This non‐dimensionalization of stresses and
strains accounts for the fact that the mean stress, which impacts damage growth and the position of the peak stress,
has a different expression in a triaxial versus plane‐strain geometry. It ensures that experiments conducted with

Figure 10. Results of the SCAMmodel simulations in a 2‐D plane‐strain setup using Westerly granite parameters under constant strain rate. The numerical samples are
initialized with a noisy Di field. (a) Simulated stress‐strain curves at ε̇ax = − 10− 5 s− 1 and confining pressures of 30 (red), 80 (blue) and 150 MPa (black curve), to be
compared with the corresponding experimental data (dots). (b) Simulation performed at pc = 150 MPa described above compared to a simulation at a “tectonic” strain rate
of 10− 15 s− 1. Differential stresses and deviatoric axial strains are normalized by their value when KI = 0 at D = D0 to allow comparison between triaxial experimental data
and 2‐D plane strain deformation (see Text). The red numbers in Panel b correspond to the damage (left) and plastic strain (right) snapshots shown in Panel (c).
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the same parameters in either geometry will show the same non‐dimensional tangent modulus and peak differ-
ential stress.

Our 2‐D simulations are in good agreement with the experimental data from Wawersik and Brace (1971)
(Figure 10a) at all three confining pressures. This shows that the parameters determined by fitting 0‐D (point‐
wise) simulations to triaxial data produce sensible behavior when implemented in a 2‐D “spatialized” geometry.
Figure 10b shows our reference simulation at ε̇ax = 10− 5 s− 1 and pc = 150 MPa in black, compared to a simu-
lation performed at a “tectonic” strain rate of 10− 15 s− 1. The peak stress of the slower simulation is significantly
lower than that of the reference simulation, with a loss of strength during macroscopic failure that is approxi-
mately divided by 2.

5. Discussion: A Brittle Constitutive Law Rooted in Micromechanics
5.1. Features of Brittle Deformation Captured by the SCAM Model

As illustrated in Sections 3 and 4, the SCAM model captures a range of features typical of brittle deformation
revealed by laboratory experiments (Figure 1). These include: (a) the co‐existence of several measures of rock
strength, such as the intact strength and the residual (i.e., “pre‐cut”) frictional strength, all of which depend on
confining pressure (e.g., Byerlee (1978)); (b) the permanent weakening of elastic properties occurring prior to the
peak stress; (c) the strain rate‐dependence of brittle strength, which enables (d) the occurrence of brittle creep
under constant imposed stress. Here we discuss the parameters of the SCAM framework that control these various
macroscopic properties.

5.1.1. Microscopic Versus Macroscopic Strength, Elastic Weakening, and Strain Rate Dependence

The SCAM framework involves several thresholds of inelastic deformation. The first is when slip on pre‐existing,
small‐scale shear defects becomes able to wedge open tensile wing cracks. It corresponds to KI= 0 (Figures 3 and
6), and is closely related to the Mohr‐Coulomb criterion, in the sense that opening wing cracks requires a greater
differential stress under greater confining pressure (Costin, 1985). The second threshold is when cracks have
sufficiently lengthened to transition from a non‐interacting to an interacting regime. This aspect will be further
detailed in Section 5.1.2. The third threshold is when D reaches its maximum value ∼1, at which point cracks
coalesce into a macroscopic fault, which is modeled as a shear band with a macroscopic “bulk” friction equal to
that acting on the microscopic shear defects, and no cohesion. In practice, the second and third thresholds occur in
very close succession because the damage growth rate accelerates catastrophically as soon as cracks enter the
interacting regime, especially under constant axial strain rate. Some amount of deformation is still required for the
shear band to reach its steady‐state stress after the third threshold (e.g., after snapshot 7 in Figure 10). After that,
the macroscopically broken rock has a “residual” strength that is entirely set by its friction coefficient.

The material's elastic properties are altered by damage, causing pre‐peak softening of the rock and permanent
weakening of the shear modulus. The ratio of the fully damaged (VDs = Vs(D = 1)) over the reference
(V0

s = Vs (D = D0)) shear‐wave velocity can be related to the shear modulus weakening ratio γ, assuming small
density variations, as: VDs /V

0
s ≈

̅̅̅
γ

√
. Using γ values inverted from Westerly granite and Darley Dale sandstone

(Table 1) we obtain shear‐wave velocity reductions of 34% and 47%, consistent with values measured in the
damage zone of natural faults, which range from 20% to 50% (e.g., Karabulut & Bouchon, 2007; C. Wu
et al., 2009), as well as laboratory tomography on granite showing a reduction in P‐wave velocity of around 50%
(Aben et al., 2019).

The SCAM model accounts for the temporal dependence of brittle deformation via a sub‐critical crack growth
law, which allows cracks to grow below the fracture toughness of the material (Costin, 1983, 1985). This
assumption introduces a characteristic crack growth time a⁄ l̇0 that is modulated by the stress intensity factor (KI)
and the Charles law exponent n (Equation 7). These parameters themselves depend on ambient conditions such as
moisture levels (Atkinson, 1979; Eppes & Keanini, 2017) or temperature (Heap et al., 2009). To first order, the
strain rate dependence of the SCAM flow law reflects the ratio of the characteristic duration of the deformation of
interest to the characteristic crack growth time. A very slow (“tectonic”) experiment will for example, leave ample
time for cracks to grow, weaken the material and cause macroscopic failure, preventing the build‐up of very large
stresses (Figure 10b). Conversely, experiments conducted under laboratory strain rates will reveal greater peak
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stress (e.g., Figure 7 of Costin (1983)). Interestingly, the strain rate dependence of brittle deformation implies that
wide portions of the upper crust should behave in an effectively viscous fashion (with viscosity ηD) when un-
dergoing progressive failure (i.e., prior to localization). This behavior must however be inherently transient
because the amount of damage a rock can withstand before macroscopic failure is necessarily finite. A compe-
tition between crack growth and crack healing processes may prolong this distributed viscous deformation phase,
but is beyond the scope of the present study.

5.1.2. Retroactions Between Damage and Damage Growth Rate

The transition between a regime of lengthening but non‐interacting wing cracks, and one of catastrophically
interacting long cracks (Figure 3) is at the heart of many macroscopic behaviors manifested by the SCAMmodel.
As detailed in Section 2.3, the stress intensity factor (KI) at the tip of wing cracks is constructed as the sum of three
terms (Equation 9). The first two terms lead to a decrease in KI as wing cracks lengthen, that is, as D increases.
This corresponds to the isolated crack regime. The third term has the opposite effect: increasing D increases KI,
and thus the damage growth rate through Charles' law (Equation 7). This last term becomes dominant at larger
values of D and describes the interacting crack regime. The transition between successive regimes is closely
related to the convexity of KI as a function of D, and its dependence on the evolving differential stress, as
illustrated in Figures 3e–3g.

In constant strain rate experiments, damage starts to grow when KI becomes positive. This is made possible by
elastic loading raising the differential stress at constant initial damage state Di (vertical trajectories in Figure 6).
When an experiment is started with a low Di, damage growth first occurs in the non‐interacting regime, where
∂KI/∂D< 0 (e.g., purple trajectory in Figure 6). Damage growth rates are initially very slow, becauseKI/KIC raised
to a large exponent (n in Equation 7) gives an extremely slow crack growth speed when KI barely exceeds 0. The
damage viscosity is initially very high, and the material continues to behave elastically. As damage increases,
both the shear modulus and the damage viscosity decrease because of the decreasing f(D) and f 2(D) terms in
Equations 2 and 5. This leads to pre‐peak softening of the stress‐strain curve. The crack growth rate—strongly
controlled by KI—is the sole mechanism that can lead to a stress rate decrease. It thus competes with the
elastic stress rate increase imparted by far‐field loading, controlling the stress level at which material softening
occurs. In Figure 6, this manifests as trajectories aligning on a contour of constantKI, which is greater for a greater
imposed strain rate.

Then, the system transitions to the interacting regime where ∂KI/∂D > 0. The regime transition as illustrated in
Figure 6a connects all the differential stress maxima spanning all values of KI between 0 and KIC. We writeDc the
“critical” damage value that marks this regime transition.Dc decreases with increasing differential stress (vertical
black dashed curve in Figure 6a), and verifies:

∂KI(D)
∂D

⃒
⃒
⃒
⃒
D=Dc(Δσ)

= 0. (44)

Because prior to crossing the regime transition stress trajectories align close to an iso‐KI contour (which depends
on strain rate), the value ofDc can be thought of as a decreasing function of strain rate.Dc is bounded by the value
of damage that maximizes the differential stress at KI = KIC (here ∼0.42), and the value that maximizes stress at
KI = 0 (here ∼0.5). These end‐member cases respectively represent a very fast strain rate experiment, in which
cracks would grow critically (at elastic wave speeds), and an extremely long and slow experiment in which cracks
can grow sub‐critically at KI ∼ 0. The upper and lower bound on Dc happen to be close to each other, yielding a
narrow range of critical damage values (∼0.42 − 0.5 in Figure 6a). When damage exceeds Dc, the system enters
the interacting regime, in which an increase in D increases Ḋ at constant stress, thereby accelerating the reduction
of the shear modulus (Equation 2) and damage viscosity ηD (Equation 5). The material can no longer accumulate
stress, and stresses decrease below their peak value. At this point the stress trajectories in Figure 6a begin to
deviate from an iso‐KI. For our best‐fitting set of parameters, KI increases drastically as D exceeds Dc, which
manifests as a sharp stress drop as D approches 1 (Figure 6).

An interesting consequence of the fact that pre‐peak stress trajectories tend to first align on the same iso‐KI
contour regardless of initial damage state is that they all experience a regime transition at the same Dc and at the
same peak differential stress (for a given imposed strain rate). In Figure 6b, this manifests as peak stress
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magnitudes that are largely insensitive to any value of initial damage lower than Dc. This feature of the model is
consistent with experimental results fromWang et al. (2013), who found similar peak strength in samples initially
subjected to varying degrees of thermal cracking, which we interpret to represent varying Di (i.e., varying wing
crack lengths at fixed shear defect size and density). On the other hand, if an experiment is started with a damage
state that exceeds Dc, the system will entirely bypass the non‐interacting regime and will display very little post‐
peak softening (e.g., light orange trajectories in Figure 6a). In this case, the degree of initial damage affects the
position of the peak stress.

We note that in a few instances, large values of damage do not lead to a catastrophic stress drop. This occurs for
example, for low values of γ (Figure 5h), or a high value ofD0 (Figure 5f), where stresses slowly decay over a few
percent of axial strain. The only way to prevent a catastrophic stress decrease is forKI to decrease asD approaches
1. In Figure 6a, this would manifest as a steeply decreasing stress trajectory that crosses iso‐KI contours for
D>Dc. The slope of a stress trajectory in (D, Δσ) space is equal to ∂Δσ

∂D =
3
2
ṡax
Ḋ . Post peak, the deviatoric axial stress

rate (Equation 27) is increasingly dominated by the viscous term, as Ḋ accelerates. Neglecting the elastic term in
Equation 27 yields:

∂Δσ
∂D

= −
3
2
| f ′(D)|
f(D)

sax. (45)

Using the equations for f′(D) Equation 24 and f(D) Equation 23, it can be seen that a low value of γ leads to a very
steep ∂Δσ

∂D . This likely explains the gentler stress drops shown in Figure 5h. We suspect that a large D0 leads to a
similar effect on ∂Δσ

∂D and accounts for the progressive stress drop in Figure 5f. It is noteworthy that our inversion
for Westerly granite predicts a sharp stress drop, even though it relies on data that does not span the interacting
crack regime (D > Dc, i.e., only pre‐peak data is used in Figure 7a, and minimum creep strain rates in Figure 7b).

Our 2‐D simulations help us assess how the change of crack growth regime affects the spatial pattern of damage as
it transitions from distributed to localized (Figure 10c). In particular, the initial phase of distributed damage
growth appears to coincide with the non‐interacting regime. Damage increases uniformly, smoothing any pre‐
existing initial damage heterogeneity, and reaches a near constant value (∼0.45) in the bulk rock when dam-
age bands begin forming. We interpret this uniform value as related toDc. Specifically, the distributed build‐up of
damage (snapshots 1, 2, and 3 in Figure 10c) proceeds in the non‐interacting regime, in which damage is uni-
formly capped at ∼Dc. Stress concentrations due to numerical noise or prescribed heterogeneities can however
trigger the switch to the interacting regime in some portions of the sample (along the sides in snapshot 5 of
Figure 10), leading to the localization of damage bands. Interestingly, the stable, uniform growth of damage when
D<Dc is probably the reason for the good agreement between our 2‐D simulations and our 0‐Dmodels, which are
by definition “homogeneous” (Figure 10a). The post‐peak behavior predicted by the SCAM model is however
significantly different in 2‐D versus 0‐D simulations. This is because it is driven by retro‐actions between damage
localization within a band and the stress field of the surrounding rock that cannot be captured in a pointwise
model.

The distinct regimes of crack growth are also responsible for the two stages of creep observed in our constant
stress simulations (Figures 4c and 4d, see Section 3), as well as in brittle creep experiments (Figure 1). In the
representation of Figure 6a, a constant stress experiment simply maps as a horizontal line starting from any point
of the constant strain rate trajectories prior to the peak stress. In order to break the material under constant stress,
the KI trajectory has to remain in the domain KI > 0 up toD= 1. There thus exists a threshold in differential stress
Δσbc that must be met for the sample to fail macroscopically. Otherwise, the accumulation of damage under
constant stress will decrease KI all the way to negative values, inhibiting the growth of further damage. This
threshold corresponds to the largest differential stress able to produce a stress concentration factor equal to zero. It
is represented in Figure 6a by the summit of the dashed contour of KI = 0, and corresponds to a value of around
720MPa for a confining pressure of 150MPa with our invertedWesterly granite parameters. Overall, Δσbc can be
thought of as a theoretical minimum strength of the rock, which is a function of confining pressure only
(continuous blue line in Figure 11). If a brittle creep test is carried out under a constant differential stress above
Δσbc, the damage state will eventually reachDc in a finite amount of time, then transition to the interacting regime
that allows failure. In this case, the creep test will begin by a decrease in KI that manifests as a decrease in the
macroscopic strain rate referred to as decelerating or primary creep (Figure 4c). We note that the minimum brittle
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creep strain rate should be captured accurately in 0‐D simulations, since it corresponds to the strain rate atD∼Dc,
the extreme value of damage at which damage can grow in a distributed fashion. Finally, as the system switches to
the interacting regime, KI and the macroscopic strain rate both increase, first slowly then catastrophically, ac-
counting for tertiary creep and failure of the sample. The idea that the transition to an accelerating regime of crack
interaction up to failure corresponds to crossing a threshold in damage Dc explains the observations of Baud and
Meredith (1997), who noted that the transition to tertiary brittle creep coincided with a critical extent of
microcracking.

5.2. Revisiting the Byerlee Limit

Figure 11 shows failure envelopes for Westerly granite as determined with intact samples (peak stresses at
laboratory strain rate, e.g., Byerlee (1967); Wawersik and Brace (1971), black circles and squares), as well as pre‐
cut samples (the “maximum friction” point from Byerlee (1978), black crosses). Both are on the order of hundreds
ofMPa, and increase linearly with confining pressures in the 20–200MPa range. The intact envelope has a steeper
slope and lies ∼400− 500 MPa above the pre‐cut strength. Both our 0‐D and 2‐D models reproduce the intact
envelope under the same laboratory strain rate of 10− 5 s− 1 (red line). The simulated envelopes are linear in
confining pressure and display an effective cohesion of 94MPa (inferred by linear regression of the red curve). On
the other hand, the standard Mohr‐Coulomb plasticity framework, with no cohesion and a friction coefficient of
0.7 provides a good fit to the strength of pre‐cut samples (dashed blue line).

If one was to model the transition from intact to broken through strain‐softened plasticity (Figure 2a), the friction
should drop from ∼0.96 to ∼0.7, and the cohesion from 94 to 0 MPa. This should occur over a very small amount
of plastic strain ΔepII to produce a sharp stress drop. It should be noted that a high “intact” friction coefficient, such
as ∼0.96, would produce unrealistic shear band orientations (e.g., Coulomb angles of ∼23° between the band and
σ1). Within this model, friction is a property of the bulk material that must evolve as deformation accrues. By
contrast, within the SCAM framework, friction is an intrinsic property of planar discontinuities in the rock that
manifests at two scales. Friction first conditions slip on small‐scale discontinuities (shear defects) whose inter-
action leads to the formation of larger‐scale frictional interfaces (macroscopic shear bands). Those two frictional
scales are characterized by the same friction coefficient and no cohesion. Until cracks coalesce, frictional sliding
only occurs at the scale of shear defects, and its effect on the material is resolved through its induced stress
concentration leading to tensile cracking. After coalescence, the broken material acts as a new frictional zone that
generates its own stress perturbations on the surrounding “unbroken” material. It leads, in 2‐D setups, to a shear
band growing along a direction in which macroscopic stress concentrations amplify damage growth, yielding a

Figure 11. Brittle yield envelopes of the SCAM model calibrated against Westerly granite data (lines), compared to the
experimentally determined strength of intact samples (Byerlee, 1967; Wawersik & Brace, 1971) (squares and circles) and
pre‐cut samples (Byerlee, 1978) (crosses). Red and orange plain lines correspond to peak strengths at ε̇ax = − 10− 5 s− 1 and
− 10− 15 s− 1, respectively. The plain blue line corresponds to the minimum failure strength near the limit of infinitely slow strain
rates. Modeled failure envelopes exhibit a constant effective friction coefficient of ∼0.96 and strain rate‐dependent cohesion.
The dashed blue line represents the Mohr‐Coulomb yield envelope associated with no cohesion and a friction coefficient
μ = 0.7, which corresponds to the friction used on shear defects and on macroscopic shear bands in the SCAM simulations.
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large differential stress drop of hundreds of MPas, which takes place over a very small range of axial strain
(Figures 10a and 10b).

It is remarkable that our best fitting coefficient of friction forWesterly granite data (0.7)—which is constrained by
data up to the peak strength—also fits the strength of pre‐cut samples (dashed blue line in Figure 11). This
supports our approach of switching from a damage model to cohesionless Mohr‐Coulomb plasticity while
retaining a constant coefficient of friction. This approach has the advantage of producing consistent shear band
angles of around 30° to the most compressive stress (Figure 10c).

The SCAM framework also allows us to investigate failure at much slower deformation rates because brittle creep
data contributes strong constraints on the rate dependence of the pre‐peak behavior (Figures 5a and 10b), which is
rooted in sub‐critical crack growth. As an example, the 0‐D failure envelope at a tectonic strain rate of 10− 15 s− 1 is
shown by the orange line in Figure 11, and represents a constant strength contrast of ∼300 MPa relative to
laboratory strain rates (red line). Compared to the laboratory strain rate simulations, the tectonic strain rate en-
velope amounts to lower effective cohesion (∼15 MPa) and a similar effective friction. To investigate the model's
behavior in the limit of extremely slow strain rates, we construct an estimate of minimum intact strength using the
0‐D SCAM model (solid blue line). We calculate it as the differential stress value at D = Dc that would drive a
damage growth rate arbitrarily set to 0.1 per billion year. This yields a line with an intercept that is still signif-
icantly greater than zero (C ∼ 6.4 MPa). Overall, the effective cohesion of the brittle failure envelope can be
thought of as a strain rate dependent term that does not entirely vanish in the limit of long loading times (e.g.,
planetary lifetime). The effective friction coefficient however remains invariant with respect to strain rate.

In summary, while standard strain‐softened plasticity treats the brittle limit as an envelope that can move with
accumulated plastic strain, the SCAM model treats it as a tenuous failure domain (red area in Figure 11) whose
upper boundary depends on strain rate. Specifically, the maximum stress that must be attained for the rock to fail
macroscopically can vary by ∼400 MPa between tectonic and laboratory conditions (10 orders of magnitude in
strain rate). This effect is, by definition, not captured by rate‐independent elasto‐plastic models. On the other
hand, the onset of damage growth is not sufficient to define the lower boundary of the failure domain. In order to
activate inelastic strain, stresses must exceed a threshold that corresponds to KI(D0) = 0, that is, the activation of
tensile cracking through frictional sliding on small defects. Because frictional sliding is indexed on meeting a
cohesionless Mohr‐Coulomb criterion with a friction of 0.7, this threshold is closely related to the dashed blue line
in Figure 11. Exceeding this threshold however does not guarantee macroscopic failure. If differential stress
remains between the dashed and solid blue lines (orange area in Figure 11), damage can be generated in the
isolated crack regime, but will never reach Dc in a reasonable amount of time. The rock will thus never fail.

5.3. On the Meaning of the SCAM Micromechanical Parameters

Modeling progressive brittle failure with the SCAMmodel involves a number of parameters that lend themselves
to micro‐mechanical interpretations. However, the numerous simplifications made by the wing crack model
(Ashby & Sammis, 1990), and the use of empirical rules for shear modulus weakening and sub‐critical crack
growth warrant some caution in doing so. Here we discuss the extent to which parameter values determined by
calibrating SCAM against laboratory data provides meaningful information on a rock's microstructure.

Previous studies applying the wing crack micromechanical framework (Ashby & Sammis, 1990), such as Bhat
et al. (2011) and Brantut et al. (2012), made the assumption that wing crack initiation happens at KI = KIC. In that
case, the analytical expression for KI (Equation 3 in Ashby and Hallam (1986)) can be used to constrain μ, a and
KIC given prior knowledge of a or KIC, and of the axial stress of a sample at the onset of microcracking σ1c, for
various confining pressures. The onset of microcracking is typically indexed on the onset of dilatancy or acoustic
emissions (Ashby & Sammis, 1990; Brace et al., 1966) (Figure 1). Applying this method to a linear fit of the Brace
et al. (1966) data (σ1c = 3.6σ3 + 100 MPa) yields μ = 0.69, a = 0.58 mm, assuming the fracture toughness
KIC= 1.29 MPa⋅m1/2 determined by our joint inversions in Section 3.3. This coefficient of friction is very close to
our estimate, but the crack radius is two orders of magnitude larger than our value of 6.66 μm, closer to the rock's
grain size: the length scale considered susceptible to drive wing‐cracking. For Darley Dale sandstone, X. Wu
et al. (2000) used the same methodology and obtained μ = 0.69 as well as KIC ≤ 0.1 MPa⋅m1/2, assuming
a = 0.11 mm. These values differ from our inversion results of μ = 0.51, KIC = 1.4 MPa ⋅ m1/2 and a = 0.65 mm,
especially for KIC. These differences may be attributed to our use of a sub‐critical crack growth law as opposed to
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KI = KIC. We also note that because KI scales as
̅̅̅
a

√
, our inversions do a better job at constraining a ratio of

KIC/
̅̅̅
a

√
rather than KI or a individually. Some trade‐off is therefore expected between these values. It is note-

worthy that the data against which the SCAM model parameters were inverted are much more complete than the
data used in the studies discussed above. Specifically, our data includes stress‐strain curves up to the peak stress
(as opposed to a single point: the onset of dilatancy). We however acknowledge that at the peak stress, the
discrepancy between the wing‐crack model and the real rock microstructure may become large, introducing some
bias in our parameter estimate.

Inspecting Figure 12 of Ashby and Sammis (1990) also reveals that wing‐crack based damage mechanics can fit
the very first portion of the experimental failure envelope of Westerly granite (i.e., at confining pressures between
0 and a few 100 s of MPas), but fail to predict peak stresses at greater pressures due to the non‐linear dependence
of intact rock strength with respect to confining pressure (visible in Figure 11: squares and circles). Ashby and
Sammis (1990) suggested that the curvature of the experimental failure envelope of Westerly granite might result
from low temperature ductile flow occurring within weak granite minerals. This hypothesis was tested by Bhat
et al. (2011) by modeling a bi‐mineralic quartz‐feldspar assemblage with a dislocation glide flow law. It was
found consistent with the experimental failure envelope at greater confining pressures. Broadly speaking,
inverting experimental data over a large range of pressures using a model based only on fracture growth likely
neglects processes that can significantly affect the mechanical response, such as intra‐grain dislocation glide. This
leads to inverted fracture parameters whose value can deviate from their expected range, since they are forced to
explain behaviors caused by other deformation mechanisms. The exact value of the parameters should therefore
not be over‐interpreted. The value of the SCAM model lies more in its ability to extrapolate micromechanics‐
based rock behavior to larger scales, rather than in its informative power about rocks' intrinsic parameters.

6. Toward an Application to Tectonic Problems
In Section 3, we introduced and calibrated the 0‐D SCAM micro‐mechanical model against experimental data to
capture the mechanical behaviors of Westerly granite and Darley Dale sandstone in the brittle regime. Section 4
was dedicated to the implementation of this model in a 2‐D plane strain tectonic solver to investigate the behavior
of the calibrated model when strain localization is made possible. We validated the model by showing that it still
accurately predicts experimental data in 2‐D. Next, we turn to the end‐goal of the SCAM framework by show-
casing initial attempts at using it to model tectonic deformation.

6.1. Crustal‐Scale Numerical Setup

As a first step toward using the SCAM model for long‐term tectonic problems, we focus on the initial stages of
faulting of a 10‐km thick brittle plate overlying a 40‐km wide and 10‐km thick low‐viscosity Newtonian medium
subjected to gravity (9.8 m s− 2) and to a constant horizontal extension rate (Figure 12). An additional upper layer
of low‐viscosity “sticky air” ensures the brittle plate has a traction‐free top boundary (Gerya, 2010). The plate is
notched at the center of its lower edge by a 1 km long and 0.75 km thick protrusion of the underlying viscous layer
to promote strain localization in the middle of the domain. The latter is discretized using a cell size of 100 × 250 m
within 8 km of the top and bottomwalls, and an greater resolution, with a cell size of 100× 100 m in the remainder
of the domain containing the brittle plate. The plate and the fluid layer underneath it are assigned a density of
2,700 kg m− 3, while the uppermost fluid layer's density is 0.01 kg m− 3, to ensure negligible pressures at the top of
the plate. The left and right sides are prescribed a fixed outward horizontal velocity amounting to a constant
extension rate of 10 cm/yr (strain rate of ∼10− 13 s− 1). The velocities of the top and bottom boundaries are set to
satisfy volume conservation within the domain and to preserve the height of the brittle plate's top surface. All
boundaries are free slip. As in simulated experiments, the maximum viscosity ηmax allowed in the domain is
chosen such that its Maxwell time (η/G) is 50 times longer than the longest simulation time. This guarantees that
the brittle plate—whose viscosity is set to ηmax—retains an elastic response throughout the entire simulation. The
exact value of ηmax will therefore not matter as long as it is large enough. To avoid large, computationally
challenging viscosity contrasts within the model domain, the lower bound on viscosity is set to six orders of
magnitude below the brittle plate's viscosity, and is assigned to the air and viscous lower layer. This guarantees
that they behave as low‐viscosity fluids during each simulation. This setup resembles that used by Lavier
et al. (2000) and Olive et al. (2016) to investigate the effect of brittle strain softening and elasticity on extensional
tectonic styles, within the standard elasto‐plastic framework. One notable difference is that here the base of the
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brittle plate is a lithological boundary that gets advected as the plate thins (unlike, e.g., a thermal boundary that
may experience diffusion).

We run two suites of simulations, one with the SCAM parameterization of brittle failure in Westerly granite
(Table 1), and one with the standard strain weakened elasto‐plastic (EP) approach, similar to the runs of Olive
et al. (2016). Tectonic simulations using the SCAM model, like those presented in Section 4, include a switch to
standard elasto‐plasticity in fully damaged areas. Specifically, the damage viscosity is set to smoothly transition
to a plastic viscosity as ηD approaches ηp over a viscosity range of |ηD − ηp| equal to ηmin/50. The locally broken
material (i.e.,D= 1) behaves as a Mohr‐Coulomb plastic solid, with no cohesion and the same friction coefficient
as that of the shear defects.

Standard elasto‐plastic simulations, on the other hand, are parameterized to match the intact strength of the SCAM
model calibrated on Westerly granite (Figure 11) under a laboratory strain rate (10− 5 s− 1, red curve) and under a
tectonic strain rate (10− 15 s− 1, orange curve). These envelopes correspond to a similar friction coefficient μ= 0.96
and cohesions C of 94 and 15 MPa, respectively (see Section 5.2). For concision, these simulations will be
referred to as EP‐lab and EP‐tecto. In both cases the frictional parameters are linearly weakened over a critical
amount of accumulated plastic strain ΔεpII = 0.1 down to μ = 0.7 and C = 0 MPa, the frictional properties of the
shear defects.

6.2. Development of Fault Networks

We first compare the faulting patterns produced by an elasto‐plastic rheology (EP‐tecto) versus the SCAM
rheology during early rifting (up to ∼180 m of total extension). Figure 13 shows successive snapshots of
accumulated plastic strain epII (a1 to a3), second invariant of strain rate ėII (b1 to b3), and viscosity (c1 to c3), as
extension of the EP‐tecto plate progresses. Plastic yielding starts from the surface of the plate, where pressure, and
therefore yield stress, is lowest. It progressively deepens as the yield criterion is met deeper and deeper due to
elastic loading of the plate (Panels a1 and a2). Plastic yielding initially mostly develops in a distributed fashion

Figure 12. Numerical setup used to simulate the stretching of a rigid crustal unit in 2‐D plane strain. The domain is 40 km long
and 30 km thick and contains two 10‐km thick low‐viscosity layers at the top and bottom of a brittle plate of the same
thickness. The brittle plate is notched by a 1 × 0.75 km protrusion of the underlying viscous fluid. Constant outward
velocities at the left and right boundaries apply a constant stretching rate on the brittle plate, while the top and bottom
boundaries are also assigned constant inward velocities to satisfy volume conservation. All boundaries are free of shear
tractions.
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(second row), with plastic strain localization occurring once almost half of the plate has reached yielding. The
zone of distributed yielding closer to the viscous protrusion, then transforms into an area densely populated with
shear bands, of dip angle near 55°, each accommodating a very small fraction of the total extension rate (second
row). Stress concentrations around the basal notch eventually lead to the formation of a pair of shear bands
symmetrically cutting across the brittle plate, following the path of pre‐existing superficial shear bands. Plastic
strain accordingly localizes along two major antithetic shear bands (third row). The formation of these faults relax
the elastic stresses within the plate and inhibit plastic yielding in the remainder of the plate (Panels b3 and c3).

The same setup using the SCAM flow law (Figures 13d–13f) shows a different story. Damage first increases
uniformly within ∼1 km below the surface of the brittle plate (Panel d1, blue arrow 1). After shallow damage
exceeds values of 0.4–0.5 (∼Dc), damage localization proceeds through the downward propagation of damage
bands which promptly turn into plastic shear bands (first row). This occurs when the isolated crack regime
transitions to the interacting cracks regime (see Section 5.1.2). The thickness of the shallow distributed damage
zone (∼1 km) is set by a competition between damage growth being activated deeper and deeper as KI turns
positive with loading, and the unstable growth of damage bands (which soon turns plastic) once D exceeds Dc.
Damage banding unloads the surrounding material by releasing elastic stress through inelastic flow. The growth
of these shear bands is self‐promoted as the result of stress concentrations at their lower tips, which locally
accelerate crack growth and coalescence. This dynamic is clearly visible on the viscosity snapshots, for example,
Panel F1, where each fault has its own associated lobe of low viscosity (blue arrow 2), driven by damage growth.
These lobes are accompanied by a front of low (damage) viscosity which deepens through time (Panel f2, blue
arrow 3). This reflects the fact that with continued far‐field loading, the depth at which KI turns positive increases.

Growing faults tend to shield each other and alter the stress field in their vicinity, which leads to the development
of complex networks shaped in a tree‐like fashion (e.g., the imbricated fault structure that forms on the left side of

Figure 13. Snapshots of an early rifting simulation (10 cm/yr) in a 10‐km thick brittle plate using the elasto‐plastic EP‐tecto parameterization (a–c) versus the SCAM
model (d–f). Each row corresponds to a specific time (i.e., amount of finite extension) in the simulation. The first column shows the accumulated plastic strain for EP‐
tecto, and the damage field for the SCAM model. The second column shows the second invariant of the deviatoric strain rate tensor, and the third column displays the
viscosity field within the brittle plate.
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the plate in Panels d3–f3). After about 50 m of stretching, the concentration of tensile stresses around the viscous
protrusion promotes the growth of a major fault, which first grows upward with a downward convex shape
(Figures 13d2–13f2), connecting with one of the deepening faults (Panel d2, blue arrow 4), before a more
favorably oriented branch eventually grows and bypasses the less favorably oriented pre‐existing segment of the
fault. This master‐fault's dip angle increases from ∼60° at the bottom of the plate, to almost 90° close to the
surface. As extension progresses, the uppermost part of the fault (Panel d3, blue arrow 5) rotates toward gentler
dips, which progressively widens the thickness of the damage band near the surface, as shown in the last row of
snapshots (blue arrow 5 in Panel D3). The dip angle of secondary faults is variable and ranges from 60° to 75°
with segments locally close to vertical, reflecting the spatially variable distribution of stresses induced by the
complex array of faults.

The fault angles with respect to σ1 (here vertical) are overall smaller in the SCAM tectonic simulations (15–30°)
than what was observed in our 2‐D simulations of triaxial experiments (∼30°, see Section 4.4). These faults are
closer to the Coulomb angle (23°) associated with the effective intact strength coefficient of internal friction of
Westerly Granite (μ = 0.96), than with the coefficient of friction at the micro‐crack scale (μ = 0.7). Some de-
viation from the theoretical value likely stems from heterogeneities in the stress field that develop through stress
concentrations and complex interactions between growing shear bands. In simulation EP‐tecto, the master fault
orientations of around 33°, correspond to the Arthur angle θA = 45° − (ϕ + ψ)/4 (Arthur & Dunstan, 1977)
associated with the prescribed initial internal friction coefficient of 0.96 without any plastic dilatancy (ψ = 0),
which is a typical shear band angle found (along with the Coulomb angle) in numerical elasto‐plastic simulations
(Kaus, 2010).

Contrary to the EP‐tecto simulation, the initiation of a fault cutting across the plate does not inhibit the activity on
secondary faults, which continue to accommodate a significant amount of extension in the SCAM run (Figure 13,
Panel b3 vs. e3). We note that EP simulations can produce such behavior, but it generally requires a small strength
contrast between the fault zone and surrounding lithosphere (Lavier et al., 2000). To further characterize the
partitioning of strain in the SCAM runs, Figure 14a represents the distribution of slip rates on the population of
faults, sampled at different depths in the plate after∼180 m of extension (Figures 13a3–13c3 and 13d3–13f3). We
identify normal faults by locating positive peaks along a profile of horizontal strain rate ėxx along a line of constant
depth. To mitigate resolution issues when two neighboring peaks are found, we only retain the larger of any two
peaks distant by less than four cell sizes. We focus on peaks where strain rate exceeds 4 ⋅ 10− 13 s− 1, which

Figure 14. (a) Distribution of slip rates on fault populations sampled along different depths in a SCAM‐based simulation (gray lines) versus simulation EP‐tecto (yellow‐
to‐red lines). Faults are measured after 180 m of total stretching, corresponding to Panels a3–c3 and d3–f3 of Figure 13. (b) Differential stress averaged across a 1 km‐
wide vertical band along the left side of the extended brittle plate, plotted as a function of total extensional strain. The black curve corresponds to the SCAM simulation,
whereas the red and orange curves are associated to elasto‐plastic simulations parameterized with short (EP‐lab) and long‐term (EP‐tecto) intact strengths. Stars mark
the timing of the snapshots displayed in Figure 13.
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amounts to five times the background horizontal strain rate imposed by boundary conditions. The slip rate on each
fault is then calculated assuming that the thickness of the faults is one cell length (100 m in these simulations).

Lastly, we find that the slip rates of the incipient fault population produced by the SCAM model follows a power
law distribution of exponent close to 1 (gray lines in Figure 14a). This distribution likely originates in the tree‐
like, near‐fractal nature of the fault network that emerges within the brittle plate. Simulation EP‐tecto, on the other
hand, rapidly produces two dominant faults with very similar slip rates, and virtually no smaller fault with slower
slip rates. The distribution of fault slip rates produced by the SCAM run evokes the power law distributions
exhibited by natural populations of normal faults. For example, the lengths and offsets of Basin and Range normal
faults have been shown to follow a power law distribution with exponent close to unity (e.g., Marrett et al., 1999;
Scholz et al., 1993). Natural rift systems are also known to partition extension onto multiple faults of varying
sizes, such that all minor intrabasinal faults typically accommodate as much strain as a single half‐graben border
fault (Morley, 1996). Standard elasto‐plastic models tend to localize deformation onto a small number of
lithosphere‐scale faults (Olive et al., 2016), but can also produce a wide range of fault sizes in the early stages of
rifting, provided sufficient resolution is used (Naliboff et al., 2020; Pan et al., 2022). In this case, the distribution
of fault sizes and offsets appears to depend on the amount and rate of strain softening, as well as on the overall
extension rate (Naliboff et al., 2020). The SCAM model provides a novel framework to further explore this
dependence without resorting to ad‐hoc softening rules.

6.3. Strength of the Brittle Lithosphere

Figure 14b shows the differential stress averaged along the left side of the model domain throughout our early
rifting simulations. All show an initial elastic increase, followed by a peak and a softening phase. The average
peak stress reached in the SCAM simulation is ∼100 MPa. The softening phase is much less acute than in our
simulations of triaxial experiments (Figure 10). This possibly reflects the progressive nature of the development
of the fault network (Figure 13). The peak stress roughly coincides with the moment when a fault first connects
the top to the bottom of the plate, shortly after snapshots D2–F2 in Figure 13. The steady, long‐term stress
(∼90MPa in Figure 14b) is attained when one of the throughcutting faults has clearly developed into the dominant
one accommodating the largest extension rate (Figure 13e3).

On the other hand, simulation EP‐lab illustrates what happens when one models rifting with strain‐softened
elasto‐plasticity calibrated on experiments conducted at laboratory strain rates (Figure 11). The plate reaches a
significantly greater peak stress of ∼160 MPa (Figure 14b), and experiences more drastic weakening down to its
long‐term frictional strength, which is inferred from pre‐cut samples (μ = 0.7 and no cohesion). By contrast,
simulation EP‐tecto, which is calibrated to reproduce the intact strength of samples predicted by the SCAMmodel
at tectonic strain rates (yellow line in Figure 11), unsurprisingly produces a stress‐strain curve similar to the
SCAM simulation (Figure 14b).

Through its built‐in dependence on strain rate, the SCAM rheology can extrapolate crustal strength under tectonic
conditions, even though it is entirely calibrated on laboratory data. It thus constitutes a promising alternative to the
standard approach in tectonic modeling, which consists of using “Byerlee's law,” that is, assigning the pre‐cut
sample strength to intact brittle lithosphere ((Brace & Kohlstedt, 1980)). The SCAM flow law has the advan-
tage of using a single value of friction and a handful of micro‐mechanical parameters to predict the lithosphere's
intact strength across 10 orders of magnitude of strain rate. It self‐consistently handles the transition from intact to
broken (pre‐cut), and does not require any empirical assumption on weakening strain. Alternatively, SCAM can
be used to prescribe an intact strength that is appropriate at tectonic strain rates, for use in standard elasto‐plastic
models (e.g., simulation EP‐tecto). This approach, however, does not solve the problem of the ad‐hoc weakening
strain.

6.4. Growth of Geological Structures

In order to compare the tectonic structures formed after greater amounts of finite extension by the SCAM and
elasto‐plastic (EP‐tecto) rheologies, we performed three additional simulations under strain rates of 1, 1, and
10 mm/yr for each rheology. Due to the computationally demanding nature of the SCAMmodel, we decreased the
resolution of the spatial domain using a cell size of 250 × 500 m within 8 km of the top and bottom walls, and a
greater resolution, with a cell size of 250 × 250 m in the rest of the domain containing the brittle plate.
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Snapshots of the second invariant of strain rate (ϵ̇II) fields at different times are displayed in Figure 15. The first

three rows correspond to successive times throughout the SCAM simulations after ∼251, ∼1,079, and ∼3,457 m
of horizontal stretching, respectively. The fourth row corresponds to snapshots of elasto‐plastic simulations
performed under the same extension rates, after ∼3,457 m of extension. The elasto‐plastic simulations remain
unsurprinsingly insensitive to a change of strain rate (e.g., Olive et al., 2016), as they all develop the same central
graben structure (Figures 15d–15f).

The SCAM simulations, on the other hand, generate features that vary with extension rate. The first one is the
location of the cluster of faults in the hanging‐wall ((Figure 15a1–15c1). The faster the extension rate, the
closer this cluster of secondary faults lies to the master fault, with distances ranging from 15 to 7 km. The second
feature is the geometry of the rift after 3,457 of extension (Panels a3–c3). The rift structure shows a greater degree
of asymmetry with increasing extension rate. This is particularly well expressed in topography, which corre-
sponds to a symmetric graben in Panel a3 but is closer to a half‐graben in Panels b3 and c3, as more extension
is accommodated of the central right‐dipping fault. We acknowledge that some of this variability could be
attributed to stochasticity in marker positions, coupled with strong non‐linearities of the SCAM flow law. We
however ran the SCAM simulations a second time using different randomly assigned marker positions, and
otherwise identical parameters. This second set yielded the same pattern of strain rate dependence as illustrated in
Panels a3–c3.

Extension rate is known to influence rifting styles, primarily by modulating the thermal structure (Buck, 1991;
Lavier & Buck, 2002). Our results suggest that it may play an additional, more subtle role by modulating the very
processes of fault development. Specifically, the SCAM model introduces a strain rate dependence of brittle
deformation by transiently activating a moderate to low viscosity in portions of the upper crust where damage is
actively growing (e.g., Panels f1 and f2 of Figure 13). An analogous strain rate dependence of deformation was
previously noted by Olive et al. (2016) in rifting simulations that treat the upper crust as a visco‐plastic medium
rather than an elasto‐plastic medium. In the present case, however, the viscosity of the upper crust has a physical
meaning (ηD, related to the damage growth rate), as opposed to an arbitrarily high value meant to simulate a stiff
visco‐plastic upper crust.

Figure 15. Numerical simulation of about 3.5 km of extension of a 10‐km thick brittle plate, at varying rates (columns). Snapshots of the second invariant of strain rate at
different amounts of finite extension (shown on the left), for a brittle plate governed by a–c the SCAM flow law, and d–f the EP‐tecto rheology. The model resolution has
been reduced compared to Figure 13 to reach greater amounts of finite extension in reasonable time.

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011229

PETIT ET AL. 32 of 41

 15252027, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011229 by E

cole N
orm

ale Supérieure de Paris, W
iley O

nline L
ibrary on [05/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.5. Upscaling the SCAM Parameters

The results presented thus far show that a flow law indexed on the activity of sub‐millimetric rock defects, and
calibrated on decimeter‐sized samples can produce reasonable deformation patterns when applied to tectonic
problems at scales >10 km. This fact does not negate the implication of larger defects (>10 cm) in the nucleation
of crustal faults, but highlights that they need not be explicitly described in our constitutive relation. These
intermediate‐scale defects can be thought of as emerging through the formation of distributed damage bands,
albeit only at scales greater than the numerical grid size, before dominant crustal‐scale bands fully develop (e.g.,
Figure 13d1–13f1). In other words, the coalescence of sub‐millimetric shear cracks produce diffuse proto‐faults,
and stress concentrations at their tips generate further localization at larger and larger scales.

Nonetheless, it is legitimate to wonder how differently our model would behave if it was based on larger (e.g.,
metric) shear defects. To address this question, we assess the effect of initial defect size a on the two extreme
measures of rock strength in the SCAM framework: the minimum strength that characterizes extremely slow
deformation, and the maximum strength at very high strain rates. The absolute lower bound on SCAM strength is
given by the maximum differential stress satisfying KI = 0 (Figure 6, end of Section 5.1.2). It corresponds to the
differential stress that must be reached for macroscopic failure to be achievable, albeit after an infinitely long time
(plain blue line in Figure 11). The expression of KI (19) is a function of σ1, σ3, μ, a, and Nv (throughD0), but in the
special case where KI = 0, the explicit dependence on a drops, such that the maximum differential stress at KI= 0
only depends on σ3,D0 and μ. Assuming μ is constant across scales, we end up with a lower bound on strength that
only depends on D0 = f(a, Nv).

Interestingly, this property can be used to constrain a plausible range of D0 values to be used in tectonic simu-
lations. The minimum strength (continuous blue line in Figure 11) must exceed the stress required to slip on a
favorably oriented pre‐existing frictional surfaces (e.g., ∼500 MPa for σ3 = 150 MPa, the value used to construct
Figure 6; dashed blue line in Figure 11). The minimum strength must also be lower than the strength measured in
the laboratory at the slowest possible strain rate (somewhere within the red area in Figure 11). Taking 90% of the
peak value from Wawersik and Brace (1971) (e.g., 1,150 MPa for σ3 = 150 MPa) as a rather conservative es-
timate, considering that Brantut et al. (2012) observed brittle creep failure at ∼77% of estimated peak strength
under 50 MPa of confining pressure, brackets the minimum strength for σ3 = 150 MPa between ∼500 and
∼1,150 MPa. This corresponds to a range of D0 between 0.06 and 0.4.

On the other hand, the maximum strength of the material at very fast strain rates can be assessed by equating
Equation 19 to KIC, and rewriting it as a function of σ1. This gives an equation whose maximum with respect to D
yields the maximum differential stress a rock can withstand (Figure 6), as cracks grow critically at seismic wave
speeds (Bhat et al., 2012). This maximum stress roughly scales as KIC/

̅̅̅
a

√
. It follows that the difference between

the maximum differential stress at KI = KIC and at KI = 0, a measure of the overall strain rate dependence of the
SCAM model, approximately scales as a− 1/2. If fracture toughness is a scale‐invariant, intrinsic property of the
material, increasing the size of the initial shear cracks brings the maximum and minimum strengths closer and
closer to each other, severely suppressing the strain‐rate dependence of the material's intact strength. This result is
a fundamental property of the wing‐crack model of Ashby and Sammis (1990), and does not depend on the
specifics of the SCAMmodel. Whether it applies to natural systems remains an open question, as it is well known
that fracture toughness can vary significantly across scales.

7. Conclusions and Perspectives
In this paper, we introduced a Sub‐Critically AlteredMaxwell (SCAM) framework to describe brittle deformation
in long‐term tectonic models. It is a set of constitutive equations that capture experimentally described behaviors
of rocks at upper crustal pressures and temperatures. It is based on the evolution of an internal damage state and on
its interactions with the elastic properties of the material. The model also allows large deformations by branching
to plastic behavior after microcracks interact and coalesce. The SCAM model has several notable properties that
make it a promising alternative to standard elasto‐plastic models, or a way to improve their parameterizations of
brittle yielding. Elastic properties are permanently altered due to their indexation on damage. Damage growth is a
time‐dependent process that is activated at stresses far below failure strength, through frictional sliding on shear
defects distributed throughout the rock. It promotes strain softening pre‐peak and self‐consistently generates the
successive stages of brittle creep. Creep behavior results from the transition from negative to positive retro‐action
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between damage and damage growth, which represents increasing interactions between lengthening cracks. The
SCAM model also produces two yield strength using a single friction coefficient and no cohesion: a peak failure
strength with high effective friction and strain rate dependent cohesion, which ultimately transitions to a rate‐
independent residual strength that obeys Byerlee's law. Despite the high effective friction (∼1), shear band
orientations in 2‐D plane strain simulations remain consistent with the true friction coefficient that describes the
strength of shear defects (μ ∼ 0.7). The SCAM model can be calibrated against experimental data using prior
knowledge on well‐constrained rock properties to model the deformation of a specific lithology. Here Bayesian
inversions of experimental data on Westerly granite and Darley Dale sandstone led to a set of reasonable
micromechanical parameters whose impact on the macroscopic behavior of the rock can be straightforwardly
interpreted.

Preliminary results of rifting simulations in a 10‐km thick brittle plate subjected to gravity show that the SCAM
model generates a population of faults with power‐law distributed slip rates, akin to the distribution of natural
fracture sizes and fault offsets, and likely introduces a strain rate dependence of the geological structures that
develop at large strains. These features make it a good candidate to further investigate the complexity of brittle
behavior across scales.

In designing the SCAM framework, we have strived to capture key micromechanical processes while keeping the
model as simple as possible. This came at the cost of a few simplifications that may be relaxed in future work. A
first strong assumption is that weakening of the shear modulus occurs isotropically, even though the orientation of
the shear defects is strongly anisotropic. This assumption has the advantage of reducing the complexity of the
constitutive law and simplifying its interpretation, but lacks consistency when relating crack geometry to
macroscopic behavior. Within this assumption, however, a more consistent approach to damage‐induced elastic
weakening could be to assume isotropic weakening in the plane containing the crack normals (the (σ1, σ3) plane),
and no weakening in the perpendicular direction. Such anisotropy however implies that the 2‐D plane strain
condition can no longer be satisfied for arbitrary extremum stresses, that is, enforcing ɛ2 = 0 could lead to σ2 not
being an intermediate stress between σ1 and σ3.

In addition to neglecting material anisotropy, the evaluation of KI (Section 2.3) assumes that all cracks remain
oriented at 45° with respect to σ1 regardless of the stress and material rotations that may occur during large
deformations. This assumption can lead to significant errors on the stresses resolved on shear defects. We note
that the strains associated with shear band localization are on the order of a few percent, and thus should not be
accompanied by significant finite rotation. On the other hand, large strains could conceivably rotate shear defects
out of an optimal orientation in a long‐term tectonic simulation. From a theoretical and computational point of
view, keeping track of multiple shear defect orientations in an evolving stress state is challenging, in part because
evaluating stress intensity factors and interaction terms would become very complex. The very definition of
damage should also be revised to account for curving wing‐cracks that grow along a changing σ1 direction, and/or
different sets of tensile wings associated with different sets of shear defects.

Another possible improvement for long‐term tectonic modeling would be to allow damage to partially or
completely heal over long time scales. This would promote the progressive recovery of intact elastic properties
within abandoned shear bands, and require a re‐mobilization of micro‐scale frictional processes in order to re‐
activate a de‐activated fault. To this end, a sub‐critical crack growth law similar to that of Darot and Gue-
guen (1986) seems adequate. Crack growth is formulated as a thermally activated process where the growth or
healing of a crack is indexed on the sign of the energy balance associated to the incremental advance of the crack
front. This formulation has a more robust thermodynamical foundation than Charles' (1958) law and also accounts
for the effect of temperature. It however involves more parameters, which is why we restricted ourselves to a
simpler version of Charles' law in this work.

Finally, and importantly, the present study neglected the intrinsically dilatant effect of mode‐I crack growth.
Incompressibility is a common simplification in long‐term tectonic models (Gerya, 2010), which amounts to
setting the Poisson's ratio to 0.5 and the dilatancy angle to zero when modeling brittle failure with Mohr‐Coulomb
plasticity. Recent studies have shown that accounting for elastic and plastic compressibility noticeably impacts
the outcome of tectonic simulations. Specifically, Duretz et al. (2021) found that compressibility hinders strain
localization (it produces broader shear zones), and can facilitate the convergence of numerical solvers. A me-
chanically consistent way of introducing inelastic dilatancy within the elastically incompressible (ν= 0.5) SCAM
model would be to use the constitutive law developed by Bhat et al. (2012). Their approach consisted of assessing
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the Gibbs free energy of a damaged solid (assuming the (Ashby & Sammis, 1990) micro‐mechanical model), and
deriving it with respect to stress to yield effective elastic compliances. This approach outlines two sources of
volumetric strain during damage accumulation: one directly results from the elastic compressibility of the ma-
terial, which is altered by damage, the other represents a coupling between shear and volumetric deformation (a
direct consequence of mode‐I cracks being wedged open by shear defects). An elastically incompressible, yet
inelastically dilatant SCAM model could focus on capturing this shear‐volumetric coupling through an effective
dilatancy angle that can be directly related to damage and stress Bhat et al. (2012). Dilatancy should cease as soon
as cracks coalesce (D ∼ 1), and give way to standard incompressible Mohr‐Coulomb plasticity.

In its current state, the SCAM framework already unveils novel prospects for tectonic modelers. Keeping track of
a damage field enables new connections between crustal scale simulations and key observables. Damage fields
could straightforwardly be converted to seismic velocity maps for comparison with crustal tomography data. The
distribution of damage along the model's free surface could also be used as a proxy for the erodibility of rocks
exposed to weathering, and help understand variability in erosion rates across tectonically active landscapes
(Gallen et al., 2015; Molnar et al., 2007) Finally, damage accumulation is intrinsically linked to an increase in
porosity within the rock, and fracture connectivity is a primary control on fluid pathways. The evolving damage
field could therefore be used as a proxy for the permeability of the brittle crust (e.g., Perol and Bhat (2016))
enabling coupled models of progressive brittle failure and fluid flow. This would enable the consideration of both
poro‐elastic feedbacks between fluid pressure and deformation, as well as alterations of mechanical properties
through fluid‐rock reactions.

Appendix A: Bayesian Inversion Procedure
A1. Mathematical Description

As illustrated in Section 3, our “forward” problem consists of predicting a vector of data points d, for example, a
time series of stress or brittle creep strain rates, given a set of rock parameters (Table 1) stored in a vectorm. This
problem synthetically writes d = g(m). By contrast, the inverse problem consists of finding the distribution of
model parameters that best fits known experimental data dobs with associated uncertainty. We adopt a least‐
squares approach in which all probability distributions quantifying uncertainties are Gaussian. Uncorrelated
data uncertainty can thus be represented as a Gaussian distribution centered on dobs with a diagonal covariance
matrix Cd. Similarly, a‐priori knowledge on the distribution of model parameters can be assumed to follow a
Gaussian distribution centered on mprior, with diagonal covariance matrix Cm.

We seek the best‐fitting model (m̃) which minimizes the log‐likelihood function: a measure of distance between
dobs and d, weighted by data uncertainty and prior knowledge:

S(m) = (g(m) − dobs)
TC− 1

d (g(m) − dobs) + (m − mprior)
TC− 1m (m − mprior). (A1)

The log‐likelihood is then minimized using a Gauss‐Newton iterative algorithm (Tarantola, 2005). The iterative
scheme, initialized at m0 = mprior, reads:

mn+1 = mn − κn(Gt
nC

− 1
D Gn + C− 1m )

− 1
(Gt

nC
− 1
D (g(mn) − dobs) + C− 1M (mn − mprior )), (A2)

where n and n+ 1 refer to the current and next iteration, κn ≤ 1 is the step multiplier, a hyperparameter that can be
tuned to help convergence in case of strong non‐linearities in the log‐likelihood function. G is the Jacobian
matrix:

Gij
n = (

∂gi
∂mj

)
mn

. (A3)

The posterior model covariance matrix, a measure of the uncertainty on the inverted parameters, is then
computed as
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C̃M ≃ (GtC− 1D G + C− 1M )
− 1
= CM − CMGt(GCMGt + CD)

− 1GCM. (A4)

A2. Implementation

For each inversion, we assemble a data vector dobs by concatenating data from several constant strain rate ex-
periments conducted under different confining pressures, and several brittle creep experiments conducted under
different imposed axial stresses. The constant strain rate data consists of time series of axial stress complemented
by the peak axial stress and the corresponding axial strain that was reached in each experiment. By assigning a
lower uncertainty (in Cd) on the peak axial stress and strain relative to the uncertainty on the stress time series, we
can assign more weight to this constraint. Doing so helps favor models that accurately predict the position of the
peak stress. The brittle creep data for Darley Dale sandstone consist of concatenated time series of axial strain rate
from experiments conducted under different axial stresses. Because such data was not available for Westerly
granite, we instead concatenated measurements of the representative secondary creep strain rate from experiments
conducted under different axial stresses.

At every step of the inversion algorithm, a vector of “simulated data” dn = g(mn) is built by simulating each
individual experiment, and ordering the outputs to match the order of dobs. In order to simulate brittle creep, the
axial stress is first raised by imposing a constant strain rate matching that of the experiment (e.g., loading up to the
star in Figure 4a as damage accumulates in Figure 4b). The damage state achieved by the sample is then used as
initial condition for the brittle creep simulation. The axial stress is kept constant as we simulate the evolution of
axial strain rates (See Section 3).

To ensure that the inversion does not assign negative values to parameters which are inherently positive, we
construct a model vector m that contains the logarithm of each SCAM parameter, namely: G0, γ, μ, a, D0,
Di, n, KIC, and l̇0. The associated uncertainties (prior or posterior) are thus log‐normal distributions of
the parameters, or Gaussian distributions of the logarithm of the parameters. If a positive parameter has a
standard deviation s̄ and a median m̄, the distribution of its logarithm can be adequately represented by a
Gaussian distribution centered on log(m̄) with variance σ̄2 = log(1 + s̄2/ m̄2) . We make use of these
formula to assign uncertainties on the experimental data and on our prior knowledge of the model
parameters.

Appendix B: Derivation of the Plastic Viscosity
Two situations have to be considered to construct the plastic viscosity term ηp used in SCAM numerical simu-
lations. The first situation is stresses that lie above the plastic yield envelope at the onset of plastic behavior. This
can happen because damage build‐up may cause stresses to increase past the plastic yield stress (σy). In this case,
we require the plastic viscosity to relax excess stresses above σy in one iteration. Equation 38 recast in term of ṡij
thus becomes

ṡij =
s yij − sij
Δt

= 2G0 f(D)(ėij −
sij
2ηp

), (B1)

where s yij corresponds to any deviatoric stress tensor whose second invariant satisfies s
y
II = σy. We approximate

Equation B1 by using σy, sII and the second invariant of the strain rate tensors ėII =
̅̅̅̅̅̅̅̅̅̅̅
J2 (ε̇)

√
:

σy − sII
Δt

= 2G0 f(D)(ėII −
sII
2ηp

). (B2)

This yields the following closed form equation for ηp:

ηp =
sII

2(ėII −
σy − sII

2G0 f (D)Δt)
. (B3)
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The other possible situation involves stresses capped by the yield envelope (i.e., sII < σy). In this case, we
additionally require that ηp be infinite if the elastic stress rate 2G0 f(D)ėII is lower than the value required to reach
the yield stress in one iteration ( σy − sIIΔt ). This amounts to rewriting ηp:

ηp =
sII

2(ėII − min( σy − sII
2G0 f (D)Δt

, ėII))
, (B4)

to ensure that the plastic viscosity is finite only when sII ≥ σy, or if an elastic stress increment suddenly brings sII
above σy.

Notation

Mohr‐Coulomb plasticity
μ friction coefficient

ϕ (= arctan μ) friction angle on shear defects (ϕm at macroscopic scale)

Cm (macroscopic) cohesion

σy yield stress

σ(max)y intact plastic yield stress (determined by μmax and Cmax)

μmax initial friction coefficient (in strain weakened Mohr‐Coulomb plasticity)

Cmax initial cohesion (in strain weakened Mohr‐Coulomb plasticity)

σ(min)y fully weakened plastic yield stress (determined by μmin and Cmin)

μmin fully weakened friction coefficient

Cmin fully weakened cohesion

ΔepII accumulated plastic strain needed to fully weaken the frictional properties

Damage mechanics

D ∈ [D0, 1] damage internal state variable

D0 ∈ [0, 1] damage value corresponding to no tensile defect in the rock

Di initial damage

Dc critical damage at the transition between the isolated crack regime and the interacting crack regime

γ = f(D = 1) ratio of residual over reference shear modulus

Nv number of shear defects per unit volume

Vc characteristic volume per crack (1/Nv)

Ac characteristic area per crack

Ab average area that separates neighboring cracks (bulk area in the (σ1, σ2) plane)

ψ shear defect angle with respect to σ1

α cos ψ

a shear defect radius

l tensile “wing” crack length

KI mode I stress intensity factor
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K(w)I mode I stress intensity factor due to the wedging force Fw

K(σ3)I mode I stress intensity factor due to σ3

K(i)I mode I stress intensity factor due to interactions between cracks

σi3 internal stress acting in the direction of σ3 resulting from cracks interaction

KIC mode I fracture toughness

l̇0 characteristic crack growth rate

n Charles law exponent (corrosion index)

β geometric regularization factor

A1, A3 constants that depend on friction and the orientation of shear defects

Stresses and strains

ɛij strain tensor

σ1 most compressive principal stress

σ3 least compressive principal stress

Δσ = σ3 − σ1, differential stress

Δσc differential stress at KI = 0 and D = D0

Δσbc Minimum brittle strength

P = − σkk/3 pressure

pc = − σ3 confining pressure in experiments

eij deviatoric strain tensor

sij deviatoric stress tensor

eax deviatoric axial strain

sax deviatoric axial stress

J2(X) = (dev(Xij)dev(Xij))/2 second invariant of the deviator of second order tensor X

sII =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
J2 (σij)

√
scalar shear stress magnitude

s yij deviatoric stress tensor satisfying the Mohr‐Coulomb yield criterion

eII =
̅̅̅̅̅̅̅̅̅̅̅̅̅
J2 (εij)

√
scalar shear strain magnitude

εpij plastic strain tensor

Additional notations

G effective shear modulus

G0 = G(D = D0) reference shear modulus corresponding to the lowest damage state (no tensile defect)

f(D) weakening function

ν Poisson's ratio

ηD damage viscosity

ηp plastic viscosity (2‐D SCAM simulations)

ηeff effective viscosity (2‐D SCAM simulations)
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ηmin minimum viscosity (2‐D SCAM simulations)

ηmax maximum viscosity (2‐D SCAM simulations)

vi Components of the velocity field

ρ density

gi Components of the gravity field

Δt time step

Data Availability Statement
The codes used to produce the results of Section 3 (0‐D, written in Julia) and Sections 4 and 6 (2‐D, written in
MATLAB) are provided in a Zenodo repository (Petit & Olive, 2024).
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