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Key points: 

- Development of a rate-and-state based criterion to compute probabilities of ruptures jumping from 
one fault to another 

- Application of the criterion in seismic cycle simulations accurately predicts jumps while Coulomb stress 
criterion is insufficient 

- The maximum jump distance predicted by the criterion increases non-linearly with decreasing normal 
stress (i.e. depth)   



Abstract 

Geometrical complexities in natural fault zones, such as steps and gaps, pose a challenge in 

seismic hazard studies as they can act as obstacles to seismic ruptures. In this study, we propose 

a criterion, which is based on the rate-and-state equation, to estimate the efficiency of an 

earthquake rupture to jump between two spatially disconnected faults. The proposed jump 

criterion is tested using a 2D quasi-dynamic numerical simulations of the seismic cycle. The 

criterion successfully predicts fault jumps where the simpler Coulomb stress change calculation 

fails to do so. The criterion includes the Coulomb stress change as a parameter but is also 

dependent on other important parameters among which is the absolute normal stress on the 

fault the rupture jumps to. Based on the criterion, the maximum jump distance increases with 

decreasing absolute normal stress, i.e. as the rupture process occurs closer to the Earth’s surface 

or as pore pressure increases. The criterion implies that earthquakes can jump to arbitrary large 

distances at the Earth’s surface if the normal stress is allowed to go to zero, underscoring the 

potential for large jump distances (i.e. >5 km). We further propose a probabilistic framework to 

estimate the likelihood of rupture jumps by accounting for uncertainties in fault geometry and 

earthquake source parameters. Additionally to its role into seismic hazard assessment, this 

criterion could complement Coulomb stress change maps with those of triggered slip-rates on 

receiver faults due to quasi-instantaneous stress perturbations, as well as estimates of jump 

probabilities accounting for parameter uncertainties.  



Plain language summary 

This study evaluates the physical conditions that allow earthquake ruptures to jump across  

geometrical complexities of faults, like steps and gaps. These geometrical complexities can 

sometimes stop an earthquake from propagating along a fault.  The approach taken here is based 

on the rate-and-state equation which describes the behavior of a fault from a set of frictional 

parameters, considering the case of two separated fault segments. The approach was tested 

successfully on numerical simulations of seismic cycles, providing consistently better results than 

the Coulomb stress change approach. Indeed, this new approach allows us to better take into 

account the effects of the normal stress on the fault that the earthquake is jumping to. It suggests 

that earthquakes can likely jump farther if the normal stress on the fault is lower, which happens 

for example as you get closer to the Earth's surface. The way normal stress is considered is thus 

an important factor. This study also propose a way to calculate the likelihood of an earthquake 

to jump across fault geometrical complexities based on uncertainties in the faults’ geometry. 

 

Keywords: Earthquake Rupture Fault jump, seismic cycle simulation, rate-and-state friction, 

steps and gaps, Coulomb stress change, physics based approach 

  



1. Introduction 

Evaluating the efficiency of an earthquake rupture to jump from one fault to another is 

fundamental to anticipate the maximum magnitude of earthquakes (Harris et al., 1991). Is there 

a maximum distance between two faults an earthquake cannot jump? Can we quantify the 

probability of jumping based on fundamental parameters controlling fault interactions? 

Multiple types of geometrical obstacles opposing rupture propagation exist such as fault bends, 

steps, or jogs (Biasi and Wesnousky, 2021, 2016; Oglesby, 2004; Sibson, 1985). In this study, we 

will focus on a setting where two faults are disconnected spatially but can potentially rupture 

together. This regroups geometrical obstacles described as gaps and steps (Figure 1), which are 

defined here as the parallel and orthogonal distance between two disconnected faults, 

respectively (Biasi and Wesnousky, 2016).  

Many earthquakes have demonstrated that seismic ruptures can jump across fault gaps or step 

overs. Based on surface observations, Biasi & Wesnousky (2016) and Wesnousky (2008) have 

documented which earthquake succeeded or failed to pass such geometrical complexities and 

have also quantified their numbers and sizes. For example, the 1992 𝑀!7.2 Landers, California 

earthquake is just one event among many that succeeded in jumping multiple steps: three of 1.5, 

2 and 3 km distance in this case. Based on their observations, Biasi & Wesnousky (2016) 

suggested that seismic events are not able to jump steps beyond 5 km, an upper bound 

considered in many seismic hazard analysis (e.g. UCERF 3; Field et al., 2014 ; Scotti et al., 2019). 

However, some recent events were suggested to have jumped across greater distances, such as 

the 2016 M7.8 Kaikoura earthquake in New Zealand (jump of an apparent restraining step of 15 



km; Diederichs et al., 2019; Hamling et al., 2017; Ulrich et al., 2019). While the number of events 

within the catalogs increase with each study (Baize et al., 2020; Rodriguez Padilla et al., 2024; 

Sarmiento et al., 2024), these observations are naturally limited as they are collected at the 

surface, specific to each site and essentially blind to the details of how and why rupture jump or 

do not jump (e.g. fault geometry and rupture history at depth).  

Numerous studies have used fully dynamic numerical simulations to understand further the 

physics behind the efficiency of an earthquake to jump from one fault to another (e.g. Bai and 

Ampuero, 2017; Duan and Oglesby, 2006; Harris and Day, 1999, 1993; Hu et al., 2016; Kroll et al., 

2023; Lozos et al., 2012; Mia et al., 2024; Oglesby, 2008; Ryan and Oglesby, 2014; Shaw and 

Dieterich, 2007). Most studies simulate one single event and rely on the slip weakening friction 

law in which the evolution of friction with slip is predefined (e.g. Bai & Ampuero, 2017; Harris & 

Day, 1999). Recent studies have examined the effects of bi-material on rupture jumps (Hu et al., 

2025) as well as the potential role of a small intermediate fault located between the two main 

faults of the stepover (Lozos et al., 2012). Some studies concentrate on replicating the rupture of 

complex 3D fault networks due to a single known event, as for example the 2023 Kahramanmaraş 

M7.8 and 7.7 earthquakes (Gabriel et al., 2023), or the 1812 co-rupture of the San Andreas and 

San Jacinto faults (Lozos, 2016). While those studies are insightful, they rely on an initial stress 

distribution of faults, constrained by information from kinematic models, and fixed prior to the 

simulation, which then determines whether a seismic rupture will propagate to a neighboring 

fault or stop. The ratio between strength excess and stress drop is often used as a criterion to 

quantify the relative prestress level and assess the triggering potential of a fault (Andrews, 1976; 

Das and Aki, 1977), although the parameters involved are difficult to quantify. On the other hand, 



seismic cycle simulations allow us to model sequences of earthquakes of different sizes as well 

as the period in between events (e.g. pre-, inter-, and post-seismic periods) (Duan, 2019; Duan 

and Oglesby, 2005; Erickson et al., 2020; Jiang et al., 2022; Lapusta et al., 2000). They have 

similarly been used to study the effect of geometrical complexities on rupture propagation (e.g. 

Duan et al., 2019; Liu et al., 2022; Ozawa et al., 2023). A majority of those models rely on the 

empirical rate-and-state friction law (Dieterich, 1979, 1972) which is expressed as: 

𝜏 = 𝜎 %𝑓∗ + 𝑎	𝑙𝑛 ,
𝑉
𝑉∗
. + 𝑏	𝑙𝑛 ,

𝑉∗	𝜃
𝐿 .2, (1) 

where 𝜏 and 𝜎 correspond to the shear and normal stress, respectively, 𝑉 is the slip rate and 𝑓∗ 

is the coefficient of friction at the reference slip rate 𝑉∗. 𝐿 is a characteristic slip distance. 𝑎 and 

𝑏 are frictional parameters where 𝑎 describes the effect of shear stress in response to an abrupt 

change in slip rate, called the direct effect, and 𝑏	governs the evolution of the state variable, 𝜃. 

The rate-and-state friction law has to be complemented by an evolution law for the state variable 

𝜃 (e.g. the aging or the slip law; (Beeler et al., 1994; Roy and Marone, 1996; Ruina, 1983). Regions 

where 𝑎 − 𝑏 < 0 are said to be Velocity Weakening (VW) and can potentially host earthquakes, 

while regions where 𝑎 − 𝑏 > 0 are said to be Velocity Strengthening (VS) and tend to creep 

steadily. Simulations using the rate-and-state friction law enable us to generate sequences of 

earthquakes and stress distributions on the fault that are controlled by the evolution and history 

of slip. Nevertheless, modeling multiple faults is computationally demanding and approximations 

are often applied to make the simulations faster. As an example, contrarily to fully dynamic 

simulations, quasi-dynamic ones approximate the inertial effect of seismic waves (e.g. Luo et al., 

2017; Rice, 1993; Romanet et al., 2018). As another example, the quasi-static RSQSim algorithm 



(Dieterich and Richards-Dinger, 2010; Richards-Dinger and Dieterich, 2012) simplifies the rate-

and-state friction law behavior into three slip regimes (i.e. locked, nucleating or dynamically 

slipping) and has been used to study sequences of earthquakes on complex fault networks, 

including rupture jumps (e.g. Shaw et al., 2022).  

While the use of simulations using the rate-and-state friction law begins to be widely used to 

study fault network interactions, and even incorporated into seismic hazard analysis (e.g. 

Chartier et al., 2021; Shaw et al., 2018), the study of the fundamental parameters controlling 

fault interactions has not been studied in detail within this framework, in particular concerning 

the efficiency of rupture jumps. Moreover, for seismic hazard, it is important to explore the 

uncertainty of each of the rate and state parameters and of the fault properties as it allows to 

estimate in a probabilistic approach the efficiency of an earthquake to pass an obstacle. For 

instance, some studies have focused on the efficiency of ruptures to pass frictional obstacles or 

geometrical fault complexities (Huang et al., 2025; Kaneko et al., 2010; Molina-Ormazabal et al., 

2023; Ozawa et al., 2023), but none proposed a rupture jump criterion for gaps and steps using 

the rate-and-state framework exploring the full space of parameters. This modeling framework 

can then be used to evaluate a fault’s seismogenic potential (Michel et al., 2021), taking into 

account the effect of the obstacles, and be included into seismic hazard analysis (Biasi and 

Wesnousky, 2021).  

Our study aims to better characterize the efficiency of an earthquake to jump from one fault to 

another based on the rate-and-state friction law, and identify the parameters that control fault 

interaction. To do so, we first build a rupture jump efficiency criterion which roots from the rate-

and-state equation (Eq. [1]), and test it against numerical earthquake sequences generated along 



two faults using the 2D quasi-dynamic seismic cycle algorithm VEGA developed by Romanet et 

al. (2018). We then explore the implications of the criterion in terms of maximum jump distance 

and propose an approach to compute probabilities of rupture jumps. Finally, we discuss about 

the limits of the criterion before concluding. 

 

2. Rupture Jump Efficiency Criterion 

To build a rupture jump efficiency criterion, we use the rate-and-state formulation (i.e. Eq. [1]) 

for the slip rate parameter 𝑉: 

𝑉 = 𝑒𝑥𝑝 %
1
𝑎 %
𝜏
𝜎 − 𝑓∗ −  𝑏	𝑙𝑛 ,

𝑉∗	𝜃
𝐿 .2 + 𝑙𝑛(𝑉∗)2. (2) 

The ratio between the slip rate on a fault prior and after the interaction of an earthquake that 

occurred on a neighboring fault, denoted 𝑉# and 𝑉$, respectively, is thus expressed as: 
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If we assume that the earthquake interaction is instantaneous, then the state variable 𝜃# = 𝜃$  

and: 

𝑉$
𝑉#
= 𝑒𝑥𝑝 %

1
𝑎 ,
𝜏$
𝜎$
−
𝜏#
𝜎#
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This expression can be reordered as follows: 
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𝑉$ 	is thus the absolute value of the slip rate on the fault after a stress interaction, and will be used 

as the rupture jump efficiency criterion and tested in the next section on seismic cycle 

simulations. We rename it 𝑉-../ for Rate-and-State Stress Perturbation (RSSP). (𝜏$ − 𝜏#) and 

(𝜎$ − 𝜎#) correspond to the shear and normal stress changes on the fault due to the earthquake 

on a neighboring fault, while ("
)"

 correspond to the effective coefficient of friction before the 

earthquake. Equation [5] can then be expressed as: 

𝑉-../	 = 		𝑉#	𝑒𝑥𝑝 @	
&

'	()"1∆))
	 A∆𝜏 − ("
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∆4
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		C, (6) 

where ∆𝐶 is the Coulomb stress change (Reasenberg and Simpson, 1992). Notice that a slightly 

different formulation is mentioned in the study from Kroll et al. (2023) (Text S1).  

The definition of an earthquake in rate-and-state cycle simulations is ambiguous since in this 

framework the faults never stop slipping and slip rates can vary in orders of magnitude. Here we 

define it as any portion of a fault with a slip rate above 10-3 m/s (Romanet et al., 2018). Thus, if 

an earthquake interaction on a second fault increases 𝑉-../	above 10-3 m/s, this earthquake has, 

by our definition, jumped.  

𝑉-../	implies that the instantaneous reaction of the fault an earthquake tries to jump to does not 

solely depend on the Coulomb stress change (i.e. ∆𝐶). All the parameters of 𝑉-../	are related to 

the fault the rupture tries to jump to, however, the information about the size of the rupture 

trying to jump and the geometry of the faults are included in ∆𝐶 and ∆𝜎. The other parameters, 

𝑉#,	𝑎, and 𝜎#, modulate the spatial pattern implied by ∆𝐶 and ∆𝜎. Finally, note that the criterion 

is only dependent on the rate-and-state parameter 𝑎, not on 𝑏. It means that, given suitable 

stress perturbation, an earthquake can mechanically increase the slip rate on a velocity-



strengthening zone up to seismic velocities. However, the earthquake generated on the fault 

would likely die quickly and not propagate further. More generally the criteria does not provide 

any information on whether rupture initiation on a nearby fault will propagate further and 

become self-sustained. 

 

3. Seismic Cycle Simulations 

We test the predictivity of Eq. [6] based on 2D quasi-dynamic seismic cycle simulations generated 

from the algorithm VEGA (Romanet et al., 2018). This algorithm, based on the rate-and-state 

friction law, allows us to model sequences of earthquakes on a network of faults. The aging law 

is used here to describe the evolution of the state variable (Ruina, 1983). The description of the 

model geometric setting is shown in Figure 1. To represent the simplest geometry of a fault step, 

we model two linear parallel faults of same length, respectively Fault 1 and 2, which are 

separated in space. The parallel and perpendicular distance between the closest tips of the two 

faults, respectively 𝐷 and 𝐻, are taken relative to the direction of the first fault. Each fault is 

divided into a VW and VS area of identical size. The faults are loaded using a back-slip rate 

approach (Heimisson, 2020; Savage, 1983; Shaw et al., 2022; Tullis et al., 2012), which enables us 

to load each fault with different slip rates, contrary to a regional stress loading. Faults 1 and 2 are 

loaded at 30 and 7 mm/yr, respectively (Text S2). Fault 1 generates earthquakes at a greater 

frequency than Fault 2 and tests the second fault at different times of its seismic cycle, i.e. with 

different levels of stress distribution. Faults 1 and 2 are defined as the source and receiver faults, 

respectively. Without this contrast of loading, the two faults tend to synchronize and rupture 



together, which makes it difficult to explore a variety of scenarios. The parameters 𝑎 and 𝑏 of the 

friction law for the VW area are chosen equal to 0.01 and 0.018, respectively, standard values 

used in the literature (e.g. Michel et al., 2017). For simplicity, the parameters 𝑎, 𝑏, and 𝐿 are the 

same for both faults, with these parameters remaining constant within the respective VS and VW 

regions. 

 

 

Figure 1: Simulations’ general setting representing two faults separated in space. Different loading rates 

are applied to Fault 1 and 2, 𝑉!"#$%& and 𝑉'"#$%&, respectively. The more frequent ruptures occurring on 

Fault 1, called the source fault, will sometime jump onto Fault 2, called the receiver fault. 𝐷 and 𝐻 

correspond to the parallel (i.e. overlap) and perpendicular (i.e. step) distance between the two faults, 

respectively. VW and VS stand for Velocity Weakening and Strengthening, respectively. The regional stress 

field is set so that the simulations are in a strike-slip regime and with a maximum principal stress, 𝜎!, 

optimally oriented (i.e. ~30° from Fault 1). 

 

Three different scenarios are considered in this study, for which the parameters are indicated in 

Table 1. Two scenarios have aligned faults and thus don’t have any normal stress interaction but 



have different values of normal stress: 80 and 40 MPa, respectively. The normal stress is 

controlled by the regional static stress field which is optimally set at 30° from the faults 

(Anderson, 1905). The third scenario has the same parametrization as the first scenario except 

that the faults overlap a third of their VW areas and that normal stress interactions occur. For 

each scenario we test different lengths of the fault’s VW portion (e.g. 10, 30 and 60 km), as well 

as different values of 𝐷 (from -1.5 to 20 km) and 𝐻 when there is an overlap (-2 to 0.5 km) (see 

Table 1 and Text S3). The characteristic distance 𝐿 of rate-and-state friction law is set to 0.0155 

m which prescribes a nucleation length of 1 and 2 km for normal stresses of 80 and 40 MPa, 

respectively. The size of the sub-patches of the faults are determined so that they are roughly 

ten times smaller than the cohesive zone (Day et al., 2005; Rubin, 2002). The simulations are thus 

well resolved (Lapusta and Liu, 2009). 

Table 1: List of Physical parameters used in the models for each scenario in Section 3. The 
fault’s full length is always twice the size of the VW region. 

 Scenario 1 Scenario 2 Scenario 3 

Main information Aligned faults 
𝜎	 = 80 MPa 

Aligned faults 
𝜎	 = 40 MPa 

Overlapping faults 
𝜎	 = 80 MPa 

𝑎 0.01 
𝑏 0.018 
𝐿 0.0155 m 
𝑓∗ 0.6 
𝑉∗ 10-9 m/s 
𝜎 80 MPa 40 MPa 80 MPa 

Length of VW region 10, 30 and 60 km 30 and 60 km 30 and 60 km 
𝐷 -0.5, -1.0 and -1.5 km -0.25 and -0.5 km 10 and 20 km 

𝐻 0 km 0 km 0.5, -0.25, -0.5, -1 and 
-2 km 

Nucleation length ~1 km ~2 km ~1 km 
Cohesive zone ~360 m ~730 m ~360 m 

Sub-patches size 36 m 61 m 36 m 
 



 

4. RESULTS 

4.1. Example of simulation 

We show in Figure 2 an example of a simulation from the third scenario, with an overlap between 

the two faults and a perpendicular distance of 150 m (below the cohesive zone size of ~310 m), 

to illustrate the complexity of behavior within one simulation. Figure 2.a represents the maximal 

slip rate, 𝑉5'6, through time occurring on each fault. The timing and spatial extent of earthquakes 

are defined by the detection threshold of 10-3 m/s (Romanet et al., 2018). In this simulation, 

spanning ~1500 yrs (3 x 105 time steps), 47 events have occurred on both faults, 26 on Fault 1, 

among which 10 have jumped from Fault 1 to Fault 2 (numbered from 1 to 10 in Figure 2.b). 

Figure 2.b shows the timing and size of each event on Fault 1 and indicates which have jumped 

(dark blue bars). Magnitudes are estimated assuming square areas for the 2D ruptures (i.e. 

rupture length is squared). Figure 2.c shows the spatio-temporal distribution of slip rate on both 

faults. Note that the time is expressed in time steps. In the simulations, time steps decrease when 

slip rate increases, hence the greater number of time steps during earthquakes compared to the 

inter-seismic period, that help visualizing the propagation of seismic events. The following 

comments illustrate the complexity of the fault behavior that is present within each simulation. 

Events nucleate on both the transition between VW and VS zone, and at the end of the fault on 

the VW section (e.g. jumping event 6 and 10), but also near the location of the extent of the 

overlap (e.g. jumping event 9). Full and partial ruptures of the VW are observed. An increase of 

slip rate propagating along the receiver fault during the propagation of an earthquake occurring 



on the source fault is also observed (e.g. blue line within the overlap zone for jumping event 6) 

but is only visualized for cases when a rupture is very close to the receiver fault (less than roughly 

the size of the cohesive zone). We note the special case of jumping event 8 which does so right 

after a full rupture of Fault 2, and re-ruptures a portion of Fault 2 during its post-seismic period. 

Finally, in Figure 2.d, we show the slip distribution of all events which are roughly parabolic or 

truncated parabolas. The 1st events on both faults of the simulations have generally larger slip 

amplitude due to the initial stress distribution imposed and are thereafter not taken into account 

in our analysis. Neither are the last events which might have been cut in time at the end of our 

simulations. 

 

 



  

Figure 2: Example of simulation from two overlapping faults, i.e. within Scenario 3 (see Section 3 and Table 1). 

Fault 1, the source fault is loaded at 30 mm/yr while Fault 2, the receiver fault, is loaded at 7 mm/yr. (a) 

Maximum slip rate on Fault 1 (blue) and 2 (orange) through time. (b) Magnitude of events on Fault 1 through 

time. Events that jumped from Fault 1 to 2 are indicated by dark blue bars and numbered from 1 to 10, while 

the ones that failed to jump are in light blue. (c) Slip rate of Fault 1 and 2 through time. The time is indicated in 

time steps. In the simulations, time step size decreases when slip rate increases, which helps visualizing seismic 

events that last a few seconds in a sea of inter-seismic loading. The start of each jumping event of Fault 1 is 

indicated on the left side of the panel. VW and VS stand for Velocity Weakening and Strengthening, 

respectively. (d) Slip distribution of each event. The color indicates its timing. The first event slip distribution is 

not shown as it is highly dependent on the initial stress imposed. 



   

Figure 3: Results from the simulations for all scenarios (Section 3). For all panels, the orange and black 

dots indicate events that succeeded and failed to jump, respectively. Blue dots correspond to events with 

high Coulomb stress change, ∆𝐶, but that did not jump. (a), (b) and (c) show the ∆𝐶 on Fault 2 due to 

events occurring on Fault 1 at the location of maximum 𝑉())". (d), (e) and (f) show the normal stress 

change, ∆𝜎, on Fault 2 due to events occurring on Fault 1 at the location of maximum 𝑉())". Details on 

how ∆𝐶 and ∆𝜎 are retrieved are in Section 3. (g), (h) and (i) show the effective normal stress, 𝜎*, on Fault 

2 just before the start of events on Fault 1 at the location of maximum 𝑉())". (j), (k) and (l) show the slip 

rate, 𝑉*, on Fault 2 just before the start of events on Fault 1 at the location of maximum 𝑉())". 

 



4.2. 𝑉-../ and ∆𝐶	predictiveness in the simulations 

To test the predictivity of eq. [6], we calculate the distribution of 𝑉-../ along Fault 2 due to the 

stress impact of each earthquake 𝑖 on Fault 1. We thus focus only on the events generated by 

Fault 1 that are trying to jump on Fault 2. The parameter 𝑎 is fixed in our simulations. The 

distributions of the initial slip rate, 𝑉#, normal stress, 𝜎#, and shear stress, 𝜏#, on Fault 2 are 

sampled at the start of earthquake 𝑖 on Fault 1. The distributions of normal and shear stress 

change, ∆𝜎 and ∆𝜏, respectively, are calculated as the difference between the distributions of 

the normal, 𝜎7, and shear stress, 𝜏7, at the start of seismic velocities on Fault 2 if the earthquake	𝑖 

has jumped, and 𝜎# and 𝜏#, respectively. If earthquake	𝑖 didn’t jump, 𝜎7 and 𝜏7 are sampled at 

the end of earthquake	𝑖. The stress change on Fault 2 in the simulations is expected to result from 

a combination of two contributions: (1) a static stress change due to slip on Fault 1 (as if Fault 2 

didn’t exist), and (2) a stress redistribution of Fault 2 in response to the static stress change 

between the sampling times (i.e. between 𝑡# and 𝑡7). In the simulations, the static stress change 

is dominant, while the stress redistribution term is negligible, as illustrated in Figure S1. For each 

earthquake, we select the maximum 𝑉-../ from its spatial distribution along Fault 2 and sample 

the other parameters at the location where this maximum 𝑉-../ occurs. 

The results of predictivity of Eq. [6] for the three scenarios are shown in Figure 3. We see that 

jumping events in the simulations (red dots in Figure 3) have a 𝑉-../ close to 10-3 m/s (all within 

0.4 10-3 and 2.3 10-3 m/s), while events that did not jump (black and blue dots in Figure 3) have 

all a 𝑉-../ below our detection threshold. Those results confirm the predictability of eq. [6] within 

the model framework.  



For scenario 1 and 2, the faults are aligned and there is thus no normal stress interaction (Figure 

3.d, e, g and h), only shear stress interactions. We see that if we only refer to the Coulomb stress 

change, ∆𝐶, for predicting the jumps of earthquakes, it would be insufficient (Figure 3.a and b). 

Earthquakes tend to jump at ∆𝐶	 = ~12-13 MPa for 𝜎# = 80 MPa and at ~6 MPa for 𝜎# = 40 

MPa, half less, as expected from Eq. [6]. Overlapping faults, as in scenario 3, allow for normal 

stress interaction (Figure 3.f and i) which further degrade any predictability based on ∆𝐶 alone 

(Figure 3.c). 

For aligned faults (scenario 1 and 2), the location of maximum 𝑉-../ is always at the tip of Fault 

2 closest to Fault 1. This zone tends to creep at loading rate (i.e. 𝑙𝑜𝑔&#(7 mm/yr) = -9.7) due to 

high concentration of stress (e.g. Cattania, 2019), making it easier to jump compared to locked 

portions of the fault (i.e. 𝑙𝑜𝑔&#(𝑉) = -15) as expected from eq. [6]. After an earthquake ruptures 

the tip of Fault 2, slip rates at this location drop to locked values (~𝑙𝑜𝑔&#(𝑉) = -15/-20 in our 

simulations) and then needs a period of time to come back to loading slip rate values (see 

example in Figure S2). During this initial ‘healing’ period, it is thus more difficult for an earthquake 

to jump. For aligned faults, it is as hard for a rupture to jump just after a small event on the 

receiver fault that resets slip rates to locked values, as after a large earthquake that rupture the 

full VW area. For any scenarios, locations of faults that tend to creep at slip rates close to loading 

rates, other than VS areas, are the borders of the VW regions, the tips of the faults, and the 

location where residual stress has been left by previous earthquakes. Any of those locations 

makes it easier for an earthquake to jump. This is illustrated by events that have Coulomb stresses 

similar or higher than the ones needed to jump (blue dots in Figure 3.a, b and c; Text S4), but 

failed to do so because of low 𝑉# (Figure 3.j, k and l). 



 

5. Maximum rupture jump distance predicted by 𝑽𝑹𝑺𝑺𝑷 criterion  

We saw in Section 4 that eq. [6] predicts well in the simulations whether an event jumps or not 

on a second fault. In this section we will focus on the implications in terms of jump distance based 

solely on the exploration of the parameters of eq. [6], and provide some sensitivity tests. For 

simplicity, and as an example for a base scenario, we still assume two parallel linear faults. For 

the rest of this section we assume also that the slip distribution of events are uniform along strike. 

With a uniform slip distribution and assuming that the second tip of the source fault is too far 

away to have an impact on the receiver fault (although this last assumption actually depends on 

the fault’s length; Figure S3), the Coulomb and normal stress fields have a similar pattern for any 

given slip value and their amplitudes are proportional to the slip. With these assumptions, the 

stress fields depend only on the slip value (and the angle between the two faults; see Figure S4 

and S5) and not on the length of the source fault and Eq. [6] can then be simplified: 

𝑉-../ ≈ 	𝑉#	𝑒𝑥𝑝 @	
∆48888	.

'	()"1∆)8888	.)
		C, (7) 

where ∆𝐶PPP and ∆𝜎PPP are the Coulomb and normal stress change normalized by the slip, and 𝑆 is the 

slip. Those assumptions can easily be changed if wanted. We show in the supplement an example 

using an elliptical slip distribution (Figure S6). 



 

Figure 4: Impact on the maximum jump distance of the parameters in Eq. [6] assuming uniform slip 

distributions along the fault and no contamination of the stress impact from the second tip of the source 

fault, the one furthest away from a potential 2nd fault. All tests were realized using the same fixed values 

of 𝑎 and 𝑉*. (a) profile of 𝜎* along the direction of Fault 1 as a function of the maximum jump distance, 

for a rupture event with 1.0 and 2.0 m uniform slip. Decreasing linearly 𝜎* increases exponentially the 

maximum jump distance, up to infinity as 𝜎* approaches 0. 𝜎* can be interpreted as a pseudo depth. We 

assume a gradient of 23 MPa/km. (b) Map of maximum jump distance for an associated 𝜎* for an event 

of 1.0 uniform slip (~𝑀+6.8). The contours indicate the position of the maximum jump distance for 𝜎* = 

23 and 2.3 MPa, corresponding to a pseudo depth of 1 and 0.1 km, respectively. The profile in panel (a) is 

taken from this map along the coordinate Y=0. (c) Same profiles as in panel (a) but normalized by their 

respective slip amplitude. Both curves collapse. (d) Map of maximum jump distance for an associated slip 



amplitude fixing 𝜎* to 2.3 MPa (pseudo depth of ~0.1 km). The dashed white contour indicates the position 

of the maximum jump distance for a uniform slip of 1 m (~𝑀+6.8). 

 

We first aim to estimate the maximum jump distance as a function of 𝜎#, which in turn can be 

transcribed in terms of pseudo depth using one’s favorite model. The conversion is based here 

on a fault in strike-slip regime and hydrostatic conditions, with a gradient of normal stress with 

depth equal to 23.2 MPa/km (see Text S5 for details). We effectively determine a map of 𝜎# 

needed for an earthquake of a given slip to jump. To do so, we isolate 𝜎# in eq. [6] and assume 

𝑉-../ = 10-3 m/s, 𝑉# = 30 mm/yr (i.e assuming there is always on the receiving fault an area 

slipping at loading rate; see last paragraph of Section 4.2), 𝑎 = 0.01 and test a constant slip 

amplitude of 1.0 m, equivalent roughly to a 𝑀!6.8 (using the slip-length and length-magnitude 

scaling laws from Leonard (2010)). The map of 𝜎# related to the maximum jump distance is 

represented in Figure 4.b. It shows that for relatively strong 𝜎#, it is relatively difficult to jump 

(e.g. 1.25 km maximum jump distance for 𝜎# = 23.2 MPa / ~1 km pseudo depth; see contour 

line). Inversely, as 𝜎# decreases linearly, it is exponentially easier to jump a larger distance (e.g. 

~11 km maximum jump distance for 𝜎# = 2.3 MPa / ~0.1 km pseudo depth; see contour line). 

This is better seen on Figure 4.a, in which the black curve represents a cut section of the 𝜎# map 

for Y = 0 km. As 𝜎# approaches zero linearly, the maximum jump distance goes to infinity. If 

interpreted in terms of depth, maximum jump distance approaches infinity when approaching 

the surface. This has strong implications as it suggests that most earthquake ruptures that jumps 

from one fault to another should do so close to the surface. Note that the map in Figure 4.b and 

the profile in Figure 4.a can be easily modified to retrieve similar results for different values of 



slip. This is possible based on the assumptions of uniform slip distribution and negligible impact 

of the second tip of the source fault. Figure 4.c is an illustration of the normalization of the 

maximum distance of jump as a function of 𝜎# based on the slip value. We want to emphasize 

that 𝜎# represents the effective normal stress on the fault and that it is also dependent on pore 

fluid pressure (Huang et al., 2025). Any areas with high fluid pressure which induces low effective 

normal stress will also facilitate rupture jumps (Huang et al., 2025).  

A similar exercise can be applied to estimate the maximum jump distance as a function of slip, 

which in turn can be transcribed in terms of magnitude (e.g. using the slip-length and length-

magnitude scaling laws from Leonard, 2010)). If we fix 𝑉-../ = 10-3 m/s, 𝑉# = 30 mm/yr, 𝑎 = 

0.01 and consider a value of	𝜎# = 2.3 MPa (~0.1 km pseudo depth), a map of slip related to the 

maximum jump distance can be retrieved (Figure 4.d). As expected, a slip of ~1.0 m (~𝑀!6.8) 

allows for a jump of ~11 km as seen in Figure 4.b. 

 

6. Computation of jump probabilities  

6.1. Example for a fixed angle between two faults 

In this section, we show how the equation for 𝑉-../ can be used to compute probabilities of an 

earthquake to jump between two faults. For simplicity, we again assume two parallel linear 

faults, uniform slip distribution for seismic events and negligible impact of the stress field due to 

the second tip of the source fault. In this section, the angle between the faults is fixed while in 

the next Section we will explore the uncertainty on the angle. 



To provide an example, we test a setting where the 2nd fault is at 𝐻 = 400 m from the first fault 

(i.e. restraining step; Figure S7), with an overlap of 𝐷 = 3 km, and explore uncertainties of the 

parameters of eq. [6]. We assume that the source fault is 40 km long (~𝑀!6.8), which, using the 

length-slip scaling law from Leonard (2010) and related uncertainty, produce a normal 

distribution of slip in log10 scale: 𝑁(𝑙𝑜𝑔&#(1.0), 0.4) 𝑙𝑜𝑔&#(𝑚) (Figure 5.e). Note that only the slip 

is needed to compute 𝑉-../ and that the length-slip scaling law is solely used here to provide 

uncertainties on the slip. Those uncertainties are quite large since the 5 and 95 % percentiles of 

the distribution are associated with slip of 0.2 and 4.5 m. For 𝜎#, we assume a normal distribution 

of 𝑁(23.2,6.0)	𝑀𝑃𝑎, corresponding to the conditions at 1 km pseudo-depth according to the 

normal stress with depth gradient used in this study (Figure 5.f; see Text S5 for details). The 

distribution is truncated at 11.3 and 35.2 MPa at its lower and upper bounds, respectively, to 

keep our example in a strike-slip regime. 𝑉# is assumed Gaussian with a mean value of 30 mm/yr 

and an uncertainty equivalent to 10% of its mean:  𝑁(30	,3)	𝑚𝑚/𝑦𝑟 (Figure 5.g). This choice for 

𝑉# assumes that there is always a point on the receiver fault that is at least slipping at loading 

rate and available for the jump (see last paragraph of Section 4.2). 𝑎 is also assumed Gaussian, 

𝑁(0.010,0.005), but is truncated at 0 to avoid any negative values (Figure 5.h). 

These distributions are sampled 30 000 times allowing to compute 30 000 maps of 𝑉-../. For 

each map, any location with 𝑉-../ > 109:𝑚/𝑠 is assumed to be a location were the earthquake 

rupture tested will jump. The probability of jumping at a specific geographic location is calculated 

as the number of samples that managed to jump at this location divided by the total number of 

samples tested (i.e. 30 000). A map of probability of jumping, 𝑃;<5=, can thus be estimated, as 



shown in Figure 5.a. The probability of jumping on the second fault is estimated as the maximum 

probability sampled at the location of the fault. In this study, this probability is 59%. 

 

Figure 5: Probability 𝑃,-./ of an event of 40 km length to jump on a second fault, fixing the angle of the 

receiver fault to 0°. The probabilities were computed using 30 000 samples from the distribution of the 

parameters indicated in (e), (f), (g) and (h). (a) Map of 𝑃,-./. The black horizontal lines represent the 

source and receiver faults. Contours in full and dotted line correspond to the probabilities of 50% and 5%, 

respectively. The grey histogram in panel (b) and (c) is the distribution of the maximum 𝑉())" on the 

receiver fault computed exploring the uncertainty of all the parameters. (b) Distribution of 𝑉())"  when 

one parameter is fixed (see values of the vertical colored lines in panel (e) to (h)) while the uncertainty of 

the others is explored. The vertical black dashed line represents the threshold of 10-3 m/s over which an 

event is assumed an earthquake and thus has jumped to the 2nd fault. The probabilities of jumping are 



indicated in parenthesis. (c) Distribution of 𝑉())"  when the uncertainty of one parameter is explored 

while the other parameters are fixed. (d) 𝑃,-./ as a function of slip for a distribution of 𝜎* centered 

around 23 MPa (full black line) and 2.3 MPa (dotted black line). 

 

We can also retrieve for each of the 30 000 tests the distribution of 𝑉-../ along the second fault and 

select for each distribution the maximum value. The histogram of maximum 𝑉-../ at the location of 

Fault 2 is shown in grey in Figure 5.b and c. The probability of jumping is calculated here as the number 

of maximum 𝑉-../ above 10-3 m/s divided by the number of samples. This probability is estimated at 

𝑃;<5== 59%. 

We can then provide a sensitivity test by either fixing one parameter while exploring the 

uncertainty of other parameters (Figure 5.b) or by exploring the uncertainty of one parameter 

while the other parameters are fixed (Figure 5.c). For the 1st case, when 𝜎*, 𝑉# or 𝑎 are fixed the 

shape of the maximum 𝑉-../ distribution does not change. On the contrary, when fixing only the 

slip the maximum 𝑉-../ distribution changes (Figure 5.b) which suggests that the slip uncertainty 

controls the probability	𝑃;<5=. This is confirmed when exploring the uncertainty of one 

parameter while the other ones are fixed (Figure 5.c). Exploring the uncertainty of slip provides 

a distribution of maximum 𝑉-../ similar to when the uncertainties of all the parameters are 

explored. The distribution of maximum 𝑉-../ is sharp when exploring the uncertainty of 𝑉# (-3.3 

and -3.0 𝑙𝑜𝑔&#(𝑚) for 1 and 99 percentiles, respectively), highlighting the weak weight of this 

parameter in the calculation of the final probability, given the uncertainties we determined. 

Finally, we see that the distribution of maximum 𝑉-../ when exploring the uncertainty of 𝑎 (and 



to a lesser extent 𝜎#) has a shape similar to the one when the slip is the only parameter fixed 

(brown curve in Figure 5.b). This shows that the uncertainty of 𝑎 is the second most important 

parameter for the calculation of the probabilities, given the uncertainties explored here. 

Diminishing the uncertainty of the length-slip scaling law would give more weight to the 

uncertainty of 𝑎 as shown in Figure S8. This sensitivity test highlights here the weight of the 

uncertainties of each parameter, uncertainties that could be diminished by future studies or site 

specific data. 

Since slip mainly controls 𝑃;<5=, we show in Figure 5.d how 𝑃;<5= evolves with slip. In the 

example in the paragraph above, 𝜎# and related uncertainties are determined for a case of 

pseudo-depth of 1 km. In reality, the depth at which earthquakes jump is not well documented 

and constrained, and 𝜎# depends also on other parameters than just depth, including pore 

pressure. In Figure 5.d we show additionally the results for a pseudo-depth of 0.1 km, with 𝜎# 

following a normal distribution of 𝑁(2.3,0.6)	𝑀𝑃𝑎. For the 1 km pseudo-depth case (~23 MPa), 

we observe that 𝑃;<5= starts to increase smoothly at ~𝑙𝑜𝑔&#(𝑠𝑙𝑖𝑝) = −1.0	𝑙𝑜𝑔&#(𝑚) (i.e. 0.1 m) 

before reaching almost a 100% at 𝑙𝑜𝑔&#(𝑠𝑙𝑖𝑝) = 0.3	𝑙𝑜𝑔&#(𝑚) (i.e. 0.5 m). For the 0.1 km 

pseudo-depth case (~2.3 MPa), everything is shifted −1.0	𝑙𝑜𝑔&#(𝑚) towards lower slip values. 

The shape of 𝑃;<5= is controlled here by the uncertainties of the other parameters, mainly 𝑎 and 

𝜎#. 

6.2. Examples with angle uncertainties between two faults 

Until now the angle between Fault 1 and 2 was fixed. We provide here examples on how to take 

into account the uncertainty of the angle between the two faults.  



Changing the angle between the two faults will change the pattern of Coulomb and normal stress 

change (Figure S4 and S5) as well as 𝜎# which depends on the angles of the faults relative to the 

regional principal static stress field. We create first an abacus of the Coulomb and normal stress 

changes for every 5° interval, stress changes which are normalized by the slip for the same reason 

as explained in Section 5.1, i.e., the hypothesis on the uniform slip distribution for seismic events 

and the negligible impact of the stress field due to the second tip of the source fault. This abacus 

makes the calculations faster. The regional static stress field is fixed at the optimal angle of 30° 

relative to the source fault. We explore here the uncertainty of the normal stress, 𝜎#, of the 

source fault similarly to the previous section (i.e. 𝑁(23.2,6.0)	𝑀𝑃𝑎), calculate the principle 

stresses 𝜎& and 𝜎: based on the 𝜎# sampled assuming that the Mohr circle should be tangent to 

the Mohr criteria using a coefficient of friction of 0.6, and sample the normal stress on the 

receiver fault using the appropriate angle relative to 𝜎& (see Figure S9). 

Based on those uncertainties, we suggest here two approaches to include the effect of the angle 

uncertainty between the two faults. The first assumes the patches of the receiver fault have an 

angle uncertainty that follows a Gaussian distribution, here centered on 0° with 10° as standard 

deviation. It assumes that even though the position of the fault is known, the sub-patches of the 

fault have a roughness following the chosen distribution. While we chose here a Gaussian 

distribution for simplicity, any other type of distribution can be chosen as input (e.g. Brodsky et 

al., 2016; Candela et al., 2011). The results are shown in Figure 6.a. As it is difficult to distinguish 

any differences between Figure 5.a and 6.a, we show in Figure 6.b the difference between the 

two maps (probability map with angle uncertainty centered on 0° minus the probability map for 

a fixed angle of 0°). We observe that probabilities drop slightly (~10%) at the position of the 



probability distribution for a fixed angle while it increases slightly at its borders (~15%). Indeed, 

some samples from the 30 000 possible have now angles closer to 10 or 20°, and thus give less 

weight in terms of probability for angles at 0°. The second approach to include angle uncertainties 

assumes that there will always be a fault patch optimally oriented for an earthquake to jump. 

Effectively, for each 30 000 samples, all angles are tested, and for each geographic location, the 

angle which produces the maximum 𝑉-../ is selected. The results are shown in Figure 6.c and 

show two main high probability lobes at an extensional position. A map of the optimal angle, 

considering the uncertainties explored, is also presented in Figure S10. Note that the extensional 

position is also favored here as it is located parallel to the maximum principal stress 𝜎& which 

induces minimum normal stress (𝜎# equal to 𝜎:) and maximizes 𝑉-../. The angle of the principal 

stresses is, to some extent, a modifier of the probability map without the effect of the regional 

stress (i.e. taking the same normal stress for both faults). An example of this second approach 

without the effect of the regional stress is shown in Figure S11 and still highlights the two main 

high probability lobes at an extensional position but with less force.  



 

Figure 6: Impact on 𝑃,-./ of exploring the uncertainty of the angle between the source and receiver fault. (a) 

Same as Figure 5.a but with an angle uncertainty which follows a Gaussian distribution centered on 0° and with 

a standard deviation of 10°. (b) Difference between the map of 𝑃,-./ while exploring the angle uncertainty 

(Figure 6.a) and the one where the angle is fixed (Figure 5.a). (c) Map of 𝑃,-./ assuming that there will always 

be a fault patch optimally oriented for an earthquake to jump on the receiver fault (represented by the black 

dashed line). The small thin black lines indicate the angle at which the receiver fault is optimally oriented to 

host a jump. 

 

7. Discussion 



In this study, we highlight the key factors controlling an earthquake jumping from one fault to 

another, based on the rate-and-state friction law and the geometrical configuration of two faults. 

The angle between the two faults controls the pattern of high and low probability through the 

normalized Coulomb (∆𝐶PPPP) and normal (∆𝜎PPPP) stress changes (see eq. [6]). The amplitude of this 

pattern is then modulated by the slip, 𝜎#, 𝑎, and	𝑉#. While we can manage to provide rough 

uncertainties for the slip, 𝑎, and	𝑉#, values for the parameter 𝜎# are trickier to impose. This is 

important as very low value of 𝜎# lead to potentially very large jump distances, up to infinity if 𝜎# 

approaches 0. 

We provide here an illustration of an approach to constrain the values of 𝜎# using the empirical 

probabilities from Biasi & Wesnousky (2016). In their dataset of 76 earthquakes, including 46 in 

strike-slip regime, no events managed to pass a step greater than or equal to 6 km, which results 

in a probability to jump such steps equal to 0. Among those events, the 2010 Yushu earthquake 

and its foreshock of magnitude 𝑀!6.8 and 6.1, respectively, failed to pass a step of 6 km in an 

extensional regime. We test here the minimum 𝜎# possible for such events to fail to jump a 6 km 

step. To do so, we explore values of 𝑉# using the normal distribution 𝑁(3.5	,0.5)	𝑚𝑚/𝑦𝑟 since 

the slip rate on the Yushu segment is about 3-4 mm/yr (Zhang et al., 2022), and explore the same 

uncertainties for 𝑎 as in the previous Sections. We calculate for a setting of two overlapping 

parallel faults, for both restraining and extensional regimes, the probability 𝑃;<5= as a function 

of 𝜎# for different values of slip (Figure 7.a and b). The 5, 50 and 95 percentiles of those curve 

are estimated and reported in a slip versus 𝜎# map (Figure 7.c et d). According to a co-seismic slip 

inversion based on GPS and InSAR data (Wen et al., 2013), the maximum slip reaches 2 m while 

surrounding areas slip roughly one order of magnitude less (~0.2 m). For a step of 6 km in 



extensional regime, as for the Yushu earthquake, the minimum 𝜎# possible for a slip of 0.2 m is 

2.1 MPa (120 m in pseudo-depth) taking the 5% percentile of 𝑃;<5= (Figure 7.d). Note that while 

this example takes advantage of earthquakes that failed to pass fault steps to retrieve a lower 

bound of 𝜎#, one can also use earthquakes that succeeded to pass to constrain an upper bound 

of 𝜎#. 

As 𝜎# decreases together with depth, the probability to jump to secondary faults at further 

distance increases (Figure 4.a and c), which increases slip distribution and partitioning at the 

surface. It supports the idea that the total displacement partitioned at the surface along 

secondary faults (off-fault deformation) is probably equivalent to the displacement occurring at 

depth on the main rupture (Antoine et al., 2024).  



 

Figure 7: 𝑃,-./ as a function of slip and 𝜎*. (a) 𝑃,-./ as a function of 𝜎* for different values of slip and 

for a restraining step of 6 km. (b) Same as (a) but for an extensional step. (c) Map of 𝑃,-./ in the slip-𝜎* 

space for a restraining step 6 km. The dark red lines indicate the position of 5, 50 and 95 % probabilities. 

(d) Same as (c) but for a extensional step. The red patch indicates the values of slip and 𝜎* within 5 and 

95% probability associated with the 2010 Yushu earthquake and its foreshock of magnitude 𝑀+6.8 and 

6.1, respectively, that failed to jump a 6 km step. According to this diagram, the Yushu earthquakes fails 

to jump at probabilities above 95% (𝑃,-./ <5%) for 𝜎* above 2.1 MPa (i.e. pseudo depth>120 m), 

assuming slip of 0.2 m. 

 



The calculations of probabilities in Section 5 expected earthquakes to stop at the tip of the source 

fault. But an earthquake can stop before reaching it as a result of specific stress conditions on 

the fault (Michel et al., 2017). To take into account this aspect, it might be more reasonable to 

extrapolate along the source fault the highest probabilities to jump (Figure S12). 

The probability calculations in Section 5 did not take into account the effect of the fault tip the 

furthest away from the step. This effect is not negligible but decreases with the length of an 

earthquake as implied by the length-slip scaling laws (e.g. 𝑙𝑜𝑔&#(𝑆𝑙𝑖𝑝) = 0.833 ∗ 𝑙𝑜𝑔&#(𝐿) −

3.84 for 3.4≤𝐿≤45 km; Leonard, 2010). For uniform slip distributions, it is straight forward to add 

the second tip effect by superposing the Coulomb and normal stress map of the second tip which 

has an inverted pattern to the tip closest to the step. Figure S3 illustrates the impact of the second 

tip for uniform slip distributions. 

Among the main limitations in the computation of fault jump probabilities is that the propagation 

and impact of seismic waves is not taken into account. The waves generated by an earthquake 

can pass through the receiver fault and change its shear and normal stress, and dynamically 

trigger a jump (Brodsky and van der Elst, 2014; Harris et al., 1991). This is additionally 

complexified as waves carry the source radiation pattern and directivity of the source fault, might 

have constructive or destructive patterns of stress change on the receiver fault and will also 

interact with the earth surface (Harris and Day, 1999; Hu et al., 2016; Oglesby et al., 1998). Eq. 

[6] might still hold considering the hypothesis behind it, but taking into account the effect of 

waves is challenging. Additionally, we assume here a fully elastic medium while fault damage and 

plastic processes actually occur during an earthquake and will modify to a certain extent the jump 

probabilities. Incorporating elastoplastic bulk response into seismic cycle simulations   ̶  using 



pressure-sensitive Drucker-Prager plasticity   ̶  have shown to modify fault behavior, especially 

for restraining steps (Figure S7), inducing rupture segmentation, temporal clustering, and more 

frequent jumps from one fault to another (Mia et al., 2024). The framework accounts for ruptures 

that jump immediately from one fault to another, but does not capture ruptures that occur with 

a slight delay after the initial rupture on the source fault. Note that the 𝑉-../ criterion becomes 

less accurate as slip rate increases, as discussed in Text S6. The definition of an earthquake, 

defined here using a slip rate detection threshold of 10-3 m/s, has thus implications but does not 

affect the conclusions of our study (Text S6). We interpret that once the fault reaches this 

detection threshold, rupture is very likely to transition to dynamic behavior, as observed in most 

simulations. Additionally, although the simulations show a temporal evolution of 𝑉# (e.g. the 

‘healing’ period; see Section 3 and Figure S2.c), the probabilities calculated with the criterion are 

not time dependent. We assume that the 𝑉# of the receiver fault is always at the loading rate. 

Finally, note that the predictions of our approach in terms of fault jump are coherent with the 

results of other studies using rate-and-state friction (e.g. Kroll et al., 2023; see Text S7 for details). 

 

8. Conclusion and Perspective 

This study focuses on characterizing a criterion to evaluate the probability of an earthquake to 

jump from one fault to another. This criterion (Eq. [6]), 𝑉-../, is based on the rate-and-state 

friction law and assumes an instantaneous stress interaction between the source fault, hosting 

the earthquake, and the receiver fault, on which the earthquake rupture might propagate. 2D 

quasi-dynamic seismic cycle simulations were used to confirm the validity of the criterion in the 



rate-and-state framework. We further proposed an approach to evaluate the probability of an 

earthquake to jump and provided a sensitivity test of 𝑉-../. 2D settings were presented as 

examples in this study, but the approach used here can be applied to 3D problems.  

The criterion evaluates the initiation of seismic slip on the receiver fault but does not determine 

whether the rupture will propagate further. The continuation of the rupture propagation depends 

on the state of the receiver fault, for which the amount of elastic energy accumulated since the 

previous earthquake likely plays an important role (Weng and Ampuero, 2019, 2020).  

The criterion depends on parameters that can be potentially estimated or measured. ∆𝐶 and ∆𝜎 

regroup the information on both the earthquake slip distribution of the source fault and on the 

geometry of the step. But they are insufficient by themselves to predict if an earthquake will jump 

or not. 𝑎 can be estimated from experimental studies (e.g. Blanpied et al., 1991; Cappa et al., 

2019). 𝑉# can be assumed close to the source fault loading rate. Estimating 𝜎# concentrates the 

main challenges as small values implies longer jump distances, distances which seem improbable 

considering observations (Biasi and Wesnousky, 2016). To constrain the probabilities of fault jump, 

it will be necessary to characterize the depth profile of 𝜎# in the very shallow region, to evaluate 

if a minimum 𝜎# exists,  to understand if earthquake slip deficit, slip partitioning, effect of free 

surface and plastic processes among other phenomenas at the surface counteract the  effect of 

the decrease of 𝜎# on jump distances. Finally, it is important, using the data available (e.g. 

seismological records), to observe and document more thoroughly and systematically the location 

at which fault rupture jump occurs, whether it happens in the deeper or shallower portion of the 

fault.  

  



Open Research 

All the necessary data to reproduce the results are available at (Michel et al., 2025). 

 

Conflict of Interest 

The authors declare no conflicts of interest relevant to this study. 

 

Acknowledgements 

This project has received funding from the Agence National de la Recherche (ANR EQ-TIME; 

Projet-ANR-19-CE31-0031). PR acknowledges support the European Research Council (ERC) 

Starting Grant 101040600 (HYQUAKE). A significative portion of the analyses reported in this 

paper were done using MATLAB (The MathWorks Inc., 2023). We thank the reviewers and 

editors for their insightful comments which helped improve the study substantially. 

  



Bibliography 
Anderson, E.M., 1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society 8, 

387–402. 

Andrews, D.J., 1976. Rupture velocity of plane strain shear cracks. J Geophys Res 81, 5679–5687. 
https://doi.org/10.1029/JB081i032p05679 

Bai, K., Ampuero, J.-P., 2017. Effect of Seismogenic Depth and Background Stress on Physical Limits of 
Earthquake Rupture Across Fault Step Overs. J Geophys Res Solid Earth 122, 10,280-10,298. 
https://doi.org/10.1002/2017JB014848 

Baize, S., Nurminen, F., Sarmiento, A., Dawson, T., Takao, M., Scotti, O., Azuma, T., Boncio, P., 
Champenois, J., Cinti, F.R., Civico, R., Costa, C., Guerrieri, L., Marti, E., McCalpin, J., Okumura, K., 
Villamor, P., 2020. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault 
Displacement Hazard Analyses. Seismological Research Letters 91, 499–520. 
https://doi.org/10.1785/0220190144 

Beeler, N.M., Tullis, T.E., Weeks, J.D., 1994. The roles of time and displacement in the evolution effect in 
rock friction. Geophys Res Lett 21, 1987–1990. https://doi.org/10.1029/94GL01599 

Biasi, G.P., Wesnousky, S.G., 2021. Rupture Passing Probabilities at Fault Bends and Steps, with 
Application to Rupture Length Probabilities for Earthquake Early Warning. Bulletin of the 
Seismological Society of America 111, 2235–2247. https://doi.org/10.1785/0120200370 

Biasi, G.P., Wesnousky, S.G., 2016. Steps and Gaps in Ground Ruptures: Empirical Bounds on Rupture 
Propagation. Bulletin of the Seismological Society of America 106, 1110–1124. 
https://doi.org/10.1785/0120150175 

Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1991. Fault Stability Inferred from Granite Sliding 
Experiments at Hydrothermal Conditions. Geophys Res Lett 18, 609–612. 

Brodsky, E.E., Kirkpatrick, J.D., Candela, T., 2016. Constraints from fault roughness on the scale-
dependent strength of rocks. Geology 44, 19–22. https://doi.org/10.1130/G37206.1 

Brodsky, E.E., van der Elst, N.J., 2014. The Uses of Dynamic Earthquake Triggering. Annu Rev Earth Planet 
Sci 42, 317–339. https://doi.org/10.1146/annurev-earth-060313-054648 

Candela, T., Renard, F., Schmittbuhl, J., Bouchon, M., Brodsky, E.E., 2011. Fault slip distribution and fault 
roughness. Geophys J Int 187, 959–968. https://doi.org/10.1111/j.1365-246X.2011.05189.x 

Cappa, F., Scuderi, M.M., Collettini, C., Guglielmi, Y., Avouac, J.-P., 2019. Stabilization of fault slip by fluid 
injection in the laboratory and in situ. Sci Adv 5. https://doi.org/10.1126/sciadv.aau4065 

Chartier, T., Scotti, O., Lyon-Caen, H., Richard-Dinger, K., Dieterich, J.H., Shaw, B.E., 2021. Modelling 
earthquake rates and associated uncertainties in the Marmara Region, Turkey. Natural Hazards and 
Earth System Sciences 21, 2733–2751. https://doi.org/10.5194/nhess-21-2733-2021 

Das, S., Aki, K., 1977. Fault plane with barriers: A versatile earthquake model. J Geophys Res 82, 5658–
5670. https://doi.org/10.1029/JB082i036p05658 



Day, S.M., Dalguer, L.A., Lapusta, N., Liu, Y., 2005. Comparison of finite difference and boundary integral 
solutions to three-dimensional spontaneous rupture. J Geophys Res Solid Earth 110, 1–23. 
https://doi.org/10.1029/2005JB003813 

Diederichs, A., Nissen, E.K., Lajoie, L.J., Langridge, R.M., Malireddi, S.R., Clark, K.J., Hamling, I.J., 
Tagliasacchi, A., 2019. Unusual kinematics of the Papatea fault (2016 Kaikōura earthquake) suggest 
anelastic rupture. Sci Adv 5. https://doi.org/10.1126/sciadv.aax5703 

Dieterich, J.H., 1979. Modeling of Rock Friction Experimental Results and Constitutive Equations. J 
Geophys Res 84, 2161–2168. 

Dieterich, J.H., 1972. Time-Dependent Friction in Rocks. J Geophys Res 77, 3690–3697. 

Dieterich, J.H., Richards-Dinger, K.B., 2010. Earthquake Recurrence in Simulated Fault Systems, in: 
Savage, M.K., Rhoades, D.A., Smith, E.G.C., Gerstenberger, M.C., Vere-Jones, D. (Eds.), 
Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II. Springer Basel, Basel, pp. 
233–250. https://doi.org/10.1007/978-3-0346-0500-7_15 

Duan, B., 2019. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest China: 1. 
A Simplified Double Bend. Tectonics 38, 1101–1119. https://doi.org/10.1029/2018TC005195 

Duan, B., Liu, Z., Elliott, A.J., 2019. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in 
Northwest China: 2. The Realistically Complex Fault Geometry. Tectonics 38, 1120–1137. 
https://doi.org/10.1029/2018TC005196 

Duan, B., Oglesby, D.D., 2006. Heterogeneous fault stresses from previous earthquakes and the effect 
on dynamics of parallel strike-slip faults. J Geophys Res Solid Earth 111. 
https://doi.org/10.1029/2005JB004138 

Duan, B., Oglesby, D.D., 2005. Multicycle dynamics of nonplanar strike-slip faults. J Geophys Res Solid 
Earth 110, 1–16. https://doi.org/10.1029/2004JB003298 

Erickson, B.A., Jiang, J., Barall, M., Lapusta, N., Dunham, E.M., Harris, R., Abrahams, L.S., Allison, K.L., 
Ampuero, J.-P., Barbot, S., Cattania, C., Elbanna, A., Fialko, Y., Idini, B., Kozdon, J.E., Lambert, V., 
Liu, Y., Luo, Y., Ma, X., Best McKay, M., Segall, P., Shi, P., van den Ende, M., Wei, M., 2020. The 
Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip 
(SEAS). Seismological Research Letters 91, 874–890. https://doi.org/10.1785/0220190248 

Field, E.H., Arrowsmith, R.J., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., 
Jordan, T.H., Madden, C., Michael, A.J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, 
B.E., Thatcher, W.R., Weldon, R.J., Zeng, Y., 2014. Uniform California Earthquake Rupture Forecast, 
Version 3 (UCERF3)--The Time-Independent Model. Bulletin of the Seismological Society of America 
104, 1122–1180. https://doi.org/10.1785/0120130164 

Gabriel, A.-A., Ulrich, T., Marchandon, M., Biemiller, J., Rekoske, J., 2023. 3D Dynamic Rupture Modeling 
of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early 
Observations. The Seismic Record 3, 342–356. https://doi.org/10.1785/0320230028 

Hamling, I.J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, 
L., Wright, T.J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., 



Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., Barrell, D.J.A., Van Dissen, R., Langridge, 
R., Little, T., Nicol, A., Pettinga, J., Rowland, J., Stirling, M., 2017. Complex multifault rupture during 
the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science (1979) 356. 
https://doi.org/10.1126/science.aam7194 

Harris, R.A., Archuleta, R.J., Day, S.M., 1991. Fault steps and the dynamic rupture process: 2-D numerical 
simulations of a spontaneously propagating shear fracture. Geophys Res Lett 18, 893–896. 
https://doi.org/10.1029/91GL01061 

Harris, R.A., Day, S.M., 1999. Dynamic 3D simulations of earthquakes on en echelon faults. Geophys Res 
Lett 26, 2089–2092. https://doi.org/10.1029/1999GL900377 

Harris, R.A., Day, S.M., 1993. Dynamics of fault interaction: parallel strike-slip faults. J Geophys Res 98, 
4461–4472. https://doi.org/10.1029/92JB02272 

Heimisson, E.R., 2020. Crack to pulse transition and magnitude statistics during earthquake cycles on a 
self-similar rough fault. Earth Planet Sci Lett 537, 116202. 
https://doi.org/10.1016/j.epsl.2020.116202 

Hu, F., Oglesby, D.D., Zhang, W., Lu, Z., 2025. Bi-Material Effects on Critical Jump Distance Over Step-
Overs. J Geophys Res Solid Earth 130. https://doi.org/10.1029/2024JB030992 

Hu, F., Zhang, Z., Chen, X., 2016. Investigation of earthquake jump distance for strike-slip step overs 
based on 3-D dynamic rupture simulations in an elastic half-space. J Geophys Res Solid Earth 121, 
994–1006. https://doi.org/10.1002/2015JB012696 

Huang, L., Heimisson, E.R., Dal Zilio, L., 2025. Poroelastic effects on rupture propagation across fault 
stepovers. Earth Planet Sci Lett 649, 119103. https://doi.org/10.1016/j.epsl.2024.119103 

Jiang, J., Erickson, B.A., Lambert, V.R., Ampuero, J.P., Ando, R., Barbot, S.D., Cattania, C., Zilio, L.D., Duan, 
B., Dunham, E.M., Gabriel, A.A., Lapusta, N., Li, D., Li, M., Liu, D., Liu, Y., Ozawa, S., Pranger, C., van 
Dinther, Y., 2022. Community-Driven Code Comparisons for Three-Dimensional Dynamic Modeling 
of Sequences of Earthquakes and Aseismic Slip. J Geophys Res Solid Earth 127. 
https://doi.org/10.1029/2021JB023519 

Kaneko, Y., Avouac, J.-P., Lapusta, N., 2010. Towards inferring earthquake patterns from geodetic 
observations of interseismic coupling. Nat Geosci 3, 363–369. https://doi.org/10.1038/ngeo843 

Kroll, K.A., Dieterich, J.H., Richards-Dinger, K.B., Oglesby, D.D., 2023. 3-D Simulations of earthquakes 
rupture jumps: 1. Homogeneous pre-stress conditions. Geophys J Int 234, 395–403. 
https://doi.org/10.1093/gji/ggad048 

Lapusta, N., Liu, Y., 2009. Three-dimensional boundary integral modeling of spontaneous earthquake 
sequences and aseismic slip. J Geophys Res 114. https://doi.org/10.1029/2008JB005934 

Lapusta, N., Rice, J.R., Ben-Zion, Y., Zheng, G., 2000. Elastodynamic analysis for slow tectonic loading 
with spontaneous rupture episodes on faults with rate- and state-dependent friction. J Geophys 
Res Solid Earth 105, 23765–23789. https://doi.org/10.1029/2000JB900250 



Leonard, M., 2010. Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average 
Displacement, and Moment Release. Bulletin of the Seismological Society of America 100, 1971–
1988. https://doi.org/10.1785/0120090189 

Liu, D., Duan, B., Scharer, K., Yule, D., 2022. Observation-Constrained Multicycle Dynamic Models of the 
Southern San Andreas and the Northern San Jacinto Faults: Addressing Complexity in 
Paleoearthquake Extent and Recurrence With Realistic 2D Fault Geometry. J Geophys Res Solid 
Earth 127. https://doi.org/10.1029/2021JB023420 

Lozos, J.C., 2016. A case for historic joint rupture of the San Andreas and San Jacinto faults. Sci Adv 2. 
https://doi.org/10.1126/sciadv.1500621 

Lozos, J.C., Oglesby, D.D., Brune, J.N., Olsen, K.B., 2012. Small intermediate fault segments can either aid 
or hinder rupture propagation at stepovers. Geophys Res Lett 39. 
https://doi.org/10.1029/2012GL053005 

Luo, Y., Ampuero, J.-P., Galvez, P., van den Ende, M., Idini, B., 2017. QDYN: aQuasi-DYNamic earthquake 
simulator (v1.1). https://doi.org/https://doi.org/10.5281/zenodo.322459 

Mia, M.S., Abdelmeguid, M., Harris, R.A., Elbanna, A.E., 2024. Rupture Jumping and Seismic Complexity 
in Models of Earthquake Cycles for Fault Stepovers with Off-Fault Plasticity. Bulletin of the 
Seismological Society of America 114, 1466–1480. https://doi.org/10.1785/0120230249 

Michel, S., Avouac, J.-P., Lapusta, N., Jiang, J., 2017. Pulse-like partial ruptures and high-frequency 
radiation at creeping-locked transition during megathrust earthquakes. Geophys Res Lett 44, 
8345–8351. https://doi.org/10.1002/2017GL074725 

Michel, S., Jolivet, R., Rollins, C., Jara, J., Dal Zilio, L., 2021. Seismogenic Potential of the Main Himalayan 
Thrust Constrained by Coupling Segmentation and Earthquake Scaling. Geophys Res Lett 48, 1–10. 
https://doi.org/10.1029/2021GL093106 

Michel, S., Scotti, O., Hok, S., Bhat, H.S., Kheirdast, N., Romanet, P., Almakari, M., Cheng, J., 2025. 
Seismic cycle simulations et results for manuscript: Probability of earthquake fault jumps from a 
new physics based criterion in the rate-and-state friction framework (Version v2) [Dataset]. 
Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.15025385 

Molina-Ormazabal, D., Ampuero, J.-P., Tassara, A., 2023. Diverse slip behaviour of velocity-weakening 
fault barriers. Nat Geosci 16, 1200–1207. https://doi.org/10.1038/s41561-023-01312-1 

Oglesby, D., 2008. Rupture Termination and Jump on Parallel Offset Faults. Bulletin of the Seismological 
Society of America 98, 440–447. https://doi.org/10.1785/0120070163 

Oglesby, D.D., 2004. Inverse Kinematic and Forward Dynamic Models of the 2002 Denali Fault 
Earthquake, Alaska. Bulletin of the Seismological Society of America 94, S214–S233. 
https://doi.org/10.1785/0120040620 

Oglesby, D.D., Archuleta, R.J., Nielsen, S.B., 1998. Earthquakes on Dipping Faults: The Effects of Broken 
Symmetry. Science (1979) 280, 1055–1059. https://doi.org/10.1126/science.280.5366.1055 



Ozawa, S., Ando, R., Dunham, E.M., 2023. Quantifying the probability of rupture arrest at restraining and 
releasing bends using earthquake sequence simulations. Earth Planet Sci Lett 617, 118276. 
https://doi.org/10.1016/j.epsl.2023.118276 

Reasenberg, P.A., Simpson, R.W., 1992. Response of Regional Seismicity to the Static Stress Change 
Produced by the Loma Prieta Earthquake. Science (1979) 255, 1687–1690. 
https://doi.org/10.1126/science.255.5052.1687 

Richards-Dinger, K., Dieterich, J.H., 2012. RSQSim Earthquake Simulator. Seismological Research Letters 
83, 983–990. https://doi.org/10.1785/0220120105 

Rodriguez Padilla, A.M., Oskin, M.E., Brodsky, E.E., Dascher-Cousineau, K., Herrera, V., White, S., 2024. 
The Influence of Fault Geometrical Complexity on Surface Rupture Length. Geophys Res Lett 51. 
https://doi.org/10.1029/2024GL109957 

Romanet, P., Bhat, H.S., Jolivet, R., Madariaga, R., 2018. Fast and Slow Slip Events Emerge Due to Fault 
Geometrical Complexity. Geophys Res Lett 45, 4809–4819. https://doi.org/10.1029/2018GL077579 

Roy, M., Marone, C., 1996. Earthquake nucleation on model faults with rate- and state-dependent 
friction: Effects of inertia. J Geophys Res Solid Earth 101, 13919–13932. 
https://doi.org/10.1029/96JB00529 

Ruina, A., 1983. Slip instability and state variable friction laws. J Geophys Res Solid Earth 88, 10359–
10370. https://doi.org/10.1029/JB088iB12p10359 

Ryan, K.J., Oglesby, D.D., 2014. Dynamically modeling fault step overs using various friction laws. J 
Geophys Res Solid Earth 119, 5814–5829. https://doi.org/10.1002/2014JB011151 

Sarmiento, A., Madugo, D., Shen, A., Dawson, T., Madugo, C., Thompson, S., Bozorgnia, Y., Baize, S., 
Boncio, P., Kottke, A., Lavrentiadis, G., Mazzoni, S., Milliner, C., Nurminen, F., Visini, F., 2024. 
Database for the Fault Displacement Hazard Initiative Project. Earthquake Spectra. 
https://doi.org/10.1177/87552930241262766 

Savage, J.C., 1983. A dislocation model of strain accumulation and release at a subduction zone. J 
Geophys Res Solid Earth 88, 4984–4996. https://doi.org/10.1029/JB088iB06p04984 

Shaw, B.E., Dieterich, J.H., 2007. Probabilities for jumping fault segment stepovers. Geophys Res Lett 34, 
L01307. https://doi.org/10.1029/2006GL027980 

Shaw, B.E., Fry, B., Nicol, A., Howell, A., Gerstenberger, M., 2022. An Earthquake Simulator for New 
Zealand. Bulletin of the Seismological Society of America 112, 763–778. 
https://doi.org/10.1785/0120210087 

Shaw, B.E., Milner, K.R., Field, E.H., Richards-Dinger, K., Gilchrist, J.J., Dieterich, J.H., Jordan, T.H., 2018. A 
physics-based earthquake simulator replicates seismic hazard statistics across California, Sci. Adv. 

Sibson, R.H., 1985. Stopping of earthquake ruptures at dilational fault jogs. Nature 316, 248–251. 
https://doi.org/10.1038/316248a0 



Tullis, T.E., Richards-Dinger, K., Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, 
F.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B., 2012. Generic Earthquake 
Simulator. Seismological Research Letters 83, 959–963. https://doi.org/10.1785/0220120093 

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., Xu, W., 2019. Dynamic viability of the 2016 Mw 7.8 Kaikōura 
earthquake cascade on weak crustal faults. Nat Commun 10, 1213. 
https://doi.org/10.1038/s41467-019-09125-w 

Wen, Y., Xu, C., Liu, Y., Jiang, G., He, P., 2013. Coseismic slip in the 2010 Yushu earthquake (China), 
constrained by wide-swath and strip-map InSAR. Natural Hazards and Earth System Sciences 13, 
35–44. https://doi.org/10.5194/nhess-13-35-2013 

Weng, H., Ampuero, J., 2019. The Dynamics of Elongated Earthquake Ruptures. J Geophys Res Solid 
Earth 124, 8584–8610. https://doi.org/10.1029/2019JB017684 

Weng, H., Ampuero, J.-P., 2020. Continuum of earthquake rupture speeds enabled by oblique slip. Nat 
Geosci. https://doi.org/10.1038/s41561-020-00654-4 

Zhang, W., Ji, L., Zhu, L., Liu, C., Jiang, F., Xu, X., 2022. Current Slip and Strain Rate Distribution Along the 
Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations. Front Earth Sci 
(Lausanne) 10. https://doi.org/10.3389/feart.2022.821761 

  



 

Journal of Geophysical Research 

Supporting Information for 

Probability of earthquake fault jumps from physics based criterion. 

Sylvain Michel1,2,3,4, Oona Scotti1,5, Sebastien Hok1,5, Harsha S. Bhat4, Navid Kheirdast4, Pierre 
Romanet6,2, Michelle Almakari4, Jinhui Cheng4, 7  

 

1 Institut de Radioprotection et de sûreté Nucléaire, 31 avenue de la Division-Leclerc, 92262, 
Fontenay-aux-Roses, France  

2 Université Côte d’Azur, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur, Sophia-Antipolis, 
France 

3 CNRS-INSU, Institut des Sciences de la Terre Paris, Sorbonne Université, ISTeP UMR 7193, 
75005 Paris, France 

4 Laboratoire de Géologie, Département de Géosciences, Ecole Normale Supérieure, PSL 
Université, CNRS UMR 8538, 24 Rue Lhomond, 75005, Paris, France. 

5 Now at Autorité de Sûreté Nucléaire et Radioprotection, 31 avenue de la Division-Leclerc, 
92262, Fontenay-aux-Roses, France 

6 Department of Earth Sciences, La Sapienza University of Rome, Rome, Italy  

7 Now at Division of Geological and Planetary Sciences, California Institute of Technology, 
Pasadena, USA  

Contents of this file  

Text S1 to S7 

Figures S1 to S14 

 

Introduction 

This supplementary material provides information about (1) the difference between the 
criterion from Kroll et al. (2023) and the one from this study, (2) the use of different loading 
rates in the simulations, (3) the exploration of the geometrical parameter H of the simulations, 
(4) the selection procedure of events on Fault 1 with high Coulomb stress change but no jump, 



(5) the determination of the normal stress gradient with depth and its uncertainties, (6) the 
implication of the definition of an earthquake on the results and the criterion, and (7) a 
comparison with the study from Kroll et al. (2023). It also contains additional figures which 
illustrate further the content in the main text.  

 

  



Text S1. Difference between the criterion from Kroll et al. (2023) and the one from this study 

In Kroll et al. (2023), the criterion takes the following form: 𝑉>?@AA 	 = 		𝑉#	𝑒𝑥𝑝 @	
&

'	)"
	 A∆𝜏 −

("
)"
∆𝜎B 	C.  

∆𝜎 does not appear in the denominator within the exponential (see Equation [6]). While this 
assumption may hold at greater depths—provided fluids do not significantly reduce the 
effective normal stress—closer to the Earth's surface, ∆σ is likely to become more significant. 

 

Text S2. On the use of different loading rates in the simulations. 

Using the same loading rate for both faults tends to synchronize their behavior: earthquakes on 
Fault 1 occur during the same phase of Fault 2’s interseismic period. To avoid such bias, we 
aimed for earthquakes on Fault 1 to interact with Fault 2 at various stages of its seismic cycle, 
thereby providing a wide range of scenarios. The most straightforward way to achieve this was 
to introduce a contrast in the loading rate between the two faults. Varying the loading rate 
contrast affects the frequency at which earthquakes on Fault 1 attempts to jump on Fault 2. If 
the contrast is too small, some synchronization between the two faults might occur. 

 

Text S3. On the exploration of the geometrical parameter H of the simulations. 

H is the perpendicular distance between the closest tips of the two faults, taken relative to the 
direction of the first fault (Figure 1). The range of H explored in this study is limited (Table 1). 
But it reflects the importance of the impact of the normal stress on fault jumps considering the 
rate-and-state framework. In the simulations, the normal stress applied to the faults are 80 and 
40 MPa for the 1st and 2nd scenarios, respectively. For jumps to occur, and sometimes fail, at 
this level of normal stress, H needs to be quite small (i.e. of the order of what has been tested) 
or the earthquake on the source fault quite large, otherwise they will always fail. For scenario 3, 
with a normal stress around 80 MPa, it is very difficult to jump very far. While the simulations 
have been set up with a limited range for H, the criterion and our study is aimed for a general 
case, i.e. steps as large as wanted. The simulations are only here to test the criterion 𝑉-../. 

 

Text S4. Selection of events on Fault 1 with high Coulomb stress change but no jump. 

For each scenario we select events that did not jump from Fault 1 to 2, but would have if their 
𝑉# equaled the loading rate (green dots in Figure 3). In those circumstances, even though an 
event has a high coulomb and normal stress change, they do not necessarily jump. Figure S13 
provides clearer examples of this class of events than Figure 3. 



 

 

 

Text S5. Determination of the normal stress gradient and its uncertainties 

In our study, the gradient of the normal stress with depth is determined as follow. We set 
ourselves on a fault in strike-slip regime. The maximum and minimum principal stresses, 
respectively 𝜎& and 𝜎:, are thus both horizontal, and the vertical principal stress,	𝜎%, 
corresponds to 𝜎B, such that 𝜎: ≤ 𝜎% ≤ 𝜎&. We take a gradient of 𝜎%  with depth of 23 MPa/km 
as suggested by Zoback et al. (2003) for clastic sedimentary rocks and hydrostatic conditions. 
We also assume that the fault is optimally oriented (i.e. 𝜎&is 30° from the fault taking a 
coefficient of friction of 0.6) and that the Mohr circle calculated from the principal stresses is 
tangent to the Mohr-Coulomb failure envelope. Based on the gradient of 𝜎%, the minimum and 
maximum values for 𝜎& and 𝜎: are calculated when 𝜎& = 𝜎%  and  𝜎: = 𝜎%, respectively. The 
minimum and maximum normal stress, 𝜎#, on the fault at 1 km depth is thus equal to 11.3 and 
35.2 MPa (vertical blue and orange dashed lines in Figure S9.a). We take here an average value 
of the minimum and maximum gradient, which equals to 23.2 MPa/km (vertical green dashed 
line in Figure S9.a). The pseudo-depths shown in Figure 4 and 7 uses this gradient.   

The values and uncertainties of 𝜎# taken in Section 4 (Figure 5.f) are set as follow. We assume 
that the distribution of the normal stress on the generator fault is Gaussian, centered on the 
gradient determined in the previous paragraph (i.e. 23.2 MPa/km). The two standard deviation 
extent of the Gaussian is set to the minimum and maximum normal stress gradient (i.e. 11.3 
and 35.2 MPa/km). The normal distribution of the generator fault is truncated at 11.3 and 35.2 
MPa/km so that the scenario is constrained to a strike-slip regime. The normal stress on the 
receiver fault, 𝜎#, thus depends on the principal stress conditions set on the generator fault and 
on the receiver fault orientation relative to 𝜎&. 

 

Text S6. On the implication of the definition of an earthquake. 

The timing and spatial extent of earthquakes are defined here using a slip rate detection 
threshold of 10-3 m/s, following Romanet et al. (2018), which introduced the algorithm VEGA   ̶
the quasi-dynamic numerical simulator of seismic cycle used in this study. This threshold is not 
standardized across the literature. For example, some studies adopt a higher value of 10-1 m/s 
(e.g. Lapusta & Liu, 2009). For comparison, we present simulation results obtained using a slip 
rate thresholds of 10-2 m/s  in Figure S13. The main conclusions of our study remains 
unchanged.  

 



Nevertheless, increasing this threshold have some implications. The accuracy of 𝑉-../	relies on 
the assumption that the state variable in the rate-and-state friction law does not have time to 
evolve. At sufficiently high slip rates, this assumption breaks down, as illustrated by the aging 

law used in this study (Ruina, 1983): C*
C7
= 1 − %*

+
. As slip rate 𝑉 increases, dC*

C7
d also increases, 

indicating more rapid evolution of the state variable. Consequently, the 𝑉-../ criterion is likely 
to become less accurate at high slip rates. Importantly, this limitation does not affect the 
conclusions of our study. Our interpretation is that once the fault reaches the chosen detection 
threshold, rupture will transition to dynamic behavior.  

We examine the temporal evolution of dC*
C7
d as a function of 𝑉 in one simulation of scenario 1 on 

Fault 2. A change of dC*
C7
d is defined as small when it is less than a fraction 𝜒 of 𝜃. In this analysis, 

we set 𝜒 = 5%. Figure S14.a shows the evolution of |𝜒𝜃| − dC*
C7
d over the entire simulation for 

all velocity weakening subfaults. Small changes in dC*
C7
d, according to our definition, occur when 

|𝜒𝜃| − dC*
C7
d > 0 (red dots in Figure S14.a), and correspond mostly when 𝑉 is below ~10-3 m/s, 

although some time steps with |𝜒𝜃| − dC*
C7
d < 0 (black dots inf Figure S14.a) are still observed 

down to 𝑉~10-5 m/s. However, when restricting the analysis to the periods near the onset of 
seismic events — from half a year before event initiation to a tenth of the total event duration 

— large changes of dC*
C7
d only occurs for slip rates exceeding ~10-3 m/s (Figure S14.b). This result 

illustrate the range of validity of the criterion within the simulations and supports the choice of 
10-3 m/s as a reasonable velocity threshold for defining earthquakes in this modeling 
framework.  

 

Text S7. Comparison with the study from Kroll et al. (2023) 

Kroll et al. (2023) test whether a rupture is able to jump from one fault to another, in a step 
geometry, using two models: the quasi-dynamic model RSQSIM and fully dynamic FaultMod. 
For both cases they simulate single ruptures on planar 3D faults reaching 20 km depth but 
assuming a constant initial normal and shear stress over the whole fault (60 MPa and 28.38 
MPa, respectively). Using Equation [6] from our study, we retrieve coherent results with Kroll et 
al. (2023) using their parametrization: 𝑉7DE@?F ≈ 0.15	𝑚/𝑠. For this test, we assumed 𝑎 = 0.01, 
𝜎# = 60𝑀𝑃𝑎, and ∆𝐶 = 1 MPa, which is a rough value according to the Coulomb stress change 
value at the renucleation locations in figure 5 of their paper. As 𝑉# is not available in their study, 
we fixed it at 30 mm/yr. We also chose a normal stress change, ∆𝜎, of 1 MPa,  similar to the 
Coulomb stress change, but it has in this case almost no impact as the effect of 𝜎# will dominate 
according to Equation[6] (i.e. 𝜎# ≫ ∆𝜎).  

 



 

Figure S1: (a) Coulomb and (b) normal stress change profiles of event 6 (see Figure 2) along the 
receiver fault estimated from the simulation (red line) using our procedure in Section 4 and 
using Okada’s approach based on event 6 slip distribution (blue dots). The vertical dashed black 
line correspond to overlap extent, i.e. the position in X of the tip of the generator fault. Okada’s 
approach allows us to estimate the effect of the static stress impact on Fault 2 without the 
stress redistribution occurring on fault 2 between the timing of the samples (i.e. between 𝑡# 
and 𝑡7; Section 4) in response to the static stress change, and present in the simulations. There 
are little differences between the results of both calculations which suggests that the static 
stress impact term is dominating the stress redistribution term.  

 

  



 

Figure S2: (a) Slip rate through time of three points on the fault which positions are indicated in 
panel (b). (b) Slip rate of Fault 2 through time. The time is indicated here in time step. In the 
simulations, time step size decreases when slip rate increases, which helps visualizing seismic 
events that last a few seconds. The position of the three points sampled on the fault are 
indicated by the vertical white dotted lines and numbers. VW and VS stand for Velocity 
Weakening and Strengthening, respectively. (c) Zoom of panel (a) as indicated by the red 
rectangle. Note that for point 1 (in blue), which is at the tip of the fault, the slip rate drops after 
an earthquake and then increases during a ‘healing’ period before reaching a slip rate equal to 
the loading rate. 

 

 

 

 



 

Figure S3: (a) shows the maps Coulomb stress change normalized by the slip on faults of 10 and 
5 km length, respectively, but only taking into account the effect of one tip of the faults. Since 
the slip distributions are uniform and that the maps are normalized by their slip, the maps in (a) 
are identical. (b) is the same as (a) but now considering the two tips of the faults. The maps of 
normalized Coulomb stress change are consequently not identical. (c) Normalized Coulomb 
stress change effect of the 2nd tip at the location of the 1st tip, for the faults of 10 and 5 km 
length, respectively (as if the first tip had no effect). (d)  Same as (c) but this time not 
normalized. The slips were estimated using the length-slip scaling law of Leonard, (2010). We 
see that the effect of the second tip is higher for a fault of 5 km than for a fault of 10 km length, 
considering the length-slip scaling law.  

 

 



 

Figure S4: Abacus of Coulomb stress change, ∆𝐶, normalized by the slip for a uniform slip 
distribution and assuming no stress effect due to the second tip of the fault. 

 

 

 

Figure S5: Same as Figure S4 but for the normal stress change, ∆𝜎. 

 



  

 

Figure S6: Impact on the maximum jump distance of the parameters in Eq. [6] assuming 
different slip distributions along the fault and no contamination of the stress impact from the 
second tip of the source fault, the one furthest away of a potential 2nd fault. All tests were 
realized using the same fixed values of 𝑎 and 𝑉#. (a) Uniform (black) and elliptical (red) slip 
distribution tested. The elliptical distribution is evaluated assuming a static (‘penny-shaped’) 
crack of 20 km radius and uniform stress drop of 1.75 MPa. This elliptic slip distribution has an 
average slip of 1 m, similar to the uniform slip distribution. (b) Map of maximum jump distance 
for an associated 𝜎# using the elliptical slip distribution of panel (a). The red contours indicate 
the position of the maximum jump distance for 𝜎# = 23 and 2.3 MPa, corresponding to a 
pseudo depth of 1 and 0.1 km, respectively. The black contours are the same but for the 
uniform slip distribution in panel (a). The red profile in panel (c) is taken from this map along 
the coordinate Y=0.  (c) Profile of 𝜎# along the direction of Fault 1 as a function of the maximum 
jump distance, assuming the slip distributions in panel (a). 𝜎# can be interpreted as a pseudo 
depth. We use here the gradient 23 MPa/km. (d) Map of maximum jump distance for an 
associated slip amplitude fixing 𝜎# to 2.3 MPa (pseudo depth of ~0.1 km), based on the elliptical 
slip distribution. The length of the fault is here fixed to 40 km. The dashed white contour 
indicates the position of the maximum jump distance for the elliptical slip distribution of panel 
(a). 



 

 

 

 

Figure S7: Cartoon of a restraining and extensional bends. 

 

 

 

 

Figure S8: Same as Figure 5 but with the slip uncertainty divided by 2. 



 

Figure S9: Uncertainties on 𝜎#. (a) Shear stress, 𝜏, as a function of normal stress, 𝜎G. In this 
study, the vertical principal stress,	𝜎%, is assumed equal to 23 MPa/km (see Text S1) such that 
𝜎: ≤ 𝜎% ≤	𝜎& since we set ourselves in a strike-slip regime. We also assume that 𝜎& is also 
optimally oriented at 30° relative the generator fault and that the Mohr circle defined by the 
principle stresses is tangent to the Mohr-Coulomb failure criteria (red line). Two extreme stress 
conditions are thus possible with 𝜎: = 𝜎%  (orange Mohr circle) and with 𝜎& = 𝜎%  (blue Mohr 
circle). The range of normal stress on the generator fault is thus constrained between the 
values of normal stress, at Mohr-Coulomb failure criteria, of the two cases of extreme stress 
conditions (blue and orange vertical dashed lines). The distribution of the uncertainty of the 
normal stress on the generator fault is assumed normal, centered at the middle of the normal 
stress range (vertical dashed green line) with two standard deviation set to the range extent 
(blue and orange vertical dashed lines). All the Mohr circles explored for the generator fault are 
represented by the grey semi-circles, while the black circle correspond to the average one. The 
green dots on the X-axis correspond to the values of normal stress explored on the generator 
fault. (b) Uncertainty of the normal and horizontal principal stresses on the generator fault. The 
distributions are cut at their two standard deviation limits. The normal stress on the receiver 
fault depends on the orientation of the fault relative to 𝜎&. 

  



 

Figure S10: (a) Map of optimal angles for an earthquake to jump for the same setting and 
uncertainties as in Figure 6c. Contours in full and dotted line correspond to the probabilities of 
50% and 5%, respectively. The small thin black lines and grey areas indicate the angle at which 
the receiver fault is optimally oriented to host a jump and their associated uncertainties. (b) 
Standard deviation map of the optimal angles for rupture jump. The line with high standard 
deviation correspond to a position where any angle of the receiver fault will produce a 𝑉-../ of 
similar amplitude. 

 

  



 

Figure S11: (a) Same as Figure 6.c but without the effect of orientation of the regional stress on 
𝜎#. (b) Map of optimal angles for an earthquake to jump for the same setting and uncertainties 
as in Figure 6c. Contours in full and dotted line correspond to the probabilities of 50% and 5%, 
respectively. The small thin black lines and grey areas indicate the angle at which the receiver 
fault is optimally oriented to host a jump and their associated uncertainties. (b) Standard 
deviation map of the optimal angles for rupture jump. The line with high standard deviation 
correspond to a position where any angle of the receiver fault will produce a 𝑉-../ of similar 
amplitude. 

 

 

 

  



 

 

 

Figure S12: (a) Same as Figure 5.a. (b) Same as (a) but with maximum probabilities extrapolated 
along the fault to potentially take into account, as a maximizing scenario, the possibility that 
the propagating earthquake jump along the way on a receiver fault.   

 



 

Figure S13: Same as Figure 3 but taking 10-2 m/s as the threshold to define an earthquake. 
Results from the simulations for all scenarios (Section 3). For all panels, the orange and black 
dots indicate events that succeeded and failed to jump, respectively. Blue dots correspond to 
events with high Coulomb stress change, ∆𝐶, but that did not jump. (a), (b) and (c) show the ∆𝐶 
on Fault 2 due to events occurring on Fault 1 at the location of maximum 𝑉-../. (d), (e) and (f) 
show the normal stress change, ∆𝜎, on Fault 2 due to events occurring on Fault 1 at the 
location of maximum 𝑉-../. Details on how ∆𝐶 and ∆𝜎 are retrieved are in Section 3. (g), (h) 
and (i) show the effective normal stress, 𝜎#, on Fault 2 just before the start of events on Fault 1 
at the location of maximum 𝑉-../. (j), (k) and (l) show the slip rate, 𝑉#, on Fault 2 just before 
the start of events on Fault 1 at the location of maximum 𝑉-../. 

 



 

Figure S14: (a) Evolution of |𝜒𝜃| − dC*
C7
d as a function of slip rate 𝑉 in one simulation of scenario 

1, for all velocity weakening subfaults on Fault 2. A change of dC*
C7
d is defined as small when it is 

less than a fraction 𝜒 of the state variable 𝜃. In this analysis, we set 𝜒 = 5%. Small changes in 

dC*
C7
d, according to our definition, occur when |𝜒𝜃| − dC*

C7
d > 0 (red dots), while large changes 

occur when |𝜒𝜃| − dC*
C7
d < 0 (black dots). (b) Same as panel (a) but restricted to the periods 

near the onset of seismic events — from half a year before event initiation to a tenth of the 
total event duration. 

 

 

 

 


