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A B S T R A C T

Bugs in software are commonplace, challenging, and expensive to
deal with. One widely used direction is to use program analyses and
reason about software to detect bugs in them. In recent years, the
growth of areas like web application development and data analysis
has produced large amounts of publicly available source code corpora,
primarily written in dynamically typed languages, such as Python
and JavaScript. It is challenging to reason about programs written in
such languages because of the presence of dynamic features and the
lack of statically declared types.

This dissertation argues that, to build software developer tools for
detecting and understanding bugs, it is worthwhile to analyze code
corpora, which can uncover code idioms, runtime information, and
natural language constructs such as comments. The dissertation is di-
vided into three corpus-based approaches that support our argument.
In the first part, we present static analyses over code corpora to gen-
erate new programs, to perform mutations on existing programs, and
to generate data for effective training of neural models. We provide
empirical evidence that the static analyses can scale to thousands
of files and the trained models are useful in finding bugs in code.
The second part of this dissertation presents dynamic analyses over
code corpora. Our evaluations show that the analyses are effective in
uncovering unexpected behaviors when multiple JavaScript libraries
are included together and to generate data for training bug-finding
neural models. Finally, we show that a corpus-based analysis can
be useful for input reduction, which can help developers to find a
smaller subset of an input that still triggers the required behavior.

We envision that the current dissertation motivates future endeav-
ors in corpus-based analysis to alleviate some of the challenges faced
while ensuring the reliability and correctness of software. One direc-
tion is to combine data obtained by static and dynamic analyses over
code corpora for training. Another direction is to use meta-learning
approaches, where a model is trained using data extracted from the
code corpora of one language and used for another language.

xii



Z U S A M M E N FA S S U N G

Softwarefehler sind alltäglich, herausfordernd und teuer zu beheben.
Es ist weit verbreitet Programmanalysen anzuwenden und die Soft-
ware genau auszuwerten, um diese Fehler zu entdecken. In den
letzten Jahren hat das Wachstum von Bereichen wie Web-
Anwendungsent-wicklung und Datenanalyse große Mengen an öf-
fentlich verfügbaren Quellcode-Korpora hervorgebracht, die haupt-
sächlich in dynamisch typisierten Sprachen wie Python und JavaScript
geschrieben sind. Aufgrund des Vorhandenseins dynamischer Eigen-
schaften und des Fehlens statisch deklarierter Typen ist es eine
Herausforderung solche Programme auszuwerten, die in solchen
Sprachen geschrieben wurden.

In dieser Dissertation wird argumentiert, dass es für die Erstel-
lung von Programmentwicklungswerkzeugen zum Erkennen und
Verstehen von Fehlern sinnvoll ist, Code-Korpora zu analysieren,
die Code-Idiome, Laufzeitinformationen und natürlichsprachliche
Konstrukte wie Kommentare aufdecken können. Die Dissertation
gliedert sich in drei korpusbasierte Ansätze, die unsere Argumen-
tation unterstützen. Im ersten Teil stellen wir statische Analysen
von Code-Korpora vor, um neue Programme zu generieren, Muta-
tionen an bestehenden Programmen durchzuführen und Daten für
ein effektives Training von neuronalen Modellen zu erzeugen. Wir
liefern empirische Beweise dafür, dass die statischen Analysen auf
Tausende von Dateien skalieren können und die trainierten Modelle
beim Auffinden von Fehlern im Code nützlich sind. Der zweite Teil
dieser Dissertation stellt dynamische Analysen von Code-Korpora
vor.

Unsere Auswertungen zeigen, dass die Analysen effektiv sind, um
unerwartete Verhaltensweisen aufzudecken, wenn mehrere JavaScript-
Bibliotheken zusammen eingebunden sind, und um Daten für das
Trainieren von neuronalen Modellen zur Fehlerfindung zu erzeugen.
Schließlich zeigen wir, dass eine korpusbasierte Analyse für die
Inputreduktion nützlich sein kann, was Entwicklern helfen kann,
eine kleinere Teilmenge an Input zu finden, der das gewünschte
Verhalten abruft.
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Wir hoffen, dass die vorliegende Dissertation zukünftige Bestre-
bungen im Bereich der korpusbasierten Analyse motiviert, um den
Herausforderungen entgegen zu wirken und die Zuverlässigkeit und
Fehlerfreiheit von Software zu gewährleisten. Eine Möglichkeit ist
Daten zu kombinieren, die aus statischen und dynamischen Analysen
von Code-Korpora für das Training gewonnen wurden. Eine andere
Möglichkeit ist die Verwendung von Meta-Learning-Ansätzen, bei
denen ein Modell mit Daten trainiert wird, die aus den Code-Korpora
einer Sprache extrahiert und für eine andere Sprache verwendet wer-
den.



1
I N T R O D U C T I O N

Bugs in software are expensive [14], unavoidable, and present a key
challenge in software development. It has been estimated that soft-
ware developers spend almost half of their time debugging programs
which equates to $312 billion per year [92]. As a result, to aid develop-
ers, there has been a large body of research [178] on the development
of automated tools for fast and precise detection of software bugs.
Languages such as JavaScript and Python have become popular1 in
recent years because of their ease of use and the availability of large
number of libraries. For example, JavaScript has become the de facto
language for web applications, and Python for data analysis and ma-
chine learning-based applications. This calls for increased attention
towards designing approaches and developing tools that ensure the
correctness and reliability of software written in such languages.

Program analysis is a widely used approach to find bugs in soft-
ware. Such bug detecting approaches for languages such as Python
and JavaScript either check for commonly made mistakes based on
pre-defined rules or perform sophisticated analyses of programs.
These approaches can be broadly classified into two groups:

• Static analysis-based approaches: Such approaches reason
about programs without actually executing them. As a result,
static analysis approximates the runtime behavior and can pro-
duce false positives. For JavaScript, static analysis tools that
help with code quality and report commonly made mistakes
are JSHint [59], ESLint [268], etc. and for Python there are tools
such as Pyre [269], flake8 [270].

• Dynamic analysis-based approaches: Such approaches analyze
programs during execution and reason about program behavior

1 https://www.tiobe.com/tiobe-index/

1
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2 introduction

based on runtime values. In practice, only a subset of program
code gets executed at runtime, which can cause dynamic anal-
ysis to miss many legitimate cases. For JavaScript, approaches
such as DLint [132] and TypeDevil [142] use dynamic analysis
to report warnings about code quality and for Python there is
an approach by Xu et al. [172] that finds bugs using program
traces.

In addition to the above two broad categories, some approaches like
JSNose [93] for JavaScript, also combine static and dynamic analysis
into a hybrid analysis to reason about program behavior.

Because of the popularity of JavaScript and Python, large code
corpora written in such dynamically typed languages are available
and instead of relying on pre-defined rules to uncover mistakes, such
corpora may be leveraged to extract code idioms, which can aid in
finding bugs. This dissertation argues that:

Analyzing large code corpora of dynamically typed languages pro-
vides opportunities to uncover repeated patterns that aid in training
learning-based approaches and solve software engineering prob-
lems such as detecting inconsistencies, bugs in code, and reduction
of test inputs.

In this dissertation, we show why dynamically typed languages
such as JavaScript and Python are particularly prone to errors and
present six approaches to support our thesis, that analyzing code
corpora aids in solving software engineering problems. The goal of
this dissertation is to use program analysis and novel learning-based
techniques to alleviate some of the challenges faced for ensuring the
correctness and reliability of programs. In particular, we address the
following three key challenges.

• (C-I) Generating a large number of valid and realistic source code ex-
amples: Automatically generated source code examples provide
a way to improve the quality and ensure the correctness of soft-
ware. The generated examples can be useful in two key ways.
First, the examples can be used to test programs that consume
such source code as input. Second, the generated examples can
be useful for training neural models, where the downstream
tasks can be bug finding, code smell detection, etc.

For both of the use cases mentioned above, the generated source
code examples need to be valid and realistic. For the first use
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case to test other programs, the generated examples need to be
correct and exercise the program to find bugs. It is challenging
because the generation needs some form of reasoning about
the target program under test. For example, if the target is a
JavaScript engine that accepts JavaScript programs, generating
random strings as input to the engine would likely not exer-
cise it enough to find bugs. A better approach is to generate at
least syntactically valid JavaScript programs or generate pro-
grams that do not crash during execution, which is challenging.
Similarly, for the second use case to train an effective neural
classifier for specific downstream tasks using generated source
code examples also need to be correct and realistic which again
need some form of understanding about the task.

• (C-II) Reasoning about programs written in dynamically typed lan-
guages: Reasoning about programs is a way to mitigate mis-
takes in programs. The two widely used program reasoning ap-
proaches are static and dynamic analysis. Reasoning about pro-
grams is particularly challenging for languages such JavaScript
or Python because of the lack of statically declared types, which
causes making assumptions about behavior of a program at a
given point difficult.

• (C-III) Reducing test inputs: The third challenge is related to
the first in the sense that once a test input has triggered an
unexpected behavior, it is useful to find a subset of the input that
still triggers the same behavior. This is helpful for developers
who want to understand and fix the bug. For example, suppose
we have an input JavaScript program that triggers a fault in
the JavaScript engine. A challenge now is to find a smaller or
reduced JavaScript program that still triggers the same fault
thereby help in debugging of the engine. It is difficult to reduce
a test input because the behavior gets triggered at runtime and
finding a subset of the program that gets executed and triggers
the bug is not always straightforward.

1.1 outline and contributions

This section provides an outline of the dissertation and summarizes
our main contributions. The dissertation is divided into three parts: 1)
Corpus-based static analysis to detect software bugs, 2) Corpus-based
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dynamic analysis to detect software bugs, 3) Corpus-based input
reduction. Each of the three parts is divided into chapters that each
represent an article. Figure 1.1 provides an overview of the outline.

1.1.1 Corpus-based Static Analysis to Find Software Bugs

Statically analyzing source code can uncover many interesting fea-
tures about programs such as frequent code idioms, function signa-
tures. We use static analysis to generate new programs, to seed bugs
in programs, and to obtain data for training neural models.

treefuzz In Chapter 2, we present TreeFuzz, a language-independ
ent, blackbox fuzz testing approach that generates tree-structured
data, in our case JavaScript programs or HTML documents. The
core idea is to statically analyze a corpus of example programs to
infer a set of probabilistic, generative models, which then create new
programs that has properties similar to the corpus.

Primary Contributions: In TreeFuzz, we address the challenge (C-I) of
generating large numbers of valid and realistic source code examples.
Our evaluation shows that 96% of the TreeFuzz-generated programs
are syntactically correct. Additionally, TreeFuzz is the first language-
independent, blackbox fuzz testing approach that enables testing a
variety of programs that expect structured input data. We specifically
evaluate on JavaScript engines and uncover various inconsistencies
among browsers, including browser bugs and unimplemented lan-
guage features.

semseed Chapter 3 presents SemSeed, a technique for automat-
ically seeding bugs in a semantics-aware way. The key idea is to
imitate how a given real-world bug would look like in other pro-
grams by semantically adapting the bug pattern to the local context.
To reason about the semantics of pieces of code, our approach builds
on learned token embeddings that encode the semantic similarities
of identifiers and literals.

Primary Contributions: Similar to TreeFuzz, SemSeed also addresses
the challenge (C-I) of generating large numbers of valid and realistic
source code examples. We find that in 97% of the cases, a SemSeed-
induced mutation results in a syntactically correct program. SemSeed
is the first to use learned token embeddings for mutating programs
and seed bugs. The bug-seeded programs, along with the original
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Corpus of Code

Static 
analysis

Dynamic 
analysis

Input 
reduction

Program 
mutation

Machine
learning
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Find bugs

Automatically Reducing Tree-Structured 
Test Inputs 
(Chapter 7)

Semantic Bug Seeding: A Learning-Based 
Approach for Creating Realistic Bugs 
(Chapter 3)
NL2Type: Inferring JavaScript Function 
Types from Natural Language Information 
(Chapter 4)

Learning from Runtime Behavior to Find
 Name-Value Inconsistencies 
(Chapter 6)

ConflictJS: Finding and Understanding 
Conflicts Between JavaScript Libraries 
(Chapter 5)

TreeFuzz: Learning Probabilistic Models of
Input Data for Fuzz Testing 
(Chapter 2)

Figure 1.1: Overview of the contributions and the connections between
them.
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correct programs, are useful for training more effective neural bug
detection models.

nl2type In Chapter 4 we provide details of our approach called
NL2Type that addresses the lack of type annotations in dynamically
typed languages. We analyze a corpus of JavaScript code to extract in-
formation, such as comments, function names, and parameter names.
We use the extracted information to train a neural model that helps
annotating not yet annotated JavaScript code by suggesting types to
the developer.

Primary Contributions: NL2Type addresses the second challenge
(C-II) of reasoning about programs specifically for languages that
are dynamically typed. In particular, we provide empirical evidence
that natural language information, such as comments, are also valu-
able in reasoning about programs. The trained model based on the
information extracted from a JavaScript corpus is able to identify
inconsistencies in existing type annotations. The main contribution
of the author of this dissertation in this project has been to co-design
the approach and to implement the static analysis that extracts the
relevant information for training the classifier.

1.1.2 Corpus-based Dynamic Analysis to Find Software Bugs

While static analysis can provide many interesting properties about
programs, it is still an approximation of the actual behavior. More
precise information is obtained by analyzing the runtime behavior of
programs also known as dynamic analysis. We use dynamic analysis
to uncover bugs and obtain data for training neural classifiers.

conflictjs Chapter 5 presents ConflictJS, an approach to analyze
a corpus of code, in this case a collection of JavaScript libraries for
conflicts. Due to the lack of namespaces in JavaScript, libraries when
included together all share the same global namespace. As a result,
one library may inadvertently modify or even delete the APIs of
another library, causing unexpected behavior of library clients that
we call as conflicts. ConflictJS finds and validates conflicts between
JavaScript libraries in two steps. At first, a dynamic analysis of in-
dividual libraries identifies pairs of potentially conflicting libraries.
Then, targeted test synthesis validates potential conflicts by creating
a client application.
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Primary Contributions: With ConflictJS, we address the challenge
(C-II) of reasoning about programs written in dynamically typed lan-
guages using runtime values. We find that dynamic analysis is useful
in detecting bugs and inconsistencies between JavaScript libraries.
Additionally, ConflictJS is the first to address the problem of conflicts
among libraries in a language such as JavaScript without explicit
namespaces.

nalin Chapter 6 presents Nalin, a technique to automatically
detect name-value inconsistencies. The approach dynamically ana-
lyzes a corpus of Python programs to track assignments of values to
names and then trains a neural machine learning model that predicts
whether a name and a value fit together.

Primary Contributions: Like ConflictJS, Nalin also addresses the
challenge (C-II) of reasoning about programs written in dynamically
typed languages using runtime values. We find the dynamic analysis
to be useful in training neural models that can detect bugs in real-
world code. Nalin is also the first approach to find coding issues
through machine learning on runtime behavior. We provide empirical
evidence of the effectiveness of the approach that finds name-value
inconsistencies in real-world code with a reasonable precision.

1.1.3 Corpus-based Input Reduction

gtr Chapter 7 shows that in addition to bug finding, large cor-
pora of code may be leveraged for other tasks such as reducing test
inputs. We present an effective technique called Generalized Tree
Reduction algorithm (GTR), to reduce arbitrary test inputs that can
be represented as a tree, such as program code, PDF files, and XML
documents. The efficiency of input reduction is increased by learning
transformations from a corpus of example data.

Primary Contributions: With GTR, we address the challenge (C-III)
of reducing test inputs. Our evaluation suggest that the presented
approach is significantly more effective and efficient than two state-
of-the-art techniques. The main contribution of the author of this
dissertation is to co-design the approach and the implementation of
the experiment where we successfully demonstrate GTR’s effective-
ness on JavaScript programs.
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1.2 list of articles

The current dissertation is based on the following articles that are
either published or under consideration at some venue. In the follow-
ing, we list each chapter and the corresponding article form where it
has been adapted:

• Chapter 2: Learning to Fuzz: Application-Independent Fuzz Test-
ing with Probabilistic, Generative Models of Input Data [165],
Technical Report, Distinguished Poster Award at the European
Conference on Object-Oriented Programming
(ECOOP), 2016

• Chapter 3: Semantic Bug Seeding: A Learning-Based Approach
for Creating Realistic Bugs, Distinguished Paper Award, Euro-
pean Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2021

• Chapter 4: NL2Type: Inferring JavaScript Function Types from
Natural Language Information [240], International Conference
on Software Engineering (ICSE), 2019

• Chapter 5: ConflictJS: Finding and Understanding Conflicts Be-
tween JavaScript Libraries [224], International Conference on
Software Engineering (ICSE), 2018

• Chapter 6: Learning from Runtime Behavior to Find Name-Value
Inconsistencies, Under Submission

• Chapter 7: Automatically Reducing Tree-Structured Test Inputs [190],
International Conference on Automated Software Engineering
(ASE), 2017

• Not part of this dissertation: A Survey of Compiler Testing [251],
ACM Computing Surveys (CSUR), 2020

We also make the implementations of our most recent approaches
public. Table 1.1 shows the mapping from each chapter to the publicly
hosted implementation.

https://2016.ecoop.org/attending/awards
https://2021.esec-fse.org/track/fse-2021-papers#event-overview
https://2019.icse-conferences.org/track/icse-2019-Technical-Papers?#event-overview
https://www.icse2018.org/track/icse-2018-Technical-Papers?#event-overview
http://ase-conferences.org/ase/past/ase2017/accepted_papers.html
https://dl.acm.org/doi/abs/10.1145/3363562


1.2 list of articles 9

Table 1.1: Mapping between chapters and the corresponding implementa-
tion.

Article Implementation

Chapter 3 https://github.com/sola-st/

SemSeed

Chapter 4 https://github.com/sola-da/

NL2Type

Chapter 5 https://github.com/sola-da/

ConflictJS

Chapter 6 https://github.com/sola-st/

Nalin

Chapter 7 https://github.com/sherfert/

GTR

https://github.com/sola-st/SemSeed
https://github.com/sola-st/SemSeed
https://github.com/sola-da/NL2Type
https://github.com/sola-da/NL2Type
https://github.com/sola-da/ConflictJS
https://github.com/sola-da/ConflictJS
https://github.com/sola-st/Nalin
https://github.com/sola-st/Nalin
https://github.com/sherfert/GTR
https://github.com/sherfert/GTR




Part I

C O R P U S - B A S E D S TAT I C A N A LY S I S T O
F I N D S O F T WA R E B U G S

Statically analyzing source code can uncover many inter-
esting features about programs. We use static analysis to
generate new programs, to seed bugs in programs and to
obtain data for training neural models.





2
T R E E F U Z Z : L E A R N I N G P R O B A B I L I S T I C M O D E L S
O F I N P U T D ATA F O R F U Z Z T E S T I N G

Generating test inputs is one of the key ways to find bugs in software.
To find bugs in complex programs, complex input data is required
that is not only valid but also realistic. The approach of generating
random input data to test programs is also known as fuzz testing.
Fuzz testing has been successfully applied, e.g., to compilers [81], run-
time engines [39, 84], refactoring engines [33], office applications [40],
and web applications [68]. In Chapter 1, we discuss the challenge
(C-I) of generating test inputs, i. e., it is difficult to generate a large
number of valid and realistic source code examples. The current
chapter presents a corpus-based approach to address this challenge.
Our approach, called TreeFuzz, learns probabilistic models by sta-
tistically analyzing a corpus of tree-structured input data such as
JavaScript programs (represented as ASTs), HTML documents. After
learning, TreeFuzz generates a large number of valid and realistic
tree-structured data which are useful for finding bugs.

2.1 motivation

Existing approaches that try to alleviate the challenge (see C-I in
Chapter 1) of generating valid programs or that comply with specific
input format roughly fall into three categories. First, format-specific
approaches, such as Csmith [81] and FLAX [68], target software that
processes one particular input format and rely on built-in knowledge
of this format. Manually creating a format-specific fuzzer is a time-
consuming and strongly heuristic effort that cannot be easily adapted
to other formats and even newer versions of the same format. Yang
et al., who created the popular Csmith compiler testing tool, report
that it took “substantial manual tuning of the 80 probabilities that

13
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govern Csmith’s random choices” to “make the generated programs
look right” [81]. Second, whitebox approaches analyze the program
under test to generate input that triggers particular paths, e.g., based
on symbolic execution. SAGE [40] and BuzzFuzz [50] are examples of
whitebox fuzzing approaches. Unfortunately, the assumption made
by these approaches that the tested program is available at input
generation time is not always given, e.g., when creating inputs for dif-
ferential testing across multiple supposedly equivalent programs [12]
or when fuzz testing remote web applications. Moreover, whitebox
techniques often suffer from scalability issues because they reason
about an exponential number of execution paths. Third, grammar
inference-based approaches, such as Glade [180], first learn a context-
free grammar and then randomly sample the grammar to create new
input. While effective at testing the parsing component of a program,
these approaches are limited by the expressiveness of context-free
grammars and typically produce data that violates constraints of the
input format that cannot be captured by a context-free grammar.

A stream of research investigates probabilistic models of data,
in particular source code, and how to learn such models from a
corpus of examples. For example, n-gram-based models [83, 104],
graph-based models [140], and models based on probabilistic higher-
order grammars [149, 167] have been explored. These models have
been shown to be useful for code completion but none of them has
been used for generating new data from scratch, as required for
fuzz testing. Work by Godefroid et al. [187], applies recurrent neural
networks to learn a model of input data for fuzz testing. However,
their approach focuses on fuzzing the parser component of a program
under test, not on generating syntactically correct data that reaches
deeper into the program.

This chapter merges two streams of research, fuzz testing and
learning probabilistic models of structured data, into a novel approach
for learning how to test complex programs by learning from examples
of input data. We focus on input data that can be represented as a
labeled, ordered tree. Our approach, called TreeFuzz, learns models
of such input data by traversing each tree once while accumulating
information. For each node and edge in the tree, TreeFuzz gathers
facts that explain why the node or edge has a particular label and
appears at a particular position in the tree. After having traversed
all data, the approach summarizes the gathered information into
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probabilistic models. Finally, the learned models guide TreeFuzz
while generating new trees in a depth-first manner.

Our approach provides several benefits:

• Format-independent. By considering tree-shaped data, we abstract
away details of specific input formats and support a wide range
of data formats that can be transformed into trees. For example,
TreeFuzz can be applied to source code (represented as an AST),
documents (PDF, ODF, HTML), and images (SVG, JPG). To sup-
port a specific format, our implementation relies on a parser
that transforms data into a tree and a pretty printer that trans-
forms fuzz-generated trees into data. Parsers and pretty-printers
are available for many input formats and otherwise could be
created based on existing grammar-inference techniques [158,
180].

• Fully automatic. In contrast to format-specific approaches, Tree-
Fuzz relies neither on built-in knowledge about the input format
nor on any manual intervention while learning from examples
and generating new data.

• Extensible set of models. Instead of focusing on a single probabilis-
tic model, we design TreeFuzz as a framework that supports
an extensible set of models. Each model describes a particu-
lar aspect of the input format. We describe six models in this
chapter. For example, one of these models suggests child nodes
based on parent nodes, similar to a probabilistic context-free
grammar. Another model suggests node labels in a way that
enforces definition-use-like relationships between subtrees of
a generated tree. During generation, the approach reconciles
models by chaining them and by letting one model refine the
suggestions of previous models. The main benefits of this multi-
model approach are that TreeFuzz considers different aspects of
the input format and that extending TreeFuzz with additional
models is straightforward.

• Expressiveness. The models of TreeFuzz can express constraints
of input formats that cannot be expressed in a context-free
grammar. For example, models can express non-local properties,
such as definition-use-like relationships between subtrees of a
generated tree. We find such non-local properties to be crucial
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for getting past basic checks in the program under test, enabling
fuzz-generated inputs to reach deeply into the program.

• Scalable. The models supported by TreeFuzz are “single-traversal
models”, i.e., they are extracted during a single traversal of
each tree, and they generate new trees in a single pass. The
advantage of such models is that they bound the time of learning
and generation, leading to linear time complexity w.r.t. the
number of examples to learn from and w.r.t. the number of
newly generated trees.

As two examples of input formats that TreeFuzz is useful for, we
apply the approach to a programming language, JavaScript, and
to a markup language, HTML. Given examples of data in these
formats, the approach generates new data with similar properties
as the provided examples. As an application of TreeFuzz-generated
data, we use generated JavaScript programs for differential testing of
web browsers.

Our evaluation assesses the ability of TreeFuzz to generate valid
input data, its performance and scalability, as well as its effective-
ness for fuzz testing. The results show that the approach generates
input data that mostly complies with the expected input format.
Specifically, given a corpus of less than 100 HTML documents, the
approach creates HTML documents that have only 2.06 validation
errors per generated kilobyte of HTML.1 Given a corpus of JavaScript
programs, 96.3% of the created programs are syntactically valid and
16.1% of them execute without any runtime errors. Experiments
with different corpus sizes show that the time required for learning
models and generating new data increases linearly with the num-
ber of examples to learn from. As a result, TreeFuzz scales well to
large sets of examples, such as 100,000 JavaScript files. Finally, we
find that TreeFuzz is effective for fuzz testing web browsers. Us-
ing the TreeFuzz-generated JavaScript programs to fuzz test eight
versions of two popular browsers has revealed various inconsisten-
cies, including browser bugs, unimplemented language features, and
browser-specific behaviors that developers should be aware of.

In summary, this chapter contributes the following:

• A new technique for learning probabilistic, generative models
of tree-shaped data.

1 The example documents are not perfect either: they contain 0.59 errors per kilobyte.
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• An application of the technique, fuzz testing, that shows the
power of inferred probabilistic models beyond already studied
applications, such as code completion.

• An extensible framework that easily supports additional models
beyond the six models described in this chapter.

• Empirical evidence shows that the approach is effective at gen-
erating valid data that is useful for fuzz testing, while scaling
to large amounts of data.

2.2 overview and example

TreeFuzz consists of three phases. First, during the learning phase,
the approach infers from a corpus of examples a set of probabilistic,
generative models that encode properties of the input format. Second,
during the generation phase, TreeFuzz creates new data based on the
inferred models. Finally, the generated data serves as input for the
fuzz testing phase.

As a running example, consider applying TreeFuzz to JavaScript
programs and suppose that the corpus of examples consists only of
the program in Figure 2.1(a). For the evaluation (Section 2.6), we apply
the approach to significantly larger corpuses. TreeFuzz represents
data as a tree with labeled nodes and edges. Figure 2.1(b) shows a
tree representation of the example program, which is the abstract
syntax tree.

2.2.1 Learning

The learning phase of TreeFuzz traverses the tree of the example
while inferring probabilistic, generative models of the input format.
The models capture structural properties of the tree, which represent
syntactic and semantic properties of the input format, i.e. for our
running example, the JavaScript language. For example, the approach
infers that nodes labeled Program have outgoing body edges and that
these edges may lead to nodes labeled VarDeclaration and I f Stmt.
Furthermore, the approach infers the probability of particular desti-
nation nodes. For example, for nodes labeled BlockStmt, an outgoing
edge body leads to an ExprStmt three out of five times. TreeFuzz
infers similar properties for the rest of the tree, providing a basic
model of the syntactic properties of the target language, similar to
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(a) Example data from corpus:
var valid = true, val = 0;
if (valid) {
function foo(num) {
num = num + 1;
valid = false;
return;

}
foo(val);

}

(b) Tree representation of example data:

Program

VarDeclaration IfStmt

VarDeclarator ... Idf BlockStmt

Idf Lit valid FctDecl ExprStmt

valid true Idf Idf BlockStmt CallExpr

foo num ExprStmt ExprStmt ReturnStmt Idf Idf

... ... null foo val

body body

decl decl test consequent

id init name body body

name value id param body expr

name name body body body callee arg

expr expr arg name name

Figure 2.1: Corpus with a single example and its abstract syntax tree. Parts
of the abstract syntax tree have been abstracted for the sake of
conciseness. Idf and Lit denote Identifier and Literal, respectively.

a PCFG. Existing format-specific approaches have built-in knowl-
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edge of such properties. In contrast, TreeFuzz and existing grammar
inference-based approaches learn these properties automatically.

In addition to the PCFG-like properties described above, TreeFuzz
infers more complex properties. For example, TreeFuzz considers the
ancestors of nodes to find constraints about the context in which a par-
ticular node may occur. From the AST in Figure 2.1(b), the approach
infers that nodes labeled ReturnStmt always occur as descendants of
a node FunctionDecl, i.e., the approach infers that return statements
occur inside functions.

Another inferred property considers repeatedly occurring sub-
trees. For example, the approach finds that the id edge of node
FunctionDecl and the callee edge of node CallExpr lead to identi-
cal subtrees Id f name−−→ f oo. If such a pattern occurs repeatedly in
the corpus, TreeFuzz infers that FunctionDecl and CallExpr have a
definition-use-like relation. Such non-local, semantic properties are
crucial to produce input data that are not only syntactically correct
but that also reach code deep inside the program under test. For
example, we observed that without respecting definition-use-like rela-
tions between nodes, most generated JavaScript programs crash after
a few lines because of undefined references. TreeFuzz mitigates this
problem by learning that uses typically have a matching definition.
It is important to note that this and similar properties are inferred
without any a priori knowledge about the input format, except for
examples of trees in this format.

2.2.2 Generation

Based on the inferred models, TreeFuzz creates new trees. Figures 2.2
and 2.3 show four examples of generated trees and their pretty-
printed, textual representations as JavaScript programs. The generated
trees are based on the example in Figure 2.1. Tree generation starts
in a top-down manner and nodes are iteratively expanded guided
by the inferred models. For the example, an inferred model specifies
that the root node of any tree is labeled Program, that Program nodes
have two outgoing edges, and that the children may be labeled Var-
Declaration or I f Stmt. For this reason, all four generated programs
contain two statements, which are variable declarations or if state-
ments. Generated programs have the same identifiers and literals as
in the corpus because TreeFuzz infers the corresponding nodes.
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(a) Generated program 1:

var val = true, valid = true;
if (val) {
foo(val);
function foo(num) {
return;
return;
val = num + 1;

}
}

Program

VarDeclaration IfStmt

... ... Idf BlockStmt

val ExprStmt FctDecl

... ...

body body

decl decl test

name

consequent

body body

... ...

(b) Generated program 2:

if (valid) {
function foo(num) {
return;
valid = false;
num = false;

}
foo(val);

}
var valid = 0, valid = 0;

Program

IfStmt VarDeclaration

... BlockStmt ... ...

FctDecl ExprStmt

... ...

body body

test consequent

body body

... ...

decl decl

Figure 2.2: Programs generated by TreeFuzz based on the example in Fig-
ure 2.1. The left-hand side shows the generated trees; the right-
hand side shows the pretty-printed representations of the pro-
grams. (Two more examples in Figure 2.3)

To enforce the inferred constraint that return statements must
appear within a function declaration, TreeFuzz only creates a Return-
Stmt node when the currently expanded node is a descendant of a
FunctionDecl node. As a result, the return statements in the two pro-
grams of Figure 2.2 are within a function. Enforcing such constraints
avoids syntax errors that TreeFuzz-generated programs would have
otherwise. As an illustration of using complex properties encoded
in the inferred model, recall the definition-use-like relation between
FuncDecl and CallExpr that TreeFuzz infers. Suppose the approach
generates the Id f subtree of a CallExpr node. To select a label for
the destination node of an edge name, the approach checks whether
there already exists a FunctionDecl node with a matching subtree,
and if so, reuses the label of this subtree. As a result, most generated
function calls in Figure 2.2 have a corresponding function declaration,
and vice versa. Creating such relations avoids runtime errors during
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(c) Generated program 3:

if (valid) {
foo(val);
foo(val);

}
var valid = true, val = 0;

Program

IfStmt VarDeclaration

... BlockStmt ... ...

CallExpr CallExpr

... ...

body body

test consequent

body body

... ...

decl decl

(d) Generated program 4:

var valid = 0, valid = 0;
var valid = true, val = 0;

Program

VarDeclaration VarDeclaration

... ... ... ...

body body

decl decl decl decl

Figure 2.3: Programs generated by TreeFuzz based on the example in Fig-
ure 2.1. The left-hand side shows the generated trees; the right-
hand side shows the pretty-printed representations of the pro-
grams. (Two more examples in Figure 2.2)

fuzz testing, e.g., due to undefined functions, that TreeFuzz-generated
programs would have otherwise.

The models that TreeFuzz infers from a single example obviously
overfit the example, and consequently, the generated programs do
not use all features of the JavaScript language. The hypothesis of this
work is that, given a large enough corpus of examples (“big code”),
the approach learns a model that is general enough to create a variety
of other valid examples that go beyond the corpus.

2.2.3 Fuzz Testing

Finally, the data generated by TreeFuzz is given as input to programs
under test. For the running example, consider executing the generated
programs in multiple browsers to compare their behavior. Executing
the program in Figure 2.2(a) exposes an inconsistency between Fire-
fox 45 and Chrome 50. A bug in Firefox2 causes the program to crash
because the function foo declared in the if block does not get hoisted

2 Mozilla bug #585536
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to the top of the block, which leads to a ReferenceError when calling
it. This bug and other problems detected by TreeFuzz are bugs in
the implementation of the semantics of the JavaScript language, i.e.,
problems that go beyond parser component of the program under
test.

2.3 learning and generation

This section describes the first two phases of TreeFuzz: learning and
generation. An important goal of TreeFuzz is to support different
kinds of structured data, including programs written in arbitrary
programming languages and structured file formats. A common
format to represent such data is a labeled, ordered tree, and we use
this representation in TreeFuzz.

Definition 2.1. A labeled, ordered tree t = (N, E) consists of a set N
of nodes and a set E of edges. Each node n ∈ N and each edge e ∈ E has
a label. The function outgoing : N → E × ...× E maps each node to a
tuple of outgoing edges. The function dest : E→ N maps each edge to its
destination node.

For example, a labeled, ordered tree can represent the AST of a
program, the DOM tree of a web page, a JSON file, an XML file, or a
CSS file. Section 2.4 shows how to apply TreeFuzz to some of these
formats. In the remainder of the chapter, we simply use the term
“tree” instead of “labeled, ordered tree”. To ease the presentation, we
do not explicitly distinguish between a node and its label, or an edge
and its label, if the meaning is clear from the context.

2.3.1 Extensible Learning and Generation Framework

To enable learning from a corpus of trees and generating new trees,
TreeFuzz provides a generic framework that gets instantiated with an
extensible set of techniques to infer probabilistic, generative models.
We call these techniques model extractors. Each model extractor infers
a particular kind of property from the given corpus and uses the
inferred model to steer the generation of new trees. We currently
have implemented six such model extractors (Section 2.3.2).
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2.3.1.1 Hooks

The TreeFuzz framework provides a set of hooks for implementing
model extractors. The hooks are designed to support single-traversal
models, i.e., the hooks are called during a single traversal of each
example in the learning phase and during a single pass that creates
new data during the generation phase. During the learning phase,
TreeFuzz calls two hooks:

• visitNode(node, context), which enables model extractors to visit
each node of each tree in the corpus once, and

• f inalizeLearning(), which enables model extractors to summa-
rize knowledge extracted while visiting nodes.

During the generation phase, TreeFuzz calls four hooks:

• startTree(), which notifies model extractors that a new tree is
going to be generated, enabling them to reset any tree-specific
state,

• pickNodeLabel(node, context, candidates), which asks model ex-
tractors to recommend a label for a newly created node,

• pickEdgeLabel(node, context, candidates), which asks model ex-
tractors to recommend a label for the edge that is going to be
generated next, and

• havePickedNodeLabel(node, context), which notifies model ex-
tractors that a particular node label has been selected.

The context is the path of nodes and edges that lead from the tree’s
root node to the current node.

One important insight of this chapter is that this simple API is
sufficient to infer probabilistic models that enable generating trees
suitable for effective fuzz testing.

2.3.1.2 Learning

To infer probabilistic, generative models that describe properties of
the given set of trees, TreeFuzz traverses all trees while calling the
hooks implemented by the model extractors. Algorithm 2.1 sum-
marizes the learning phase. The algorithm traverses each tree in a
top-down, depth-first manner and calls the visitNode hook for each
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Algorithm 2.1 Learning phase.

Input: Set T of trees.
Output: Probabilistic, generative models.

1: for each t ∈ T do
2: n← root(t)
3: c← initialize context with n
4: visitNode(n, c)
5: while c is not empty do
6: if visited all e ∈ outgoing(n) then
7: remove n from c
8: else
9: e← next not yet visited edge ∈ outgoing(n)

10: n← dest(e)
11: expand c with e and n
12: visitNode(n, c)
13: f inalizeLearning()

node. During the traversal, the algorithm maintains the context of
the currently visited node. After visiting all trees, the algorithm calls
f inalizeLearning to let model extractors summarize and store their
extracted knowledge. Section 2.3.2 describes the model extractors in
detail.

2.3.1.3 Generation

Based on the inferred models, which probabilistically describe prop-
erties of the trees in the corpus, TreeFuzz generates new trees that
comply with these inferred properties. Algorithm 2.2 summarizes
the generation phase of TreeFuzz. Trees are created in a top-down,
depth-first manner while querying models about the labels a node
should have, how many outgoing edges a node should have, and
how to label these edges. The algorithm maintains a work list of
nodes that need to be expanded. For each such node, the algorithm
calls the pickNodeLabel function of all models and repeatedly calls
the pickEdgeLabel function to determine the outgoing edges of the
node. For each newly created outgoing edge, the algorithm creates an
empty destination node and adds it to the work list. The algorithm
has completed a tree when the work list becomes empty. Once a tree
is completed, the algorithm adds it to the set G of generated trees.
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Algorithm 2.2 Generation phase.

Input: Probabilistic, generative models.
Output: Set G of generated trees.

1: while |G| < maxTrees do
2: startTree()
3: nroot ← new node
4: c← initialize context with nroot
5: N ← empty stack . work list of nodes to expand
6: N.push([nroot, c])
7: while |N| > 0 do
8: [n, c]← N.pop()
9: pickNodeLabel(n, c)

10: le ← pickEdgeLabel(n, c)
11: while le 6= undefined do
12: add new edge with label le to outgoing(n)
13: le ← pickEdgeLabel(n, c)

14: for each e ∈ outgoing(n) do
15: ndest ← new node
16: dest(e)← ndest
17: cdest ← expand c with e and ndest
18: insert [ndest, cdest] into N
19: if |reachableNodes(nroot)| > θ then
20: discard tree and continue with main loop
21: G ← G ∪ {nroot}

Because models may continuously recommend to create additional
outgoing edges, generating a tree may not terminate. To address
this problem and to bound the size of generated trees, the algorithm
checks (line 19) whether the current tree’s total number of nodes
exceeds a configurable threshold θ (default: 1,000) and discards the
tree in this case.

The approach described so far provides a generic framework for
inferring properties from a corpus of trees and for generating new
trees based on these properties. The following section fills this generic
framework with life by presenting a set of model extractors that are
applicable across different kinds of data formats, such as JavaScript
programs and HTML documents.
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2.3.2 Model Extractors

To support a wide range of properties of data formats, TreeFuzz
uses an extensible set of model extractors. Each model extractor
implements the hooks from Section 2.3.1.1 to learn a model from
the corpus and to make recommendations for generating new trees.
The following explains six model extractors. They are sorted roughly
by increasing conceptual complexity, starting from simple model
extractors that learn PCFG-like properties and ending with model
extractors that encode properties out of reach for PCFGs. Section 2.3.3
explains how TreeFuzz reconciles the recommendations made by
different model extractors.

2.3.2.1 Parent-based Selection of Child Nodes

Each generated node needs a label. During learning, the following
model extractor reads the incoming edge and the parent node from
the context provided to pickNodeLabel and keeps track of how often a
node n is observed for a particular edge-parent pair. This information
is then summarized using the f inalizeLearning hook into a map
Mchild that assigns a probability mass function fchild to each edge-
parent pair.

For the example in Figure 2.1(b), the model extractor infers the
following probability mass function for the edge-parent pair (body,
BlockStmt):

fchild(n) =


0.6 if n = ExprStmt

0.2 if n = FunctionDecl

0.2 if n = ReturnStmt

0 otherwise

During generation, the approach uses the inferred probabilities
to suggest a label for a node based on the incoming edge and the
parent of the node. For this purpose, the approach picks a node label
according to the probability distribution described by fchild.

2.3.2.2 Determining Outgoing Edges

The following model extractor infers the set of edges that a particular
node label n should have, and uses this knowledge to suggest edge
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labels during the generation of trees. To this end, the approach main-
tains two maps. The map MedgeExists assigns to an edge label e the
probability that n has at least one outgoing edge e. The mapMedgeNb
assigns to an edge label e a probability mass function that describes
how many outgoing edges e the node n typically has.

learning To construct these two maps, the model extractor im-
plements the visitNode hook and stores, for each visited node, the
label of the node and the label of its outgoing edges, as well as how
many outgoing edges with a particular label the node has. After all
trees have been visited, the model extractor uses the f inalizeLearning
hook to summarize the extracted facts into the mapsMedgeExists and
MedgeNb.

For the example in Figure 2.1(b), the model extractor infers the
following maps for node BlockStmt:

• MedgeExists = {body 7→ 1.0} because each BlockStmt has at least
one outgoing edge labeled “body”.

• MedgeNb maps body to the following probability mass function
because 50% of all block statements have two outgoing body
edges and the other 50% have three outgoing body edges:

fedgeNb(k) =


0.5 for k = 2

0.5 for k = 3

0 otherwise

generation The inferred mapsMedgeExists andMedgeNb are used
by the pickEdgeLabel hook to steer the generation of edges. At the
first invocation of pickEdgeLabel for a particular node, a list of outgo-
ing edges are pre-computed based on the probabilities stored in these
maps. At the first and all subsequent invocations of pickEdgeLabel
for a particular node, the model returns edge labels from this pre-
computed list until each such label has been returned once. After-
wards, the model returns unde f ined to indicate that no more edges
should be created.

For the running example, suppose that the generation algorithm
has created a node BlockStmt. When it calls pickEdgeLabel, the model
will decide based on MedgeExists that there needs to be at least one
body edge. Furthermore, suppose that the model decides based on
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MedgeNb to create two such edges. As a result, it will return body for
the first two invocations of pickEdgeLabel and unde f ined afterwards.

2.3.2.3 Determining the Root Node

Every generated tree needs a root node. This model extractor in-
fers from the corpus which label root nodes typically have. During
learning, the extractor builds a mapMroot that assigns a label to the
number of occurrences of the label in a root node. During generation,
the model is used to recommend a label for the root node: When
Algorithm 2.2 calls pickNodeLabel with a context that only contains
the current node (i.e., a root node), the model picks a label from
the domain dom(Mroot) of the map, where the probability to pick a
particular label n is proportional toMroot(n).

For the example in Figure 2.1(b),Mroot = {Program 7→ 1}. When
generating a new tree, the approach will recommend the label Program
for every root node.

The properties learned by the previous three model extractors are sim-
ilar to those encoded in a PCFG. Existing format-specific approaches
hard code the knowledge that these model extractors infers. For exam-
ple, the grammar used by Csmith [81] encodes which outgoing edges
a particular kind of node may have, as well as a set of manually tuned
probabilities that specify how many statements a typical function
body has, how many arguments a typical function call passes, and
what kinds of statements typically occur within a block statement.
Instead of hard-coding this knowledge for a specific input format,
TreeFuzz infers this knowledge from a corpus.

2.3.2.4 Ancestor-based Selection of Child Nodes

Section 2.3.2.1 that infers a node label based on the immediate an-
cestor of the default indicator for which node to context. The model
extractor in Section 2.3.2.1 infers the probability of a node label based
on the immediate ancestor of the current node. While the immediate
ancestor is a good default indicator for which node to create next, it
may not provide enough context. For example, consider determining
the destination node of the value edge of a Lit node. Based on the par-
ent only, the generator would choose among all literals observed in
the corpus, ignoring the context in which a literal has been observed,
such as whether it is part of a logical expression or an arithmetic
expression.
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To exploit such knowledge, we generalize the idea presented in
Section 2.3.2.1 of increasing the amount of context to consider the
k closest ancestor nodes and their connecting edges. We call the se-
quence of labels of these edges and nodes the ancestor sequence. For
each such ancestor sequence, the model extractor infers a probability
mass function, as described in Section 2.3.2.1, and uses this function
during generation to suggest labels for newly created nodes. In addi-
tion to the model extractor from Section 2.3.2.1, which is equivalent
to k = 1, we also use a model extractor that considers the parent and
grand-parent of the current node, i.e., k = 2. Supporting larger values
of k is straightforward, but we have not found any need for a value
of k > 2.

Since a grammar only encodes the immediate context of each node,
existing grammar-based approaches cannot express such ancestor-
based constraints. To avoid creating syntactically incorrect programs,
the existing Csmith approach [81] uses built-in filters that encode
syntactic constraints not obvious from a grammar. Instead, TreeFuzz
infers these constraints from a corpus of examples.

2.3.2.5 Constraints on the Selection of Child Nodes

Tree structures often impose constraints on where in a tree a particular
node may appear. For example, consider an AST node that represents
a return statement. In the AST of a syntactically valid program, such
a node appears only as a descendant of a node that represents a func-
tion. Enforcing such constraints while generating trees is challenging
yet important to reduce the probability to generate invalid trees.

To address this challenge, this model extractor infers constraints of
the following form:

Definition 2.2. An ancestor constraint (n,N ) states that a node labeled
n must have at least one ancestor from set N = {nA1, . . . , nAk}.

Ancestor constraints are inferred in two steps. First, in the visitNode
hook, the approach stores for each node the set of labels of all ances-
tors of the node, as provided by the node’s context. Second, in the
f inalizeLearning hook, the approach iterates over all observed node
labels and checks for each node label n whether all occurrences of n
have at least one ancestor from a set N of node labels. If such a set N
exists, then the approach infers a corresponding ancestor constraint.
Otherwise, the approach adds n to the set Nunconstr of unconstrained
node labels.
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During generation, the approach uses the pickNodeLabel hook to
suggest a set of nodes that are valid in the current context. This set
is the union of two sets. First, the set of all unconstrained nodes
Nunconstr, because these nodes are always valid. Second, the set of
all nodes n that have an ancestor constraint (n,N ) where N has a
non-empty intersection with the set of node labels in the current
context.

2.3.2.6 Enforcing Repeated Subtrees (Definition-use-like Relationships)

Complex trees sometimes contain repeated subtrees that refer to the
same concept. For example, consider an AST that contains a function
call and its matching function declaration, such as the two subtrees
ending with foo in Figure 2.1(b). The Idf nodes of the call and the
declaration have an identical subtree that specifies the name of the
function. Such definition-use-like relationships between nodes in the
tree occur in various input formats. We find that enforcing such
relationships is important to create inputs that reach deep into the
program under test. For the example of JavaScript, programs that use
undefined program elements often crash immediately and therefore
cannot test behavior triggered by long-running programs, e.g., code
related to just-in-time optimization.

The following model extractor infers rules that specify which nodes
of a tree are likely to share an identical subtree.

Definition 2.3. An identical subtree rule states that if there exists a
subtree nA

eA−→ nB
eb−→ x in the tree, then there also exists a subtree nD

ed−→
nB

eb−→ y in the same tree so that x = y.

The notation n e−→ n′ denotes that a node labeled n has an outgoing
edge labeled e whose destination is a node labeled n′. For each rule,
the approach infers the support, i.e., how many instances of this rule
have been observed, and the confidence, i.e., how likely the right-
hand side of the rule holds given that the left-hand side of the rule
holds.

For example, given the corpus of JavaScript programs that we use
in the evaluation, TreeFuzz infers that

CallExpr callee−−−→ Id f name−−→ x
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implies

FunctionDecl id−→ Id f name−−→ y

so that x = y with support 59,146 and confidence 61.7%. This rule ex-
presses that function calls are likely to have a corresponding function
declaration with the same function name. The reasons for confidence
being lower than 100% are that functions can also be declared through
a function expression and that functions may be defined in other files.

learning To infer identical subtree rules, the model extractors
uses the visitNode and f inalizeLearning hooks. When visiting a node
n with context ... → nA

eA−→ nB
eB−→ n, the approach stores the in-

formation that the suffix nB
eB−→ n has been observed with the pre-

fix ... → nA
eA−→. After visiting all trees, the f inalizeLearning hook

summarizes the stored information into identical subtree rules by
considering all suffixes that have been observed with more than one
prefix. The approach increments the support of a rule for each node
n for which the rule holds. To compute the confidence of a rule, the
approach divides rule’s support by the number of times the left-hand
side of the rule has been observed.

generation During generation, the approach uses the inferred
identical subtree rules to suggest labels for nodes that are at positions
x and y (as in Definition 2.3) of a rule. To this end, the approach
maintains two maps. First, the map MpathToLabels associates to a

subtree nD
eD−→ nB

eB−→ the set of labels x that have already been used
to label the destination node of eB. Second, the mapMpathToLabelTodos

associates with a subtree nD
eD−→ nB

eB−→ the set of labels that the
generator still needs to assign to a destination node of eB to comply
with a identical subtree rule. Whenever the havePickedNodeLabel
hook is called, the approach checks if the current context matches
any of the inferred rules. If the current node matches the left-hand
side of a rule, then the approach decides with a probability equal
to the rule’s confidence that the right-hand side of the rule should
also be true. IfMpathToLabels indicates that the right-hand side is not
yet fulfilled, then the approach adds an entry to MpathToLabelTodos.
Whenever the pickNodelLabel hook is called, the approach checks
whether the current context matches an entry inMpathToLabelTodos. If
it does, the approach fulfills the rule by suggesting the required label.
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The last three model extractors show that single-traversal models
can express rather complex rules and constraints that go beyond
grammar-based approaches. Existing format-specific approaches,
such as Csmith [81], hard code such constraints into their approach.
For example, if Csmith generates a function call, it checks whether
there is any matching function definition, and otherwise, generates
such a function definition. Existing grammar-inference-based ap-
proaches, such as Glade [180], ignore properties of the input format
that go beyond the expressiveness of grammars, and as a result, are
most useful for testing the input parsing component of a program
under test.

TreeFuzz provides a general framework that allows for implement-
ing a wide range of models beyond the six that we describe here.

2.3.3 Combining Multiple Model Extractors

When Algorithms 2.1 and 2.2 call a hook function, they call the func-
tion for each available model extractor. In particular, this means that
multiple model extractors may propose different labels during the
generation of trees. For example, suppose that while generating a tree,
the generation algorithm must decide on the label of a newly created
node. One model extractor, e.g., the one from Section 2.3.2.5, may
restrict the set of available node labels to a subset of all nodes, and
another model extractor, e.g., the one from Section 2.3.2.1 may pick
one of the labels in the subset. Furthermore, when multiple model
extractors provide contradicting suggestions, then the generation
algorithm must decide on a single label.

To reconcile the suggestions by different model extractors, TreeFuzz
relies on an order of precedence for querying the model extractors
during generation. Based on such an order, each model extractor
obtains the set of label candidates from the already queried extractors
and returns another set of candidates. The set of candidates returned
by a model extractor must be a subset of its input set, i.e., a model ex-
tractor can only select from the set of already pre-selected candidates.
If, after querying all model extractors, the set of label candidates is
non-empty, the generator randomly picks one of the candidates. If
the set of candidates is empty, the generator falls back on a random
default strategy, which sets node labels to the empty string and sug-
gests to create another edge with an empty label with a configurable
probability (default: 10%). During our evaluation, when using all
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model extractors described in this section, the set of candidates is
practically never empty.

For the evaluation, we use the model extractors in the following
order of precedence (high to low): Constraints on the selection child
nodes, determining the root node, enforcing repeated subtrees, deter-
mining outgoing edges, ancestor-based selection of child nodes, and
parent-based selection of child nodes.

2.4 fuzz testing

This section presents how to use TreeFuzz-generated data as inputs
for fuzz testing. We consider two data formats: programs in the
JavaScript programming language (Section 2.4.1) and documents in
the web markup language HTML (Section 2.4.2).

2.4.1 JavaScript Programs

TreeFuzz generates ASTs of JavaScript programs by learning from
the ASTs of a set of example programs. Generated programs may
serve as test input for program analyses, refactoring tools, compilers,
and other tools that process programs [81, 84]. We here use TreeFuzz-
generated JavaScript programs for differential testing across multiple
browsers, where the same program is executed in multiple browsers
to detect inconsistencies among the browsers.

Our differential testing technique classifies programs into three
categories: First, the behavior is consistent if there is no observable
difference across browsers, which may be because the program either
crashes in all browsers or does not crash all browsers. Second, the
behavior is inconsistent if we observe a difference across browsers.
This may be either because the program raises an exception in at
least one browser but does not crash in another browser, or because
the program crashes in all browsers but with different types of error,
such as TypeError and ReferenceError. To compare errors with each
other, we use the type of the thrown runtime error, as specified in
the language specification. Finally, some programs are classified as
non-deterministic because the behavior of different executions in a
single browser differs, which we check by executing each program
twice.
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2.4.2 HTML Documents

As another input format, we apply TreeFuzz to the hypertext markup
language HTML. Due to the popularity of HTML documents, there
are various tools that require HTML documents as their input, such
as browsers, text editors, and HTML processing tools. TreeFuzz gen-
erates inputs for these tools based on a corpus of example HTML
documents, without requiring any explicitly given knowledge about
the structure and content of HTML documents.

Since an HTML document consists of nested tags, there is a natural
translation from such documents to labeled, ordered trees. We repre-
sent each tag as a node, where the label represents the tag name, such
as body and a. We represent nested tags through an edge between the
parent and the child. The label of this edge is childNode concatenated
with the label of the destination node. The reason for copying the
destination’s label into the edge label is that otherwise, most edges
would have the generic label childNode, which is not helpful in in-
ferring the tree’s structure. We represent attributes of tags, such as
id=’foo’, through child nodes with label attribute. These nodes have
two outgoing edges, which point to the name and the value of the
attribute, e.g., id and foo.

2.5 implementation

We implement the approach into a framework with an extensible set
of model extractors. The implementation can be easily instantiated
for different input formats because most of the implementation of the
framework and the model extractors is independent of the format.
The JavaScript instantiation builds upon an existing parser [191] and
code generator [274] and adds less than 300 lines of JavaScript code
to the framework. The HTML instantiation builds upon an existing
toolkit to parse and generate HTML documents [282] and adds less
than 200 lines of JavaScript code to the framework. We implement
differential testing as an HTTP server that sends JavaScript programs
to client code running in different browsers, and that receives a
summary of the programs’ runtime behavior from these clients.

2.6 evaluation

This section describes an experimental evaluation of TreeFuzz.
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minimum median maximum

HTML
file size (bytes) 39 77,604 703,327

number of nodes 11 4,858 41,626

JS
file size (bytes) 3 2,438 7,241,063

number of nodes 0 262 1,045,978

Table 2.1: HTML and JS corpuses used for learning.

2.6.1 Experimental Setup

corpus We use a corpus of 100,000 JavaScript files collected from
GitHub [278]. For HTML, we visit the top 100 web sites (according to
the Alexa ranking) and store the HTML files of their start page. Some
sites appear multiple times in the top 100 list, e.g., google.com and
google.co.in. We remove all but one instance of such duplicates and
obtain a corpus of 79 unique HTML files. Table 2.1 summarizes the
file size and the number of nodes in the tree representations of the
corpuses.

differential cross-browser testing We instantiate the dif-
ferential testing technique (Section 2.4.1) with eight versions of the
popular Firefox and Chrome browsers released over a period of four
years: Firefox 17, 25.0.1, 33.1, 44, and Chrome 23, 31, 39, and 48.

All performance-related experiments are carried out on an Intel Core
i7-4790 CPU (3.60GHz) machine with 32GB of memory running
Ubuntu 14.04. We use Node.js 6.5 and provide it with 11GB of mem-
ory.

2.6.2 Syntactic Validity of Generated Trees

TreeFuzz generates trees intended to comply with an input format
without any a priori knowledge about this format beyond a set of
example trees. To assess the effectiveness in achieving this goal, we
measure the percentage of generated trees that pass language-specific
checks of syntactic validity.

javascript To measure whether a generated JavaScript program
is valid, we pretty print it and parse it again. If the pretty printer
rejects the tree or if the parser rejects the generated program, then

google.com
google.co.in
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we consider the program as syntactically invalid. 96.3% of 100,000

generated trees represent syntactically valid JavaScript programs.

html To measure the validity of generated HTML documents, we
use the W3C markup validator [281]. In practice, most HTML pages
are not fully compatible with W3C standards and therefore cause
validation errors. As a measure of how valid an HTML document is,
we compute the number of errors per kilobyte of HTML.

The generated HTML documents have 2.06 validation errors per
kilobyte. As a point of reference, the corpus documents contain 0.59

validation errors per kilobyte. That is, the generated documents have
a slightly higher number of errors, but overall, represent mostly
valid HTML. We conclude that TreeFuzz effectively generates HTML
documents that mostly comply with W3C standards, without any a
priori knowledge of HTML.

To the best of our knowledge, there is no existing approach based on a
learned, probabilistic language model that generates entire programs
with so few mistakes.

2.6.3 Semantic Validity of Generated Trees

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Percentage of non-crashing programs

Using all model extractors

No repeated subtrees

No constraint on child node

No ancestor based child

Figure 2.4: Percentage of non-crashing JavaScript programs generated by
variants of the TreeFuzz approach.

Some of the model extractors of TreeFuzz, in particular those pre-
sented in Sections 2.3.2.4 to 2.3.2.6, address properties of the input
format that go beyond the expressiveness of context-free grammars.
One motivation for including such models is to prevent generated
data to be quickly discarded by the program under test, so that the
testing can reach deeply into the program. For generated JavaScript
program, we observed that a common reason for quickly discarding
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programs is that the program crashes due to a violation of some
semantic property that human-written programs typically respect.
For example, many programs crash because of undefined references,
a problem addressed by the model extractor in Section 2.3.2.6.

To validate whether adding these model extractors leads to gen-
erated input data with fewer semantic errors, we compare different
variants of TreeFuzz. Specifically, we compare the approach with-
out the model extractors in Sections 2.3.2.4 to 2.3.2.6 with the full
approach that includes all model extractors. With each variant, we
generate 1,000 JavaScript programs, execute these programs, and
count how many programs cause a runtime crash, i.e., how many
programs do not terminate normally.

Figure 2.4 shows the results of the comparison. With the full Tree-
Fuzz approach, 16.1% of all generated programs terminate without
crashing. In contrast, the variants of TreeFuzz that leave out one of
the model extractors all lead to a lower percentages of non-crashing
programs. We draw two conclusion from these results. First, adding
model extractors that go beyond context-free grammars helps to
enforce semantic properties of the input format. Second, there is po-
tential for further model extractors that address additional semantic
properties. Since TreeFuzz is designed as an extensible framework,
adding more model extractors is straightforward.

2.6.4 Influence of Corpus Size on Validity and Performance

influence of corpus size on validity To be effective, sta-
tistical learning approaches often need large amounts of training
data. We evaluate the influence of the corpus size on the validity of
TreeFuzz-generated programs. We measure the percentage of syn-
tactically correct generated JavaScript programs while learning from
a varying corpus size ranging from 10 to 100,000. We observe that
the percentages vary between 96% and 98%, i.e., most generated
programs are syntactically correct independent of the corpus size. We
conclude from the results that the size of the corpus does not have a
significant influence on the validity of the generated trees, suggesting
that TreeFuzz is useful even when few examples are available.

performance and scalability To enable TreeFuzz to learn
from many examples and to generate large amounts of new data,
the performance and scalability of the approach is crucial. Figure 2.5
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Figure 2.5: Learning and generation time based on varying corpus sizes.
Both axes are log-scaled.

shows how long the approach takes to learn depending on the size of
the corpus, and how long it takes to generate 100 trees. The presented
results are averages over three repetitions to account for performance
variations. We observe that both learning and generation scale linearly
with the size of the corpus. The main reason for obtaining linear
scalability is that the approach focuses on single-traversal models.

2.6.5 Effectiveness for Differential Testing

As an application of TreeFuzz-generated JavaScript programs, we
evaluate the effectiveness for differential testing (Section 2.4.1) in two
ways. First, we quantitatively assess to what extent the generated trees
reveal inconsistencies. Second, we present a set of inconsistencies that
we discovered during our experiments and discuss some of them in
detail.

quantitative evaluation of differential testing The
behavior of most programs (97.2%) is consistent across all engines
unsurprisingly because consistency is the intended behavior. For
0.22% of all programs, the behavior is non-deterministic, i.e., two
executions in the same browser have different behaviors. Each of the
remaining 2.5% of programs expose an inconsistency, i.e., achieves
the ultimate goal of differential testing. Given the little time required
to generate programs (Section 2.6.4), we conclude that TreeFuzz is
effective at generating programs suitable for differential testing.
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ID Inconsistent
browsers

Description Root cause

1 Firefox vs.
Chrome

Mozilla bug #585536: Func-
tion declared in block state-
ment should get hoisted to
top of block.

Browser bug

2 Firefox 17

and 25 vs.
others

Mozilla bug #597887: Calling
setTimeout with an illegal ar-
gument causes runtime error.

Browser bug

3 Firefox 44 vs.
others

Mozilla bug #1231139:
TypeError is thrown
even though it should
be SyntaxError.

Browser bug

4 Firefox 17

and 25 vs.
others

Mozilla bug #409444: The
type of window.constructor
is “object” in some browsers
and “function” in others.

Browser bug

5 Firefox vs.
Chrome

Only Firefox provides
window.content property.

Browser-
specific
behavior

6 Firefox 44,
Chrome 23,
and Chrome
31 vs. others

Some browsers throw an
exception when calling
scrollBy without arguments.

Browser-
specific
behavior

7 Firefox vs.
Chrome

event is a global variable in
Chrome but not in Firefox.

Browser-
specific
behavior

8 Chrome 23 vs.
others

Some browsers throw an
exception when calling
setTimeout without argu-
ments.

Browser-
specific
behavior

9 Firefox 25–44

vs. others
Some browsers throw an ex-
ception when redirecting to a
malformed URI.

Browser-
specific
behavior

10 Firefox 17–33

vs. others
Call of Int8Array() without
mandatory new keyword, as
required by ECMAScript 6.

Evolving
specification

Table 2.2: Examples of inconsistencies found through differential testing
with TreeFuzz-generated programs.
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qualitative evaluation of differential testing To better
understand the detected inconsistencies, we manually inspect a subset
of all inconsistencies. Table 2.2 lists ten representative inconsistencies
and associates them with three kinds of root causes. First, browser
bugs are inconsistencies caused by a particular browser that does not
implement the specified behavior. Second, browser-specific behavior are
inconsistencies due to unspecified or non-standard features that some
but not all browsers provide, or because the standards allow multiple
different behaviors. Third, evolving specification refers to inconsisten-
cies due to features of not yet implemented revised specifications,
such as ECMAScript 6 and DOM4. The examples listed in Table 2.2
show that TreeFuzz-generated JavaScript programs are effective at
revealing different kinds of inconsistencies among browsers.

2.6.6 Comparison with Corpus and Other Approaches

We compare TreeFuzz to three alternatives approaches:

• A PCFG-based approach that creates JavaScript programs based
on a probabilistic grammar of abstract syntax trees [279]. The
approach generates programs by starting from the top-level AST
node Program and by iteratively expanding nodes according to
the grammar. If a node has multiple possible expansions, we
decide on which expansion to use based on a probability distri-
bution, which we extracted by traversing the AST representation
of the 100,000 corpus files introduced in Section 6.1.

During our experiments, a naive implementation of the PCFG-
based approach often fails to terminate after a fixed timeout
because expanding a grammar rule often leads to another non-
terminal. For example, expanding a block statement leads to a
sequence of statements, which may again include block state-
ments, etc. To address this problem, we manually modify the
probability distribution of some grammar rules. Specifically,
we bias the distribution in favor of nodes that lead to termi-
nal symbols without introducing recursion. For the example
of statements, we increase the probability to choose either an
identifier or a literal, as these AST nodes do not lead to further
statements. With this manual biasing of the inferring probabili-
ties, the PCFG-based approach generates trees in a reasonable
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amount of time. We call the approach PCFG_term, where “term”
stands for “termination”.

• LangFuzz [84] is a state of the art fuzzing approach. Similar to
TreeFuzz, it supports multiple languages and exploits a corpus
of examples. In contrast to our work, LangFuzz requires built-in
knowledge of the target language, such as which AST nodes
represent identifiers and which built-in variables and keywords
exist. For example, LangFuzz uses knowledge to adapt program
fragments by modifying its identifier names.

During our experiments, LangFuzz suffered from severe scala-
bility problems when providing it with the full corpus of 100,000

programs. One reason is that the implementation keeps all pro-
grams in memory. Because of these problems, we provide only
10,000 programs to LangFuzz. These programs are a randomly
sampled subset of all corpus programs.

The root cause of these memory issues is that LangFuzz com-
bines fragments of existing programs with each other. Our ap-
proach avoids such problems by learning a probabilistic model
of JavaScript code, instead of storing concrete code fragments.

• The corpus-only approach uses the 100,000 corpus programs as
an input, i.e., no new programs get generated.

2.6.6.1 Comparison Based on Syntactical Differences

At first, we compare the approaches by syntactically comparing the
programs that they provide. For this experiment, we format all pro-
grams consistently and remove all comments. We compare the pro-
grams generated by TreeFuzz and by LangFuzz with the programs
in the corpus to assess whether any generated programs are syn-
tactically equal to a corpus program. 241 of the 100,000 programs
generated by LangFuzz are such duplicates, whereas only one of
100,000 TreeFuzz-generated programs is also present in the corpus.
We conclude that TreeFuzz is effective at creating a large number of
syntactically diverse programs.

The effectiveness of generated programs for fuzz testing partly
depends on whether the programs are syntactically correct. The
reason is that syntactically incorrect programs are typically rejected
by an early phase of the JavaScript engine and therefore cannot reach
any code beyond that phase. Figure 2.6 shows for each of the four
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Figure 2.6: TreeFuzz compared to corpus, LangFuzz and PCFG_term.

approaches the percentage of syntactically correct programs among
all generated programs. For TreeFuzz and the corpus programs,
the percentage is 96.3% and 97.0%, respectively. The fact that both
values are similar confirms that TreeFuzz effectively learns from the
given corpus. In contrast, only 78.4% of the programs generated by
LangFuzz are syntactically correct. The percentage of syntactically
correct programs generated by PCFG_term is lowest at 42%.

2.6.6.2 Comparison Based on Differential Testing

To compare the programs generated by the different approaches be-
yond their syntax, we compare what kinds of inconsistencies the
programs find when being used for differential testing. Since syntac-
tically incorrect programs are typically rejected by an early phase of
the JavaScript engine and therefore cannot reach any code beyond
that phase, for this comparison, we use only the best three approaches
containing syntactically correct programs i.e., TreeFuzz, LangFuzz
and the Corpus.

Since inspecting thousands of inconsistencies manually is practi-
cally infeasible, we assign inconsistencies to equivalence classes based
on how an inconsistency manifests. These equivalence classes are an
approximation of the actual root cause that triggers an inconsistency.

To compute the equivalence class of a program, we summarize the
behavior in a particular browser into a single string, such as “okay”
for a non-crashing program and “ReferenceError” or “TypeError”
for a crashing program. Based on these summaries, we compute a
tuple (b1, . . . , bn) of strings for each program, where each bi is the
summary from a particular browser. Two inconsistencies belong to
the same equivalence class if and only if they share the same tuple.
For example, two programs that both throw a “TypeError” in all



2.7 conclusion 43

versions of Chrome but do not crash in any version of Firefox belong
to the same equivalence class.

87 2815

80

46 16
26

Corpus

TreeFuzz

LangFuzz

Figure 2.7: Equivalence classes of inconsistencies found by the three ap-
proaches.

Figure 2.7 summarizes the results of the comparison. The figure
shows for each approach how many equivalence classes of incon-
sistencies the approach detects, and how many equivalence classes
are shared by multiple approaches. The results show that the three
approaches are complementary to each other. Even though there is
an overlap of 26 equivalence classes found by all three approaches,
each individual approach contributes a set of otherwise missed incon-
sistencies. In particular, TreeFuzz detects 28 otherwise missed classes
of inconsistencies.

2.7 conclusion

In this chapter, we present TreeFuzz, a format-independent, blackbox
fuzz testing approach that generates tree-structured data. The core
idea is to infer from a corpus of example data a set of probabilistic,
generative models, which then create new data that have properties
similar to the corpus. Beyond the set of example trees, the approach
does not require any a priori knowledge of the format of the generated
data, but instead infers syntactic and semantic properties of the
format. TreeFuzz supports an extensible set of single-pass models,
enabling it to learn a wide range of properties of the data format. We
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apply the approach to two different data formats, a programming
language and a markup language, and show that TreeFuzz generates
data that is mostly valid and effective for detecting bugs through fuzz
testing.



3
S E M A N T I C B U G S E E D I N G : A L E A R N I N G - B A S E D
A P P R O A C H F O R C R E AT I N G R E A L I S T I C B U G S

Chapter 2 presents TreeFuzz, one approach to address the challenge
(C-I, Chapter 1) of generating valid and realistic programs. Our focus
with TreeFuzz is to generate complete programs from scratch. The
current chapter presents an alternative approach to address the same
challenge but instead of generating complete programs from scratch,
we mutate existing programs. One of the benefits of mutating existing
programs is that the mutations can increase the diversity of existing
programs, which is useful for training neural models. The most
common way to mutate programs is by using pre-defined mutation
operations. In this chapter, we present an alternative approach, called
SemSeed, where we do not mutate using pre-defined operations but
instead learn such operations from a corpus. SemSeed is the first to
use learned token embeddings for mutating programs that generates
realistic programs.

3.1 motivation

Bugs are one of the key challenges in software development, and
various techniques have been proposed for bug detection, bug fixing,
and bug prevention. A common problem faced when working on bug-
related techniques is the need for large amounts of known, realistic
bugs. Such bugs can serve multiple purposes. One of them is to
provide a benchmark for evaluating and comparing bug-related tools.
For example, static bug detectors and fuzz testing tools are evaluated
against sets of known bugs [151, 213, 217], and bugs created via
mutations are useful for evaluating the effectiveness of test suites [76].
Unfortunately, real bugs are scarce and without precise knowledge
about where exactly a bug is, assessing whether a problem reported

45
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by a tool is indeed a bug, requires manual effort. As a result, many
tool evaluations are limited to a small number (typically, a few dozens)
of bugs, e.g., bugs manually gathered from open-source projects [118,
230].

Another purpose of known bugs is to help build a bug-related
technique. For example, learning-based bug detectors [219, 226, 238],
defect prediction models [171], and repair tools [234, 259] rely on bugs
to learn from. These techniques require large amounts of training
data, typically in the form of code known to contain a (specific
kind of) bug. Since obtaining large amounts of bugs is non-trivial,
current techniques either focus on bugs created through simple code
transformations [226], on noisy datasets that, e.g., approximate buggy
code as any code changed in the next version of a program [171], on
manually curated bug datasets [118, 230], or on code changes that are
heuristically linked with bug reports [238].

This chapter presents SemSeed, which addresses the need for large
amounts of known, realistic bugs through a semantics-aware bug
seeding technique. The key idea is to generalize a bug observed in the
past and to seed variants of the bug at other code locations. To reason
about the semantics of code, we exploit token embeddings [182, 271],
a learned representation of code elements, such as identifier names
and literals. To the best of our knowledge, we are the first to use
learned embeddings for bug seeding.

SemSeed addresses three important challenges not sufficiently con-
sidered in previous work. (C1—Where) Where in a target program to
seed bugs that resemble a given bug-to-imitate? We address this chal-
lenge by checking which locations in the target program semantically
fit the bug-to-imitate. (C2—How) How to adapt the bug-to-imitate to
the target program? SemSeed addresses this challenge by semantically
adapting identifiers and literals to the target location. (C3—Unbound
tokens) How to handle tokens in the buggy code that do not occur in
the correct code, e.g., when the buggy code refers to an application-
specific identifier name or literal? We address this challenge, called
unbound tokens, through semantic analogy queries in the token em-
bedding space that find a token that resembles the bug-to-imitate but
fits the bug seeding location.

Table 3.1 summarizes and contrasts SemSeed with other work on
automatically seeding bugs. First, mutation testing [102, 117] seeds
bugs based on pre-defined code transformations. However, mutation
operators cover only a small set of the syntactic transformations
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Table 3.1: Comparison with other bug seeding techniques.

Approach Kinds of
bugs

Target
locations
(C1)

Adaptation
to target
location
(C2)

Unbound
tokens
(C3)

Mutation opera-
tors [102, 117]

Few, man-
ually
defined

Everywhere Syntactic Not
supported

Inferred mutat. op-
erators [183]

Many,
inferred

Everywhere Syntactic Not
supported

Neural machine
translation [246]

Many,
inferred

Implicit by
model

Implicit by
model

Not
supported

Bug
synthesis [151, 227]

Memory
updates

Hard to
trigger
paths

N/A N/A

This work Many,
inferred

Based on
semantic
fit

Semantic Supported
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that occur in the wild and only sometimes represent real-world
bugs [113]. Second, some work infers mutation operators from past
bug fixes [183]. Both pre-defined and inferred mutation operators are
applied in a purely syntactic way, without considering whether a code
transformation semantically fits a code location (C1) or how to adapt
the transformation to the location (C2). Third, neural models can
learn from past bug fixes how to inject bugs [246]. Such approaches
implicitly select target locations for seeding bugs and adapt the
seeding to these target locations, but the details are hidden within
the neural network. Finally, work aimed at evaluating fuzz testing
tools [151, 227] seeds bugs along execution paths that are non-trivial
to trigger. Even though these bugs may appear realistic from an
execution perspective, they are easy to detect statically, making the
approach unfit for evaluating or training static bug detectors. None
of the above approaches addresses the problem of unbound tokens
(C3), which our evaluation shows to prevent them from seeding the
majority of bugs that appear in the wild.

We evaluate SemSeed by learning from real-world bugs and by
seeding hundreds of thousands of new bugs. The evaluation focuses
on JavaScript, because it has become one of the most popular lan-
guages and is used in various domains, but the approach is not
specific to this language. The results show that SemSeed is effective
at creating realistic bugs, that the seeded bugs complement bugs
created with traditional mutation operators [102], and that our im-
plementation can seed hundreds of thousands of bugs within an
hour. Using the seeded bugs as training data for a learning-based
bug detector [226] significantly improves the bug detection ability
compared to the state of the art.

In summary, this chapter makes the following contributions:

• We are the first to use learned token embeddings for bug seeding.

• We present a semantics-aware technique to decide where to seed a
bug, how to adapt a given bug-to-imitate to the target location,
and how to handle unbound tokens.

• We present an efficient algorithm for semantic bug seeding, which
chooses from thousands of candidate bugs the semantically
most suitable within about 0.01 seconds, on average.

• We show empirical evidence that SemSeed seeds realistic bugs,
outperforms a purely syntactic bug seeding technique, comple-
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Abstraction into bug
seeding pattern

...
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === 'x64')
...

...
hasFailed = item.errCode === -1;
if (hasFailed && process.arch !== 'x86')
...

Semantic matching

Apply pattern

Concrete bug fix

Bug seeding pattern

Target program

Program with realistic, seeded bug

Candidate
seeding locations

1

2

3

...
id1.id2 === lit1
...

...
id1.id2 !== lit2
...

...
if (process.platform === 'darwin')
...

...
if (process.platform !== 'win32')
...

Figure 3.1: Overview of the approach and running example.

ments traditional mutation operators, and yields bugs useful
for training more effective bug detection models.

3.2 overview

This section illustrates the key ideas of our approach with an example.
At a high level, SemSeed consists of three main steps: abstraction,
semantic matching, and pattern application. Given a set of concrete
bug fixes, e.g., gathered from version histories, the first step abstracts
away project-specific details, such as the identifier names. This results
in bug seeding patterns that describe how to syntactically transform
a piece of code to introduce a new bug.

The top part of Figure 3.1 shows one concrete bug fix that the
approach takes as an input. The middle part of the figure shows
the corresponding bug seeding pattern. The concrete identifiers, e.g.,
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process and platform are abstracted based on their syntactic category,
e.g., into id1 and id2. Intuitively, the bug pattern could be described
as “wrong comparison with wrong literal”.

The second step of the approach matches the inferred bug seeding
patterns with a given target program, addressing challenge C1. A
naive baseline approach would apply a pattern at every syntactically
matching location. For our example target program in Figure 3.1, the
“wrong comparison with wrong literal” pattern could be applied at
every binary expression that compares some id1.id2 with some lit1

using ===. However, such a purely syntactic approach will lead to a
large number of unrealistic bugs.

A key idea of SemSeed is to not apply patterns at every syntactically
matching code location, but only at locations that are semantically
similar to the locations where a pattern was derived from. For the
example in Figure 3.1, SemSeed’s semantic matching component
may select the code location process.arch === ’x64’ because it also
is about checking whether some platform matches a string descriptor
of a platform. The challenge in finding such a location is that the
semantic similarity may not be obvious to a program analysis that
is unaware of domain knowledge. For our example, the approach
needs to understand that the identifiers platform and architecture

refer to similar concepts, and that the literals "darwin" and "x64" both
describe platforms.

The third and final step of SemSeed applies bug seeding patterns
at the candidate seeding locations identified by the second step, ad-
dressing challenges C2 and C3. The key idea is to adapt the syntactic
bug seeding pattern to the selected location in the target program.
Specifically, the approach instantiates the pattern with identifiers and
literals that are semantically similar to a location where the pattern
was derived from (C2), and it finds suitable tokens for identifiers
not present in the original target program (C3). As a result, the ap-
proach semantically generalizes the given concrete bugs to other code
locations, which yields fewer, but more realistic seeded bugs than
syntactic bug seeding. To determine how similar two code locations
are, we rely on neurally learned embeddings of identifier names and
literals, which have been used for other program analysis tasks in the
past [195, 210, 226, 240], but to the best of our knowledge have not
yet been used for bug seeding.

To seed a bug at the selected location, SemSeed transforms the
code as shown at the bottom part (target program) of the figure. This
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transformation not only instantiates the bug seeding pattern, but it
also picks a suitable platform descriptor, "x86". The approach picks
this literal based on identifiers and literals used in the vicinity of the
bug seeding location, mimicking a mistake a developer might also
make. As a result, the seeded bug resembles the original bug that the
pattern was derived from, while adapting it to the local context.

3.3 approach

This section presents the three steps of our SemSeed approach in
detail. At first, Section 3.3.1 describes how to extract bug seeding pat-
terns from concrete bug fixes in version histories. Then, Section 3.3.2
presents how our approach semantically matches these bug seeding
patterns against previously unseen code to find candidate locations
for seeding new bugs. Finally, Section 3.3.3 describes how to apply
the patterns to a given code location by semantically adapting them.

3.3.1 Abstraction into Bug Seeding Patterns

The first step of SemSeed analyzes bug-fixing code changes in the
version histories of popular code repositories to generalize them into
bug seeding patterns. The basic idea is that reverting and generalizing
a code change that fixes a bug will yield a pattern that we can then
use to introduce this kind of bug into other code.

3.3.1.1 Selecting Bug-Fixing Commits

To gather examples of bug-fixing code changes, we mine the com-
mit histories of code repositories. For a given repository, SemSeed
filters all commits based on four criteria, which are designed to iden-
tify simple, bug-fixing commits. First, we select only those commits
where the commit message contains any one of the words “bug”,
“fix”, “error”, “issue”, “problem”, and “correct”, which we assume to
indicate that the commit is fixing a bug. Second, we select only those
commits that have a single parent commit, to avoid merged commits.
Third, we select commits where the number of changed files is one
and where the changed file is written in the target programming
language, i.e., JavaScript in this chapter. Finally, our fourth criterion
is to omit commits where the number of changed lines is higher
than one. Both the third and the fourth criterion help with omitting
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commits that fix more than a single bug or that intermingle a bug
fix with other code changes. Prior work shows single-line bugs to be
relevant and frequent in practice [198, 236, 253].

Since identifying bug-fixing code changes is a non-trivial prob-
lem, our four filters are designed to rather exclude some bug-fixing
commits than to include many other commits. Of course, there is no
guarantee that the commits obtained using these four filters are bug-
fixing code changes. Manual inspection by previous research [246]
of commits mined with a similar approach has shown 97% of their
commits to be bug-fixing.

3.3.1.2 Extracting Concrete Changes From Commits

Given a set of bug-fixing code commits, SemSeed next extracts code
changes into a format suitable for the remainder of the approach.
Due to our filtering of commits, each commit changes exactly one
line of code. One option would be to consider the entire changed
line, which may, however, include parts unrelated to the bug fix.
Including such “noise” would make it harder to identify recurring
patterns and to find suitable locations for seeding bugs based on
these patterns. Another option would be to consider only those
tokens of the line that have been modified, which may, however, miss
surrounding tokens important to capture the context of the change.
Including some contextual information helps SemSeed identify the
most suitable locations for seeding bugs with a given pattern.

To extract the changed tokens along with some context, SemSeed
uses the AST of the old and the new file to find a subsequence
of the changed line’s tokens that forms a complete syntactic entity.
Focusing on complete syntactic entities, instead, e.g., on all tokens
in a changed line, increases the chance to find recurring patterns. To
this end, the approach converts both the buggy and the correct file
into ASTs and maps each AST node to its corresponding range of line
numbers in the file. Next, the approach prunes all AST nodes that
do not comprise any changed line. From the remaining nodes of a
file, SemSeed selects one of the nodes with the maximum number of
source code tokens in the changed line, and then emits the sequence
of tokens rooted at this node. The result is two sequences of tokens,
for the buggy and correct files, respectively:

Definition 3.1. A concrete bug fix (Cbug, Ccorr) is a pair of sequences of
tokens, where the sequence Cbug = [tb

1, ..., tb
m] corresponds to a subtree in
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the AST of the buggy file, and the sequence Ccorr = [tc
1, ..., tc

n] corresponds
to a subtree in the AST of the corrected file.

For example, consider the concrete bug fix in Figure 3.1. Analyzing
the modified line in the buggy file (shown in red, on the top-left),
SemSeed selects the AST subtree that represents the process.plat

form !== ’win32’ expression and hence yields the tokens in this ex-
pression. For the correct file (shown in green, on the top-right), the
analysis yields the tokens in process.platform === ’darwin’. Even
though both extracted token sequences correspond to the same kind
of AST subtree in this example, the sequences may correspond to
different syntactic entities in general.

3.3.1.3 From Concrete Fixes to Bug Seeding Patterns

To enable SemSeed to seed new bugs based on the extracted con-
crete bug fixes, the approach generalizes bug fixes into bug seeding
patterns. During this step, we abstract identifier tokens and literal to-
kens. The rationale is that these kinds of tokens often are application-
specific and hence must be adapted to a specific bug seeding location.

Definition 3.2. A bug seeding pattern (Pcorr, Pbug) is a pair of sequences
of tokens, where a token is either idk or litk (for some k ∈ N), or a non-
identifier and non-literal token of the target programming language.

Our approach for abstracting a concrete bug fix into a bug seeding
pattern starts from the token sequence in the correct part of the
change, i.e., Ccorr. The algorithm traverses all tokens in the concrete
bug fix and abstracts all identifiers and literals into placeholders idi
and litj, where i and j are incremented whenever a new identifier
or literal occurs. To consistently abstract tokens that occur multiple
times, the algorithm maintains for each concrete bug fix a map M
from concrete to abstract tokens [244]. Finally, we discard concrete bug
fixes that have more than 40 tokens and that occur only once, which
discards about 15% of all bug seeding patterns, to avoid learning
obscure patterns unlikely to apply anywhere else.

For our running example, the middle part of Figure 3.1 shows the
bug seeding pattern. The algorithm abstracts the identifiers process

and platform into id1 and id2, respectively, and the literals ’win32’

and ’darwin’ into lit1 and lit2, respectively.
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3.3.2 Matching Bug Seeding Patterns against Code

Based on the inferred bug seeding patterns, the second step of Sem-
Seed is to find code locations for seeding the bug defined by the
pattern into a target program. The approach matches the correct part
of a pattern against token sequences extracted from the target pro-
gram. We call the matching token sequences candidate seeding locations.
One key contribution of SemSeed is to determine candidate seeding
locations not only by syntactically matching a pattern against the tar-
get program, but also by semantically reasoning about the similarity
of the involved identifiers and literals.

3.3.2.1 Extracting Token Sequences from Target Program

Given a target program where SemSeed should seed bugs, the ap-
proach extracts various token sequences to match against the inferred
bug seeding patterns. Similar to the pattern extraction step, SemSeed
starts by parsing the target program into an AST and then extracts
sequences of tokens that correspond to subtrees of the AST. Given
a node and its corresponding token sequence C = [t1, . . . , tn], the
approach applies the same abstraction algorithm as in Section 3.3.1.3
to get the abstracted token sequence Cabstr.

For example, consider the target program in Figure 3.1. The ap-
proach extracts multiple AST subtrees and corresponding token se-
quences. Two of the extracted subtrees represent binary expressions,
and the corresponding token sequences are [item, ., errCode, ===, -1]
and [process, ., arch, ===, ’x64’]. For both sequences, abstracting iden-
tifiers and literals results in the abstracted token sequence [id1, ., id2,
===, lit1].

3.3.2.2 Syntactic Matching

Given a set of token sequences extracted from the target program,
SemSeed matches each abstracted token sequence against each bug
seeding pattern. For a sequence Cabstr and a pattern (Pcorr, Pbug), the
approach checks whether Cabstr matches Pcorr, i.e., the correct part
of the pattern. As a first step, SemSeed performs a simple syntac-
tic matching, where Cabstr and (Pcorr, Pbug) match if Cabstr is equal to
Pcorr. Note that the syntactic matching is similar to a correspond-
ing step in previous work on seeding bugs with inferred mutation
operators [183].
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For our example, the two token sequences abstracted into [id1, .,
id2, ===, lit1] are both equal to the correct part of the bug seeding
pattern from Section 3.3.1. Hence, both binary expressions in the
target program are retained as candidate seeding locations.

3.3.2.3 Semantic Matching

Syntactically matching bug seeding patterns against a target program
yields a large number of candidate seeding locations. Unfortunately,
seeding bugs at all these locations would result in many seeded bugs
that do not semantically resemble the concrete bugs that SemSeed is
learning from. For example, applying the bug seeding pattern of our
running example both to item.errCode === -1 and to process.arch

=== ’x64’ would yield two seeded bugs. However, only the second
seeded bug would be semantically similar to the concrete bug that
the pattern was learned from: The bug is about incorrectly checking
the name of a platform against a string that describes a platform,
process.platform === ’darwin’, and a similar bug could occur in the
process.arch === ’x64’ expression. In contrast, the other possible
candidate seeding location item.errCode === -1 matches the original
bug only syntactically, but not semantically.

To ensure that SemSeed seeds realistic bugs, the approach focuses
on bugs that semantically resemble a given concrete bug fix. Checking
whether two code locations are semantically similar is a hard prob-
lem, which we address by borrowing ideas from machine learning-
based natural language processing (NLP). In NLP, an important
research problem is to identify semantically similar words, such as
“chicken” and “fowl”. A state-of-the-art approach to address this
problem is word embeddings learned from a corpus of text, e.g., using
Word2vec [101] or FastText [182]. An embedding maps each word
into a real-valued vector so that semantically similar words have sim-
ilar vectors. For example, the word vectors of “chicken” and “fowl”
will be close to each other in the embedding space. To determine
how similar two word vectors v, w are in an embedding space, we
compute their cosine similarity: simil(v, w) = v·w

‖v‖‖w‖
SemSeed computes embeddings of source code tokens and uses

them to reason about the semantic similarity of tokens. As the embed-
ding technique, we build on FastText [182], which we choose for two
reasons. First, FastText does not suffer from the out-of-vocabulary
problem [256], because it reasons about the n-grams in a token in-
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Algorithm 3.1 Semantically match a token sequence against a bug
seeding pattern.

Input: Token sequence C and concrete bug fix (Cbug, Ccorr)
Output: True if C is a semantic match, False otherwise

1: [t1, . . . , tn]← C . Tokens of target location
2: [t′1, . . . , t′n]← Ccorr . Tokens where real bug occurred
3: S← []
4: for i = 1 to n do
5: if kind(ti) ∈ {Identi f ier, Literal} then
6: v← emb(ti)
7: v′ ← emb(t′i)
8: Append simil(v, v′) to S
9: return avg(S) >= matching threshold m

stead of relying on a fixed-size vocabulary. Second, FastText has been
shown to more accurately represent the semantic similarities of code
tokens than other popular embeddings [271].

Algorithm 3.1 summarizes how SemSeed checks whether a given
token sequence semantically matches a bug seeding pattern. To this
end, the approach semantically compares the concrete tokens Ccorr
where the bug described by the pattern has occurred with the tokens
C in the target program. The algorithm computes for each identifier
and literal token in C its semantic similarity to the corresponding
token in Ccorr. If the average similarity for all tokens in C exceeds a
threshold m, which we call the matching threshold, then the algorithm
returns True, and SemSeed marks C as a candidate seeding location.
Averaging across embeddings of individual tokens is inspired by work
on representing natural language sentences and documents [120, 179].
For bug seeding patterns derived from multiple concrete bug fixes,
the approach invokes the algorithm multiple times, and considers
C a candidate seeding location if C resembles at least one of the
concrete bug fixes. Our evaluation studies the impact of the matching
threshold m in practice.

For the example, SemSeed invokes Algorithm 3.1 for the two syn-
tactically matching code locations. The first invocation, where C
contains the tokens in item.errCode === -1, is likely to return False
(depending on the matching threshold) because the compared tokens,
e.g., item vs. process, or ’darwin’ vs. -1, are dissimilar. In contrast,
the second invocation is likely to return True because the tokens
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in process.arch === ’x64’ have a high pairwise similarity with the
tokens in process.platform === ’darwin’.

3.3.3 Applying Bug Seeding Patterns

The third and final step of SemSeed is to apply bug seeding patterns
at the bug seeding locations in the target program.

3.3.3.1 Unbound Tokens

The main challenge in this step is tokens that appear in the buggy
part but not in the correct part of the pattern, which we call unbound
tokens. For example, recall the bug seeding pattern in Figure 3.1, and
in particular, the ’lit2’ token in the buggy code. When applying
the pattern to a program, this token is unbound, i.e., it is unclear
what concrete token to insert instead of ’lit2’. Prior work on au-
tomatically seeding bugs based on inferred bug patterns [183, 246]
ignores the problem of unbound tokens, and hence can apply only
bug seeding patterns without any such tokens. However, as we show
in our evaluation, the majority of all bug seeding patterns contains
unbound tokens, i.e., ignoring them would ignore many bug seeding
opportunities.

Before presenting our approach for applying bug seeding patterns
with unbound tokens, we consider a few alternatives. Suppose we
want to apply a bug seeding pattern (Pcorr, Pbug), which was inferred
from a concrete bug fix (Cbug, Ccorr) and has an unbound token t?.
The question is which concrete token to use instead of t? when
concretizing Pbug in the target program.

One option would be to replace t? with the concrete token it is
bound to in Cbug. However, this token may not be a natural fit for the
target program. For example, when t? is an identifier, then simply
replacing it with the corresponding identifier from Cbug is likely to
result in an undefined variable, resulting in a rather unrealistic bug.
Another option would be to replace t? with a random token sampled
from the vocabulary of all tokens, which again is likely to result in an
unrealistic bug. A third option would be to sample a token from all
tokens in the same file or same function as the bug seeding location.
While this approach increases the chance of resulting in realistic code,
it is still likely to yield a token that does not fully fit the context of
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Embedding space:

platform

'win32'

process

'x86'

arch

'x64''darwin'

Figure 3.2: Example of analogy queries to bind unbound tokens.

the bug seeding location, e.g., because it uses a variable of a wrong
type.

3.3.3.2 Binding Tokens via Analogy Queries

To address the challenge of binding an unbound token in a way that
fits the bug seeding location, and hence ultimately, create a realistic
bug, we again take inspiration from NLP. Given a learned word
embedding, word analogy tasks intend to answer similarity questions
involving two or more pairs of words. For example, one may ask the
analogy question What word is to “France” what “Tokyo” is to “Japan”?,
which is likely to yield the answer “Paris” [101]. Adapting this idea
to unbound tokens, SemSeed uses the bound tokens of a bug seeding
pattern to resolve any unbound tokens in the same pattern.

Figure 3.2 illustrates our analogy-based technique for binding un-
bound tokens using the example in Figure 3.1. Given the bug seeding
pattern, the token lit2 is unbound. In contrast, process and arch are
bound, because id1 and id2 occur both in the correct and the buggy
part of the pattern. SemSeed searches for a suitable token for lit2 by
asking three analogy questions:

• What token is to ’x64’ what ’win32’ is to ’darwin’?

• What token is to arch what ’win32’ is to platform?

• What token is to process what ’win32’ is to process?

The token embedding answers these questions by returning the
three blue points in the vector space (we explain below how exactly
these points are computed), and SemSeed combines the answers by



3.3 approach 59

Algorithm 3.2 Apply bug seeding pattern to candidate token se-
quence

Input: A candidate token sequence C, a concrete bug fix (Cbug, Ccorr)

and its corresponding bug seeding pattern (Pcorr, Pbug), a set T of
identifier and literal tokens.

Output: Tokens Cseed of seeded bug
1: Cseed ← []
2: for i← 1 to length(Cbug) do
3: if kind(Cbug[i]) /∈ {Identifier, Literal} then
4: Append Cbug[i] to Cseed . Copy token
5: else if Pbug[i] bound to tbound then
6: Append tbound to Cseed . Use bound token
7: else
8: Vtgt ← ∅ . Bind token via analogy queries
9: for tabstr ∈ Pcorr do

10: torig ← token that tabstr is bound to in Cbug
11: tseed ← token that tabstr is bound to in C
12: vtgt ← emb(tseed) + emb(Cbug[i])− emb(torig)
13: Add vtgt to Vtgt

14: t? ← arg max
t∈T

simil(emb(t), avg(Vtgt))

15: Append t? to Cseed

averaging these three points. This average, shown as a pink point can
be thought of as a target location in the embedding space. SemSeed
retrieves a suitable token for lit2 by searching the nearest neighbor
of the target location, as indicated by the gray sphere in Figure 3.2.
The nearest neighbor in our example is the literal token ’x86’, and
hence SemSeed seeds a bug using this token.

3.3.3.3 Algorithm

After providing an intuition of the approach, Algorithm 3.2 presents
in detail how SemSeed applies a bug seeding pattern. The algorithm
takes three inputs. First, a candidate token sequence C, identified as
described in Section 3.3.2, which the algorithm will mutate to seed
a bug. Second, a concrete bug fix (Cbug, Ccorr) and its corresponding
bug seeding pattern (Pcorr, Pbug). The algorithm will seed a new bug
by imitating the given bug and by semantically adapting it to the
context of the candidate token sequence. Third, a set T of literal and
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identifier tokens from which the algorithm selects tokens to use for
unbound tokens. For example, this set may consist of all identifiers
and literals in the file where the bug is seeded or the n most common
tokens in a corpus of code. Our evaluation compares different ways
of computing the set T.

The main loop of the algorithm goes through all tokens in the bug-
to-imitate Cbug, and iteratively builds a new sequence Cseed of buggy
tokens. For each token to generate, the algorithm distinguished three
cases. The first case (line 3) handles tokens that are neither identifiers
nor literals, but standard tokens of the programming language, such
as operators or parentheses. Each such token is directly copied from
the bug-to-imitate into Cseed. The second case (line 5) handles bound
identifier and literal tokens, i.e., tokens that appear in the candidate
token sequence. The algorithm uses the concrete token tbound from the
candidate token sequence and appends it to Cseed. For our running
example, the first two cases handle the tokens process, ., arch, and
!==. These cases are sufficient to handle bug seeding patterns without
any unbound tokens, where it suffices to rearrange the tokens in the
candidate token sequence into the buggy token sequence. In contrast,
unbound tokens, such as lit2 in our example, require including a
new token into the sequence Cseed.

The third case (line 7 in Algorithm 3.2) handles unbound tokens
by computing a set Vtgt of target points in the vector space of the
token embedding. For each abstract token tabstr that appears in the
correct part Pcorr of the bug seeding pattern, the algorithm computes
a target point based on the concrete tokens torig and tseed that tabstr
is bound to in the bug-to-imitate and the candidate token sequence,
respectively. The target point is computed at line 12, which imple-
ments an analogy query. The query starts from the embedding of tseed
and adapts it by adding the vector that leads from the embedding
of torig to the corresponding token Cbug[i] in the bug-to-imitate. For
our running example, the algorithm computes three target locations
(which correspond to the three analogy questions from above):

Vtgt = {emb(’x64’) + emb(’win32’)− emb(’darwin’),

emb(arch) + emb(’win32’)− emb(platform),

emb(process) + emb(’win32’)− emb(process)}

That is, the algorithm finds the difference between the vectors of
’darwin’ and ’win32’ and adds it to the vector of ’x64’, and similar
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for the other two queries. The resulting three target locations are the
blue points in Figure 3.2.

Given the set Vtgt, the algorithm queries T for the token whose em-
bedding is most similar to the average of all target points. Intuitively,
this token is the available token that is semantically closest to the
token observed in the bug-to-imitate. Once retrieved, the algorithm
adds the token to the sequence Cseed of result tokens. Our implemen-
tation uses a variant of Algorithm 3.2, which binds unbound tokens
not only with the available token that is most similar to the average
of the target points, but to consider the k nearest neighbors of the
average. For a given candidate token sequence and bug-to-imitate,
this variant seeds not only one but k bugs.

To avoid breaking the syntactic correctness of target programs,
SemSeed checks for each seeded bug whether it yields syntactically
correct code by parsing the complete file after seeding the bug. For ex-
ample, a bug seeding pattern where the correct part is [id1, =, lit1]

and the buggy part is [var, id1, =, lit2] may deem a candidate
location like var num = 0 for seeding bug. The seeded bug may result
in code such as var var num = 1, which is syntactically incorrect. In
practice, we find that 97% of all seeded bugs are syntactically correct
and filter out the remaining ones.

3.4 implementation

We implement SemSeed as an end-to-end bug seeding tool with
JavaScript as the target programming language. We use the API
provided by GitHub to get a list of the most popular JavaScript
repositories that we clone locally. After the initial filtering of commits
based on the commit message etc., the correct and buggy JavaScript
files are obtained using built-in commands in git. The static analysis
on the JavaScript programs to extract nodes, the corresponding tokens,
the kind of tokens etc., has been implemented using esprima. To obtain
token embeddings, we pre-train FastText [182] on token sequences
extracted from a corpus of 150K JavaScript [166] files.

3.5 evaluation

We evaluate SemSeed based on bug fixes extracted from the version
histories of 100 popular JavaScript projects. The evaluation addresses
the following research questions:
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• RQ1: How effective is SemSeed in reproducing real-world bugs?

• RQ2: How does SemSeed compare to a semantics-unaware
variant of the approach?

• RQ3: What is the impact of the configuration parameters of the
approach?

• RQ4: How useful are the seeded bugs for training a learning-
based bug detector?

• RQ5: How do the seeded bugs compare to bugs created with
traditional mutation operators?

• RQ6: How efficient is SemSeed in seeding bugs?

3.5.1 Experimental Setup

We gather bug-fixing commits from the version histories of the 100

JavaScript projects that have most stars on GitHub. For each repos-
itory, we extract all commits and filter them as explained in Sec-
tion 3.3.1.1, resulting in 3,600 concrete bug fixes. We split the bugs
into 2,880 guiding bugs, used to extract bug seeding patterns and as
concrete bugs-to-imitate, and 720 held-out bugs. The split is date-based,
using older commits as guiding bugs and newer commits as held-out
bugs, so we can evaluate whether imitating bugs from the past creates
bugs that have occurred later on. Extracting bug seeding patterns
from the guiding bugs yields 2,201 bug seeding patterns. The fre-
quency of the patterns follows a long tail distribution, which shows
that real-world bugs are diverse, and that extracting bug seeding
patterns from a large dataset is worthwhile.

The approach depends on three configuration parameters that
control how many and which bugs get seeded: the matching threshold
m, the set T of tokens to choose unbound tokens from, and the number
k of bugs to seed per code location. As a default, we use m = 0.2,
k = 10, and T as all tokens in the file where the bug gets seeded plus
the 1,000 most frequent tokens across all files with guiding bugs. RQ3

further evaluates the impact of these parameters.
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3.5.2 RQ1: Effectiveness in Reproducing Real-World Bugs

We evaluate SemSeed’s ability to seed realistic bugs by comparing the
seeded bugs with the held-out bugs. There are two preconditions for
SemSeed to be able to reproduce a specific bug. First, the bug seeding
pattern of the bug must occur across the guiding set and the held-out
set. Due to the long-tail distribution of bug seeding patterns, many of
the patterns occur only once, and we focus on the 151 concrete bugs
that have a pattern in the intersection of guiding bugs and held-out
bugs. Second, for bugs that involve tokens not present in the correct
code, i.e., unbound tokens, the unbound token must be in the set T
of tokens the approach chooses from when applying a bug seeding
pattern. For our default configuration of T, 53 out of the 151 bugs that
fulfill the first precondition also fulfill the second precondition. We
use this set of 53 held-out bugs as the target bugs, and compute how
many of them SemSeed reproduces, i.e., the seeded bug is exactly the
same as the original bug.

Given the files in which the 53 target bugs should be seeded, the
semantic matching identifies all 53 locations as a target location. 16

of the target bugs are rearrangements of existing tokens, i.e., similar
to the inferred mutation operators of prior work [183]. Seeding these
bugs is straightforward and SemSeed reproduces all of them. The
remaining 37 involve unbound tokens, and SemSeed’s algorithm for
binding these tokens is successful for all but six of the bugs. Overall,
the approach reproduces 47 out of the 53 target bugs.

Table 3.2 shows three examples of successfully reproduced real-
world bugs. For each example, we show the correct and buggy variant
of both the bug-to-imitate and the seeded bug. The first example is a
bug without unbound tokens, but which requires rearranging existing
tokens only. The second example is a bug with an unbound iden-
tifier token, where the following analogy queries help to select the
identifier stdout: What token is to parent what official is to catalog?
What token is to stderr what official is to complete? What token is to on

what official is to getReleaseVersion? Finally, seeding the third bug
requires binding two unbound tokens, which SemSeed again success-
fully finds by searching for tokens similar to the tokens in the buggy
code, e.g., finding timeout as a token similar to connectionTimeout.

SemSeed reproduces 47 out of 53 bugs that are in scope for the
approach.
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Table 3.2: Examples of reproduced real-world bugs.

Correct code Buggy code

Bug to imitate: Commit b776e2b7 of jQuery

var opt = speed &&

typeof speed === "object"

var opt =
typeof speed === "object"

Seeded bug: Commit b94532c2 of Chart.js

if ( style &&

typeof style === 'object') {

if (typeof style === 'object') {

Bug to imitate: Commit ad708ca5 of Meteor

catalog. complete .getReleaseVersion catalog. official .getReleaseVersion

Seeded bug: Commit bd74fb4c of Node.js

parent. stderr .on('data',

function() { ... });

parent. stdout .on('data',

function() { ... });

Bug to imitate: Commit 1027871e of webpack

optimization: {

chunkIds : "named"

}

optimization: {

namedChunks : true

}

Seeded bug: Commit 28f346e8 of freeCodeCamp

db: {

connectionTimeout : 15000

}

db: {

timeout : 10000

}

https://github.com/jquery/jquery/commit/b776e2b7
https://github.com/chartjs/Chart.js/commit/b94532c2
https://github.com/meteor/meteor/commit/ad708ca5
https://github.com/nodejs/node/commit/bd74fb4c
https://github.com/webpack/webpack/commit/1027871e
https://github.com/freeCodeCamp/freeCodeCamp/commit/28f346e8
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Table 3.3: Five most frequent and five randomly selected bug seeding pat-
terns. Unbound tokens are highlighted .

Correct Buggy Nb.

id1 : lit1 id1 : lit2 99

lit1 : lit2 lit1 : lit3 71

id1.id2(lit1); id1.id2( lit2 ); 40

var id1 = lit1; var id1 = lit2 ; 33

id1 : lit1 id2 : lit1 18

id1 = lit1 in id2 id1 = !!id2. id3 1

id1.id2(lit1 + id3).id4); id1.id2(lit1 + id3); 2

id1.id2(id3[id4.id5]); id1.id2(id4.id5) 2

var id1 = id2.id3(id4); var id1 = id2.id3; 1

var id1 = id2.id1; var id1=id2. id3 ; 5

3.5.3 RQ2: Comparison with Semantics-Unaware Bug Seeding

SemSeed relies on the semantic information embedded in identifiers
and literals in two ways: (i) to select the locations for imitating a given
bug, and (ii) to bind unbound tokens. To show the importance of
these ideas, we compare our approach against a semantics-unaware
variant of SemSeed, which (i) applies a bug pattern at every syntacti-
cally matching location, and (ii) binds unbound tokens by randomly
picking from all tokens in the set T. This baseline approach repro-
duces only 16 out of the 53 target bugs from RQ1. All of these 16 bugs
do not have any unbound tokens. For bugs that need unbound token,
we repeat the experiment for ten times with different seed values
and randomly select a token from T. In none of the ten repetitions
does the random selection pick the correct token required to seed a
bug. The reason why randomly binding unbound tokens is ineffective
is that picking the right token by chance from T is unlikely. In our
default configuration, T contains more than 1,000 tokens, and even
when T consists only of tokens that appear in the same function,
there typically are several dozens of identifiers and literals to choose
from.

To further illustrate the importance of handling unbound tokens,
Table 3.3 lists some bug seeding patterns that SemSeed finds, along
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Figure 3.3: Influence of matching threshold m on seeded bugs.

with their frequency in our dataset. All of the five most common
bug seeding patterns (top-5 shown in table) and 62% of all bug
seeding patterns contains at least one unbound token. Prior work
on bug seeding based on past bug fixes does not handle unbound
tokens [183, 246], and hence, could not benefit from these patterns.

A semantics-unaware variant of SemSeed reproduces only 16 out
of 53 target bugs, and not handling unbound tokens misses 62% of
all bug seeding patterns.

3.5.4 RQ3: Impact of Configuration Parameters

3.5.4.1 Matching Threshold m

The matching threshold m determines in Algorithm 3.1 whether to
apply a bug pattern to a code location. A threshold of 0 means that
the seeding location need not be similar to the bug-to-imitate at all,
i.e., the decision to apply a bug seeding pattern is purely syntactic. In
contrast, a threshold of 1 requires the tokens to perfectly match the
original bug.

Figure 3.3 shows how the matching threshold influences the bugs
that SemSeed creates. The two curves show two percentages: in blue,
the percentage of seeded bugs out of all bugs that a purely syntactic
approach, i.e., with m = 0, would seed; in red, the percentage of
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reproduced target bugs (RQ1) among the seeded bugs. As expected,
both percentages decrease when the matching threshold increases.
The gap between the curves shows that the semantic matching of
target locations is effective. For example, with a matching threshold
of 0.4, the approach seeds a bug at only 20% of all possible locations,
but still reproduces 60% of all bugs that SemSeed can reproduce.

Compared to purely syntactic matching of bug patterns, the seman-
tic matching increases the chance to seed realistic bugs.

3.5.4.2 Token Set T and Number k of Bugs to Seed

Another parameter is the set T of tokens to consider when binding
unbound tokens (Section 3.3.3.3). We experiment with three variants
of T:

1. Tfct: Search for unbound tokens only in the function where the
bug gets seeded.

2. Tfile: In addition to Tfct, search among all tokens in the file where
the bug gets seeded.

3. Tcommon: In addition to Tfile, search among the 1,000 most fre-
quent tokens across all files in the guiding set.

A larger search space increases the chance that the token required to
reproduce a bug exists in T, but also makes it more difficult to choose
the right token. A related parameter is how many bugs to seed for
a given code location and bug seeding pattern. Our approach seeds
one bug for each of the k most likely tokens found by Algorithm 3.2,
and we evaluate values of k ranging from 1 to 10.

Figure 3.4 illustrates the effect that the token set T and the number
k of bugs to seed have on the number of real-world bugs that SemSeed
reproduces. We see that using a more restricted search space of tokens
yields fewer reproduced bugs than a larger search space. Regarding
the influence of k, considering more than the single most likely token
significantly increases the number of reproduced bugs, in particular
for larger T. Our default configuration of T = Tcommon and k = 10
yields 47 reproduced bugs.

Depending on the token set T and the number k of bugs to seed,
SemSeed reproduces between 29 and 47 of the target bugs.
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Figure 3.4: Reproduced real-world bugs depending on token set T and
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3.5.5 RQ4: Usefulness for Training a Learning-Based Bug Detector

To evaluate the usefulness of semantic bug seeding, we explore one
of the applications of SemSeed: seeded bugs as training data for
learning-based bug detection. We build on DeepBugs [226], which
learns from examples of correct and incorrect code, and then predicts
bugs in previously unseen code. DeepBugs supports several bugs
patterns, of which we focus on two that are particularly challenging
to seed bugs for:

• Wrong assignment bugs, where the right hand side of an assign-
ment is incorrect, e.g., writing i=o; instead of i=0;.

• Wrong binary operands, where a developer uses an incorrect
operand in a binary expression, e.g., accidentally writing length

* height instead of length * breadth.

The other bug patterns [226], e.g., swapping function arguments, are
simpler to seed and do not require to select unbound tokens.

We train DeepBugs using two configurations that differ in the
way the incorrect code examples are generated. One configuration,
called “artificial”, uses DeepBugs’s default generation of incorrect
code examples, which randomly applies purely syntactic transfor-
mations and binds unbound tokens at random from Tfile. The other
configuration generates incorrect examples with SemSeed, which we
configure to seed only bugs that match the two bug patterns targeted
by DeepBugs. We apply both configurations to the same code corpus:
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a de-duplicated version [207] of a JavaScript corpus [166], which
consist of 120K files. Generating for each correct example at most
one incorrect example, the “artificial” configuration yields 1.1 million
wrong assignments and 2.6 million wrong binary operands. Since
SemSeed focuses on locations that have a semantic match with one
of the guiding bugs, it creates fewer incorrect examples, namely 248K
wrong assignments and 267K wrong binary operands.

Once trained, we measure the ability of DeepBugs to detect real-
world bugs. As the bug patterns targeted by DeepBugs are relatively
rare, we gather the bugs in three ways: (i) Those 8 of the held-out
bugs that match the two bug patterns; (ii) Additional bugs gathered
from 900 popular GitHub JavaScript projects using the methodology
in Section 3.3.1.1; and (iii) Bugs from the JavaScript variant of an
existing dataset of single-statement bugs [236]. This process yields
412 bugs (35 wrong assignments and 377 wrong binary operands).

We measure precision, i.e., how many of all reported warnings are
among the known bugs, and recall, i.e., how many of all known bugs
DeepBugs finds. For each warning, DeepBugs returns a probability
for the location to be buggy. Figure 3.7 and Figure 3.10 shows the pre-
cision and recall of DeepBugs depending on the probability threshold
used to decide which warnings to report. Overall, using SemSeed-
generated bugs instead of artificial bugs significantly increases the
effectiveness of DeepBugs, with clearly improved recall and roughly
the same precision. For example, using a threshold of 0.5, SemSeed
increases the detected bugs from 7% to 53%.

To understand why SemSeed improves the bug detection ability of
learned bug detectors, consider two bugs seeded into the following
code:

for (var i = 0; i < coordinates. length ; i += 2)

SemSeed seeds a bug by turning length into another identifier that
also refers to a dimension and that semantically fits the surrounding
tokens, i.e., a bug that a developer might actually introduce:

for (var i = 0; i < coordinates. offsetHeight ; i += 2)

In contrast, DeepBugs uses an arbitrary other identify from the same
file, resulting in a rather unrealistic bug:

for (var i = 0; i < coordinates. enableClickBuster ; i += 2)
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Figure 3.7: Precision and recall of DeepBugs with artificially seeded and
SemSeed-seeded bugs.

As illustrated by this example, a model trained on the artificial bugs
tends to identify obvious yet unrealistic mistakes. Instead, training
DeepBugs with SemSeed’s bugs teaches the model to identify subtle
yet more realistic mistakes. More broadly, the results also illustrate
a quality-versus-quantity tradeoff in bug seeding: The SemSeed-
generated bugs yield more effective bug detectors, despite being
an order of magnitude fewer than the artificially created bugs.
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Figure 3.10: Precision and recall of DeepBugs with artificially seeded and
SemSeed-seeded bugs.

Using semantically seeded bugs as training data for a learning-
based bug detector allows for finding significantly more bugs.
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3.5.6 RQ5: Comparison with Traditional Mutation Operators

Existing code mutation approaches, such as Mutandis [102] for
JavaScript and Major [117] for Java, use pre-defined mutation op-
erators. We compare the mutation operators in Mutandis with the
bugs created by SemSeed. Based on the 2,880 guiding bugs, we seed
677,217 bugs into a random sample of 1,000 JavaScript files and then
compare the seeded bugs to the 23 mutation operators in Mutandis.1

98.2% of the SemSeed-generated bugs go beyond the 23 pre-defined
mutation operators. The 1.8% of the bugs that are shared with Mutan-
dis correspond to 165 out of the 2,880 guiding bugs. For example, one
of the Mutandis patterns is about changing a literal in a condition, a
change SemSeed also performs. Another example is about removing
the var keyword from a variable declaration, a pattern that SemSeed
also learns and applies. Inversely, Mutandis also creates some bugs
that SemSeed cannot seed. Out of the 23 Mutandis operators, Sem-
Seed has a corresponding bug seeding pattern for 16. For 13 out of
these 16, SemSeed seeds at least one bug, while for the remaining
three no suitable bug seeding location is found. Among the remaining
23− 16 = 7 Mutandis operators, two are out of scope for SemSeed
because the code transformation affects more than one line, e.g., swap-
ping two nested loops. For the other five operators, SemSeed could
in principle seed bugs, but there is no corresponding guiding bug.
These are mostly about changes to JavaScript APIs, e.g., removing the
integer base argument 10 from calls like parseInt(’09/11/08’, 10).

SemSeed complements traditional mutations by seeding many bugs
beyond a fixed set of pre-defined mutation operators.

3.5.7 RQ6: Efficiency

We measure the efficiency of SemSeed by keeping track of the time it
needs to seed the 677,217 bugs into the 1,000 files from RQ5. Because
some files allow for thousands of seeded bugs, we set a time limit
of 30 minutes per file. Out of the 1,000 files, SemSeed could seed
bugs into 902 files where it found at least one matching bug seeding
pattern. In total, seeding 677,217 bugs takes 140 minutes. Analyzing

1 Mutandis can also use runtime information to decide which bugs to seed, which
we ignore here because our focus is on static bug seeding.
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what part of the approach takes the most time, we find that the
analogy queries are the biggest bottleneck.

SemSeed takes, on average, 0.01 seconds to seed a bug and hence
can generate a large number of bugs in very little time.

3.6 limitations and threats to validity

SemSeed focuses on single-line bugs, for two reasons: (i) we can
gather a large set of these bugs automatically, which facilitates the
evaluation, and (ii) these bugs are relevant and important in prac-
tice [198, 236, 253]. For example, Karampatsis and Sutton [236] show
that there is an instance of one out of 16 common patterns of single-
line bugs every 1,600 to 2,500 lines of code. To generalize SemSeed to
more complex bugs, one would consider token sequence that span
multiple lines. One challenge we anticipate is that the probability
that a complex bug-to-imitate syntactically matches code in another
program is smaller than for single-line bugs. Addressing this chal-
lenge, e.g., by approximately matching bug seeding patterns to code
locations, remains for future work.

Among the many applications of bug seeding, we select learning-
based bug detection to evaluate SemSeed’s usefulness. Based on our
comparison with traditional mutation operators, we are optimistic
that the approach could also be useful, e.g., for mutation testing, and
envision future work on this and other applications.

We implement the approach for JavaScript and cannot draw con-
clusions about how well it would work for other languages. The
fundamental challenges that SemSeed addresses, i.e., where to seed
bugs, how to adapt a given example bug to a target location, and how
to handle unbound tokens, are language-independent.

3.7 conclusion

This chapter presents SemSeed, an approach for seeding bugs in a
semantics-aware way. Given a possibly small set of example bugs
obtained from a corpus, the approach infers bug seeding patterns
and then imitates the given bugs at various code locations in a tar-
get program. The key novelty is to go beyond purely syntactic bug
seeding by (i) checking if a code location semantically matches the
bug-to-imitate, (ii) adapting the bug seeding pattern to the local code
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context, and (iii) binding unbound tokens based on semantic analogy
queries. To reason about the semantics of code elements, SemSeed
builds on learned token embeddings, which have not been used for
bug seeding before. Our evaluation with thousands of real-world
bugs shows that the approach effectively seeds realistic bugs, while
being efficient enough for creating hundreds of thousands of bugs
within an hour. The created bugs complement traditional mutation
operators and are useful as training data for learning-based bug
detectors, allowing them to find many otherwise missed bugs.



4
N L 2 T Y P E : I N F E R R I N G J AVA S C R I P T F U N C T I O N
T Y P E S F R O M N AT U R A L L A N G UA G E
I N F O R M AT I O N

In the previous two chapters (Chapter 2, Chapter 3), we use static
analysis to either generate programs or mutate existing programs.
In both cases, the static analysis ignores code constructs such as
comments, thereby missing some rich source of information for rea-
soning about programs. This chapter presents NL2Type where we
perform corpus-based static analysis to train a neural model that is
able uncover inconsistencies in source code. One of the challenges of
reasoning about programs written in dynamically typed languages
(C-II, Chapter 1) is the lack of statically declared types. The cur-
rent chapter addresses this challenge by leveraging natural language
information such as comments present in the source code.

4.1 motivation

JavaScript has become one of the most popular programming lan-
guages. It is widely used not only for client-side web applications
but, e.g., also for server-side applications running on Node.js [232],
desktop applications running on Electron, and mobile applications
running in a web view. However, unlike many other popular lan-
guages, such as Java and C++, JavaScript is dynamically typed and
does not require developers to specify types in their code.

While the lack of type annotations allows for fast prototyping, it
has significant drawbacks once a project grows and matures. One
drawback is that modern IDEs for other languages heavily rely on
types to make helpful suggestions for completing partial code. For
example, when accessing the field of an object in a Java IDE, code
completion suggests suitable field names based on the object’s type.

75
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/** Calculates the area of a rectangle.

* @param {number} length The length of the rectangle.

* @param {number} breadth The breadth of the rectangle.

* @returns {number} The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {
return length * breadth;

}

Figure 4.1: Function with JSDoc annotations. The annotations include com-
ments, parameter types, and the return type.

In contrast, JavaScript IDEs often fail to make accurate suggestions be-
cause the types of the code elements are unknown. Another drawback
is that APIs become unnecessarily hard to understand, sometimes
forcing developers to guess what types of values a function expects
or returns. Finally, type errors that would be detected at compile time
in other languages may remain unnoticed in JavaScript, which causes
unexpected runtime behavior.

To mitigate the lack of types in JavaScript, several solutions have
been proposed. In particular, gradual type systems, such as Flow [275]
developed by Facebook and TypeScript [280] developed by Microsoft,
use a combination of developer-provided type annotations and type
inference to statically detect type errors. A popular format to ex-
press types in JavaScript are JSDoc annotations. Figure 4.1 shows an
example of such annotations for a simple JavaScript function. The
main bottleneck of these existing solutions is that they rely on de-
velopers to provide type annotations, which remains a manual and
time-consuming [222] task.

Previous work has addressed the type inference problem through
static analyses of code [49, 53, 69, 98]. Unfortunately, the highly
dynamic nature of languages like JavaScript prevent these approaches
from being accurate enough in practice. In particular, analyses that
aim for sound type inference yield various spurious warnings.

This chapter addresses the type inference problem from a new
angle by exploiting a valuable source of knowledge that is often
overlooked by program analyses: the natural language information
embedded in source code. We present NL2Type, a learning-based
approach that uses the names of functions and formal parameters,
as well as comments associated with them, to predict a likely type
signature of a function. Type signature here means the types of func-
tion parameters and the return type of the function, e.g., expressed
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via @param and @return in Figure 4.1. We formulate the type inference
task as a classification problem and show how to use an LSTM-based
recurrent neural network to address it effectively and efficiently. The
approach trains the machine learning model based on a corpus of
type-annotated functions, and then predicts types for previously
unseen code.

There are four reasons why NL2Type works well in practice. First,
developers use identifier names and comments to communicate the
semantics of code. As a result, most human-written code contains
meaningful natural language elements, which provide a rich source
of knowledge. Second, source code has been found to be repetitive
and predictable, even across different developers and projects [83].
Third, probabilistic models, such as the deep learning model used
by NL2Type, are a great fit to handle the inherently fuzzy natural
language information [72]. Finally, our work benefits from the fact
that some developers annotate their JavaScript code with types, giving
NL2Type sufficient data to learn from.

We are aware of two existing approaches, JSNice [144] and Deep-
Typer [218], that also use machine learning to predict types in JavaScript.
JSNice analyzes the structure of code, in particular relationships be-
tween program elements, to infer types. Instead, we consider natural
language information, which allows NL2Type to make predictions
even for functions with very little code. Moreover, our approach is
language-independent, as it does not depend on a language-specific
analysis to extract relations between program elements. DeepTyper
uses a sequence-to-sequence neural network to predict a sequence
of types from a sequence of tokens. Similar to us, they also consider
some natural language elements of the code. However, their approach
considers only identifier names, not comments, missing a valuable
source of type hints, and they frame the problem as sequence-to-
sequence translation, while we frame it as a classification problem.

We envision NL2Type to be valuable in several usage scenarios. For
code that does not yet have formal type annotations, the approach
serves as an assistance tool that suggests types to reduce the man-
ual annotation effort. For code that already has type annotations,
NL2Type checks for inconsistencies between these annotations and
natural language information, which exposes incorrect annotations,
misleading identifier names, and confusing comments. Another usage
scenario is improving type-related IDE features, such as code comple-
tion or refactoring, for code that does not have any type annotations.
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We evaluate NL2Type with 162,673 JavaScript files from open-
source projects. After learning from a subset of these files, the ap-
proach predicts types in the remaining files with a precision of 84.1%
and a recall of 78.9%, giving an F1-score of 81.4%. When considering
the top-5 suggested types, precision and recall even increase to 95.5%
and 89.6%, respectively. Comparing our approach to JSNice [144] and
DeepTyper [218], we find that NL2Type significantly outperforms
both approaches. When combining NL2Type with JSNice, we find
that 27.8% of all correctly predicted types are found exclusively by
NL2Type, showing that our approach not only improves upon, but
also complements existing work. Beyond predicting likely types for
code where annotations are missing, we use NL2Type to check for
inconsistencies in existing type annotations. We rank the reported
inconsistency warnings by the confidence of the prediction and man-
ually inspect the top 50. 39 out of 50 warnings are valuable, in the
sense that developers should fix an incorrect type annotation or im-
prove a misleading natural language element in the code. Finally,
the approach is efficient enough for practical use. Training takes 93

minutes in total, and predicting types for a function takes 72ms, on
average.

In summary, this chapter contributes the following:

• The insight that natural language information is a valuable, yet
currently underused source of information for inferring types
in a dynamically typed language.

• A neural network-based machine learning model that exploits
this insight to predict type annotations for JavaScript functions.

• Empirical evidence that the approach is highly effective at sug-
gesting types and that it clearly outperforms state-of-the-art
approaches.

• Empirical evidence that the approach is effective at finding
inconsistencies between type annotations and natural language
elements, a problem not considered before.

4.2 learning a model to predict types

This section describes NL2Type, our learning-based approach for
predicting the type signatures of functions from natural language
information embedded in code. Figure 4.2 gives an overview of the
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Data extraction

Preprocessing
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Neural net-
work learning

NL2Type model
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annotated
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Canonicalized NL and
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Figure 4.2: Overview of the approach.

approach, which consists of two phases: a learning phase, shown
in blue in the top part of the figure, which learns a neural model
from a corpus of code with type annotations, and a prediction phase,
shown in gray in the bottom part of the figure, which uses the
learned model to predict types for previously unseen code. To prepare
the given code for learning, a lightweight static analysis extracts
natural language and type data (Section 4.2.1) and preprocesses these
data using natural language processing techniques (Section 4.2.2).
Section 4.2.3 describes how NL2Type transforms the data into a
representation that captures the semantic relations between words,
which is then fed into a neural network that learns to predict type
signatures (Section 4.2.4). Once the model is trained, querying it with
natural language information extracted from a previously unseen
function yields a likely type signature for the function (Section 4.2.5).
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Extracted function data:

n f c f cr tr

getArea Calculates the
area of a rectan-
gle.

The area of the rectan-
gle in meters. May also
be used for squares.

number

Preprocessed function data:

n f c f cr tr

get area calculate area rect-
angle

area rectangle meter
may also use square

number

Figure 4.3: Example of data extraction and preprocessing.

4.2.1 Data Extraction

The goal of the data extraction step is to gather natural language
information and type signatures associated with functions. To this
end, a lightweight static analysis visits each function in the given
corpus of code. We focus on functions with JSDoc annotations, an
annotation format that is widely used to specify comments and types.
For each JavaScript function, the analysis extracts the following:

Definition 4.1 (Function data). For a given function f , the extracted
function data is a tuple (n f , c f , cr, tr, P) where

n f = name of the function f

c f = comment associated with f

cr = comment associated with return type of f

tr = return type of f

P = sequence of parameter data

The sequence P of parameter data is a sequence of tuples (np, cp, tp) where

np = name of the formal parameter p

cp = comment associated with p

tp = type of p
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For example, the upper table in Figure 4.3 shows the function
data extracted from the JavaScript code in Figure 4.1. We omit the
parameter data for space reasons.

4.2.2 Preprocessing

To prepare the natural language information extracted in the previous
step for effective learning, NL2Type automatically preprocesses the
function data using natural language processing techniques. The goal
of this step is to canonicalize natural language words and to remove
uninformative words.

At first, we tokenize all natural language data into words. The
approach tokenizes the extracted comments, c f , cr, and cp, on the
space character. For the extracted names of functions and parameters,
n f and np, we tokenize each name based on the camel-case conven-
tion, which is the recommended naming convention in JavaScript. For
example, the name “getRectangleArea” is tokenized into three words:
“get”, “Rectangle”, and “Area”. Beyond camel-case, other tokenization
techniques for identifier names [71] could be plugged into NL2Type.

After tokenization, the approach removes all punctuation, except
for periods, and converts all characters to lowercase. By converting
to lowercase, we reduce the vocabulary size without losing much
semantic information. The approach also removes stopwords, i.e.,
words that appear in various contexts and therefore do not add much
information, such as “the” and “a”. Finally, the approach lemmatizes
all words, i.e., it reduces the inflicted forms of a word, e.g., “running”,
“runs”, “ran”, to its base form, e.g., “run”.

For our running example in Figure 4.1, the lower table in Figure 4.3
shows the function data after preprocessing.

4.2.3 Data Representation

To feed the extracted data into a machine learning model, we need to
represent it as vectors. The following describes our vector representa-
tions of natural language words and of types.

4.2.3.1 Representing Natural Language Information

To enable NL2Type to reason about the meaning of natural language
words, we build upon word embeddings, a popular technique to
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map words into a continuous vector space. The key property of em-
beddings is to preserve semantic similarities by mapping words that
have a similar meaning to similar vectors. For example, assuming we
map words into a 3-dimensional space, then “nation” and “country”
may have vectors [0.5, 0.9,−0.6] and [0.5, 0.8,−0.7]. In practice, em-
beddings map words into larger spaces; we use vectors of length 100

for our evaluation.
More formally, a word embedding is a map E : V → Rk that

assigns to each word w ∈ V in the vocabulary a k-dimensional vector
of real numbers. To learn word embeddings, NL2Type builds upon
Word2Vec [100], which takes a set S of sentences composed of words
in V and learns the embedding of a word w from the contexts in which
w occurs. Context here means the words preceding and following
w, where the number of context words to consider is a configurable
parameter (ten in our evaluation).

NL2Type learns two word embeddings: an embedding Ec for words
that occur in comments and an embeddings En for words that occur
in identifier names. The rationale for having two instead of just one
embedding is that identifier names tend to contain more source code-
specific jargon and abbreviations than comments. To learn Ec, the set
of sentences S consists of all sequences of words in the preprocessed
comments c f , cr, and cp. For example, for the word “rectangle” in the
lower table in Figure 4.3, the comments c f and cr give two sequences
of words in which “rectangle” occurs. For a larger corpus of code,
many more such sequences are available. Similarly, to learn En, the set
of sentences S consists of the sequences of words in the preprocessed
identifier names n f and np. For both embeddings, we consider only
words that occur at least five times in the training data, to prevent
the embedding from overfitting to few contexts.

A possible alternative to learning word embeddings from data
extracted from a code corpus would be to use publicly available,
pre-trained embeddings, e.g., the Google News word embeddings.1

However, such pre-trained embeddings are typically trained on sen-
tences that use a different vocabulary than that found in real-world
JavaScript code or on sentences where some words have a different
meaning than in source code. For example, words like “push” or
“float” may have a different meaning in a programming context than
in common usage, while other words, e.g., “int”, occur often in a
programming context but not at all in common usage.

1 https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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4.2.3.2 Representing Types

In addition to the natural language information, which is the input
to NL2Type, we must also represent the to-be-predicted types as
vectors. Given the set Tall of all types that occur either as a function
return type t f or as a parameter type tp in the training corpus, the
approach focuses on a subset T ⊆ Tall of frequently occurring types.
The reason for bounding the size of T is that types have a long-tail
distribution, i.e., a few types occur very frequently while many other
types occur only rarely (Section 4.4.6). Predicting more frequent types
covers a large percentage of all type occurrences, whereas predicting
less frequent types is more difficult, as there is less data to learn from.
For a specific size |T|, we select the |T| − 1 most frequent types from
Tall and add an artificial type “other” that represent all other types
and that indicates that NL2Type cannot predict the type. The size
of T is a configuration parameter and we evaluate its influence in
Section 4.4.6. For the evaluation, we consider the 1,000 most common
types, including the built-in types of the JavaScript language, e.g.,
boolean and number, and custom types, e.g., Graphics and Point3d.

Given the set T, we represent a type t ∈ T using a one-hot vector,
i.e., a vector of length |T|, where all elements are zero except for
one specific element set to one for each word. For example, the type
boolean may be represented by a vector [0, 0, 1, , 0, .., 0] that consists of
999 zeros and a single one.

4.2.4 Training the Model

Based on the vector representations of natural language information
and types, NL2Type learns to predict the latter from the former. We
use a neural network-based machine learning model for this purpose
because neural networks have been shown to be highly effective at
reasoning about natural language information. Specifically, we adopt
a recurrent neural network based on long short-term memory (LSTM)
units. Recurrent neural networks are well suited for ordered input
data, such as sequences of natural language words. LSTMs are effec-
tive for data with both long-term and short-term dependencies. They
have been successfully applied to a number of problems in natural
language processing that are similar to our classification problem,
such as sentiment analysis, which classifies texts into different cate-
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gories [145, 161, 162]. The following describes the data points used
for training the model and the architecture of the neural network.

4.2.4.1 Data Points

We transform the extracted and preprocessed function data into a
set of data points. Each data point represents a single type and the
natural language information associated with it. We distinguish two
kinds of data points, one for return types and another for parameter
types.

Definition 4.2 (Data points). A data point is a pair (N, t) of natural lan-
guage information N and a type t. Given the function data (n f , c f , cr, tr, P)
of a function, where P is a
sequence P = [(n1

p, c1
p, t1

p), .., (n|P|p , c|P|p , t|P|p )] of parameter data, we have
two kinds of data points:

1. One data point for the return type with:
N = (n f , c f , cr, n1

p, .., n|P|p ) and t = tr.

2. |P| data points for the parameter types with:
N = (ni

p, ci
p) and t = ti

p.

For example, for the function in Figure 4.1, there are three data
points:

1. For the return type:

N = (area, calculate area rectangle, area rectangle
meter may also use square, length, breadth)

t = number

2. For the first parameter:

N = (length, length rectangle)

t = number

For the second parameter:

N = (breadth, breadth rectangle)

t = number

Given a set of data points (N, t), the task solved by the neural
network is to predict t from N. We train a single model for both
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return types and parameter types because both tasks are similar
and it enables the model to learn from all available data. To feed
data points into the neural network, we transform each data point
into a sequence of input vectors and an output vector, using the
vector representations from Section 4.2.3. Intuitively, the input is the
sequence of embeddings of words in the natural language information
N, and the output vector is the vector representation of the type t.

To formally define the input vectors, consider a helper function E∗ :
w1, .., wl → Rl×k that takes a sequence of l words, maps each word
to a vector representation using the embedding function E : w→ Rk,
and then yields the sequence of these vectors. The embedding E refers
to En and Ec for names and comments, respectively, as described in
Section 4.2.3. To ensure that all input vectors have the same length
l× k, no matter how many natural language words the static analysis
could extract from the source code, the helper function E∗ truncates
word sequences to a maximum length and pads word sequences that
are too short with zeros. We discuss and evaluate the length limits in
Section 4.4.6.

Based on this helper function, the input for a data point that
represents a return type is the following sequence of vectors (where
◦ chains vectors into a sequence):

Kret ◦ E∗(c f ) ◦ E∗(n1
p) ◦ ... ◦ E∗(n|P|p ) ◦ E∗(n f ) ◦ E∗(cr)

Likewise, the input for a data point that represents a parameter type
is the following sequence of vectors:

Kparam ◦ E∗(cp) ◦ Z ◦ ... ◦ Z ◦ E∗(np) ◦ E∗(cr)

The vectors Kret and Kparam are special marker vectors that indicate
to the network what kind of type to predict, i.e., whether the type is
a return type or a parameter type. Making the kind of type explicit
enables the network to distinguish between both kinds if necessary.
The Z vectors are padding vectors of zeros that we use to ensure that
the input sequences of return types and parameter types have the
same length. In addition to concatenating vectors, each ◦ also inserts
a vector of ones into the sequence, as a delimiter between the different
natural language elements, which helps the network understand the
structure of the data.

For instance, recall the three examples of data points given above.
The natural language part N of each of them is transformed into
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a sequence of real-valued vectors based on the embeddings of the
natural language words in N. Due to the padding, all three sequences
have the same length.

4.2.4.2 Neural Network Architecture

Given the data points described above, NL2Type learns a function
m : Rx×k 7→ R|T| where x is the total number of word embeddings
in an input sequence and |T| is the number of types we are trying to
predict. Using the length limits as set in our evaluation, the network
maps a sequence of x = 43 vectors of length k = 100 to a vector of
length |T| = 1, 000.
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Figure 4.4: Architecture of neural network used in NL2Type.

To learn the function m, we use a bi-directional LSTM-based re-
current neural network, as illustrated in Figure 4.4. The network
takes a sequence of Rk vectors, at each step consumes one vector,
and updates its internal state (represented by the “LSTM” nodes).
After consuming all the vectors for a single data point, the network
feeds the internal state through a hidden layer to the output layer.
The output layer uses the softmax function, which yields a vector of
real-valued numbers in [0, 1] so that the sum of all numbers is equal
to one. That is, the output can be interpreted as a probability distri-
bution. During training, the backpropagation algorithm adapts the
weights of the network to minimize the error between the predicted
and the expected type.
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4.2.5 Prediction

Once the model is sufficiently trained, it can predict the types of pre-
viously unseen functions. To query the model with a new function,
we extract and preprocess all natural language information associ-
ated with the function, and create one sequence of input vectors
for each type associated with the function (i.e., one sequence for
the return type and one sequence for each parameter type). Then,
each such input sequence is given to the network, which yields a
type vector in R|T|. The type vector can be interpreted as a prob-
ability distribution over the types in T. For example, suppose that
T = {number, boolean, f unction, other} and that the predicted type
vector is [0.6, 0.2, 0.1, 0.1]. We interpret this prediction as a 60% prob-
ability that the type is “number”, 20% that the type is “boolean”,
10% that the type is “function”, and 10% that the type is any other
type. If the most likely type is “other”, the network essentially says
that it cannot predict a suitable type for the given natural language
information.

4.3 applications

The previous section describes a general model to predict the return
type and the parameter types of functions from natural language
information. This model has several applications, which we present
in the following. All these applications query NL2Type as described
in Section 4.2.5.

4.3.1 Suggesting Type Annotations

The perhaps most obvious application of NL2Type is to support
developers in the process of annotating code with types by suggest-
ing type annotations. Adding type annotations to functions enables
an effective use of type systems for JavaScript, such as Flow and
TypeScript, and it provides useful API documentation. For the large
number of functions in legacy JavaScript code without type annota-
tions, NL2Type can suggest types during the annotation process. To
this end, the developer queries the model for each type and uses the
predicted type vector as a ranked list of type suggestions.
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4.3.2 Improving Type-based IDE Features

IDEs use type information for making suggestions to developers, such
as how to complete partial code. For example, consider a developer
that implements the body of a function and wants to access a property
of a parameter of this function. Without type information, the IDE
cannot make any accurate suggestions about the property name.
For example, the popular WebStorm IDE will simply suggest an
alphabetically ordered list of all identifier names used in the current
file. NL2Type can improve these suggestions by probabilistically
predicting the parameter type of the function, which the IDE can then
use to prioritize the suggested property names.

4.3.3 Detecting Inconsistencies

In addition to predicting types for functions that are not yet type-
annotated, NL2Type can check existing type annotations for incon-
sistencies. In this scenario, the approach checks whether the natural
language information associated with a type matches the annotated
type. Finding mismatches is useful for fixing broken type annota-
tions, for changing misleading identifier names, and for improving
confusing comments.

Given an annotated function type, we query the NL2Type model
with the natural language information associated with the type and
compare the type predicted as the most likely with the actual type.
To avoid overwhelming developers with spurious inconsistencies, the
approach ranks all inconsistencies by how certain the model is in
its prediction. One possible ranking approach would be to consider
the predicted type vectors and to rank inconsistencies by the highest
probability in each vector. For example, suppose the type vector is
[0.9, 0.025, 0.025, 0.05] but the type represented by the first element
does not match the annotated type. Based on the type vector, the
model appears to be very certain of its prediction and we would rank
this inconsistency high. Unfortunately, this naive ranking approach
does not work well in practice because neural networks tend to be
too confident in their predictions. The underlying reason, as shown
by Guo et al. [188], is that for a softmax function over more than two
classes, the output of the softmax function is not a true probability
distribution.
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Instead of ranking inconsistencies by the highest value in the type
vector, we compute a more reliable estimate of the network’s con-
fidence [152]. The key idea is to use dropout, i.e., to purposefully
deactivate some neurons, during prediction and to measure how
much it influences the outcome of the prediction. For every sequence
of input vectors, we query the model multiple times, each time de-
activating some probabilistically selected neurons, and record the
predicted type vectors. We then measure the variance of the type
vectors and consider a prediction with lower variance to be more
confident. Finally, we rank all potential inconsistencies by their confi-
dence and report the ranked list to the developer.

4.4 evaluation

Our evaluation on real-world JavaScript code focuses on the following
research questions:
RQ1: How effective is NL2Type at predicting function type signatures
from natural language information?
RQ2: How does the approach compare to existing type prediction
techniques [144, 218]?
RQ3: How useful is NL2Type for detecting inconsistencies in existing
type annotations?
RQ4: What is the influence of hyperparameters, such as the number
|T| of considered types, on the effectiveness of NL2Type?
RQ5: Is NL2Type efficient enough to be applied in practice?

Our implementation and data to reproduce our results are available
at https://github.com/sola-da/NL2Type.

4.4.1 Implementation

We implement NL2Type in Python based on several existing tools
and libraries. For the data extraction, the implementation parses
every JavaScript file using the JSDoc tool [276], which extracts the
comments, the function name, and the parameter names of a function.
The preprocessing, including removing stopwords and lemmatization,
is implemented based on the Python NLTK library [44]. To convert
natural language words into embeddings, we use gensim’s Word2Vec
module [67]. The neural network that predicts types from a sequence

https://github.com/sola-da/NL2Type
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of embeddings is implemented on top of Keras, a high-level deep
learning library, using TensorFlow as a backend [128].

4.4.2 Experimental Setup

We evaluate NL2Type on a corpus of 162,673 JavaScript files com-
posed of a corpus from prior work [166] and popular JavaScript
libraries downloaded from a content-delivery service [272]. Following
common practice in large-scale machine learning, including on soft-
ware [144, 176, 218, 219, 226], we divide these files into disjoint sets of
training files (80%) and testing files (20%). A fixed split into training
data and validation data, instead of k-fold cross-validation, reduces
computational cost, yet gives accurate results due to the large amount
of available data. For all files, we extract data points as described
in Section 4.2, which gives a total of 618,990 data points. 31.1% and
68.9% of them are for function return types and parameter types,
respectively. Not all data points contain all pieces of natural language
information. In particular, 20.3% of all data points do not contain a
comment c f or cp. Given the data extracted from the training files, we
train the embeddings and our model, and then use the data extracted
from the testing files to evaluate the trained model. All experiments
are run on an Ubuntu 16.04 computer with an Intel Xeon E5-2650

processor with 48 cores, 64GB of memory, and an NVIDIA Tesla P100

GPU with 16GB of memory.

4.4.3 RQ1: Effectiveness at Predicting Types

4.4.3.1 Metrics

To evaluate the effectiveness of NL2Type in predicting types, we
measure precision, recall, and F1-score. Intuitively, precision is the
percentage of correct predictions among all predictions, and recall
is the percentage of correct predictions among all data points. The
F1-score is the harmonic mean of precision and recall. Similar to
previous work [218], we report these evaluation metrics for the top-k
predicted types, assuming that a user of NL2Type inspects up to k
suggested types. We also report the top-1 results, which means that
the user considers only the single most likely predicted type.

We define top-k precision as precision = predcorr
predall

where predcorr is
the number of predictions where the actual type is in the top-k and
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Table 4.1: Precision, recall, and F1-score as percentages of NL2Type, with
and without considering comments, and of a naive baseline.

Approach Top-1 Top-3 Top-5

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NL2Type 84.1 78.9 81.4 93.0 87.3 90.1 95.5 89.6 92.5

NL2Type w/o comments 72.3 68.3 70.3 86.6 81.8 84.1 91.4 86.3 88.8

Naive baseline 18.5 17.3 17.9 49.0 46.0 47.4 66.3 62.3 64.2

/** Get the appropriate anchor and focus node/offset

* pairs for IE.

* @param {DOMElement} node

* @return {object}

*/
function getIEOffsets(node) {
...

}

Figure 4.5: Function with correctly predicted type signature.

predall is the number of data points for which the model makes a
prediction at all. If the model suggests “other” as the most likely
type, it indicates that it cannot make a good prediction, and we
count it neither in predall nor in predcorr. The top-k recall is defined
as recall = predcorr

dps where dps is the number of all data points.

4.4.3.2 Results

Table 4.1 shows the precision, recall, and F1-score of the type pre-
dictions. The first row shows the default approach, as described
in Section 4.2. When considering the first suggested type only, the
approach achieves 84.1% precision with a recall of 78.9%. When con-
sidering the top-5 suggested types, the precision and recall increase
to 95.5% and 89.6%, respectively. The results for parameter types and
for return types are similar to each other, showing that NL2Type is
effective for both kinds of types. For example, Figure 4.5 shows a
function for which NL2Type correctly predicts the parameter type
and the return type. Note that the parameter type, DOMElement, is
not a built-in JavaScript type, but nevertheless predicted correctly,
presumably from the words “node” and “IE”. Overall, these results
show that the approach is highly effective at making accurate type
suggestions for the majority of JavaScript functions.
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Figure 4.6: Relation between F1-score and amount of data available for a
type.

To better understand whether the effectiveness depends on the
amount of training data, Figure 4.6 shows for the ten most common
types the F1-score along with the number of data points for the type.
We find little correlation between the amount of available data and
the prediction’s F1-score, suggesting that the data we train NL2Type
on is sufficient for commonly used types in JavaScript. Interestingly,
the F1 scores differ between types, presumably because some types
are more likely than others to have a comment or name that reveals
the type. For example, functions with return type boolean often have
a name that begins with “is” or “has”, while for “object”, inferring
the type is less straightforward.

Because not all functions come with comments, but all functions
and their parameters have a name, we also evaluate a variant of
NL2Type that does not consider any comments. Instead, the input
given to the neural network consist only of the function name and
parameter names. The second row in Table 4.1 shows the results
for this variant of the approach. As expected, the precision, recall,
and F1-score are lower than for the full approach, because some
valuable parts of the input are omitted. However, the approach still
makes accurate suggestions that are likely to be useful in practice.
We conclude from these results that using comments as part of the
input considered by NL2Type is beneficial, but that comments are
not essential to the effectiveness of the approach.
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We also compare NL2Type to a naive baseline that simply predicts
the k most common types every time it is queried. In particular, when
asked for the top-1 type suggestion, the baseline always suggests
string because this is the most common type. The third row in
Table 4.1 shows the effectiveness of this baseline. NL2Type is clearly
better than the baseline, e.g., improving the F1-score for the top-1
suggestion by a factor of 4.5x.

4.4.4 RQ2: Comparison with Prior Work

The two closest existing approaches are JSNice [144] and Deep-
Typer [218]. Both use the implementation of a function to infer the
function’s type signature, whereas our approach ignores the function
implementation and instead focuses on natural language information
associated with the function. JSNice uses structured prediction on a
graph of dependencies that express structural code properties, such
as what kind of statement a variable occurs in. Similar to our work,
they train their model with existing type-annotated JavaScript code.
DeepTyper is similar to our work in the sense that they also use a
neural network model. However, they train the model with an aligned
code corpus, i.e., pairs of TypeScript and JavaScript programs, which
are generated from existing TypeScript code.

4.4.4.1 Comparison with JSNice

To compare with JSNice, we download their publicly available ar-
tifact[277] and train a model with the same training data as for
NL2Type, using the command line arguments given in the artifact’s
README file. We run the tool with a time limit of two minutes per
file and remove any files that exceed that limit from the training
corpus of both JSNice and NL2Type. In total, 7,025 files are removed
for this reason. Once trained, we evaluate JSNice on our testing set.
Because JSNice tries to predict types only for minified files, we minify
the testing files using a script provided in the JSNice artifact. All
results reported for JSNice are for the top-1 suggestion only, because
the JSNice artifact reports only the most likely type suggestion. Be-
side types, JSNice also predicts other code properties, e.g., identifier
names; we consider only the predicted parameter types and return
types for our comparison.
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Figure 4.7: Venn diagram showing the overlap of data points correctly pre-
dicted by NL2Type and JSNice.

The precision achieved by JSNice is 62.5% with a recall of 45.0%,
which gives an F1-score of 52.3%.2 Comparing these results to those in
Table 4.1 shows that NL2Type clearly outperforms the state-of-the-art
approach. In particular, the F1-score of NL2Type is 29.1% higher than
that of JSNice, which is a significant improvement. One reason why
NL2Type outperforms JSNice is that it successfully predicts types for
functions independent of the amount of code in the function body,
whereas JSNice relies on type hints provided by the function body. To
evaluate to what extent NL2Type and JSNice complement each other,
Figure 4.7 shows how many of the correctly predicted types overlap.
The figure considers the top-1 predictions only. Of all data points
that are predicted correctly by either NL2Type or JSNice, 27.8% are
predicted only by NL2Type, while 7.5% are predicted only by JSNice.
Overall, these results show that our approach of considering natural
language information complements and improves upon prior work
that focuses on the implementation of a function.

4.4.4.2 Comparison with DeepTyper

We compare with DeepTyper [218] based on their publicly available
artifact [273]. As we do for JSNice, we compare the top-1 predictions
of DeepTyper and compute our precision and recall metrics. For a fair
comparison, we implement a TypeScript frontend for NL2Type and

2 Note that our definition of recall is different from the one used in [144], which
defines recall as the percentage of data points for which any prediction is made,
either correct or incorrect.
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/** Utility function to ensure that object properties are

* copied by value, and not by reference

* @private

* @param {Object} target Target object to copy

* properties into

* @param {Object} source Source object for the

* proporties to copy

* @param {string} propertyObj Object containing

* properties names we

* want to loop over

*/
function deepCopyProperties(target, source, propertyObj) {
...

}

Figure 4.8: Incorrect type annotation found by NL2Type: Our model cor-
rectly predicts the third parameter to be object.

then use the TypeScript data set used in [218]. NL2Type achieves a
precision of 77.5% and a recall of 44.6%, compared to 68.6% precision
and 44.0% recall by [218].3 That is, when using the same data set for
both approaches, our model significantly improves precision while
slightly improving recall. The results of NL2Type are less strong than
when applying it to the JavaScript data set because the TypeScript
data set is smaller and because its types have a longer-tail distribution.

4.4.5 RQ3: Usefulness for Detecting Inconsistencies

An application of NL2Type that goes beyond predicting types in
code without type annotations is as a tool to detect inconsistencies
in existing type annotations. To evaluate the usefulness of NL2Type
for this task, we get a ranked list of potential inconsistencies, as
described in Section 4.3.3, and manually inspect the top 50 of this list.
We classify each potential inconsistency into one of three categories.

1) Inconsistency. We classify a warning as an inconsistency if the
source code, the comments, and the type annotations are inconsistent
with each other, because at least two of these three are contradictory.
Developers should fix these inconsistencies by adapting either the
type annotations, the comments, or the code. Figure 4.8 shows an
example of an inconsistency due to an incorrect type annotation. Our

3 The results differ from those reported in [218] for two reasons: (i) We use a different
definition of recall ( predcorr

dps and not predall
dps ). (ii) We do not apply any confidence

threshold when using DeepTyper, whereas their best precision/recall results are
with a threshold optimized after-the-fact.
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/** Tests to see if a point (x, y) is within a range of

* current Point

* @param {Numeric} x - the x coordinate of tested point

* @param {Numeric} y - the x coordinate of tested point

* @param {Numeric} radius - the radius of the vicinity

**/
near: function(x, y, radius) {
var distance = Math.sqrt(Math.pow(this.x - x, 2)

+ Math.pow(this.y - y, 2));
return (distance <= radius);

}

Figure 4.9: Non-standard type annotation detected by NL2Type: Our model
predicts the parameters to have type number, but the code anno-
tates them as Numeric, which is not a legal JavaScript type.

/** Calculate the average of two 3d points

* @param {Point3d} a

* @param {Point3d} b

* @return {Point3d} The average, (a+b)/2

*/
Point3d.avg = function(a, b) {
return new Point3d((a.x + b.x) / 2, (a.y + b.y) / 2,

(a.z + b.z) / 2);
}

Figure 4.10: Misclassification: NL2Type predicts a number return value, but
the code indeed returns an object of type Point3d.

model correctly predicts that the type of the propertyObj should be
object, but the code instead annotates it as string.
2) Non-standard type annotation. We classify a warning as non-

standard type annotation if the type annotation refers to a “type” that is
not a legal JavaScript type, but may nevertheless convey the intended
type to a human developer. For example, Figure 4.9 shows a function
where the parameters are annotated as Numeric. However, this type
is not a legal JavaScript type, and the developer intended the types
to be number, which NL2Type correctly predicts. Because NL2Type
learns conventions from a large corpus of code, it tends to predict
the standard type instead of the non-standard type. To benefit from
one of the type checkers built on top of JavaScript [275, 280] and
from improved IDE support, developers should replace non-standard
types with the corresponding standard type.
3) Misclassification. We call a warning a misclassification if the type

predicted by NL2Type is incorrect and the code need not be changed
in any way. For example, the function in Figure 4.10 returns an object
that represents a point in the 3-dimensional space, as specified in the
@return annotation. However, the function name and the comment of
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Table 4.2: Classification of potential inconsistencies reported by NL2Type.

Category Total Percentage

All inspected warnings 50 100%

Inconsistencies 25 50%

Non-standard type annotations 14 28%

Misclassifications 11 22%

Table 4.3: Length limits for inputs processed by the neural network.

Avg. in Maximum Fully covered

data set considered data points

Words in function or parameter
name

1.6 6 99.9%

Words in function comment 5.9 12 89.9%

Words in parameter or return
comment

0.5 10 99.8%

Number of parameters 1.1 10 98.5%

the function mislead NL2Type to predict number. Misclassifications
can result because NL2Type has not seen enough data similar to the
given natural language information during training or because the
code, comments, or identifier names are unusual w.r.t. the training
corpus.

Table 4.2 shows how the 50 manually inspected warnings reported
by NL2Type distribute across the above categories. Most warnings
point to code that deserves action by the developer: fixing a type anno-
tation, improving a comment, or changing the code. The percentage
of actionable warnings is 78%. We conclude that NL2Type provides
a useful tool for checking type annotations for inconsistencies. To
the best of our knowledge, our work is the first to show probabilistic
type inference to be effective for this task.

4.4.6 RQ4: Parameter Selection
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Table 4.4: Impact of the number of considered types on the number of
covered unique types and data points.

Number of types Unique types covered Data points covered

5 0.04% 61.9%

50 0.44% 81.6%

500 4.37% 91.7%

1,000 8.73% 94.1%

5,000 43.65% 98.6%

10,000 87.30% 99.9%

4.4.6.1 Parameters for Input Representation

As discussed in Section 4.2.4, each part of the input sequence has a
fixed length, and data that are too short or too long are padded with
zeros or truncated, respectively. Table 4.3 shows the length limits we
use and how many of all data points these limits cover without any
truncation. For example, we consider up to six words as part of a
function or parameter name, which covers 99.9% of all names in our
data set. The parameters are selected to cover the large majority of
the available natural language data.

4.4.6.2 Parameters for Output Representation

The output of the neural network is a type vector of length |T|, which
determines how many different types the model can predict. The
set Tall of all types in our data set contains 11,454 types. Because
classification problems become harder when the number of classes
increases, and because the frequency of types follows a long-tail
distribution, we focus on a subset |T| ⊆ Tall . Table 4.4 shows how the
size of |T| influences the percentage of all data points covered by the
considered types. For example, |T| = 1, 000 covers 94.1% of all data
points.

The trade-off in choosing |T| is between precision and recall. Choos-
ing a larger |T| has the potential to increase recall because the model
can predict the types of more data points. However, this potential
increase of recall comes at the cost of lower precision because the
model must choose from more possible types and because the amount
of training data quickly decreases for less frequent types. To pick
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Figure 4.11: Effectiveness of NL2Type depending on the number |T| of
types.

|T|, we train and evaluate models for 5 ≤ |T| ≤ 5, 000 and measure
precision, recall, and F1-score for the top-1 prediction. The results
in Figure 4.11 show the tradeoff between precision and recall. The
approach reaches the maximum F1-score at |T| = 1, 000, which is the
value we select for the evaluation.

4.4.6.3 Parameters for Learning

Table 4.5 summarizes the values of parameters related to the learning
parts of NL2Type. The hyperparameters of the neural networks are
selected based on values suggested by previous work and by our
initial experiments. We stop training after twelve epochs because it is
sufficient to saturate the accuracy.

4.4.7 RQ5: Efficiency

The total time taken by NL2Type is the sum of the time for five
subtasks. First, data extraction takes 44ms per function, on average,
most of which is spent in the JSDoc tool while parsing JavaScript
code. Second, data pre-processing takes 23ms per function, on average.
Third, learning both the word embeddings takes about 2 minutes in
total. Fourth, the one-time effort of training the model takes about 93

minutes. This time is relatively little, compared to some other neural
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Table 4.5: Parameters and their default values.

Parameter Value

Neural network to predict word embeddings:

Word embedding size 100

Context size 5

Minimum occurrences of a word 5

Neural network to predict types:

Hidden layer size 256

Batch size 256

Number of epochs used for training 12

Dropout of model 20%

Loss function for model Categorical cross en-
tropy

Optimizer Adam

networks, because of the small number of units in the hidden layer.
Finally, predicting types for a new function takes the time to extract
and pre-process data from the function plus 5ms per function, on
average, to query the model. We conclude that NL2Type is efficient
enough to apply to real-world JavaScript code and to quickly give
feedback to developers.

4.5 conclusion

This chapter addresses the lack of types in dynamically typed lan-
guages (Challenge C-II, Chapter 1). In contrast to traditional tech-
niques, which infer types from the program source code, we tackle
the problem by analyzing natural language information embedded in
the code. We present NL2Type, a new learning-based approach that
extracts identifier names and comments from a corpus and feeds into
a recurrent neural network to predict function signatures. The ap-
proach yields a neural model that helps annotating not yet annotated
JavaScript code by suggesting types to the developer. Our experi-
ments show that NL2Type predicts types with an F1-score of 81.4%
for the top-most prediction and of 92.5% for the top-5 predictions,
which clearly outperforms existing work on learning to predict types.
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In addition to predicting missing types, we show how to use the
model to identify inconsistencies in existing type annotations. By in-
specting 50 warnings about such inconsistencies, we find 39 problems
that require developer attention, e.g., because type annotations are
incorrect or because they do not match the comments associated with
a function. The broader impact of our work is to show that natural
language information in code is a currently underused resource that
is useful for predicting program properties.





Part II

C O R P U S - B A S E D D Y N A M I C A N A LY S I S T O
F I N D S O F T WA R E B U G S

While static analysis can provide many interesting prop-
erties about programs, it is still an approximation of the
actual behavior. More precise information is obtained by
analyzing the runtime behavior of programs, also known
as dynamic analysis. We use dynamic analysis to uncover
bugs and obtain data for training neural classifiers.





5
C O N F L I C T J S : F I N D I N G A N D U N D E R S TA N D I N G
C O N F L I C T S B E T W E E N J AVA S C R I P T L I B R A R I E S

In the previous part (Chapter 2, Chapter 3, Chapter 4) of this dis-
sertation, we provide details on the corpus-based static analysis
approaches. While static analysis is useful, one of its drawbacks are
the over-approximations made about program behavior which can
lead to occasional false positives. This is particularly significant for
dynamically typed languages such as JavaScript and Python. As a
result, in this and the next chapter, we present corpus-based dynamic
analysis approaches. The current chapter dynamically analyses a
collection of JavaScript libraries to check if including pairs of such
libraries would lead to unexpected behaviors such as crashes.

5.1 motivation

The popularity of JavaScript has lead to the development of numerous
JavaScript libraries. For example, a popular content delivery network
that hosts JavaScript libraries provides over 3,000 different libraries.1.
Libraries are ubiquitous and many applications use multiple libraries.
One estimate is that 75% of the top 10 million websites use at least
one of the top 18 libraries.2 A recent study on the top 75,000 Alexa
websites [193] reports that the number of externally hosted scripts
that a website includes has a median of 9 and a maximum of 202.

Unfortunately, using multiple independently developed libraries
together may cause unexpected behavior. The reason is that JavaScript
does not have namespaces but instead, all libraries share a single
global namespace. As a result, a value or a function “exported” by one
library may be easily overwritten, modified, deleted, or accidentally

1 https://cdnjs.com/libraries
2 https://w3techs.com/technologies/overview/javascript_library/all
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// Strophe.js
window.Base64 = {
encode: function(b) {
/* code */

}
decode: function(b) {
/* code */
}

};

// JSEncrypt.js
window.Base64 = {
unarmor: function(t) {
/* code */

}
decode: function(i) {
/* code */

}
};

// Library client
jsEncrypt = new JSEncrypt();
jsEncrypt.setKey(...);

// Returns false instead of
// decrypted data when
// Strophe.js is loaded
// after JSEncrypt.js.
jsEncrypt.encrypt(...);

Figure 5.1: Example of two conflicting libraries and a client that will experi-
ence unexpected behavior when loading both libraries.

used by another library. Moreover, libraries may overwrite built-in
APIs, sometimes called “monkey patching”, and multiple libraries
may try to overwrite the same API in different ways. In practice, the
problem is compounded by the loose typing in JavaScript, which
allows one library to overwrite another library’s API even with a
type-incompatible value.

As a real-world example of a library conflict found by our approach,
consider Figure 5.1. The left side of the figure shows an excerpt of
Strophe.js, a library that implements the XMPP middleware protocol.
The center part of the figure shows JSEncrypt.js, a library that provides
OpenSSL RSA encryption. Both libraries write to the global variable
Base64.3 When included together, the library that is included last will
overwrite the Base64 object of the library that was included first. Such
overwriting may cause unexpected behavior in a client of either of
these libraries. For example, the right side of the figure shows a client
that tries to encrypt some data using JSEncrypt.js. When executing
this client after loading only JSEncrypt.js, the last call returns the
encrypted data. However, when executing the client after loading
JSEncrypt.js and then Strophe.js, the last call simply returns false. The
fact that including an apparently unrelated library breaks the core
feature of the encryption library will surprise users and is unintended
by the developers of both libraries.

Problems caused by conflicting libraries may occur whenever a
developer loads two libraries, which is common practice. Even if a
developer explicitly loads only one library, other libraries may be
implicitly loaded. Due to the highly dynamic nature of JavaScript,
where some code may dynamically load other code, an application

3 The window variable is the global object in client-side JavaScript.
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developer may implicitly load libraries without even noticing it. For
example, websites built on top of content management systems often
use plugins, each of which implicitly loads some libraries.4 Other
common ways of implicitly loading libraries are third-party ads,
social media services, and news feeds. When a conflict between
libraries exists, JavaScript often follows a “no crash” philosophy,
i.e., misbehavior may not lead to an exception. As a result, conflicts
easily remain unnoticed at library load time or even later, until a
user triggers the unexpected behavior, as illustrated in the motivating
example.

In principle, there is a sane way for libraries to share the global
namespace. Ideally, library developers all follow a “single API object”
pattern, where the entire API of the library is encapsulated into a
single object. The library then writes this object to a single global
variable, e.g., named like the library itself, to minimize the potential
for conflicts. In practice, not all libraries follow this pattern, and
some global variables, such as $ and _, are particularly popular. Our
empirical results show that 71% of all libraries do not follow the
“single API object” pattern.

Library conflicts are challenging to detect for a program analysis
and difficult to avoid for library developers. One reason is that unin-
tended effects of conflicts typically manifest only at runtime. A purely
static analysis can either soundly overapproximate potential conflicts
and their effects, which is likely to produce a large number of false
positives, in particular for JavaScript, or unsoundly underapproxi-
mate them, which may miss conflicts. Another challenge for detecting
conflicts is the large number of JavaScript libraries. With thousands
of libraries available, and new libraries being added and updated
every day, analyzing all possible combinations of libraries leads to
a combinatorial explosion that is prohibitive in practice. Currently,
there exists no technique for library developers to check whether
their library conflicts with another and for library clients to check
which combinations of libraries to avoid. Furthermore, it is currently
unknown to what extent the problem of library conflicts matters in
practice.

This chapter presents ConflictJS, the first automated and scalable
technique that analyzes JavaScript libraries for conflicts. We address
the huge search space of possible conflicts and the difficulties of

4 For a real-world example, see http://simple-press.com/documentation/codex/
faq/troubleshooting/what-is-this-jquery-conflict/.

http://simple-press.com/documentation/codex/faq/troubleshooting/what-is-this-jquery-conflict/
http://simple-press.com/documentation/codex/faq/troubleshooting/what-is-this-jquery-conflict/
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statically analyzing JavaScript through a two-phase approach that
combines dynamic analysis and test synthesis. In the first phase,
ConflictJS dynamically analyzes individual libraries to detect writes
to the global namespace while loading a library. An offline compari-
son of these global writes yields a set of potential conflicts between
libraries. In the second phase, ConflictJS synthesizes and dynamically
analyzes library clients to check if potential conflicts indeed lead
to unexpected behavior. The second phase, and therefore also the
overall approach, is precise in the sense that every validated con-
flict certainly occurs in the synthesized client and leads to different
behavior depending on the loaded libraries.

We use ConflictJS to analyze and study 951 libraries. The results
show that 268 (28%) libraries are potentially conflicting and that 166

(17%) libraries are certainly conflicting with at least one other library.
The conflicts may lead to crashes, unexpected behavior, and globally
reachable state with unexpected values and types. A manual analy-
sis of conflicting libraries reveals several recurring patterns of root
causes for conflicts, which are instructive for library developers, API
designers, and language designers. We reported seven of the detected
conflicts to the respective library developers, of which four already
have been acknowledged and confirmed as problematic. Of the four
conflicts, two have been fixed by the developers of the respective
libraries.

Compared to existing work on analyzing JavaScript [178], our work
is the first to address conflicts among libraries. Existing static analyses
focus on type checks of single libraries [112] or assume the presence
of library clients [99]. Existing dynamic analyses that target type
inconsistencies [142] and other coding problems [132] assume to have
inputs to exercise the program, whereas our work synthesizes library
clients automatically. JSNose [93] identifies excessive uses of global
variables, but focuses on single libraries. Finally, our empirical results
relate to existing large-scale studies of JavaScript libraries and their
usage [85, 193]. Our work is the first to study library conflicts.

We envision ConflictJS to be useful for developers of libraries and
library clients alike. Library developers may use ConflictJS to check
whether their library conflicts with others, allowing them to avoid the
conflicts by adapting the library. Developers of library clients may use
ConflictJS to check which libraries conflict, allowing them to avoid
including them together.

In summary, this chapter contributes the following:
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• We are the first to address the problem of conflicts among
libraries in a language without explicit namespaces.

• We present ConflictJS, an automated and scalable technique
to precisely detect conflicts in JavaScript libraries through a
combination of dynamic analysis and test synthesis.

• We provide empirical evidence that the approach scales to 951

libraries, where it effectively detects and validates 1,840 conflicts
among them.

• We provide our implementation as open-source.5

5.2 problem statement

This section provides some background, motivates the problem of
conflicts among libraries with examples from real-world libraries,
and formulates the problem addressed in this chapter.

5.2.1 Background

The JavaScript version that is fully supported by most modern browsers
is ECMAScript 5 [73]. It does not provide any kind of namespaces
or modules at the language level. Instead, library developers rely on
several ad-hoc mechanisms to encapsulate code and to export APIs.
First, some libraries follow a “single API object” pattern, where the
library initializes itself in a local scope and provides its API as prop-
erties of a single global object. The most obvious choice for naming
this global API object is the name of the library, which typically is
unique. For example, react.js follows this pattern by exporting its APIs
into the global React object. The popular jQuery library furthermore
enables developers to avoid conflicts by specifying the global vari-
able where to provide the library or to even export the library into
an existing, non-global object.6 Second, some libraries build upon
the asynchronous module specification (AMD), a module system
targeted at client-side JavaScript and implemented as a library, e.g.,
RequireJS7. Third, some libraries use CommonJS, a module system

5 https://github.com/sola-da/ConflictJS
6 https://api.jQuery.com/jQuery.noconflict
7 http://requirejs.org/

https://github.com/sola-da/ConflictJS
https://api.jQuery.com/jQuery.noconflict
http://requirejs.org/
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targeted at non-client-side JavaScript and implemented as the de-
fault module system on the Node.js platform. Unfortunately, these
options are neither compatible with each other nor available on all
JavaScript platforms. ECMAScript 6 [129] unifies ideas from Com-
monJS and AMD into language-level module support, and popular
JavaScript platforms have started to adopt it. However, since widely
used libraries cannot rely on recently added language features, they
typically ensure backward compatibility by relying on other ways
to export their APIs. In summary, the lack of namespace and mod-
ules in currently deployed versions of JavaScript creates a non-trivial
problem for library developers.

5.2.2 Motivating Examples and Classification of Conflicts

The following section motivates the problem of conflicts between
libraries with real-world examples (Table 5.1, 5.2) found using our
approach. Furthermore, we use these examples to define four classes
of conflicts, based on how the conflicts manifest to a library client.
For each example, we show code from two conflicting libraries and
a client application that observes different behavior depending on
which of the libraries are included and on the order of inclusion.

inclusion conflicts This kind of conflict raises an exception
when including multiple libraries, without any further interaction
between the client and the libraries. The example in the first column
illustrates the problem with the curl and dojo libraries. Loading the
second library after loading the first library causes an exception. For a
library user, finding such conflicts is non-trivial because the exception
depends on the order of including the libraries: Only if a client loads
dojo before loading curl the exception occurs. The documentation of
neither of the libraries provides any reference to the other library,
presumably because the respective developers are not aware of each
other.

type conflicts Type conflicts occur when multiple libraries
write type-incompatible values to the same globally reachable loca-
tion. Table 5.1 presents an example of two libraries, ocanvas.js and
aframe.js, that write to window.logs an array and a function, respec-
tively. A client using one of these libraries may rely on the type of the
conflicting value and will be surprised if including another library or
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Table 5.1: Examples of conflicts between real-world libraries. The first row
shows a code example, the second row a client that exposes the
conflict and the last row a description about the conflict.

Inclusion conflict Type conflict

/* curl.js */
window.define
= function K()

{ ... };

/* dojo.js */
var def = function()

{ ... };
var req = function()

{ ... };
if (window.define) {
...

} else {
window.define = def;
window.require = req;

}

// exception
window.require();

/* ocanvas.js */
(function(a, b, c)
{
a.logs = [];

}
(window, document));

/* aframe.js */
c = function(e)
{
...

};
window.logs = c

// client that includes first
// curl.js and then dojo.js

// exception because require
// is undefined

// try to add to
// the 'logs' array
logs.push("log");

// exception because
// logs is a function

Both libraries write to the global variable
define. To avoid overwriting an already de-
fined variable, e.g, when the same library is
included multiple times, dojo checks whether
define is already defined. Unfortunately, the
code incorrectly assumes that require is al-
ways defined together with define, causing
an exception when trying to call this function.
The problem is triggered by any client that
includes first curl and then dojo.

Both libraries write to
a global variable logs.
The type of logs is ar-
ray in ocanvas but func-
tion in aframe.
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Table 5.2: Examples of conflicts between real-world libraries. The first row
shows a code example, the second row a client that exposes the
conflict and the last row a description about the conflict.

Value conflict Behavior conflict

/* pako */
var pako = {
Deflate: function() { ... },
Inflate: function() { ... },
...

}

/* 3Dmol */
var pako = {
inflate: function() { ... },
inflateRaw: function() { ... },
...

}

/* jsface */
function O(t, o) {
...

}
window.Class = O;

/* matreshka */
window.Class
= function(a, b) { ... }

Object.keys(pako);

// returns 35 with pako
// but 4 with 3Dmol

var v1 = null;
var v2 = "";
v0 = window.Class(v1, v2);

// TypeError with matreshka
// but no errors with jsface

Both libraries overwrite the
global variable pako. The size
of the global variable is dif-
ferent in both cases. This
overwriting happens because
3Dmol ships a variant of the
pako library that misses some
features.

Both libraries write to
the same global variable
Class. The implementa-
tion of both differ as il-
lustrated by the client.
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changing the order of library inclusion breaks the type assumption.
This and the following kinds of conflict are more subtle than inclusion
conflicts because they do not lead to an obvious error when simply
including the libraries.

value conflicts Similar to type conflicts, this kind of conflict
is caused by multiple libraries writing different values to the same
globally reachable location. We classify a conflict as value conflict if
the values are type-compatible but different. Table 5.2 provides an
example where two libraries, pako and 3Dmol, write different values
to the same variable pako. The root cause of this conflict is that 3Dmol
contains an outdated version of pako.

behavior conflicts A behavior conflict occurs when multiple
libraries store functions at the same globally reachable location, but
these functions do not provide the same behavior. Table 5.2 presents
an example where two libraries, jsface and matreshka, overwrite the
same variable Class. As illustrated by the client code, the two func-
tions provide different behaviors, which may surprise a client that is
not aware of the fact that both libraries provide dissimilar implemen-
tations of the same global function.

5.2.3 Problem Statement

Based on these four types of conflicts, we now formulate the problem
addressed in this chapter. The input to our approach is a set L of
libraries. We assume that each l ∈ L is supposed to be usable without
including any other library in L. In particular, this assumption ex-
cludes libraries that extend another library, e.g., libraries that extend
the popular jQuery library with additional features.

Libraries are used by clients that interact with the APIs of a library.
Client here means any sequence of statements that is executed after
loading one or more libraries. We denote a client c that executes
after loading libraries l1, .., lk as cl1,..,lk. We call the sequence l1, .., lk
of libraries loaded before executing a client the library configuration.
The “client” row of Table 5.1 and Table 5.2 show examples of clients.

We target conflicts due to libraries that write to the same globally
accessible memory location. In JavaScript, such memory locations
are properties of an object. Properties are accessed using either dot
notation, e.g., x.p, or bracket notation, e.g., x["p"]. In either case, the
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name of a property is represented by an identifier of string type. For
properties of nested objects, the property accessors consist of multiple
identifiers, e.g., window.foo.bar. We call all property accessors, using
either single or multiple identifiers, access paths. If the first segment of
an access path is globally reachable, we call it a global access path. For
example, window.foo.bar and window.baz are global access paths. Since
the window-prefix is optional in JavaScript, we omit it in the remainder
of the chapter, unless needed.

Based on these definitions, we can now define conflicts between
pairs of libraries:

Definition 5.1 (Conflict). Let l1, l2 ∈ L be two libraries that both write to
the same global access path p. These libraries are conflicting with each other
if there exists a client so that any of the following is true:

1. cl1 behaves differently than cl2

2. cl1 behaves differently than cl1,l2

3. cl1 behaves differently than cl2,l1

4. cl2 behaves differently than cl1,l2

5. cl2 behaves differently than cl2,l1

6. cl1,l2 behaves differently than cl2,l1

The first case means that the same client behaves differently de-
pending on which library is loaded. Such a conflict is relevant for the
developers of the libraries because these libraries write different data
or functions to the same globally accessible memory location. Cases
2 to 5 mean that a client that includes a single library will change
its behavior simply because another library is also included. Such a
conflict is relevant for developers of clients who may be surprised
that simply including another library causes new behavior. The last
case means that a client’s behavior changes when swapping the order
in which two libraries are included. Again, this case is relevant for
client developers because such a change in behavior is surprising.

Based on Definition 5.1, we say that a library is conflicting if there
exists another library so that both are conflicting with each other. The
problem addressed in this chapter is how to find conflicting libraries
in a precise way, i.e., without false positives.
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5.2.4 Challenges

Due to the increasing popularity of JavaScript, there exist thousands
of libraries. Only few of them come with representative clients that
could serve as test cases. Our work aims at detecting conflicts in
an automated and scalable way. Automated here means that the
approach requires no input except for a set of libraries. Scalable here
means that this set may contains thousands of libraries.

To find conflicts in an automated and scalable way, we must ad-
dress several challenges. First, the sheer number of JavaScript libraries
makes it practically impossible for an analysis to compare all combi-
nations or even all pairs of libraries. For example, given 1,000 libraries,
there are about 500,000 pairs of libraries. We address this challenge
by identifying potential conflicts during an analysis of individual
libraries (Section 5.3.1), which significantly reduces the number of
combinations to analyze further. Second, the approach cannot rely
on any a-priori available library clients. We address this challenge
by synthesizing library clients, guided by the potential conflicts (Sec-
tion 5.3.2). Third, to validate whether a potential conflict is indeed
a conflict, we need to check whether the behavior of clients differs
depending on the library configuration. We address this challenge by
comparing the runtime behavior of synthesized clients executed with
different library configurations (Section 5.3.2).

5.2.5 Scope and Limitations

Some challenges are out of the scope of this work. One of them
is detecting all library conflicts. While our approach is precise, it
is not sound, i.e., it may miss some conflicts. For most interesting
program analysis tasks, providing a sound and precise answer is
impossible, and we opt for precision in this work. Another out-of-
scope question is how many real-world clients suffer from a detected
conflict. Instead of addressing this question, our approach shows
the existence of a client by synthesizing the client, so that library
developers could anticipate conflicts that any possible client may
run into and prevent conflicts before they occur. Finally, we focus on
pairwise library conflicts and ignore conflicts that arise only if three
or more libraries interact with each other.
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5.3 approach

This section presents ConflictJS, a scalable and automated approach to
find conflicts between libraries. Given a set of libraries, the approach
consists of two main steps:

1. Detection of potential conflicts. At first, ConflictJS dynamically an-
alyzes individual libraries to identify which globally reachable
memory locations they write to. Based on the global writes of
each library, the first step then reports a potential conflict for
each pair of libraries that write to the same location.

2. Validation of conflicts. This step validates whether two libraries
that write to the same globally reachable location can indeed
cause a client to behave differently depending on the library
configuration. To this end, ConflictJS synthesizes clients and
compares their behavior across different library configurations.
If and only if the approach finds a client with diverging behavior,
it reports a conflict.

The remainder of this section explains these two steps in more detail.

5.3.1 Detection of Potential Conflicts

To find potential conflicts between libraries, ConflictJS analyzes the
global access paths written to by a library. To this end, we dynamically
analyze the loading of each library to keep track of the writes made
to the global namespace:

Definition 5.2 (Global Writes of a Library). The global writes of a
library l is a set Gl = {p1, .., pk} of global access paths to which l writes
while loading l.

For example, if the global object is called window and a library writes
to it using window.obj = {prop1:1, prop2:2}, then the set of global writes
is {obj, obj.prop1, obj.prop2}.

To compute the global writes of a library, ConflictJS generates a
trivial client that simply loads the library and dynamically analyzes
the execution. The dynamic analysis updates the set G when specific
runtime events occur, as summarized in Table 5.3. The analysis is
guaranteed to observe all global writes that occur while loading the
library. In particular, the analysis handles writes to aliases of globally
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reachable objects, as illustrated by the example involving window.Array

in Table 5.3. The access paths of all reachable values, i.e., paths(v)
mentioned in Table 5.3 are computed by recursively traversing the
properties of the object v. The information whether a variable is
global is provided by Jalangi [108] on top of which we implement the
analysis.

After extracting the global writes of each library, ConflictJS com-
pares the global writes of all libraries with each other to check for
writes to the same global access path. If two libraries share a global
write, we classify them as potentially conflicting:

Definition 5.3 (Potentially Conflicting Libraries). Two libraries l1, l2 ∈
L are potentially conflicting if Gl1 ∩ Gl2 6= ∅, i.e., if the two libraries share
at least one access path in their global writes.

The first phase of ConflictJS reduces the search space of potential
conflicts to be considered by the second phase of the approach. The
first phase scales well to a large number of libraries because each
library is analyzed in isolation. Comparing the global writes across
libraries requires computing pairwise intersections of sets, which
easily scales to a large number of sets. As mentioned in Section 5.2.5,
the analysis might miss potential conflicts, e.g., because a library
might perform a global write after the library has been loaded. A
manual inspection of a subset of libraries suggests this limitation to
be negligible in practice, because libraries tend to initialize their APIs
at load time.

5.3.2 Precise Validation of Conflicts

The second step of ConflictJS is to validate potential conflicts iden-
tified in the first step. At first, we motivate the need for this second
step with an example. Then, we explain the details of the validation.

5.3.2.1 Motivation for Validation

Potentially conflicting libraries write to the same globally accessi-
ble memory location. This situation may or may not cause a client
to suffer from a conflict as defined in Definition 5.1. For example,
consider Figure 5.2, which shows code snippets from two potentially
conflicting libraries, JSLite.js and ext-core.js. The global access path
to which both libraries write is Array.prototype.remove. Both libraries
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Table 5.3: Actions performed by the global-writes analysis.

Runtime
event

Action Example

Variable
write
w = v

If w is a global variable:

• Add w to G. Let paths(v)
be the access paths of all
values reachable from v.
For each pv ∈ paths(v),
add pv to G.

(function() {
var x = {a: 23};
window.foo = x;

})();

G → G ∪ {foo, foo.a}

Property
write
x.p = v

Let paths(window) be the ac-
cess paths of all globally
reachable values. For each
pw ∈ paths(window):

• If pw points to x:

– Add concat(pw, p)
to G. Let paths(v)
be the access paths
of all values reach-
able from v. For
each pv ∈ paths(v),
add concat(pw, pv)
to G.

(function() {
var x = window.Array;
x.p = {b: 42};
var y = {};
y.q = 5;

})();

G → G ∪
{Array.p, Array.p.b}

Declara-
tion of
function f

If the global variable f points
to the declared function (i.e.,
the function is globally de-
clared), add f to G.

(function() {
function foo() {}

})();
function bar() {}

G → G ∪ {bar}
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/* JSLite.js */
Array.prototype.remove = function(t) {
var n = this.indexOf(t);
return n > -1 && this.splice(n, 1),
this

}

/* ext-core.js */
Array.prototype.remove = function(e) {
var t = this.indexOf(e);
return -1 != t && this.splice(t, 1),
this

}

Figure 5.2: Example to show the need for validating potential conflicts.

extend the built-in Array object by adding a new method remove, which
can be called with one argument. Even though the two methods are
syntactically different, close inspection shows that both pieces of code
are functionally equivalent. This example illustrates that reporting
all potential conflicts would cause false positives because for some
potential conflicts, all clients are guaranteed to observe the same
behavior, irrespective of the library configuration.

5.3.2.2 Synthesizing Clients and Comparing their Behavior

To check whether a potential conflict between two libraries is indeed
a conflict, ConflictJS synthesizes library clients and checks whether
their runtime behavior differs depending on the library configuration.
The basic idea is to consider each of the six scenarios listed in Defini-
tion 5.1 by comparing the behavior of two clients with each other. The
two clients contain exactly the same code, except that they run with
different library configurations. If ConflictJS observes a behavioral
difference between the two clients, the potential conflict between the
two libraries is indeed a conflict.

For illustration, consider the behavior conflict illustrated in Ta-
ble 5.1. Our approach tries to validate this conflict by synthesizing
clients, such as the client shown in the table. The approach com-
pares the behavior of this client with different library configurations.
For the example, ConflictJS finds that on calling Class, there is one
library that throws an exception while the other does not. That is,
the approach has validated the conflict and reports it, along with the
synthesized client that illustrates the conflict.

Algorithm 5.1 summarizes our approach for validating potential
conflicts by synthesizing and dynamically executing library clients.
The main idea is to compare the execution of a client c with different
library configurations, i.e., cl1, cl2, cl1,l2, and cl2,l1, as summarized in
function conflictingConfigs. If there are multiple different behaviors,
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Algorithm 5.1 Validate potential conflicts

Input: Libraries l1, l2 that both write to global access path p
Output: Validated conflict between l1 and l2

1: cempty ← empty client
2: if con f lictingCon f igs(cempty) then return “inclusion conflict”

3: ctypes ← synthesize client that checks type of p
4: if conflictingConfigs(ctypes) then return “type conflict”

5: if type of p is non-function then
6: cvalues ← synthesize client that checks value of p
7: if conflictingConfigs(cvalues) then return “value conflict”
8: else
9: Cbehavior ← synthesize clients that call function p

10: for each cbehavior ∈ Cbehavior do
11: if conflictingConfigs(cbehavior) then return “behavior con-

flict”

12: function conflictingConfigs(c)
13: B ← ∅ . Set of observed runtime behaviors
14: for each config ∈ {l1, l2, l1l2, l2l1} do
15: bconfig ← execute cconfig
16: B ← B ∪ {bconfig}
17: if |B| > 1 then return true
18: else return false

then the algorithm has validated a conflict. The following describes
how ConflictJS creates clients to detect the four kinds of conflicts
presented in Section 5.2.2.

5.3.2.3 Checking for Inclusion Conflicts

At first, ConflictJS checks for inclusion conflicts (lines 1 to 2). An inclu-
sion conflict is triggered by simply including libraries, i.e., the client
is an empty client that does not contain any statements. To compare
library configurations, the behavior bconfig indicates whether includ-
ing libraries causes the client to throw an exception. If one library
configuration causes an exception, whereas another configuration
does not, then ConflictJS reports an inclusion conflict.

For the inclusion conflict example of Table 5.1, ConflictJS reports
a conflict because trying to execute the empty client after loading
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curl.js and dojo.js causes an exception, whereas executing the empty
client after loading only one of these libraries does not throw any
exception.

5.3.2.4 Checking for Type Conflicts

For any pair of libraries l1, l2 and shared global access path p for
which the approach has not validated an inclusion conflict, the next
step is to check for type conflicts. To this end, ConflictJS synthesizes
a client that reads the value at the access path p and then checks
its type (lines 3 to 4). The approach again executes this client with
all possible library configurations and summarizes the behavior of
each configuration as the type of the access path p. If one library
configuration causes the client to see type t1, whereas another library
configuration causes the client to see type t2 6= t1, then ConflictJS
reports a type conflict.

An example of a library pair with a type conflict is given in the
second column of Table 5.1. The approach reports this conflict because
push is an array when loading one library but a function when loading
the other library. The “client” cell of the table shows a client that
suffers from this type conflict because the conflict causes the client to
crash when it tries to call a function that turns out to be an array.

5.3.2.5 Checking for Value Conflicts

While checking for type conflicts, the analysis gathers information
about the types of values stored at a global access path. For potential
conflicts that are neither validated to be an inclusion conflict nor to
be a type conflict, both libraries write values of the same type to the
access path. Based on this type, ConflictJS checks for the remaining
two kinds of conflicts. If the type is function, the approach compares
the behavior of clients that call this function, as described below. If
the type is a non-function, then the approach synthesizes a client that
reads the value at the access path p (lines 6 to 7). To compare the be-
havior of this client across library configurations, ConflictJS compares
the value read at p. The analysis directly compares primitive values
and deeply compares objects. If different library configurations cause
the client to read different values, then ConflictJS reports a value
conflict.

The “value conflict” column of Table 5.2 gives an example of a type
conflict on the pako access path. ConflictJS synthesizes a client that
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extracts the number of properties of the value stored at pako and the
then recursively extracts the values of these properties. The approach
reports a conflict because the number of pako’s properties depends on
whether the pako library or the 3Dmol library is loaded.

5.3.2.6 Checking for Behavior Conflicts

The most challenging kind of conflict are behavior conflicts. These
conflicts occur when different libraries write functions to the same
global access path but the behaviors of these functions differ. In
general, deciding whether the behavior of two functions differs is un-
decidable. ConflictJS approaches this problem by trying to synthesize
clients that expose a difference in behavior. If the analysis succeeds
in generating such a client within a fixed time budget, it reports a
behavior conflict.

To synthesize clients we use a simple test generator inspired by
Randoop’s feedback-directed, random test generation [35]. Other test
generation techniques, such as symbolic or concolic execution [4, 20,
38] or search-based test generation [74], could also be used for this
step. Given a function-typed access path p defined by two libraries,
the test generator starts by estimating the number n of arguments
that the function expects. To this end, we use the length property of
the function object at p, which in JavaScript yields the number of
declared function parameters. This number is an estimate because a
function body may also access additional arguments using the built-in
arguments value. Next, to generate a call to the function, the test gener-
ator randomly decides on a random number ranging between 0 and
n of arguments to pass. For each argument, the test generator decides
on the type of argument to create by randomly choosing between the
following types: boolean, string, number, array, object, undefined and null.
To create a boolean, string, or number, the generator picks from a
pre-defined pool of values. For arrays, the generator randomly picks
a length ranging between 0 and 10 and fills it with random strings
and numbers. Finally, to create an object, the generator creates up to
10 properties and assigns randomly generated values to them.

Once the arguments are generated, the function is called using the
generated arguments. If and only if the call succeeds, without raising
an exception, for at least one library configuration, the generator
synthesizes a client that contains this call.

To compare the behavior of synthesized clients across library config-
urations, ConflictJS summarizes the behavior of the client execution
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based on the return value of the function and based on whether the
function raises an exception. The approach reports a behavior conflict
in two cases: (i) if one library configuration causes the client to crash
whereas another library configuration does not cause a crash, or (ii) if
both configurations do not crash but the return value of the function
at p differs.

For example, consider the last column of Table 5.2. ConflictJS syn-
thesizes clients that call the function stored at the conflicting access
path Class. The client shown in the table throws an exception for one
of the two libraries but not for the other, which is why ConflictJS
reports a behavior conflict.

5.4 implementation

We implement ConflictJS as a client-server-based tool that analyzes
JavaScript libraries. The client component synthesizes, executes, and
analyzes clients in a browser, and sends a summary of the runtime
behavior to the server. The server detects potential conflicts and
validates them based on execution behavior gathered in the first
and second phase, respectively. Our dynamic analyses to find global
writes is build on top of Jalangi [108]. When synthesizing clients to
detect behavior conflicts, we set the testing budget to 50 tests per
access path. In this chapter, we implement the approach only for
client side JavaScript libraries and it would be straightforward to
adapt for server-side npm libraries but the problem is less severe for
Node.js because there is a commonly accepted module system.

5.5 results and discussion

We apply ConflictJS to 951 popular JavaScript libraries to evaluate
the effectiveness of the approach in detecting library conflicts. We
focus on the following research questions:

• How effective is ConflictJS in finding library conflicts and what
kinds of conflicts occur in practice? (Section 5.5.2)

• What are the root causes of conflicts between libraries? (Sec-
tion 5.5.3.1)

• Do library developers make an effort to avoid conflicting scenar-
ios by following the "single API object" pattern? (Section 5.5.3.2)
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Table 5.4: JavaScript libraries used for the evaluation.

Min Median Max Total

Libraries - - - 951

Lines of code 9 574 275,0852 2,750,852

Size (bytes) 148 14,645 2,517,510 68,412,720

• What are the popular access paths that developers tend to
choose? (Section 5.5.3.3)

• Is there a correlation between conflicts and the popularity of a
library? (Section 5.5.3.4)

• How are the global writes and conflicts distributed across li-
braries and access paths, respectively? (Sections 5.5.3.5 and 5.5.3.6)

5.5.1 Experimental Setup

Our evaluation uses 951 real-world JavaScript libraries with a total of
2,750,852 lines of JavaScript code (Table 5.4). The libraries include the
popular jQuery, Underscore, and Dojo projects, as well as various other
highly popular libraries. We obtain these libraries by downloading
them from the CDNJS content delivery network.8 At the time of
starting our experiments, the content delivery network offered a total
of 2,095 libraries. We remove libraries that cannot be used in isolation
in a standard desktop browser, e.g., because they rely on another
library or because they target mobile devices. We heuristically check
for such libraries by loading each library in isolation and filtering
away all libraries that throw an exception. After filtering, 951 libraries
remain, which is our benchmark set for the evaluation. To run our
experiments, we use an Intel Core i7–4790 CPU machine clocked at
3.60GHz with 32 GB of memory, running Chrome 55, Node.js 6.9.1
on Ubuntu 16.04.

5.5.2 Effectiveness in Finding Library Conflicts

8 https://cdnjs.com/

https://cdnjs.com/
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5.5.2.1 Potential Conflicts

When analyzing the global writes of individual libraries, ConflictJS
records writes to a total of 130,714 different access paths across the
951 libraries. Intersecting the global writes of libraries reveals that
4,121 of the access paths cause a potential conflict, i.e., at least two
libraries write to each of these access paths. These conflicting writes
are performed by 268 of the 951 libraries, i.e., roughly one out of four
libraries is involved in a potential conflict.

5.5.2.2 Validated Conflicts

Out of the 268 potentially conflicting libraries, ConflictJS validates 166

as certainly conflicting by synthesizing a client whose behavior de-
pends on the library configuration. The validated conflicts are due
to 1,840 distinct access paths. In other words, ConflictJS successfully
validates 62% of the potentially conflicting libraries (i.e., of 268 li-
braries) as certainly conflicting and finds a validated conflict in 17%
of all libraries (i.e., of 951 libraries).

5.5.2.3 Kinds of Validated Conflicts

Figure 5.5 summarizes how prevalent the four kinds of conflicts are
among all validated conflicts. The two sides of the figure provide
different views on the same data. Figure 5.3 focuses on pairs of
conflicting libraries and shows how many of these pairs are caused by
the four kinds of conflicts. If a pair of libraries is involved in multiple
kinds of conflicts, then this pair is shown at the set intersection. For
example, there are four pairs of libraries that have a value conflict
for a global access path and a behavior conflict for another global
access path. Figure 5.4 shows the distribution among the four kinds
of conflicts for individual libraries. Since a single library may be
involved in conflicts with different libraries, these sets overlap. For
example, there are seven libraries that are involved in at least one
inclusion conflict, value conflict, and behavior conflict.

There are two main take-aways of these results. First, all four kinds
of conflicts are prevalent in practice, which confirms our decisions to
consider all four kinds in ConflictJS. Second, the majority of conflicts
are non-inclusion conflicts, i.e., they do not cause an exception just
after loading the conflicting libraries. Finding such conflicts and
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Figure 5.5: Prevalence of the four kinds of validated conflicts. Note that the
surface is not proportional to the numbers.

reasoning about them is challenging for both library developers and
users alike.

5.5.3 Empirical Study of Library Conflicts

The large number of libraries considered and conflicts detected in our
evaluation, enables us to learn more about how and why conflicts
occur in JavaScript libraries. We discuss these findings in the following
and discuss what impact they have on library developers, library
users, and language designers.

5.5.3.1 Root Causes of Conflicts

To understand the root causes of conflicts between libraries we manu-
ally inspect a random sample of 25 conflicting libraries. During the
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Table 5.5: Recurring patterns among the root causes of conflicts. All numbers
are out of 25

Pattern Description Nb. Example(s)

Independent
implemen-
tations

Two libraries implement
similar functionality and
use the same global ac-
cess path to store the
function, but the behav-
ior slightly differs.

5 polymer and trix both define
wrap and unwrap functions.
Other examples: Figure 5.1
and issue #434 of es6-shim.

Copied
third-party
code

Two libraries both copy
code from a third party,
e.g., another library. At
least one version of the
code is outdated.

5 qooxdoo includes an outdated
copy of sinon. See issue #9277

of qooxdoo. Another example:
Issue #1068 of d3fc.

Poor API
usage

A library adds an event
handler in a way that re-
moves all other handlers
for this kind of event, in-
stead of adding to the ex-
isting event handlers.

4 rxjs and gifshot both write
to onmessage to handle
postMessage communication.
Instead, they should use
addEventListener, which al-
lows multiple event handlers.

Convenient
identifier

Two libraries use a con-
venient, global identifier
for different purposes.

3 mermaid, a library for gener-
ating diagrams, writes to _,
which is also used by score-
js and others. See issue #512

of mermaid.
Incorrect
monkey
patching

A library tries to extend
a built-in API but acci-
dentally removes exist-
ing functionality.

1 PreloadJS and zingchart both
overwrite the built-in JSON in
a way that destroys existing
functionality. See issue #226

of PreloadJS.

Documented
depen-
dency

One library depends on
another and documents
this dependency.

4 alloy-ui is a framework built
on top of yui. Clients should
not be surprised by “conflicts”
between them.

Fork One library is derived
from another library and
modifies or extends the
functionality of the origi-
nal library.

3 wysihtml is an extended ver-
sion of wysihtml5. Clients
should never use both to-
gether.

manual inspection, we identified seven recurring patterns. Table 5.5
describes each pattern and and illustrates it with an example.
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Five of the seven patterns, which account for 18 out of the 25

inspected conflicts, are unintended by the developers and likely to
cause surprising behavior for library users. These patterns are shown
in the upper part of Table 5.5. The patterns cover conflicts caused by
independently developed variants of the same functionality, copied
third-party code, poor API usage, repeated use of convenient global
identifier name, and incorrect attempts to patch built-in JavaScript
APIs. To double-check our intuition about whether conflicts are in-
tended by the library developers, we reported seven conflicts to the
developers of conflicting libraries. At the time of writing, four of our
reports have been acknowledged and confirmed as worth fixing by
the respective developers. Of the four acknowledged libraries, two
have been fixed by the developers. Apart from this, based on our
bug report, the developer of a library has reported a bug to another
library with which it was conflicting. Subsequently, this bug report
also got fixed.

For all of these five patterns, the root cause boils down to subopti-
mal decisions by library developers, such as programming errors or
copy-and-paste of existing code. However, at least for some of them,
the design of the JavaScript language and APIs may also be partially
to blame. For example, instances of the “Poor API usage” pattern are
caused by the fact that the JavaScript web APIs provide two orthogo-
nal ways to attach event handlers: Setting the handler, e.g., onmessage
= .., which overwrites any already attached handler, and adding a
handler via addEventListener("message", ..), which preserves already
attached handlers. The conflicts detected by ConflictJS are the result
of libraries overwriting each other’s event handlers by directly setting
the handler. Another example is the “Incorrect monkey patching”
pattern. The term “monkey patching” refers to extending built-in
APIs of the JavaScript language, which is possible but non-trivial to
implement without removing existing functionality.

The remaining two patterns, shown in the lower part of Table 5.5,
both occur in a situation where library users are unlikely to be
surprised by the conflict. One reason is that libraries depend on each
other and document these dependencies clearly, so that library users
know in which order to load them. Ideally, our experimental setup
would filter such libraries, as we assume each library is supposed to
be used independently. Another reason is that libraries provide the
same or very similar overall functionality, so that library users would
never include both together.
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Overall, we draw two conclusion from our manual inspection.
First, most conflicts reported by ConflictJS are programming errors
that should be fixed by library developers to prevent clients from
surprising behavior. Second, the root causes of conflicts are diverse
but can be classified into a set of recurring patterns. Knowing these
patterns may become the basis of guidelines for library developers
what mistakes to avoid. Furthermore, the patterns can guide the
design of future program repair techniques that fix conflicting code.

5.5.3.2 The “Single API Object” Pattern

The “single API object” pattern (Section 5.2.1) allows developers to
avoid conflicts by storing all globally accessible data into a single
object named like the library. If all libraries follow this pattern, no
conflicts occur. To understand whether libraries follow this pattern,
we check for each library whether for all writes to a global access path,
the path begins with a segment that matches the name of the library,
as listed in the CDNJS content delivery network. When matching
an access path and a library name, we omit the .js suffix that some
libraries use.

We find that 273 out of the 951 libraries follow the “single API ob-
ject” pattern. While promising, this means that 71% of all libraries do
not follow the pattern, but instead use the shared global namespace
in a possibly conflicting way. We conclude that relying on developer
discipline in an open environment, such as the JavaScript library
ecosystem, is insufficient to enforce a conflict-avoiding policy.

5.5.3.3 Popular Global Access Paths

Table 5.6: Popularity of global access paths (measured in the number of
libraries that write to an access path).

Libs. Global access paths

13 $
12 localStorage.debug
10 requestAnimationFrame

9 _, jQuery, onload, require
8 clearImmediate, Promise, __core-js_shared__,

__core-js_shared__.wks, setImmediate, __core-
js_shared__.wks.iterator, __core-js_shared__.wks.toStringTag
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The large number of potential conflicts detected by ConflictJS raises
the question what global access paths are particularly popular among
library developers. Table 5.6 lists the most popular global access
paths along with the number of libraries that write to it. Perhaps
unsurprisingly, the most popular access path is the dollar sign, $,
which is a legal identifier name in JavaScript and used by several
libraries, including jQuery to export their API. Another popular choice
is the underscore sign, _, which is shared, e.g., by the Underscore and
Lodash libraries. Choosing a short identifier name to export an API is
tempting for library developers and potentially convenient for library
users. However, the downside is that multiple libraries may (either
knowingly or not) pick the same short identifier name, which likely
causes surprises if these libraries are used together.

5.5.3.4 Conflicts Versus Library Popularity

To better understand to what extent library conflicts depend on a
library’s popularity, Figure 5.6 shows for each library how many
stars it has and in how many conflicts it is involved. Each data
point corresponds to one library. For example, one library that has
45,901 starts is involved in two conflicts. Overall, the figure shows
that most conflicts are due to libraries with less than 10,000 stars.
The main reason is that only few libraries have more than 10,000

stars, as illustrated in Figure 5.7. This figure shows how the libraries
validated to be conflicting from our benchmark are distributed across
the popularity measure. Both figures look similar, which explains
the distribution of conflicts across popularity. At the same time, it
is interesting to note that even some highly popular libraries are
involved in conflicts, as indicated by the data points on the right end
of Figure 5.6.

5.5.3.5 Distribution of Global Writes Across Libraries

To better understand the large number of 130,714 global writes per-
formed by the 951 libraries, we analyze how these writes are dis-
tributed across the libraries. The results show a highly skewed dis-
tribution, with a few libraries writing to many global access paths
but with a median of only one global write. The libraries that write
to most global access paths are large and popular libraries, such as
Amazon’s AWS JDK (36,049 access paths) and Microsoft’s implemen-
tation of TypeScript (5,678 global writes). Their high number of global
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Figure 5.6: Number of conflicts each library is involved in.
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Figure 5.7: Popularity measure of libraries validated to be conflicting

Figure 5.8: Influence of popularity on number of conflicts and number of
libraries. Each data point represents one library. (twelve out of
166 libraries do not have a Github repository and hence are not
included here)

writes does not imply bad coding practice. For example, the many
access paths written by the AWS SDK library almost all start with
AWS., i.e., they follow the “single API object” pattern. We conclude
that judging libraries based on their total number of global writes,
which might have been a simple alternative to ConflictJS, is not an
effective way to find conflict-triggering libraries.
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5.5.3.6 Distribution of Conflicts Across Access Paths

A reader may wonder how many libraries write to the same global
access path. Investigating this question yields a long-tail distribution:
Most global access paths (3,836) are contended for by only two li-
braries, but a large number of highly popular global access paths is
written to by up to 13 libraries. We conclude that preventing library
developers from using a few highly contended access paths, such as $

and _, is insufficient to solve the problem of library conflicts, because
there are many other access paths that cause conflicts.

5.6 conclusion

JavaScript code, including independently developed libraries, shares
the same global namespace. Because the most widely used versions
of the language lack features designed for encapsulating exported
APIs, library developers risk to accidentally share the same globally
accessible memory locations and write different data and functions
to them. This chapter defines and classifies such library conflicts,
presents an automatic and scalable approach to detect them, and
studies conflicts in a large set of libraries. We deal with the huge
search space of possible conflicts through a two-phase approach
that dynamically analyzes a corpus of libraries in isolation to detect
potential conflicts and then synthesizes library clients to validate
conflicts. We empirically study how and why conflicts occur, showing
that a diverse set of programming errors in libraries are the primary
root cause.

Our work not only provides a practical tool for library developers
to detect conflicts and for library users to avoid conflicting libraries,
but also highlights the importance of language features for encap-
sulating independently developed code. We believe that our work
provides ample opportunities for future work. One direction is to
complement our precise but unsound analysis with a sound (and
likely imprecise) checker for library conflicts. To help developers
avoid conflicts, another line of future work are repair tools that either
address the coding errors that cause conflicts. Finally, future work
could develop automatic code transformations to help libraries use
encapsulation mechanisms provided in recent and future versions of
JavaScript.



6
L E A R N I N G F R O M R U N T I M E B E H AV I O R T O F I N D
N A M E - VA L U E I N C O N S I S T E N C I E S

The current chapter presents another corpus-based dynamic analysis
approach. In comparison to the previous chapter (Chapter 5), where
we use JavaScript libraries, the current chapter dynamically analyzes
Python files. The analysis yields variable names and the assigned
values at runtime. Such name-value pairs are useful in training neural
classifiers that can uncover inconsistencies.

6.1 motivation

Identifier names are a means to convey the (intended) semantics
of code. Because using meaningful identifier names is crucial for
the understandability and maintainability of code, developers strive
for names that express the value or behavior a name is bound to.
Hindle et al.[83] empirically show that source code is “natural”, in
the sense that it follows conventions and has regularities similar to
natural language. Various name-based program analyses exploit this
naturalness, e.g., to predict types [218, 240, 248, 263, 267], to detect
bugs [226], or to restore meaningful names in obfuscated or minified
code [144, 201, 211].

Sometimes, an identifier name and the value that the name refers to
do not match. One possible reason is a misleading name that is bound to
a correct value. Because such names make code unnecessarily hard to
understand and maintain, developers may want to replace them with
more meaningful names. Another possible reason is that a correct
name refers to an incorrect value. Because such values may propagate
through the program and cause unexpected behavior, developers
should fix the corresponding code to use the correct value. We refer
to both of these cases as name-value inconsistencies.

133
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The following illustrates the problem with two motivating exam-
ples, both of which we found during our evaluation in a corpus of
real-world computational notebooks written in Python [228]. As an
example of a misleading name, consider the following code:
log_file = glob.glob('/var/www/some_file.csv')

The right-hand side of the assignment yields a list of file names,
which is inconsistent with the name of the variable it gets assigned to,
because log_file suggests a single file name. The code is even more
confusing since this specific call to glob will return a list with at most
one file name. That is, a cursory reader of the code may incorrectly
assume this file name to be stored in the log_file variable, whereas it
is actually wrapped into a list. To clarify the meaning of the variable,
it could be named, e.g., log_files or log_file_list.

As an example of a name-value inconsistency caused by an incor-
rect value, consider the following code:
train_size = 0.9 * iris.data.shape[0]

test_size = iris.data.shape[0] - train_size

train_data = data[0:train_size]

The code tries to divide a dataset into training and test sets. Names
like train_size are usually bound to non-negative integer values.
However, the above code assigns the value 135.0 to the train_size

variable, i.e., a floating point value. Unfortunately, this value causes
the code to crash at the last line, where train_size is used as an index
to slice the dataset, but indices for slicing must be integers. While the
root cause and the manifestation of the crash are close to each other
in this simple example, in general, incorrect values may propagate
through a program and cause hard to understand misbehavior.

Finding name-value inconsistencies is difficult because it requires
both understanding the meaning of names and realizing that a value
that occurs at runtime does not match the usual meaning of a name.
As a result, name-value inconsistencies so far are found mostly during
some manual activity. For example, a developer may point out a
misleading name during code review, or a developer may stumble
across an incorrect value during debugging. Because developer time
is precious, tool support for finding name-value inconsistencies is
highly desirable.

This chapter presents Nalin, an approach for detecting name-value
inconsistencies automatically. The approach combines dynamic pro-
gram analysis with deep learning. On the hand one, a dynamic analy-
sis keeps track of assignments during an execution and gathers pairs
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of names and values the names are bound to. On the other hand,
a neural model predicts whether a name and a value fit together.
When the dynamic analysis observes a name-value pair that the neu-
ral model predicts to not fit together, then the approach reports a
warning about a likely name-value inconsistency.

While simple at its core, realizing the Nalin idea involves four key
challenges:

C1 Understanding the semantics of names and how developers typ-
ically use them. The approach addresses this challenge through
a learned token embedding that represents semantic similarities
of identifiers in a vector space. For example, the embedding
maps the names train_size, size, and len to similar vectors, as
they refer to similar concepts.

C2 Understanding the meaning of values and how developers
typically use them. The approach addresses this challenge by
recording runtime values and by encoding them into a vector
representation based on several properties of values. The prop-
erties include a string representation of the value, its type, and
type-specific features, such as the shape of multi-dimensional
numeric values.

C3 Pinpointing unusual name-value pairs. We formulate this prob-
lem as a binary classification task and train a neural model that
predicts whether a name and a value match. To the best of our
knowledge, this work is the first to detect coding issues through
neural classification over runtime values.

C4 Obtaining a dataset for training an effective model. The ap-
proach addresses this challenge by considering observed name-
value pairs as correct examples, and by creating incorrect ex-
amples by combining names and values through a statistical
sampling that is likely to yield an incorrect pair.

Our work relates to two closely related streams of work. First, Nalin
resembles existing learning-based bug detection approaches [209, 226,
238, 252, 266], which also train a model to classify code as correct or
incorrect. Our work detects problems exposed during an execution,
whereas prior work is based on static analysis, and we are the first
to focus on name-value inconsistencies, whereas prior work targets
other kinds of problems. Second, Nalin relates to previous work on
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learning from runtime behavior [265]. Instead of detecting name-
value inconsistencies, their work aims at finding a meaningful vector
representation of a piece of code, which can then be used to predict
what coding problem the code solves and what strategy it adopts.

We train Nalin on 780k name-value pairs and evaluate it on 10k
previously unseen examples from real-world Python code. The model
effectively distinguishes consistent from inconsistent examples, with
an F1 score of 0.87. Manually inspecting a sample of warnings raised
in real-world code shows that Nalin finds true positives with a preci-
sion of 51%. We also show that the approach complements state-of-
the-art static analysis-based tools that warn about frequently made
mistakes, type-related issues, and name-related bugs.

In summary, this chapter contributes the following:

• An automatic technique to detect name-value inconsistencies.

• The first approach to find coding issues through machine learn-
ing on runtime behavior.

• A type-guided generation of negative examples that improves
upon a purely random approach.

• Empirical evidence of the effectiveness of the approach that
finds name-value inconsistencies in real-world code with a rea-
sonable precision.

6.2 overview

This section describes the problem we address and gives an overview
of our approach. Nalin reasons about name-value pairs, i.e., pairs of
an identifier name and a value that gets assigned to the identifier
in a program. The problem we address is to identify name-value
pairs where the name is not a good fit for the value, which we call
inconsistent name-value pairs. Identifying such pairs is an inherently
fuzzy problem: Whether a name fits a value depends on the conven-
tions that programmers follow when naming variables that refer to
particular kinds of values. The fuzziness of the problem motivates a
data-driven approach [262], where we use the vast amounts of avail-
able programs as guidance for what name-value pairs are common
and what name-value pairs stand out as inconsistent.

Broadly speaking, Nalin consists of five components and two
phases, illustrated in Figure 6.1. During the training phase, the ap-
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Name Value Type Length Shape

age 23 int null null

probability 0.83 float null null

gym_members [‘John’, ‘Lisa’] list 2 null

name 2.5 float null null

file_name ‘example.txt’ str 11 null

Training Prediction

Figure 6.1: Overview of the approach.
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proach learns from a corpus of executable programs a neural clas-
sification model, which then serves during the prediction phase for
identifying name-value inconsistencies in previously unseen pro-
grams. The following illustrates the five components of the approach
with some examples. A detailed description follows in Section 6.3.

Given a corpus of executable programs, the first component is a
dynamic analysis of the assignments of values to names that occur
during executions of the programs. For each assignment, the analysis
extracts the variable name, the value assigned to the variable, and
several properties of the value, e.g., the type, length, and shape. As
illustrated in Figure 6.1, properties that do not exist for a particular
value are represented by null. For example, the analysis extracts the
length of the assigned value for gym_members, but not for age and
probability, as the corresponding values are primitives that do not
have a length.

While the name-value pairs obtained by the dynamic analysis serve
as positive examples, the second component generates negative ex-
amples that combine names and values in an unusual and likely
inconsistent way. The motivation behind generating negative exam-
ples is that Nalin trains a classification model in a supervised manner,
i.e., the approach requires examples of both consistent name-value
pairs and inconsistent name-value pairs. Using the example pairs
in Figure 6.1, one negative example would be the name gym_members

paired with the floating point value 0.83, which indeed is an unusual
name-value pair. Our approach for generating negative examples is a
probabilistic algorithm which considers the type of values that are
usually observed with a name to bias the selection of unusual values
toward unusual types. The first and second component together ad-
dress challenge C4 from the introduction, i.e., obtaining a dataset for
training an effective model.

The third component of Nalin addresses challenges C1 and C2,
i.e., “understanding” the semantics of names and values. To this end,
the approach represents names and values as vectors that preserve
their meaning. To represent identifier names, we build on learned
token embeddings [182], which map each name into a vector while
preserving the semantic similarities of names [271]. For example, the
vector of probability will be close to the vectors of names probab

and likelihood, because these names refer to similar concepts. To
represent values, we present a neural encoding of values based on
their string representation, type, and other properties.
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Given the vector representations of name-value pairs, the fourth
component trains a neural model to distinguish positive from negative
examples. The result is a classifier that, once trained with sufficiently
many examples, addresses challenge C3. The fifth component of
the approach queries the classifier with vector representations of
name-value pairs extracted from previously unseen programs. For
the two new assignments shown in Figure 6.1, the trained classifier
will correctly identify the assignment name = 2.5 as unusual and
raises a warning about an inconsistent name-value pair.

6.3 approach

The following presents the components of Nalin outlined in the
previous section in more detail.

6.3.1 Dynamic Analysis of Assignments

The goal of this component is to gather name-value pairs from a cor-
pus of programs. Our analysis focuses on assignments because they
associate a value with the name of, e.g., a local variable. One option
would be to statically analyze all assignment in a program. However,
a static analysis could capture only those values where the right-hand
side of an assignment is a literal, but would miss many other as-
signments, e.g., when the right-hand side is a complex expression or
function call. In the code corpus used in our evaluation, we find that
90% of all assignments have a value other than a primitive literal on
the right-hand side, i.e., a static analysis could not gather name-value
pairs from them. Instead of statically analyzing assignments, Nalin
uses a dynamic analysis that observes all assignments during the
execution of a program. Besides the benefit of capturing assignments
that are hard to reason about statically, a dynamic analysis can easily
extract additional properties of values, such as the length or shape,
which we find to be useful for training an effective model.

6.3.1.1 Instrumentation and Data Gathering

To dynamically analyze assignments, Nalin instruments and then
executes the programs in the corpus. For instrumentation, the anal-
ysis traverses the abstract syntax tree of a program and augments
assignments with a call to a function that records the name and value



140 learning from runtime behavior to find name-value inconsistencies

of the assignment. We focus on assignments where the left-hand
side a single identifier, e.g., a = foo(), and ignore cases where the
left-hand side is a more complex access path, e.g., data.row = val or
user_info["age"] = input. The reasoning for excluding assignments
to access paths is that it is not always clear which name to consider.
In the given examples, it is not clear if val should be associated with
data or row, and likewise if the value of input should be associated
with user_info or ’age’.

For each assignment encountered at runtime, in addition to the
name of the identifier on the left-hand side and the assigned value,
we extract additional properties about the assignment. Slightly abus-
ing the term “pair” to also include these additional properties, the
analysis extracts the following information:

Definition 6.1 (Name-value pair). A name-value pair is a tuple (n, v, τ, l, s),
where n denotes the variable name on the left hand side, v is a string repre-
sentation of the value assigned to the variable, τ represents the type of the
variable, and l, s represents the length and shape of the value, respectively.

Length here refers to the number of items present in a collection
or sequence type value. Some data types can be multidimensional,
and shape refers to the number of items present in each dimension.
For values without a length or shape, the corresponding entries in
the tuple contains null. The table in Figure 6.1 shows examples of
name-value pairs gathered by the analysis. Extending the approach
to gather additional properties of values is straightforward. As we
show in the evaluation, the additional properties overall increase
the effectiveness of the model, but also encode partially redundant
information, e.g., because the type of a value is implicitly encoded in
its string representation.

6.3.1.2 Filtering and Processing of Gathered Data

Some of the gathered name-value pairs contain very little information,
while some others may be too detailed to learn an effective model.
To reduce noise in the training data and to increase the model’s
ability to generalize across similar names and values, Nalin filters
and processes the gathered data in three ways.

truncate large values Large values are problematic for two
reasons. First, they consume lots of memory, make the overall ap-
proach inefficient. For example, recording a large, multi-dimensional
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array can easily fill hundreds of megabytes. Second, to capture the
meaning of the value and to decide whether it is consistent with
name, a small subset of large values is often sufficient. Nalin handles
large values by truncating them to a maximum size. For values that
have a size, e.g., strings or lists, we keep up to 100 items, namely up
to 50 from the beginning plus up to 50 from the end. For other values,
we obtain a string representation of the value and then truncate the
string to at most 50 plus 50 characters.

merge types We observe that the gathered data forms a long-
tailed distribution of types. One of the reasons is the presence of
many similar types, such as Python’s dictionary type dict and its
subclass defaultdict. To help the model generalize across similar
types, we reduce the overall number of types by merging some of the
less frequent types. Specifically, we first choose the ten most frequent
types present in the dataset. For the remaining types, we replace
any types that is in a subclass relationship with one of the frequent
types by the frequent type. For example, consider a name-value pair
(stopwords, frozenset({"all", "afterwards", "eleven", ...}), frozenset, 337,
null). Assuming that type frozenset is not among the ten most frequent
types, but type set is, we change the name-value pair into (stopwords,
frozenset({"all", "afterwards", "eleven", ...}), set, 337, null).

filter meaningless names An underlying assumption of Nalin
is that developers use meaningful variable names. Unfortunately,
some names are rather cryptic, such as variables called a or ts_pd.
Such names help neither our model nor developers in deciding
whether a name fits the value it refers to, and hence, we filter likely
meaningless names. The first type of filtering considers the length
of the variable names and discards any name-value pairs where the
name is less than three characters long. The second type of filtering
is similar to the first one, except that it targets names composed of
multiple subtokens, such as ts_pd. We split names at underscores1,
and remove any name-value pairs where each subtoken has less than
three characters.

1 https://www.python.org/dev/peps/pep-0008/#function-and-variable-names

https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
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6.3.2 Generation of Negative Examples

The gathered name-value pairs provide numerous examples of names
and values that developers typically combine. Nalin uses supervised
learning to train a classification model that distinguishes consistent, or
positive, name-value pairs from inconsistent, or negative, pairs. Based
on the common assumption that most code is correct, we consider the
name-value pairs extracted from executions as positive examples. The
following presents two techniques for generating negatives examples.
First, we explain a purely random technique, followed by a type-
guided technique that we find to yield a more effective training
dataset.

6.3.2.1 Purely Random Generation

Our purely random algorithm for generating negative examples is
straightforward. For each name-value pair (n, v, τ, l, s), the algorithm
randomly selects another name-value pair (n′, v′, τ′, l′, s′) from the
dataset. Then, the algorithm creates a new negative example by
combining the name of the original pair and the value of the randomly
selected pair, which yields (n, v′, τ′, l′, s′).

While simple, the purely random generation of negative examples
suffers from the problem of creating many name-value pairs that do
fit well together. The underlying root cause is that the distribution of
values and types is long-tailed, i.e., the dataset contains many exam-
ples of similar values among the most common types. For example,
consider a name-value pair gathered from an assignment num = 23.
When creating a negative example, the purely random algorithm
may choose a value gathered from another assignment num = 3. As
both values are positive integers, they both fit the name num, i.e., the
supposedly negative example actually is a legitimate name-value pair.
Having many such legitimate, negative examples in the training data
make it difficult for a classifier to discriminate between consistent
and inconsistent name-value pairs.

6.3.2.2 Type-Guided Generation

To mitigate the problem of legitimate, negative examples that the
purely random generation algorithm suffers from, we present a type-
guided algorithm for creating negative examples. The basic idea is to
first select a type that a name is infrequently observed with, and to
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Algorithm 6.1 Create a negative example

Input: Name-value pair (n, v, τ, l, s), dataset D of all pairs
Output: Negative example (n, v′, τ′, l′, s′)

1: Fglobal ← Compute from D a map from types to their frequency
2: Fname ← Compute from D and n a map from types observed with

n to their frequency
3: Tname ← ∅ . Types seen with n
4: Tname_infreq ← ∅ . Types infrequently seen with n
5: for each (τ 7→ f ) ∈ Fname do
6: Tname ← τ
7: if f ≤ threshold then
8: Tname_infreq ← τ

9: Tall ← dom(Fglobal) . All types ever seen
10: Tcand = (Tall \ Tname)

⋃
Tname_infreq . Types never or infrequently

seen with n
11: τ′ ← weightedRandomChoice(Tcand, Fglobal)

12: v′, l′, s′ ← randomChoice(D, τ′)
13: return (n, v′, τ′, l′, s′)

then select a random value among those observed with the selected
type. Algorithm 6.1 shows the type-guided technique for creating
a negative example for a given name-value pair. The inputs to the
algorithm are a name-value pair (n, v, τ, l, s) and the complete dataset
D of positive name-value pairs.

The first two lines of Algorithm 6.1 create two helper maps, which
map types to their frequency. The Fglobal map assigns each type to its
frequency across the entire dataset D, whereas the Fname map assigns
each type to how often it occurs with the name n of the positive
example. Next, lines 3 to 8 populate two sets of types. The first set,
Tname, is populated with all types ever observed with name n. The
second set, Tname, is populated with all types that are infrequently
observed with name n. “Infrequent” here means that the frequency
of the type among all name-value tuples with name n is below some
threshold. We set the threshold to be 3% of all positive name-value
pairs with name n. The goal of selecting types that are infrequent
for a particular name is to create negative examples that are unusual,
and hence, likely to be inconsistent.

The remainder of the algorithm (lines 9 to 13) picks a type to be
used for the negative example and then creates a negative name-value
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years  = [2011, 2012, 2013, 2014]

(n, v, τ, l, s) = (years, [2011, 2012, 2013, 2014], list, 4, null)

Fname = { list: 235, ndarray: 59, int: 33, 
    float: 7, dict: 5, tuple:4, set:1 }

Tname_infreq = {float, dict, tuple, set}

Fglobal = { str: 89337, bool: 5385,
            float: 71244, dict: 21654, ��� }

◇ Weighted random selection of a target type:

◇ Random selection of a float value from the dataset:
(n, v', τ', l', s') = (years, 1.8, float, null, null)

◇ Infrequent types for years:   

◇ Global frequencies of types infrequently or never seen with years:

◇ Given name-value pair:

◇ All types years has been in the dataset and their frequencies:

τ' = float

Figure 6.2: Steps for creating a negative example.

pair by combining the name n with a value of that type. To this end,
the algorithm computes all candidates types, Tcand, that are either
never observed with name n or among the types Tname_infreq that in-
frequently occur with n. The algorithm then randomly selects among
the candidate types, using the global type frequency as weights for
the random selection. The rationale is to choose a type that is unlikely
for the name n, while following the overall distribution of types. The
latter is necessary to prevent the model from simply learning to spot
unlikely types, but to instead learn to find unlikely combinations of
names and values. Once the target type τ′ for the negative example
is selected, the algorithm randomly picks a value among all values
(line 12) observed with type τ′, and eventually return a negative
example that combines name n with the selected value.

Figure 6.2 illustrates the algorithm with an example from our eval-
uation. The goal is to create a negative example for a name-value pair
where the name is years. In the dataset of positive examples, the name
years occurs with values of types list, ndarray, int, etc., with the fre-
quencies shown in the figure. For example, years occurs 235 times
with a list value, but only seven times with a float value. Among
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all types that occur in the dataset, many never occur together with
the name year, e.g., str and bool. Based on the global frequencies of
types that year never or only infrequently occurs with, the algorithm
picks float as the target type. Finally, a corresponding float value
is selected from the dataset, which is 1.8 for the example, and the
negative example shown at the bottom of the figure is returned.

By default, Nalin uses the type-guided generation of negative
examples, and our evaluation compares it with the purely random
technique. The generated negative examples are combined with the
positive examples in the dataset, and the joint dataset serves as
training data for the neural classifier.

6.3.3 Representation as Vectors

Given a dataset of name-value pairs, each labeled either as a positive
or a negative example, Nalin trains a neural classification model to
distinguish the two kinds of examples. A crucial step is to represent
the information in a name-value pair as vector, which we explain in
the following. The approach first represents each of the five compo-
nents (n, v, τ, l, s) of a name-value pair as a vector, an then feeds the
concatenation of these vectors into the classifier. Figure 6.3 shows
an overview of the neural architecture. The following describes the
vector representation in more detail, followed by a description of the
classifier in Section 6.3.4.

representing variable names To enable Nalin to reason
about the meaning of variable names, it maps each name into a
vector representation that encodes the semantics of the name. For
example, the representation should map the names list_of_numbers

and integers to similar vectors, as both represent similar concepts,
but the vector representations of the names age and file_name should
differ from the previous vectors. To this end, our approach builds on
word embeddings, which is a learned function that assigns a vector
to every name. Originally proposed in natural language processing
as a means to represents words [101, 182], word embeddings are
becoming increasingly popular also on source code [195, 210, 223, 226,
240], where they represent individual tokens, e.g., variable names.

Specifically, we build upon FastText [182], a neural word embed-
ding shown to represent the semantics of identifiers more accurately
than other popular embeddings [271]. A key benefit of FastText is
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Figure 6.3: The architecture of the model.

to avoid the out-of-vocabulary problem that other embeddings, e.g.,
Word2vec [101] suffer from, by splitting each token into n-grams and
by computing a separate vector representation for each n-gram. We
pre-train a FastText model on a corpus of token sequences extracted
from Python programs (Section 6.5.1). Formally, the trained FastText
model M, assigns to each name n a real-valued vector M(n) ∈ Rd,
where d = 100 in our evaluation.

representing values The key challenge for representing the
string representations of values as vectors is that there is a wide
range of different values, including sequential structures, e.g., in
values of types string, ndarray, list, and values without an obvious
sequential structure, e.g., primitives and custom objects. The string
representations of values may capture many interesting properties,
including and beyond the information conveyed by the type of a
value. For example, the string representation of an int implicitly
encodes whether the value is a positive or negative number. Our
goal when representing values as vector is to pick up such intricacies,
without manually defining type-specific vector encoders.
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To this end, Nalin represents value as a combination of two vector
representations, each computed by a neural model that we jointly
learn along with the overall classification model. On the one hand,
we use a recurrent neural network (RNN) suitable for capturing
sequential structures. Specifically, we apply gated recurrent units
(GRU) over the sequence of characters, where each character is used as
an input at every timestep. The vector obtained from the hidden state
of the last timestep then serves as the representation of the complete
sequence. On the other hand, we use a convolutional neural network
(CNN) suitable for capturing non-sequential information about the
value. Specifically, the approach applies a one-dimensional CNN over
the sequence of characters, where the number of channels for the
CNN is equal to the number of characters in the string representation
of the value, the number of output channels is set to 100, Relu is the
activation function, and a one-dimensional MaxPool layer serves as
the final layer. Finally, Nalin concatenates the vectors obtained from
the RNN and the CNN into the overall vector representation of the
value.

representing types To represent the type of a value as a vector,
the approach computes a one-hot vector for each type. Each vector
has a dimension equal to the number of types present in the dataset.
A type is represented by setting an element to one while keeping the
remaining elements set to zero. For example, if we have only three
types namely int, float, and list in our dataset then using one-hot
encoding, each of them can be represented as [1, 0, 0], [0, 1, 0] and
[0, 0, 1] respectively. For evaluation, we set the maximum number of
types to ten. More sophisticated representations of types, e.g., learned
jointly with the overall model [248], could be integrated into Nalin as
part of future work.

representing length and shape Since both length and shape
refer to analogous concepts, we represent them in a similar fashion. By
encoding these two properties of values, we aim at capturing some of
the information lost during truncation of large values (Section 6.3.1.2).
The intuition is that some variable names, such as name or our_pattern,
usually refer to relatively short values, whereas other names, such
poem or DNA5, are typically refer to longer values. During truncation,
the difference in lengths of such values may be lost, but the length
and shape properties still encode them.
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Because the length of a value is theoretically unbounded, we con-
sider ten ranges of lengths and represent each of them with a one-hot
vector. Specifically, Nalin consider ranges of length 100, starting from
0 until 1,000. That is, any length between 0 and 100 will be repre-
sented by the same one-hot vector, and likewise any length greater
than 1,000 will be represented by the another vector. The shape of
a value is a tuple of discrete numbers, which we represent similarly
to the length, except that we first multiple the elements of the shape
tuple. For example, for a value of shape x, y, z, we encode x · y · z
using the same approach as for the length For values that do not have
a length or shape, we use a special one-hot vector.

6.3.4 Training and Prediction

Once Nalin has obtained a vector representation for each component
of an name-value pair, the individual vectors are concatenates into the
combined representation of the pair. This combined representation is
then fed into a neural classifier that predicts the probability p of the
name-value pair to inconsistent. The classification model consists of
two linear layers with a sigmoid activation function at the end. We
also add a dropout with probability of 0.5 before each linear layer.
We train the model for 15 epochs with the Adam [119] optimizer, and
a batch size of 128. During training, the model is trained toward pre-
dicting p = 0.0 for all positive examples and p = 1.0 for all negative
examples. Once trained, we interpret the predicted probability p as
the confidence Nalin has in flagging a name-value pair as inconsistent,
and the approach reports only pairs with p above some threshold
to the user. We use a threshold probability of 0.5 as the default for
reporting a warning.

6.4 implementation

Python being one of the most popular2 programming languages, we
choose it as a concrete application of Nalin and gather assignments
from a corpus of computational notebooks written in Python. The
type of computational notebook used for our purposes is Jupyter
Notebook. We also implement our approach using Python into an end-
to-end framework to find name-value inconsistencies. Each Jupyter

2 https://www.tiobe.com/tiobe-index

https://www.tiobe.com/tiobe-index
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notebook is first converted to a Python script using nbconvert and
then instrumented using the AST provided by LibCST. One of the
challenges of executing a large number of Python scripts is the pres-
ence of a large number of external dependencies. We do not try to
install all possible dependencies, but rather install the most popular
100 Python libraries. Additionally, executing arbitrary Python scripts
downloaded from the public domain can have unknown security
implications, such as making unsolicited network requests or down-
loading large number of files locally. We circumvent such risks by
executing the scripts in a sandbox environment.

6.5 evaluation

Our evaluation focuses on the following research questions:

• RQ1: How effective is Nalin in detecting name-value inconsis-
tencies?

• RQ2: What kinds of inconsistencies does the approach find in
real-world code?

• RQ3: How does our approach compare to static bug detection
tools?

• RQ4: What is the effect of type-guided negative example gener-
ation compared to the purely random approach?

• RQ5: Which properties of name-value pairs contribute the most
to finding name-value inconsistencies?

6.5.1 Experimental Setup

We evaluate our approach on one million computational notebooks
sampled from an existing dataset of Jupyter notebooks scrapped from
GitHub [228]. The experiments have been run on a machine with
Intel Xeon E5-2650 CPU having 48 cores, 64GB of memory and an
NVIDIA Tesla P100 GPU. The machine runs on Ubuntu 18.04, and
we use Python 3.8 for the implementation.

Excluding some malformed notebooks, we convert 985,865 note-
books into Python scripts. Some of these notebooks contain only text
and no code, while for others, the code has syntax errors, or the
code is very short and does not perform any assignments. All of
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this decreases the number of actual Python files that Nalin instru-
ments, and we finally obtain 598,321 instrumented files, which takes
approximately two hours to instrument.

There are three main challenges in gathering name-value pairs,
partially related to previously discussed challenges in reproducing
Jupyter notebooks [264]. First, even with the installation of most
popular Python packages, we fail to satisfy the dependencies of
some files, which results in crashes during executions. Second, many
Python scripts read inputs from files, e.g., a dataset for training a
machine learning model, which may not be locally available. Third,
many assigned values are of custom object types that do not have a
string representation, i.e., we can obtain only the name and reference
of the object, which is not very useful and needs to be discarded.
Considering all notebooks that we can successfully execute despite
these obstacles, Nalin gathers a total of 947,702 name-value pairs, of
which 500,332 remain after the filtering described in Section 6.3.1.2.
Running the instrumented files to extract name-value pairs takes
approximately 48 hours.

The name-value pairs consist of a diverse set of values and types.
Figure 6.4 shows the ten most frequent types and the corresponding
frequencies across the dataset. The presence of a large number of
collection types, such as list and ndarray, which usually are not
fully initialized as literals shows that extracting values at run-time is
worthwhile.

Before running any experiments with the model, we sample 10,000

name-value pairs as a held-out test dataset. Unless mentioned other-
wise, all reported results are on this test dataset. On the remaining
490,332 name-value pairs, we perform an 80-20 split into training and
validation data. For each name-value pair present in the training, vali-
dation, and test datasets, we create a corresponding negative example,
which takes two hours in total. The total number of data points used
to train the Nalin model hence is about 780k. Training takes an av-
erage of 190 seconds per epoch and once trained, prediction on the
entire test dataset takes about 15 seconds.

variants of the approach In addition to training a model on
all name-value pairs in our dataset, we also experiment with two
models trained on subsets of the dataset with pairs of similar types.
One subset contains all 145,524 name-value pairs where the values
are of type int or float. The other subset focuses on 182,404 name-
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value pairs with the iterable types str and list. The intuition is that
since the pairs of chosen data types are very similar to each other,
developers may be more likely to confuse values and variables of
these types. Experimenting on the subsets of the dataset allows us
to measure if Nalin is able to pickup the subtle differences between
values of similar types. As for the full dataset, we keep 10,000 pairs
as a test dataset, and perform an 80-20 split of the remaining data for
training and validation, respectively. We call the model trained on the
full dataset all-types, and the variants int-float and str-list, respectively.
We consider the all-types model as the default variant of Nalin and
refer to it, unless mentioned otherwise.
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Figure 6.4: Distribution of different types in the dataset

6.5.2 RQ1: Effectiveness in Detecting Inconsistencies

To measure the effectiveness of Nalin in detecting inconsistencies,
we apply the trained all-types, int-float, and str-list models to the
held-out test datasets. The output of the model is a probability score
that indicates how likely the model believes a given name-value pair
to be inconsistent. We consider all probabilities above a threshold as
a warning and measure the precision and recall of the approach as
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follows. Precision indicates how many of the warnings produced by
the model are actually inconsistent:

|warnings that are actually inconsistent|
|total warnings|

Recall is the percentage of inconsistencies that the model correctly
reports among all inconsistencies in the dataset:

|inconsistent pairs reported as inconsistent by the model|
|total inconsistent pairs|

We also report the F1 score, which is the harmonic mean of precision
and recall.
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Figure 6.5: Precision and recall with different thresholds for reporting warn-
ings.

Figure 6.5 shows the precision and recall tradeoff using different
thresholds for reporting a prediction as a warning. Overall, all three
models achieve high precision and recall values. For example, using
the default threshold of 0.5, the all-types model has a precision
of 0.94 and a recall of 0.81, giving an F1 score of 0.87. Comparing
the all-types model with the type-specific variants, we find the str-
list model to be the most effective. On inspecting examples in the
test dataset of the str-list model, we find that it picks up minor
details in name-value pairs, which contributes to the effectiveness. For
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example, the model correctly classifies color = ’yellow’ and colors =

[’red’, ’green’, ’blue’, ’yellow’] as consistent, but reports a warning
for country = [’United States’, ’France’, ’Japan’...], where the name
should be plural.

6.5.3 RQ2: Kinds of Inconsistencies in Real-World Code

To understand the ability of Nalin to detect name-value inconsisten-
cies in real-world code, we inspect supposedly positive name-value
pairs in the test datasets that are classified as inconsistent by the
model. When using Nalin to search for previously unknown issues,
these name-value pairs will be reported as warnings. For each of the
all-types, int-float and str-list models, we inspect the top-30 predic-
tions, sorted by the probability score provided by the model, and
classify each warning into one of three categories:

• Incorrect value. Name-value pairs where the mismatch between
a name and a value is due to an incorrect value being assigned.
These cases cause unexpected program behavior, e.g., a program
crash or incorrect output.

• Misleading name. Name-value pairs where the name clearly fails
to match the value it refers to. These cases do not lead to wrong
program behavior, but should be fixed to increase the readability
and maintainability of the code.

• False positive. Name-value pairs that are consistent with each
other, and which ideally would not be reported as a warning.

Because deciding about misleading names is to some extent subjec-
tive, two of the authors independently inspect each warning and
discuss any cases of disagreements. We categorize a warning as a
misleading name only when the two authors eventually agree on it,
and categorize a warning as a false positive otherwise.

Figure 6.6 summarizes the results of the manual inspection. Overall,
the three models have a precision of 51%, i.e., the majority of the
reported warnings corresponds to either an incorrect value or a
misleading name. Five of the true positives are incorrect values, while
the larger part of the true positives (42 in total) are misleading names.

Table 6.1 and 6.2 show some examples of warnings produced
by Nalin, along with our categorization. In the the first example of
Table 6.1, Nalin produces a warning about the assignment on line 2.
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Figure 6.6: Manual inspection results.

The value assigned during the execution is a string ’Cooperate’. Due
to the string assignment, the code on line 3 crashes since the operator
> does not support a comparison between a string and float. Nalin is
correct in predicting this warning because the variable name prob is
typically used to refer to a probability, not to a string like ’Cooperate’.
Since the assignment leads to an unexpected behavior, in this case a
crash, we categorize the name-value pair as an incorrect value.

The next two examples in Table 6.1 show misleading names. For ex-
ample, it is highly unusual to assign a number to a variable called name

or to assign a list of numbers to a variable called matchstring. To the
best of our knowledge, these misleading name do not cause unex-
pected behavior, but developers may still want to fix them to increase
the readability and maintainability of the code.

The two examples in Table 6.2 show false positives. The examples
illustrate one of the most common causes of false positives seen dur-
ing our inspection, namely generic variable names that do not convey
much information about the values they may refer to. Future work
could further increase the precision of Nalin by filtering warnings
related to such generic names.
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Code Example Category Comment

def Custom(information):

prob = get_betraying_probability(information)

# Runtime value --> 'Corporate'
if(prob > 1 / 2):

return D
elif(prob == 1 / 2):

return choice([D, C])
else:

return C

Incorrect
value

This warning has
been produced by
the all-types model.
Assigning a string
type value to a vari-
able called prob is
unusual. This unfor-
tunately leads to a
crash in the program
in the next line and as
a result, we classify
the warning as an
incorrect value.

name = 'Philip K. Dick'
...

name = 2.5

# Runtime value --> 2.5
if type(name) == str:

print('yes')

Misleading
name

This warning has
been produced by
the all-types model.
Assigning a float
value to a variable
called name is highly
unusual and likely to
mislead developers.
As the assignment
does not lead to
unexpected behavior,
we classify it as a
misleading name.

matchstring = list(range(36))

# Runtime value --> [0, 1, 2,...]
for i in range(18):

matchstring[2*i] = np.random.binomial(1, server1
p)

matchstring[2*i+1] = np.random.binomial(1, 1-
server2p)

sum(matchstring)

Misleading
name

This warning has
been produced by
the str-list model.
Assigning a list
value to a variable
called matchstring
is clearly misleading,
but does not lead to
unexpected behavior.

Table 6.1: Examples of warnings produced by Nalin.
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Code Example Category Comment

data = str(random.random() + 4)
MyObj = namedtuple("MyClassReplacement", ("

some_string", "my_smart_function",))
o = MyObj(

some_string=data,
my_smart_function=lambda item: float(item) * 3)

some_string, some_function = o

# Runtime value --> "4.29403..905"

False
positive

This warning has
been produced
by the all-types
model. The value
is a string that
describes a range
of numbers,
which fits the
(rather generic)
name of the
variable called
some_string.
Since the as-
signed value is
indeed a string,
we classify this
warning as a
false positive.

while (number1 + number2 != number1) :
counter += 1

number2 = number2 / 10.0

# Runtime value --> 1.00001e-16

False
positive

This warning has
been produced
by the int-float
model. The
name number2
is a generic and
may hold either
an int or a float
value, which is
inline with the
observed value

Table 6.2: Examples of warnings produced by Nalin.
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6.5.4 RQ3: Comparison with Previous Bug Detection Approaches

We compare Nalin to three state-of-the-art static analysis tools aimed
at finding bugs and other kinds of noteworthy issues: (i) pyre, a static
type checker for Python that infers types and uses available type
annotations; (ii) flake8, a Python linter that warns about various code
quality issues and commonly made mistakes; and (iii) DeepBugs [226],
a learning-based bug detection technique aimed at name-related bugs.
Since all three approaches are not limited to specific types, we use the
all-types model for this comparison. We run pyre and flake8 using
their default configurations. For DeepBugs, we install the “DeepBugs
for Python” plugin from the marketplace of the PyCharm IDE. We
apply each of the three approaches to the 30 files where Nalin has
produced a warning and which have been manually inspected (RQ2).

Table 6.3: Comparison with existing static bug detectors.

Approach Warnings Warnings common with Nalin

pyre 54 1/30

flake8 1,247 0/30

DeepBugs 151 0/30

Table 6.3 shows the number of warnings reported by the existing
tools and how many of these warnings overlap with those reported
by Nalin. We find that except one warning reported by pyre, none
matches with the 30 manually inspected warnings from Nalin. The
matching warning is a misleading name, shown on the second row
of Table 6.1. The pyre type checker reports this as an “Incompatible
variable type” because in the same file, the variable name is first as-
signed a string ’Philip K. Dick’ and later assigned a float value 2.5.
The 1,247 warnings produced by flake8 are mostly about coding style,
e.g., “missing white space” and “whitespace after ’(’ ”. The warnings
reported by DeepBugs include possibly wrong operator usages and
incorrectly ordered function arguments, but none matches the warn-
ings reported by Nalin. We conclude that Nalin is complementary to
both traditional static analysis-based tools and to a state-of-the-art
learning-based bug detector aimed at name-related bugs.
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6.5.5 RQ4: Type-Guided vs. Purely Random Negative Examples

The following compares the two algorithms for generating negative
examples described in Section 6.3.2. Following the setup from RQ1,
we find that the purely random generation reduces both precision
and recall, leading to a maximum F1 score of 0.82, compared to
0.87 with the type-guided approach. With a reporting threshold of
0.5, the purely random approach reports a total of 820 warnings,
i.e., 40% more than the 490 reported warnings by the type-guided
approach. Manually inspecting the top-30 reported warnings as in
RQ2, we find 21 false positives, nine misleading names, and zero
incorrect values, which reduces the precision from 57% to 30% and
is clearly worse then the results with the type-guided generation of
negative examples. Overall, these results confirm the observation that
motivates the type-guided algorithm (Section 6.3.2.2) and show that
it outperforms a simpler baseline.

6.5.6 RQ5: Ablation Study
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Figure 6.7: Ablation Study Results

We perform an ablation study on the all-types model to measure
the importance of the different components of a name-value pair
fed into the model. To this end, we set the vector representation of
individual components to zero during training and prediction, and
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then measure the effect on the F1 score of the model. Figure 6.7 shows
the results, where the vertical axis shows the F1 score obtained on
the validation dataset at each epoch during training. Each line in
Figure 6.7 shows the F1 score obtained while training the model
keeping that particular feature set to zero. For example, the green line
(“No Shape”) is for a model that does not use the shape of a value,
and the blue line (“all”) is for a model that uses all components of a
name-value pair. We find that the most important inputs to the model
are the variable name and the string representation of the value.
Removing the length or the type of a value does not significantly
decrease the model’s effectiveness. The reason is that these properties
can often be inferred from other inputs given to the model, e.g.,
by deriving the type from the string representation of a value. We
confirm this explanation by removing both the type and the string
representation of a value, which yields an F1 score similar to the
model trained by removing only values.

6.6 conclusion

Using meaningful identifier names is important for code understand-
ability and maintainability. This chapter presents Nalin, which ad-
dresses the problem of finding inconsistencies that arise due to the
use of a misleading name or due to assigning an incorrect value. The
key novelty of Nalin is to dynamically analyze a corpus of Python
files and learn from names and their values assigned at runtime,
which is in contrast to traditional statistic analysis approaches. To
reason about the meaning of names and values, the approach embeds
them into vector representations that assign similar vectors to similar
names and values. Our evaluation with almost 800k name-value pairs
gathered from real-world Python programs shows that the model
is effective, with an F1 score of 0.87 on previously unseen data. A
manual inspection of a sample of the reported name-value inconsis-
tencies shows that Nalin reports true positives with a precision of
51%, including various misleading names and some incorrect values
that cause clear misbehavior.

We envision Nalin to be complementary to other approaches that
report warnings on possible inconsistencies in code. We believe our
work provide multiple avenues of future work. One direction that may
improve the model is to include context information such as adding
tokens that appear close to name-value pairs. Another direction is to
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train using name-value pairs recorded at runtime along with extracted
using a static analysis. A combined dataset will increase the size of
the training dataset and possibly alleviate the false positive rate.



Part III

C O R P U S - B A S E D I N P U T R E D U C T I O N

In addition to bug finding, we leverage large corpora of
code for other tasks, such as reducing test inputs.





7
AU T O M AT I C A L LY R E D U C I N G T R E E - S T R U C T U R E D
T E S T I N P U T S

Chapter 2 and 3 present two approaches where we generate a large
number programs by either generating complete programs or by
mutating existing programs. We also show that the generated pro-
grams are either useful for finding bugs or training neural models.
As an extension of the approaches to generate programs, this chapter
presents a way to reduce inputs that may be also applied to the gen-
erated programs. For example, if a generated program by TreeFuzz
(Chapter 2) uncovers a bug, it is helpful for developers to get a subset
of the program that still triggers the same bug. The current chapter
provides a solution in that direction by reducing inputs that may be
represented as trees.

7.1 motivation

Developers often have a test input that triggers behavior of interest,
such as inducing a failure in a buggy program or covering particular
parts of a program under test. However, the input may be larger than
needed to preserve the property of interest. For example, consider
a program that crashes the compiler or interpreter when given as
an input. The larger this input program is, the more difficult it is
to localize the fault, making the debugging process unnecessarily
cumbersome [6].

To ease the task of dealing with such overly complex test inputs,
several automated techniques have been proposed. Given a test input
and an oracle that determines whether a reduced version of the input
still preserves the property of interest, these techniques automatically
reduce the input. With a reduced test input, the developer is likely to
find the root cause of the bug faster and may even turn the reduced
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test input into a regression test case after the bug has been fixed.
Similar, reducing test inputs while preserving some testing goal, such
as coverage, can help to reduce a test suite.

Existing techniques for reducing inputs roughly fall into two cate-
gories. On the one hand, delta debugging [16] and its derivatives [31]
reduce inputs in a language-independent way by repeatedly remov-
ing parts of the input until no further reduction is possible. While
being simple and elegant, these approaches disregard the language
of the input and therefore miss opportunities for input reduction. In
particular, these techniques cannot restructure inputs, which often
enables further reductions. As an example, consider the following
JavaScript code and suppose that it triggers a bug, e.g., by crashing
the underlying JavaScript engine.
for (var i = 0; i < 10; i++) {

if (cond1 || cond2) {

partOfBug();

}

if (cond3) {

otherPartOfBug();

}

}

Further suppose that the two function calls are sufficient to trigger
the bug. That is, the following code is sufficient as a test input to
enable a developer to reproduce and localize the bug:
partOfBug();

otherPartOfBug();

Unfortunately, existing language-independent techniques are chal-
lenged by this example. The original delta debugging algorithm
blindly removes parts of the program, which is likely to lead to a
syntactically invalid program or to a local minimum that is larger
than the fully reduced example. Hierarchical delta debugging [31],
a variant of delta debugging that considers the tree structure of the
input, fails to find the reduced input because it can remove only
entire subtrees, but it cannot restructure the input.

On the other hand, some techniques [88] exploit domain knowledge
about the language of the test input. While being potentially more
effective, hard-coding language knowledge into the approach limits
it to a single kind of test input.

This chapter presents the Generalized Tree Reduction algorithm
(GTR), a language-independent technique to reduce arbitrary tree-
structured test inputs. The approach is enabled by two key observa-
tions. First, we observe that transformations beyond removing entire
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parts of the input are beneficial in reducing inputs. GTR exploits this
observation by incorporating tree transformations into the reduction
process. The challenge is how to know which transformations to
apply without hard-coding knowledge about a particular language.
Addressing this challenge improves the effectiveness of test input
reduction. Second, we observe that for most relevant input formats,
there are various examples that implicitly encode information about
the language. For example, there are various programs in public code
repositories, millions of HTML files, and many publicly available
XML documents. GTR exploits this situation to improve the efficiency
of input reduction by automatically pruning the search space of trans-
formations for a particular language after learning from a corpus of
example data.

Our work focuses on inputs that can be represented as a tree. This
focus is motivated by the fact that the inputs of many programs have
an inherent tree structure, e.g., XML documents, or can be easily
converted into a tree, e.g., the abstract syntax tree of source code. The
input to GTR is a tree with a desirable property, such as triggering a
bug, and an oracle that determines whether a reduced version of the
tree still has the desirable property. The algorithm reduces the tree
level by level, i.e., it considers all nodes of a level to minimize the
whole tree, before continuing with the next level. The output of the
algorithm is a reduced tree that has the desirable property according
to the oracle.

At the core of our approach are tree transformations that modify a
tree into a new tree with fewer nodes. We describe two transformation
templates that we find to be particularly effective. The first template
removes a node and all its children, drastically shrinking the tree’s
size. As deleting nodes alone is insufficient for various inputs, the
second template replaces a node with one of its children, i.e., it pulls
up a subtree to the next level of the tree. While we find these two
transformation templates to be effective, the algorithm is easily ex-
tensible with additional templates. In principle, these transformation
templates are applicable to arbitrary kinds of nodes in the tree. To
reduce the size of the search space considered by GTR, i.e., ultimately
the time required to reduce an input, we specialize the transformation
patterns to a specific input language by learning from a corpus of
example data. Since the learning is fully automatic, the approach
remains language-independent.
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To evaluate GTR, we apply the algorithm to a total of 429 inputs in
the form of Python programs, JavaScript programs, PDF documents,
and XML documents. The Python programs each trigger a bug in
the Python interpreter, while the JavaScript programs cause incon-
sistencies between browsers. The PDF documents contain malicious
content. The XML documents achieve a certain coverage when given
to an XML validator, and that coverage should be preserved during
the reduction. We find that GTR reduces the inputs to 45.3%, 3.6%,
44.2%, and 1.3% of the original size, respectively. Compared to the
best existing approach [31], GTR consistently improves efficiency and
also significantly improves the effectiveness of reduction in three of
four experiments.

To summarize, we make the following contributions:
• We identify the lack of restructuring as a crucial limitation of

existing language-independent input reduction techniques.

• We present a novel tree reduction algorithm that transforms
trees based on tree transformation templates. If a set of example
inputs is available, the approach automatically specializes the
templates to the language of the input.

• We show the presented algorithm to be significantly more
effective and efficient than two state-of-the-art techniques.

• We make our implementation available to the public.1

7.2 background

7.2.1 Delta Debugging

Zeller and Hildebrandt proposed delta debugging (DD) [16], a greedy
algorithm for isolating failure inducing inputs. In a nutshell, DD splits
the input in chunks of decreasing sizes, trying to remove some chunks
while maintaining a property of the input. “Chunk” can refer, e.g., to
individual characters or lines of a document. Often but not necessarily,
the property is that the input induces a bug when fed to a program.
DD does not guarantee to find the smallest possible input but instead
ensures 1-minimality. This property guarantees that no single part of
the input can be removed without loosing the property of interest.
For example, when applying line-based delta debugging to reduce
a program that triggers a compiler bug, 1-minimality means that

1 https://github.com/sherfert/GTR

https://github.com/sherfert/GTR
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removing any line of the input will cause the input to not trigger the
bug anymore.

DD has an important disadvantage for structured input because
it disregards the structure of the input when splitting it into chunks.
As a result, DD may generate various invalid inputs and invoke the
oracle unnecessarily. For instance, when applying DD to the example
from the introduction, the algorithm may delete a closing bracket
without removing its counterpart, generating a syntactically invalid
program. Since each candidate input is given to the oracle, such
invalid inputs increase the execution time of the algorithm.

7.2.2 Hierarchical Delta Debugging

Hierarchical delta debugging (HDD) [31] addresses the limitation that
DD disregards the structure of the input. The algorithm considers
the input to be a tree, which is a natural way to interpret various
inputs, e.g., code represented as an abstract syntax tree (AST). HDD
starts from the root of the tree and visits each level. At every level, the
algorithm applies the original DD algorithm to all nodes at this level
to find the smallest set of nodes necessary. The algorithm terminates
after running DD on the last level of the tree.

HDD often purges large parts of the input early, leading to more
reduction than DD, while also requiring fewer oracle invocations. In
contrast to DD, HDD does not provide 1-minimality. To guarantee
this property, HDD* repeatedly uses HDD, until no more changes
to the tree are performed [31]. A limitation of HDD is that it only
removed nodes (and all their children), but it does not use any other
tree transformations. Therefore, for an input where the important part
is deeply nested in the input tree, HDD produces far-from-minimal
results. An example is the code excerpt provided in the introduction.
Here, HDD attempts to remove the entire if-branches, which yields a
program that does not trigger the bug anymore. The algorithm yields
the following code as the reduced input:

for (;;) {

if (cond1 || cond2) {

partOfBug();

}

if (cond3) {

otherPartOfBug();

}

}
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if(!c) {
var a = 5; // root cause of failure

} else {
isNaN(2);

}

Figure 7.1: An abstract syntax tree and code for our running example.

7.3 problem statement

Previous approaches for reducing failure-inducing inputs miss op-
portunities for reduction because they ignore the structure of the
input and because they are limited to removing parts of the input.
Motivated by these limitations, we aim for an algorithm that exploits
the structure of the inputs, and that finds near-minimal results even
when the root cause of a failure is deeply nested inside the input.
Our work focuses on inputs that can be represented as a tree.

Definition 7.1. A labeled ordered tree is a recursive data structure (l, c),
where l is a textual label and c is the (possibly empty) ordered list of outgoing
edges. An edge e ∈ c is a tuple (l, t), where l is a textual label for the edge
and t is the child node, which itself is a labeled ordered tree. We use T to
refer to the set of all trees.

Figure 7.1 shows an example: A small piece of JavaScript code
that triggers a bug, e.g., in a JavaScript engine. Suppose that the bug
is triggered by the statement at line 2. The example input can be
represented as a tree – in this case, the AST.
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We will refer to a labeled ordered tree hereafter simply as a tree or
node, depending on the context. Trees have several properties. The
size of a tree is the number of its nodes: size : T → N. The tree in
Figure 7.1 has a size of 19. The context of a tree is a partial function
that returns the label of the parent node and the label of the incoming
edge: context : T → (String× String). The context of the root node
is undefined. For the example, the context of the UnaryExpr node
on the left side of our tree is (IfStmt, test). The level of a node in a
tree is the edge-distance from the node to the tree’s root node. All
nodes of a particular level in a tree can be obtained by a function
level : (T ×N) → P(T ), where P(T ) denotes the power set of T .
The depth of a tree is defined as the maximum distance of a leaf
node to the root: depth : T →N. The example tree has a depth of 5.
Finally, we say that a tree t′ is derived from another tree t, written
derived(t′, t), if one can build t′ from t by deleting nodes and edges,
or by moving nodes and edges within the tree without changing a
single label.

Definition 7.2. An oracle o is a function that, given a tree, decides whether
the tree provides a desired property: o : T → Bool. We use O to denote the
set of all oracles.

A tree t′ is minimal w.r.t. an oracle o and a source tree t if t′ satisfies
the oracle and if there is no smaller derived tree that also satisfies the
oracle. Formally, t′ is minimal if derived(t′, t) ∧ o(t′) = true∧

(
@t′′ 6=

t′ : derived(t′′, t) ∧ o(t′′) = true∧ size(t′′) < size(t′)
)
.

Definition 7.3. A tree reduction algorithm is a function A : (T ×O)→
T that, given a tree t and an oracle o where o(t) = true, returns another
tree t′ for which o(t′) = true and size(t′) 6 size(t).

The algorithm tries to find a smaller tree that still provides a
property of interest, as decided by the oracle. If a reduction algorithm
cannot further reduce a tree, it will return the same tree.

The goal of this work is to provide a tree reduction algorithm that
returns near-minimal trees with respect to the given oracle, while
maintaining the number of oracle invocations low. A small number
of oracle invocations is important, as they can be costly operations,
such as running a compiler, that significantly increase the overall
runtime of the algorithm. In general, finding the minimal tree is
impractical because the number of trees to check with the oracle
grows exponentially with the size of the input tree.
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Figure 7.2: Overview of the GTR approach.

7.4 the generalized tree reduction algorithm

This section introduces a novel tree reduction algorithm, called Gen-
eralized Tree Reduction or GTR. Figure 7.2 shows the components of
the approach and how they interact with each other. Given an input
tree (step 1), the algorithm traverses the tree from top to bottom
while applying transformations to reduce the tree. For example, a
transformation may remove an entire subtree or restructure the nodes
of the tree. The transformations are based on tree transformation
templates (step 2) that specify a set of candidate transformations
(step 3). To specialize a generic template to a particular input format,
the approach optionally filters these candidates based on knowledge
inferred from a corpus of example inputs (step 4). The algorithm
applies the transformations and queries the oracle to check whether
a reduced tree preserves the property of interest, e.g., whether it still
triggers a particular bug (steps 5 and 6). The algorithm repeatedly
reduces the tree until no more tree reductions are found. Finally, GTR
returns the reduced tree (step 7).

We call the GTR algorithm “generalized” because it can express
different tree reduction algorithms, depending on the provided tree
transformation templates. For example, by providing a single tem-
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plate that reduces entire subtrees, GTR is equivalent to the existing
HDD algorithm [31] (Section 7.4.5).

Before delving into the details of GTR, we illustrate its main ideas
using the running example in Figure 7.1. Given the tree representation
of the input, the algorithm analyzes the tree level by level, starting at
the root node. For example, the algorithm considers a transformation
that removes the root node IfStmt and all its children, but discards this
transformation because the reduced tree (an empty program) does not
trigger the bug anymore. As another example, the algorithm considers
transformations that replace the root node with one of its children.
Replacing the root node with the BlockStmt that represents the then-
branch yields a smaller tree that still triggers the bug. Therefore, the
algorithm applies this transformation and continues to further reduce
the remaining tree. Eventually, the algorithm reaches a tree that
represents only the statement var a = 5, which cannot be reduced
without destroying the property of interest.

The remainder of this section explains the GTR algorithm in detail.
At first, we present the tree transformations applied by the algorithm
(Sections 7.4.1 and 7.4.2). Then, we describe how GTR combines
different transformations into an effective tree reduction algorithm
(Section 7.4.3).

7.4.1 Tree Transformation Templates

The core ingredient of GTR are transformations that reduce the size
of a tree. We specify such transformations with templates:

Definition 7.4. A transformation template is a function T → P(T ) ∪
{DEL} that returns a set of candidate trees that are the result of transforming
a given input tree. In addition to candidate trees, the template may return
the special symbol DEL, which indicates that the tree should be removed
rather than modified.

In this chapter, we focus on two transformation templates, which
yield a tree reduction algorithm that is more effective than the best
existing algorithms.

deletion template The first template addresses situations where
an entire subtree of the input given to GTR is irrelevant for the prop-
erty of interest. In our running example (Figure 7.1), the subtree
rooted at the right-most BlockStmt node is such a subtree. To enable
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Algorithm 7.1 Substitute-by-child template

Input: a tree tree
Output: a set of candidates nodes

1: function sbc_template(tree)
2: candidates← ∅
3: for i ∈ [0, |tree.c|] do
4: c← tree.c[i].t
5: candidates← candidates∪ {c}
6: return candidates

GTR to remove such subtrees, the deletion template simply suggests
for each given tree to delete it by returning the special DEL symbol.

substitute-by-child template The second template addresses
situations where simply removing an entire subtree is undesirable
because the subtree contains nodes relevant for the property of in-
terest. We observe that a common pattern is that the root node of
a subtree is irrelevant but one of its children is important for the
property of interest. In the running example, the tree rooted at the
IfStmt matches this pattern, because the if statement is irrelevant, but
the nested variable declaration is crucial. To address this pattern, the
substitute-by-child template (Algorithm 7.1) returns each child of a
given tree’s root node as a candidate for replacing the given tree. The
template iterates over all children of the given tree and adds each of
them to the set of candidates. Applying this transformation template
to the IfStmt of the running example yields a set of three candidates,
namely the three subtrees rooted at nodes UnaryExpr, BlockStmt, and
BlockStmt.

Beyond these two templates, additional templates can be easily
integrated into GTR, enabling the approach to express different tree
reduction algorithms.

7.4.2 Corpus-Based Filtering

The templates defined above are completely language independent.
When applying these templates to a tree that ought to conform to
a specific input format, many of the candidates may be rejected by
the oracle simply because they violate the input format. For example,
when the deletion template suggests to remove the UnaryExpr from
the tree in Figure 7.1, the resulting tree corresponds to syntactically
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invalid JavaScript code because every if statement requires a con-
dition. Suggesting such invalid candidates does not influence the
effectiveness of our approach because the oracle rejects all invalid
candidates. However, a high number of invalid candidates negatively
influences the efficiency of the approach since invoking the oracle
often imposes a significant runtime cost.

To address the challenge of invalid candidates, we enhance the
approach with a language-specific filtering of candidates trees that re-
jects invalid trees before invoking the oracle. To preserve the language-
independence of GTR, the filtering is based on knowledge that gets
automatically inferred from a corpus of example inputs in the spe-
cific input format. For example, the approach learns from a set of
JavaScript programs that if-statements require a condition, and there-
fore, will filter any candidates that violate this requirement.

deletion template To specialize the deletion template to a
particular language, we need to know which edges are mandatory
for particular node types. The approach analyzes the code corpus
to find a set of mandatory edge labels for each node label. An edge
is considered mandatory, if it appears on all nodes with the label
across the whole corpus. Based on the mandatory edges, we modify
the deletion template so that a node only can be deleted if it is not a
mandatory child of its parent node.

For the running example, consider again the candidate that sug-
gests to remove from the IfStmt the UnaryExpr subtree. The corpus
analysis finds that the set of mandatory edges for an IfStmt is {test,
cons}. Based on this inferred knowledge, the algorithm will not at-
tempt to delete the UnaryExpr anymore, but discards this candidate
before needlessly passing the tree to the oracle.

substitute-by-child template To specialize the substitute-by-
child template, we gather information on the parent node labels and
incoming edge labels of nodes. Specifically, for each node label we
collect a set of pairs (p, e) where p is the label of the parent, and e is
the label of the incoming edge. This set of pairs is equivalent to all
distinct contexts of nodes with that label and we call it the allowed
contexts. We then replace line 5 of the substitute-by-child template
(Algorithm 7.1) with the following steps:

5: if context(tree) ∈ allowedContexts(tree.c[i].l) then
6: candidates← candidates∪ {c}
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Algorithm 7.2 Generalized tree reduction

Input: tree t, oracle o, set L of templates
Output: reduced tree

1: for i ∈ [0, depth(t)] do
2: for l ∈ L do
3: t← applyTemplate(t, i, o, l)

4: function applyTemplate(t, i, o, l)
5: levelNodes← level(t, i) . All nodes of level i
6: if l returns at most one transformation then
7: newNodes← apply DD to replace levelNodes using l
8: return tree where newNodes replace levelNodes
9: else

10: return reduceLevelNodes(t, levelNodes, o, l) . Alg. 7.3

The specialized variant of the template checks if the child that we
replace the node with can also appear in the same context as the
node. For example, the approach infers that there is one valid context
for a VarDecl node, namely (VarDecls, declarations). Since (BlockStat,
body) is not a valid context, the algorithm will immediately discard a
candidate that tries to substitute VarDecls with VarDecl.

Inferring from a corpus of examples how to specialize language-
independent transformation templates to an input format is optional
and automatic. It is automatic because for most input formats used
in practice, there are sufficiently many examples to learn from. An
alternative approach could be to use a formal grammar of the input
language to filter syntactically invalid trees. We rejected this idea
because (i) a grammar may not be available, e.g., for proprietary
formats, (ii) the checks performed by the specialized transformation
templates are more lightweight than parsing the entire input tree with
a grammar. Our evaluation measures the effectiveness and efficiency
of GTR with and without the corpus-based filtering of candidate trees
(Section 7.5.4).

7.4.3 GTR Algorithm

Based on the transformation templates described above, the GTR
algorithm reduces a given tree by applying transformations at each
level of the tree. Algorithm 7.2 summarizes the main steps. Starting
at the root node, the algorithm considers each level of the tree and
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applies all available transformation templates to each level using a
helper function applyTemplate (lines 1 to 3).

delta debugging-based search When applying a template to
the nodes at a particular level, the algorithm distinguishes between
templates that return at most one candidate transformation, such
as the deletion template, and other templates. In the first case, the
algorithm needs to decide for which nodes to apply the suggested
transformations. This problem can be reduced to delta debugging
(DD). The chunks needed as input for DD are the nodes of the level.
DD then tries to combine as many replacements as possible while
querying the oracle to check if a replacement preserves the property
of interest. For each node n for which the transformation template
returns a node n′, DD will try to replace n with n′. For each node
where the symbol DEL is returned, DD will try to delete n. After
deciding on the replacements, the result is a new list of nodes for the
current level. The helper function applyTemplate replaces the nodes
on the level with the new nodes and returns the resulting tree to the
main loop of the algorithm (lines 7 and 8).

backtracking-based search For templates that may return
more than one candidate, the algorithm must decide not only whether
to apply a candidate replacement but also which of the suggested can-
didate replacements to apply. This problem cannot be easily mapped
to DD because DD assumes to have exactly one option per chunk (typ-
ically, whether to delete it or not). Instead, we present a backtracking-
based algorithm that searches for a replacement of nodes on a partic-
ular level that reduces the overall tree. Similar to DD, the algorithm
is a greedy search.

Algorithm 7.3 summarizes the main steps of the backtracking-based
search for replacements of nodes on a particular level. The algorithm
is called at line 10 of the main GTR algorithm. The central idea is to try
different configurations that specify which replacements to use for each
node. The algorithm starts with a configuration that replaces each
node with itself (lines 1 to 3). Then, the algorithm iterates through
all nodes (line 6) and tries all configurations where the replacement
candidate is smaller than the currently chosen replacement. That
is, the algorithm avoids invoking the oracle for replacements that
are less effective than an already found replacement. If the oracle
confirms that replacing a node preserves the property of interest,
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Algorithm 7.3 Backtracking-based reduction of level nodes

Input: tree t, list of nodes on the same level, oracle o, template t
Output: reduced tree

. Maps each node to its current replacement:
1: conf ← empty map
2: for n ∈ nodes do
3: conf .put(n, n)
4: repeat
5: improvementFound← false
6: for n ∈ nodes do
7: currentRep← conf .get(n)
8: for n′ ∈ l(n) where size(n′) < size(currentRep) do
9: t′ ← t with each n replaced by n′

10: conf .put(n, n′)
11: if oracle(t′) then
12: improvementFound← true
13: currentRep← n′

14: else
15: conf .put(n, currentRep) . Backtrack
16: until ¬improvementFound
17: return t′

an improvement was found w.r.t. the current replacement (lines 12

and 13). Otherwise, the algorithm must revert the replacement and
backtracks to the previous configuration (line 15).

The algorithm repeats the search for a replacement of any of the
nodes on the current level until no further improvement is found.
The reason for repeatedly considering the list of nodes is that using
an effective replacement at a later node may enable using previously
impossible replacements at previous nodes, which have already been
tested in the current iteration. For example, consider the following
input, where the crash(b) call ensures the property of interest:

a = b = 0;

if (a)

crash(b);

During the first iteration of the main loop (lines 4 to 16), the algo-
rithm cannot reduce the assignments in the first line but reduces the
input by substituting the if-statement with the crash(b) call. Now,
during the second iteration, the algorithm again considers the assign-
ment statement and successfully reduces it to b = 0, which yields the
following reduced input:
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b = 0;

crash(b);

The search for a reduction of the nodes in the current level guar-
antees to find a local optimum, i.e., a configuration where using any
other replacement that yields a smaller subtree would not satisfy the
oracle. As the search is greedy, it may miss a configuration that yields
a smaller overall tree satisfying the oracle. Searching for a global
optimum would require to explore all possible configurations, which
is exponential in the number of candidates suggested.

example We illustrate GTR on the running example. Recall that
only line 2 of Figure 7.1 is relevant for reproducing the bug. The
algorithm starts on level 0, which contains only the IfStmt, and invokes
applyTemplate with the deletion template. Deletion returns at most
one transformation. Therefore, the algorithm applies DD to the node
on this level and tries to delete it with all its children. However, this
deletion would make the bug disappear and is discarded by the
oracle.

Next, applyTemplate is invoked with the substitute-by-child template.
Since this template may return multiple candidates, the algorithm
invokes the backtracking-based reduceLevelNodes function, i.e., Algo-
rithm 7.3. There is only one node to consider in line 6 of Algorithm 7.3,
and in line 8 three different candidates are tested. The first is the
UnaryExpr on the left side. This candidate has a size of 4. But, since
the important code piece is removed, line 15 reverts this change. The
next candidate is the BlockStatement in the middle. It has a size of
7. The oracle returns true for this transformation, so currentRep is
updated in line 13. The third candidate is the BlockStatement on the
right. Since it also has a size of 7, which is not smaller than the size
of currentRep, the candidate is not tested. Now that an improvement
was found, the main loop (lines 4 to 16) is repeated. As there is only
one node, nothing new will be tested. After having finished both
templates on level 0, GTR will advance to level 1 and continue in the
same manner.

7.4.4 GTR* Algorithm

The existing DD and HDD* algorithms guarantee 1-minimality and
1-tree-minimality, respectively. In essence, this property states that,
given a reduced input, there is no single reduction step that can
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Algorithm 7.4 GTR*

Input: tree t, oracle o, set L of templates
Output: 1-transformation-minimal tree

1: current← t
2: repeat
3: previous← current
4: current← GTR(previous, o,L)
5: until size(previous) = size(current)
6: return current

further reduce the input. We define a similar minimality property for
GTR:

Definition 7.5. A tree t is called 1-transformation-minimal w.r.t. an
oracle o and a set of templates L if o(t) = true∧ ∀n in t and ∀l ∈ L, there
is no candidate n′ in l(n) that, when replacing n with n′ yields a tree t′

with o(t′) = true∧ size(t′) < size(t).

In other words, for 1-transformation-minimal trees, all trees ob-
tained by single replacements of one node of the tree cause the oracle
to return false. The main difference to the existing 1-minimality and
1-tree-minimality properties is to consider arbitrary tree transforma-
tions.

The GTR algorithm does not guarantee to find a 1-transforma-
tion-minimal tree. The reason is that by optimizing a tree on one
level, a transformation on a higher level, which had been rejected by
the oracle before, can become possible. To guarantee 1-transforma-
tion-minimality, we present a variant of GTR, the GTR* algorithm
(Algorithm 7.4). GTR* repeats GTR until the tree does not change its
size anymore, which indicates that no transformation can be applied
thereafter.

7.4.5 Generalization of HDD and HDD*

GTR and GTR* generalize the existing HDD and HDD* algorithms,
respectively. To obtain HDD, we configure GTR to include only the
deletion template, without specializing the template to a particular
language. The resulting algorithm applies DD on every level of the
input tree by deleting a subset of the nodes on this level. This behavior
is exactly what HDD does, i.e., the reduced tree is the same as
returned by HDD. This generalization also applies to HDD*, where
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Format Inputs Bytes Lines Nodes

Min Med Max Min Med Max Min Med Max

Python 7 212 483 1,574 19 22 73 82 232 591

JS 41 32 515 21,806 1 28 458 19 223 5,529

PDF 371 2,901 22,966 1,167,807 – – – 155 258 4,324

XML 10 7,225 29,065 51,180 170 500 888 319 1,042 1,823

Table 7.1: Input files used for the evaluation.

we simply run GTR* with the variant of GTR that is equivalent to
HDD.

7.5 evaluation

We evaluate GTR by applying it to four input formats and usage
scenarios, including reducing fault-inducing inputs for debugging,
reducing malicious inputs for easier security analysis, and reducing
test inputs for more efficient testing. The evaluation compares GTR
and GTR* to the existing DD, HDD, and HDD* algorithms. We focus
on three research questions:

• RQ1: How effective is the approach in reducing trees?

• RQ2: How efficient is the approach?

• RQ3: What are the effects of specializing transformation tem-
plates to an input format?

7.5.1 Experimental Setup

7.5.1.1 Input Formats and Oracles

We consider four sets of inputs that comprise a total of 429 input files
that can be represented as a tree. Table 7.1 summarizes the inputs and
shows their size in terms of bytes, lines, and number of tree nodes.
For the binary PDF format we do not report lines.

failure-inducing python code We use GTR to reduce Python
files that cause the Python interpreter to crash. To obtain such files,
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we search the Python bug tracker for segmentation faults and stack
overflows reported along with code to reproduce it. Because these
files have been reported by users or developers, they are likely to have
been manually reduced, presenting a non-trivial challenge to any
input reduction algorithm. We use a Python parser [196] to represent
code as trees. The oracle to check whether a reduced Python file
preserves the property of interest is to execute the file and to check
the status code returned by the Python interpreter. Only checking the
status code bears the risk of misclassification, e.g., if the program is
altered to return that status code without triggering the bug. Given
the low number of inputs, we could exclude this possibility manually
for the given inputs. As a corpus to specialize the transformation
templates, we gather 900 files from popular (measured by number of
stars) GitHub projects.

inconsistency-exposing javascript code We also use GTR
to reduce JavaScript files that cause inconsistencies between browsers.
The files are generated by TreeFuzz [165], an existing fuzz testing
technique. We configure TreeFuzz to generate 3,000 files and keep
all files that trigger a browser inconsistency, which results in 41 files.
Since these files are automatically generated, they generally contain
parts that are not required to trigger a browser inconsistency, pro-
viding a good data set to complement the manually written Python
files. We use Esprima [191] to transform code to trees. As the oracle,
we compare the runtime behavior of a JavaScript file in Firefox 25

and Chrome 48, as described in [165]. This oracle compares read and
written values as well as error types and messages. The JavaScript
corpus for specializing transformation templates comprises around
140,000 files [164].

malicious pdf documents As a usage scenario beyond reduc-
ing inputs for debugging, we use GTR to reduce malicious PDF files
while preserving their maliciousness, which facilitates further secu-
rity analysis. We download malicious PDF files from the Contagio
malware dump [79]. PDF documents are binary data but have an
internal tree structure. Using the pdfminer [125] and iTextPDF [205]
libraries, we convert between PDFs and trees. We filter the PDFs to
keep only those that are classified as malicious according to PDF
Scrutinizer [89] and that are compatible with our tree conversion. Out
of the over 8,000 remaining files we chose a random subset of 371 files.
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As the oracle, we check whether PDF Scrutinizer classifies a file as
malicious. This oracle may accept a malformed PDF and classify it as
malicious. This behavior is desired, since PDF viewers try to display
even malformed PDFs and could thus still execute harmful code.
In contrast to the above formats, PDF trees have weaker constraints
over their nodes, and the malicious content, contained in embedded
objects, is typically not spread over the tree. The PDF corpus for
specializing templates are 16,000 files from the Contagio malware
dump, including both malicious and benign documents.

test suite of xml files As another usage scenario, we use GTR
for test suite reduction, i.e., reducing test cases while preserving the
code coverage. We download a corpus of more than 140,000 XML files
that adhere to the same XML document type definition (DTD) [192].
From the corpus, we select a random subset of 10 XML files and parse
them using the xmllint [206] XML validation tool. Subsequently, we
measure the coverage in xmllint using gcov [204]. As the oracle, the
coverage in xmllint using a reduced XML file must be at least the
original coverage. For XML there was no necessity to specialize the
templates because both valid and invalid XML files are accepted by
xmllint. Therefore, we omit the template specialization step.

7.5.1.2 State of the Art Approaches

We compare our approach to our own implementations of the existing
DD, HDD, and HDD* algorithms. The DD implementation works on
the line-level, i.e., each line of the input is a chunk considered by DD.
The HDD implementation uses the same tree representation of the
inputs as the GTR implementation.

7.5.2 Effectiveness

To evaluate the effectiveness in reducing test inputs, we apply GTR
and GTR* to the inputs in Table 7.1. To measure effectiveness, we
compute the remaining size relative to the original inputs, measured
both in terms of the file size and the tree size. Since DD does not
represent inputs as trees, we measure only the file size for DD-
reduced inputs.

Table 7.2 summarizes the results. The table shows for each approach
the remaining file sizes and nodes, along with the percentage of the
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DD HDD HDD* GTR GTR*

Failure-inducing Python code:

Remaining
file size

359

(74.3%)
437

(90.5%)
423

(87.6%)
301

(62.3%)
261

(54.0%)

Remaining
nodes

- 175

(75.4%)
166

(71.6%)
105

(45.3%)
100

(43.1%)

Oracle in-
vocations

125 809 1,089 205 492

Inconsistency-exposing JavaScript code:

Remaining
file size

84 (16.3%) 49 (9.5%) 49 (9.5%) 28 (5.4%) 28 (5.4%)

Remaining
nodes

- 20 (9.0%) 20 (9.0%) 8 (3.6%) 8 (3.6%)

Oracle in-
vocations

77 21 22 16 17

Malicious PDF documents:

Remaining
file size

17,225

(75.0%)
17,304

(75.3%)
17,304

(75.3%)
17,304

(75.3%)
17,304

(75.3%)

Remaining
nodes

- 114

(44.2%)
114

(44.2%)
114

(44.2%)
114

(44.2%)

Oracle in-
vocations

358 509 665 239 389

Test suite of XML files:

Remaining
file size

28,897

(99.4%)
1,259

(4.3%)
1,246

(4.3%)
1,271

(4.4%)
940 (3.2%)

Remaining
nodes

- 21 (2.0%) 20 (1.9%) 14 (1.3%) 14 (1.3%)

Oracle in-
vocations

1,746 92 107 100 114

Table 7.2: Effectiveness and efficiency of reduction by GTR and GTR* com-
pared to baseline approaches. For each measure, the best approach
is highlighted . We report the median values over all files of a
data set.



7.5 evaluation 183

HDD
HDD*

GTR
GTR*

HDD
HDD*

GTR
GTR*

HDD
HDD*

GTR
GTR*

HDD
HDD*

GTR
GTR*

0

100

200

300

Python

JavaScript PDF XML

Algorithms

R
em

ai
ni

ng
no

de
s

Figure 7.3: Effectiveness of reduction measured in terms of the number of
the remaining tree nodes. The boxes indicate the median and
the first and third quartiles. The whiskers include up to 1.5
inter-quartile-ranges above and below the box.

original size. Each value is the median over all inputs we consider.
The best approach for a particular measure and input format is
highlighted. Overall, GTR* consistently yields the smallest remaining
trees (closely followed by GTR), with 43.1%, 3.6%, 44.2%, and 1.3%
of the original size for Python, JavaScript, PDFs, and XML files,
respectively.

To better understand the variations in effectiveness across different
inputs of a format, Figure 7.3 shows the distribution of remaining
tree sizes. The figure shows that, even though the effectiveness varies
across inputs, GTR and GTR* outperform the other approaches for
most inputs.

We further discuss our results for the different formats:

• Python. For the Python data set, GTR* produces the smallest
trees and GTR the second smallest. The relative reduction is not
as high as for other formats. The reason is that these inputs have
been reduced manually before reporting them to the Python de-
velopers, which leaves little room for any subsequently applied
tree reduction algorithm.

• JavaScript. For the JavaScript data set, we observe larger reduc-
tions by all algorithms, sometimes removing more than 99% of
the file. The main reason is that these files are generated by a
fuzz tester and have not been processed by a human. GTR and
GTR* consistently outperform all other algorithms.
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• PDF. For the PDF data set, all tree-based algorithms are equally
efficient, leaving only 44.2% of the nodes in a tree, on average.
The reduced file size is about 75%, i.e., larger than the reduced
tree size. The reason is that a few nodes in the tree representa-
tion of a PDF are large objects, such as images or embedded
code, and that these large objects often contain the malicious
content. Surprisingly, DD actually achieves marginally better
file size reductions compared to the other algorithms. However,
after examining these files manually, we noticed they were not
valid PDF files anymore, even though PDF Scrutinizer still flags
them as malicious. These syntactically invalid files would likely
not help a security analyst that much. In contrast, removing
more than half of a PDF’s nodes is a vast improvement for a
security analyst who manually inspects the file’s content.

• XML. For the XML test suite, GTR and GTR* achieve the best
reductions, sometimes removing up to 98% of the trees. DD is
only able to reduce the XML files minimally. Our hypothesis
is that when DD removes random lines, a malformed XML file
result, which trigger only the error handling code of xmllint.

In summary, GTR and GTR* are more or as effective as the best
existing input reduction approach with respect to the remaining
tree size. Using GTR, the median percentage of nodes after
reduction for four different input formats is 45.3%, 3.6%, 44.2%,
and 1.3%, respectively.

7.5.3 Efficiency

We evaluate the efficiency of our approach by measuring the number
of oracle invocations required to reduce a tree. Using this metric
instead of, e.g., wall clock time, is motivated by two reasons. First,
invoking the oracle typically is the most important operation dur-
ing automated input reduction, because it often involves running
a complex piece of software, such as a compiler or interpreter, on
non-trivial inputs, such as large programs. Second, wall clock time
is highly dependent on the implementation of the tree reduction
and the oracle. To check that the number of oracle invocation is a
meaningful measure, we compare the time spent in the oracle with
the time in other parts of the algorithm for the JavaScript data set. For
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Figure 7.4: Number of oracle invocations. Note the logarithmic scale. The
boxes indicate the median and the first and third quartiles. The
whiskers include up to 1.5 inter-quartile-ranges above and below
the box.

each algorithm, the oracle invocation time dominates and comprises
more than 98% of the total execution time, on average.

Table 7.2 shows the median number of oracle invocations required
by the different approaches to reduce a single file. Figure 7.4 illustrates
the distributions of this number for each input format. For three of
the four formats, GTR and GTR* require fewer oracle invocations, i.e.,
are more efficient, than their counterparts HDD and HDD*. The GTR*
and HDD* algorithms both need more invocations than their *-less
counterparts, which is unsurprising because they run the algorithm,
including oracle invocations, multiple times.

We next discuss the results for the different formats:

• Python. GTR needs 64% more invocations than DD but HDD
needs 295% more invocations than GTR.

• JavaScript. GTR is the most efficient approach. HDD needs 31%
more invocations, and DD 381% more invocations.

• PDF. GTR is the most efficient approach. HDD needs 113%
more invocations, and DD 150% more invocations.

• XML. HDD is the most efficient approach. GTR needs 9% more
invocations, and DD 1898% more invocations.
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The large difference in the results for DD can be explained by the
size of the input files. Since the Python files are relatively small and
cannot be reduced as much as the relatively large JavaScript files, DD
reduces them quickly. In contrast, the structure-unaware search of
DD takes significantly more oracle invocations for larger files.

To summarize, GTR is either more efficient or only slightly less
efficient than the best existing approach.

7.5.4 Benefits of Corpus-Based Filtering

Our approach specializes language-independent transformation tem-
plates to a specific input language by learning filtering rules from a
corpus of examples of inputs. To evaluate how the corpus-based fil-
tering influences the effectiveness and efficiency of GTR, we compare
the approach with a variant of GTR that does not filter any candidate
transformations. For both variants, we perform the same experiments
as described in Sections 7.5.2 and 7.5.3, except for the XML format,
where we do not use any corpus.

We find that the GTR variant without filtering of candidates achieves
the same effectiveness for JavaScript and PDF and slightly higher
reductions (5%) for Python. The reason is that the corpus does not
mirror all facets of the target languages, which may cause the filtering
to overly constrain the transformations. For example, if the corpus
would not contain any if-statement without an else-branch, then GTR
would not consider removing the else-branch. Fortunately, the results
show that such overly constrained filtering is very unlikely.

The GTR variant without filtering needs significantly more oracle
invocations. For the Python data set, the variant needs 423 invocations
(median), whereas the full GTR approach needs only 205 invocations.
For the JavaScript data set, the results are 30 and 16 invocations
without and with filtering, and for the PDF data set 611 and 239

invocations, respectively.
Finally, we measure how long extracting language-specific informa-

tion from the corpus takes. In total, extracting this knowledge takes
around 21 minutes, 19 seconds, and 15 seconds for the JavaScript,
Python and PDF data sets, respectively.
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In summary, comparing GTR with and without specialization
transformations shows that both variants are roughly equally
effective and that the specialization significantly improves the
efficiency of the algorithm.

7.6 conclusion

In this chapter, we present GTR, a novel algorithm to reduce tree-
structured test inputs in a generalized and language-independent way.
Our algorithm applies tree transformations hierarchically to reduce
a given test input. The algorithm combines Delta Debugging and a
greedy backtracking-based search to choose which transformations
to apply. To specialize generic tree transformation templates to a
particular input format, GTR automatically infers language-specific
filters from a corpus of examples. We compare our approach with
three existing algorithms, DD, HDD, and HDD*, on 429 test inputs.
In three of four experiments, GTR outperforms other algorithms
in reduction effectiveness. At the same time, GTR is either only
slightly less or even more efficient than the best existing approach.
We envision GTR to be applied to various problems that benefit from
reduced inputs, e.g., to reduce bug-triggering inputs provided by
users or fuzz testing techniques, to reduce test suites for more efficient
test execution, or to reduce potentially malicious code or documents
before a manual security analysis.
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This parts provides the most closely related work, the
conclusions and the possible future research directions.





8
R E L AT E D W O R K

The current chapter presents the most closely related work to this
dissertation. We first provide some of the corpus-based analysis ap-
proaches (Section 8.1) that are related to this dissertation. The second
part (Section 8.2) contains the related work that uses learning as
the core approach to solve software engineering problems. In the
remaining parts of this chapter, we list the related work on test syn-
thesis (Section 8.3), usage of natural language in software engineering
(Section 8.4), bug seeding (Section 8.5) and work that minimizes test
inputs (Section 8.7).

8.1 corpus-based analysis of source code

The fundamental theme of this dissertation is corpus-based analyses
to solve software engineering problems. There is a large body of
related work that uses corpus-based analyses, e.g., to find anomalies
that correspond to bugs [65], for code completion [45], to recommend
API usages [56], for plagiarism detection [18, 30], and to find copy-
paste bugs [29]. Broadly, the corpus-based analysis can be divided into
non-learning and learning-based approaches. This section provides
the related work that does not use learning as the core approach
to tackle the target problems mentioned above. The learning-based
related work is mentioned in Section 8.2.

static analysis Lint-like checkers such ESLint [268], JSHint [59],
JSLint [62], Pyre [269], flake8 [270] are popular tools for JavaScript and
Python that search for bad coding practices through lightweight static
analysis. Other static analysis approaches extract call graphs [94] for
IDE support. Some of the above approaches, e.g., ESLint warn about
excessive use of global variables within a single file, but they do not

191
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analyze conflicts across files or libraries in comparison to ConflictJS
(Chapter 5). The static analysis based approaches mentioned above
also do not reason about names and report warning about such
inconsistencies that we present in NL2Type (Chapter 4) and Nalin
(Chapter 6).

Some work related to ConflictJS statically analyzes library clients
to understand types and other properties of a library [99], and search
for code injection vulnerabilities [231]. Our work synthesizes library
clients instead of analyzing existing clients. Our work differs from the
above by analyzing multiple libraries and their potential interactions,
instead of a single library.

dynamic analysis A survey by Andreasen et al. [178] summa-
rizes the dynamic analyses for JavaScript. Existing analyses include
determinacy analysis [107], dynamic data race detectors [87, 106, 115,
139], dynamic model checkers [134], profilers to detect performance
problems [131, 135, 199], taint and information-flow analyses [46, 57,
114], analyses to understand code changes [126], the root cause of a
crash [163], find violations of common coding rules [132], type incon-
sistencies [142], check if a library implementation matches its interface
specification [112] and to understand asynchronous behavior [146].
Similarly, for Python, Xu et al. [172] find bugs using program traces.
All these techniques are orthogonal to ConflictJS (Chapter 5), which
is the first to focuses on library conflicts and in contrast to Nalin
(Chapter 6) which uses learning to find name-value inconsistencies.

mining code patterns Osman, Lungu, and Nierstrasz [123]
describe an empirical study of frequent bug fixing code changes.
Negara et al. [122] identify repetitive code changes from fine-grained
sequences of code changes recorded in an IDE. Hanam, Brito, and
Mesbah [155] extract recurring bug patterns for JavaScript. In contrast,
SemSeed (Chapter 3) mines only concrete changes that correspond
to a bug fix rather than any change made by a developer. Nguyen
et al. [242] mine semantic change patterns by converting the correct
and buggy files to program dependence graphs. Instead of a graph,
in SemSeed, we leverage embeddings of tokens as the semantic
representation and extract changes as a sequence of tokens. Kim et al.
[96] manually inspect human-written patches to infer common fix
patterns. SemSeed addresses the inverse problem of seeding bugs,
instead of fixing them.
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Code clone detection [13, 29, 34, 42, 168] relates to the semantic
matching part of SemSeed (Section 3.3.2.3). These approaches find
matching code pieces via string-based, parse tree-based, or token-
based comparisons. Our semantic matching relates to the token-based
techniques, but differs by using token embeddings to find a match.

type checking and type inference Several approaches ad-
dress the lack of type annotations in dynamically typed languages by
either inferring [49, 53, 69, 98] or checking types through static [27,
53, 60, 75], dynamic [142], or hybrid [82] analysis, which can help
detecting otherwise missed bugs [186]. Hackett and Guo [82] use type
inference in a JIT compiler to type-specialize the emitted machine
code. TypeDevil [142] observes types at runtime and reports type
inconsistencies as potential bugs. Because none of these approaches
can guarantee to infer correct types for all values, lots of real-world
JavaScript code still lacks type information. Our work in NL2Type
(Chapter 4) addresses the problem by analyzing natural language
elements instead of code. Similarly, in contrast to ConflictJS (Chap-
ter 5), none of the approaches have been applied to multiple libraries.
Another difference is that most type checkers focus on soundness
and therefore suffer from false positives, whereas ConflictJS validates
potential conflicts.

analysis of libraries There exists many related work that an-
alyze libraries and report interesting results such as the prevalence
of JavaScript libraries, the presence of conflicts in libraries of other
languages. Nikiforakis et al. [85] report that 88% of the websites
include at least one remote library, and that libraries are loaded from
over 300.000 unique URLs. Another study [193] shows that a web
site includes a median of 9 and a maximum of 202 externally hosted
scripts. These numbers illustrate the risk of accidental conflicts be-
tween libraries and need for approaches like ConflictJS (Chapter 5).
Other studies investigate recurring performance bottlenecks [169],
dynamic code loading [66, 80], insecure coding practices [55, 109],
type coercions [143], type-related errors [185], the use of trivial soft-
ware packages [175], the root causes of failures [105], and the use
of callbacks [130]. Beyond JavaScript, Eshkevari et al. [111] report
conflict-like problems in PHP applications and Pollux [160] deter-
mines the effects of upgrading a library.
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grammar inference The problem of inferring a grammar has
been studied for decades, as summarized in this book [61]. Existing
approaches either infer grammars from examples, both examples
included and not included in the language, and from an oracle that
answers membership queries. More recent work infers and samples
grammars to create new input data for fuzz testing [158, 180]. Bastani
et al.[180] propose an approach that requires a set of input examples
and blackbox access to the program. Instead, Höschele and Zeller
[158] use dynamic taint analysis of the program under test. Both
approaches infer a context-free grammar that approximates the struc-
ture of valid inputs. TreeFuzz (Chapter 2) shares the idea to infer
a model of input data to create new data for testing. In contrast to
the existing approaches, our work infers probabilistic models that ex-
press properties beyond the expressiveness of context-free grammars,
e.g., ancestor constraints (Section 2.3.2.5) and identical subtree rules
(Section 2.3.2.6).

Our corpus-based filtering in GTR (Chapter 7) relates to work on in-
ferring grammars [41, 158, 180] and probabilistic models of structured
program inputs in TreeFuzz. As an alternative to inferring language
constraints from a corpus, GTR could reuse inferred grammars and
models to prune candidate trees.

8.2 learning approaches on source code

Hindle et al. [83] show that code is “natural” and therefore amenable
to statistical language modeling. As a result, several statistical lan-
guage models for programs have been proposed, e.g., based on n-
grams [91, 104, 110], graphs [140, 144] and recurrent neural net-
works [124]. These models are useful for code completion [83, 91, 104,
124, 140, 149, 167, 221, 233, 249, 258], plagiarism detection [116], to de-
obfuscate code [210], and to infer appropriate identifier names [110,
144]. Other work model code changes and then makes predictions
about them [250, 255], or trains models for program repair [189, 252],
code search [216, 229] and apply bug fixes [245]. The current dis-
sertation contributes to such recent stream of research that applies
statistical modeling and machine learning to programs.

embeddings of code Embeddings of code are one important
topic, e.g., using ASTs and AST paths [208, 210, 247], from program
executions [202], control-flow graphs [215, 266], graph representation
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of code [203], or a combination of token sequences and a graph rep-
resentation of code [254]. Our encoder of variable names in NL2Type
(Chapter 4), Nalin (Chapter 6) and SemSeed (Chapter 3) could ben-
efit from being combined with an encoding of the code or natural
language constructs surrounding the point of interest using those
ideas.

code generation PHOG [149] and Deep3 [167] learn a model
to predict how to complete existing data, e.g., for code completion.
They pick the model depending on the context of the prediction and
automatically synthesize a function that extracts this context. For
performance reasons, PHOG and Deep3 limit the search space of
the synthesis, e.g., by not synthesizing functions with loops. As a
result, these approaches cannot express some of the model extractors
supported by TreeFuzz (Chapter 2), such as ancestor constraints (Sec-
tion 2.3.2.5) and identical subtree rules (Section 2.3.2.6). Dnn4C, also
used for code completion, is a neural model of code that learns not
only from tokens, but also from syntactic and type information [221].
Other work uses source code models to predict parts of code [176].
TreeFuzz differs from all the above approaches by sampling proba-
bilistic models for fuzz testing, i.e., by creating new data from scratch
instead of predicting how to complete existing data. Furthermore, we
introduce the idea to combine multiple statistical models into a single
framework that can be easily extended with additional model extrac-
tors. Maddison and Tarlow propose a machine learning technique
to generate “natural” source code [121]. TreeFuzz differs from their
work by evaluating the usefulness of generated programs and by
showing that our approach applies to tree data other than programs.

detect defects in code Work by Godefroid et al. [187] pro-
poses neural network-based learning of a statistical language model
and how to sample such a model for fuzz testing. After learning a
model from examples, their approach occasionally breaks out of the
learned structure by choosing the least likely completion of partial
data instead of the most likely. The goal of such surprising data is
to stress-test the parsing component of the program under tests. In
contrast, TreeFuzz (Chapter 2) aims at creating syntactically correct
data that gets past the parser and tests subsequent components of
the program under test. DeepBugs introduced learning-based and
name-based bug detection [226], Wang, Liu, and Tan [171] for defect
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prediction, Li et al. [219] to detect vulnerabilities, Gupta et al. [189] to
detect and fix syntactic programming mistakes. In contrast to these
approaches, TreeFuzz do not focus only on specific types of defect
patterns and in comparison to Nalin (Chapter 6) by being purely
static.

Type inference is useful for dynamically typed languages to detect
otherwise missed bugs. Besides NL2Type (Chapter 4), we are aware
of two other probabilistic type inference approaches for JavaScript: JS-
Nice [144] and DeepTyper [218]. Section 4.4.4 discusses and compares
with both approaches, showing that NL2Type outperforms both of
them.

Neural attribute machines [177] are another neural network-based
technique to learn and sample a probabilistic language model. Given
an attribute grammar, which expresses rich structural constraints
of the language, the neural network learns to respect these con-
straints. Similar to TreeFuzz, their work addresses the problem of
enforcing language properties that go beyond the expressiveness of
context-free grammars. In contrast to their work, we do not require
an attribute grammar for each language, but instead infer constraints
using language-independent model extractors.

learning from executions Despite the recent surge of work
on learning on code, learning on data gathered during executions is
a relatively unexplored area. One of the few existing techniques is a
model that embeds student programs based on dynamically observed
input-output relations [141]. Wang et al.’s “blended” code embedding
learning [265] combines runtime traces, which include values of
multiple variables, and static code elements to learn a distributed
vector representation of code. Beyond code embedding, BlankIt [261]
uses a decision tree model trained on runtime data to predict the
library functions that a code location may use. In contrast to these
papers, Nalin (Chapter 6) addresses a different problem and feeds
one value at a time into the model.

8.3 test synthesis

Fuzz testing has been used to test UNIX utilities [8], compilers [1–3,
10, 12, 81], runtime engines [39, 84, 137], refactoring engines [33],
other kinds of applications [40], specific language features [23], and
to find and exploit security vulnerabilities [25, 50, 68, 97]. Blackbox
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fuzz testing either starts from existing data or generates new data
based on a model that describes the required data format. For com-
plex input formats, the model-based approach has the advantage
that it avoids producing input data that is immediately rejected by
the program. However, several authors mention the difficulties of
creating an appropriate model for a particular target language [25,
81, 84], e.g., saying that “HTML is a good example of a complex file
format for which it would be difficult to create a generator” [25]. Tree-
Fuzz (Chapter 2) addresses this problem by inferring probabilistic,
generative models of the data format.

Whitebox fuzz testing analyzes the program under test to generate
inputs that cover not yet tested paths, e.g., using symbolic execu-
tion [40, 54], concolic execution [20, 26], or taint analysis [50]. In
contrast, TreeFuzz is independent of a particular program under test
and therefore trivially scales to complex programs. In particular for
compiler testing, a recent survey by Chen et al. [251], and older sur-
veys by Boujarwah and Saleh [11] and Kossatchev and Posypkin [22],
the empirical comparison by Chen et al. [150] of different compiler
testing approaches provide in detail the available related work to
TreeFuzz.

On a related note, the test synthesis part of ConflictJS (Chapter 5)
relates to generating test cases, such as feedback-directed, random
test generation [35], symbolic and concolic execution [20, 26, 38], and
search-based testing [74]. JSeft [138] exploits fixtures extracted from
executions to create tests. These techniques could help the second
phase of ConflictJS to further increase the percentage of validated
behavior conflicts.

8.4 exploiting natural language for software engi-
neering

As we explain in Chapter 6, identifier names are a means to convey
the (intended) semantics of code. Because using meaningful identifier
names is crucial for the understandability and maintainability of
code, developers strive for names that express the value or behavior
a name is bound to. The importance of meaningful names during
programming has been studied and established [28, 58]. There are
several techniques for finding poorly named program elements, e.g.,
based on pre-defined rules [43], by comparing method names against
method bodies [51], and through a type inference-like analysis of
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names and their occurrences [64]. To improve identifier names, rule-
based expansion [78], n-gram models of code [110], and learning-
based techniques that compare method bodies and method names
have been proposed [239, 260]. In contrast to Nalin (Chapter 6), most
of the above focuses on method names, whereas we target variables.
Moreover, none of the existing work exploits dynamically observed
values.

The perhaps most popular kind of name-based analysis is proba-
bilistic type inference [173], often using deep neural network mod-
els [218, 248, 263, 267] that reason about the to-be-typed code. Re-
fiNum uses names to identify conceptual types, which further refine
the usual programming language types [214]. All of the above work is
based on the observation that the implicit information embedded in
identifiers is useful for program analyses. Nalin is the first to exploit
this observation to find name-value inconsistencies.

predicting names When names are completely missing, e.g., in
minified, compiled, or obfuscated code, learned models can predict
them [144, 201, 211, 237]. Another line of work predicts method names
given the body of a method [127, 148, 210], which beyond being
potentially useful for developers serves as a pseudo-task to force
a model to summarize code in a semantics-preserving way. Finally,
DeepBugs uses natural language information in code, in particular
identifier names, to detect code that is likely to be incorrect [226].
Nalin differs by considering values observed at runtime, and not only
static source code, and by checking names for inconsistencies with
the values they refer to, instead of predicting names from scratch.

natural language vs . code Beyond natural language in the
form of identifiers, comments and documentation associated with
code are another valuable source of information. Prior work on analyz-
ing comments focuses on finding inconsistencies between comments
and code [36, 51, 90], on inferring executable specifications for a
method [212], on identifying comments that have textual references
to identifier names [197], on finding semantically similar verbs that
occur in method names and method-level comments [95], and on
finding redundant comments [220]. Nalin differs by focusing on vari-
able names instead of comments, by comparing the natural language
artifact against runtime values instead of static code, and by using a
learning-based approach and to the best of our knowledge, NL2Type
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(Chapter 4) is the first to predict types from comments. Another line
of work uses natural language documentation to infer specifications
of code [86, 153, 241], which is complementary to NL2Type and Nalin.

Code search allows developers to find code snippets through natu-
ral language queries [154, 174, 216, 229]. Similar to NL2Type, these
approaches use embeddings of natural language words. Huo, Li, and
Zhou [159] propose a neural network that predicts which file is buggy
from a natural language bug report. Other approaches predict natural
language information from source code, e.g., by predicting function
name-like summaries for code snippets [148], or by de-obfuscating
minified JavaScript code [144, 201, 211]. In contrast, NL2Type uses the
available identifier names, along with comments, to make predictions.

8.5 bug seeding

One approach to bug seeding is to apply mutations, e.g., based on a
predefined set of transformation patterns [63, 117]. Brown et al. [183]
propose to infer such patterns from code changes and Tufano et al.
[246] uses a learning approach. In contrast to these approaches, Sem-
Seed decides where to apply a bug seeding pattern and how to adapt
it to the local code context based on semantic similarities of code ele-
ments. Tufano et al. [244] describe a neural machine translation-based
approach to learn and apply mutations. Their approach requires
hundreds of thousands of bug-fixing commits to be trained properly.
In contrast, SemSeed learns from few examples and in the extreme
case, one can use a single example bug to seed similar bugs at vari-
ous target locations. An important difference between SemSeed and
both [183] and [246] is that our approach handles unbound tokens,
seeding bugs even if this requires an application-specific identifier or
literal.

Tailored mutation operators [103, 117, 147, 184, 194], e.g., insert
code fragments that occur elsewhere in a project. In contrast to such
approaches, the mutations applied by us are based on previously
seen bug fixing patterns and not project-specific as in [147] or hard
coded as in [103, 117].

A related work called IBIR by Khanfir et al. [257] also learns from
past bugs how to seed new bugs. It uses natural language in a bug
report to decide where to seed a bug, whereas SemSeed focuses
on the tokens (including natural language identifiers) in the code.
IBIR neither adapts bugs to a target location and nor addresses the
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unbound token problem, which we show to be crucial for the majority
of bug patterns. Motivated by the abundance of fuzz testing tools [40,
170, 225, 235], automatically seeded bugs have been proposed for
evaluating fuzz testing [151, 227]. These seeded bugs aim at being non-
trivial to trigger in an execution, but are easy to detect on the source
code level, e.g., because the seeded bug relies on magic numbers.

8.6 bug benchmarks

Several bug benchmarks have been proposed, including SIR [19], De-
fects4J [118], BugSwarm [243] Bugbench [24], BegBunch [47], iBugs [32],
ManyBugs [136], Codeflaws [200], DbgBench [181]. SemSeed comple-
ments such manually curated bug datasets by automatically seeding
bugs into a target program.

8.7 minimizing test inputs

Delta debugging (DD) [16] sets the foundations to automate the
process of minimizing test inputs. In contrast to GTR presented in
Chapter 7, it cannot handle large structured inputs effectively. A par-
allelization of DD has also been explored [157], which is orthogonal
to our contributions. The hierarchical variant HDD [31] applies DD
on hierarchical documents. However, HDD fails to restructure trees
in a way that allows obtaining significantly smaller results, and also
is less efficient than GTR. An improved HDD variant proposed later
uses a different kind of grammars [156]. This targets the conversion
of code documents to trees and is complementary to our findings.

C-Reduce [88] is a variant of DD that applies domain-specific
transformations to reduce C code. These transformations include
changing identifiers and constants, removing pairs of parentheses or
curly braces, or inlining functions. One big advantage of C-Reduce
is to never produce any input with non-deterministic or undefined
behavior. There are two big differences in comparison to GTR. First,
the transformations are source-to-source and not tree-to-tree. Second,
C-Reduce loses generality by applying domain-specific changes to
the document. However, many of the transformation included by
C-Reduce can be expressed in a more general way and are included
in our approach. For example, “removing an operator and one of its
operands (e.g., changing a+b into a or b)” is equivalent to replacing
the operator node with one of its children in the tree.
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When the input to a program is not as complex as a code document
itself, more efficient techniques can be employed. One possibility is
to minimize the path constraints of the input that led to a particular
failure [37]. However, the set of path constraints grows exponentially
for more complex inputs, rendering this approach unfeasible for code
inputs.

Another interesting approach taints parts of each input to identify
the parts relevant to a failure [48]. The default setting taints each byte
independently, making it possible to also account for complex inputs.
At the same time, this disregards the structure of the document,
similar to DD, and thus becomes overly expensive. Another setting
tracks inputs on a per-entity basis, which is insufficient for test input
reduction.

Various techniques aim at localizing a fault in the buggy program
itself, instead of the input. Zeller applied DD also to the program
with this goal [15]. There are various other approaches for fault
localization [9, 17, 52].

Program slicing reduces a program while maintaining its behavior
with respect to a particular variable [5]. Ideally, the smaller slice
contains the bug and eases its localization. Dynamic slicing [7] focuses
on the subset of the program that give a variable its value with
the current input. Just slicing the variables that appear in the line
causing the bug (if known) does not guarantee to obtain a program
that produces the same buggy behavior, though. The combination
of DD with dynamic forward and backward slicing has also been
explored previously [21]. Another approach is to record traces to find
shorter program executions with the observed buggy behavior [70,
77, 133], which ultimately also reveals likely locations for the bug.
Fault localization and test input reduction have different goals. In a
first step, a tester confronted with a failure needs a small (and fast
running) input to reproduce the failure. In a second step, the bug
must be located in the program and fixed. Finally, the small input can
be turned into a regression test. Thus, both techniques complement
each other.

Test input reduction is particularly important for automatically
generated test inputs for example the JavaScript programs generated
by TreeFuzz (Chapter 2). There are multiple approaches for such
approaches also known as fuzz testing that we present in Section 8.3.
These formats can be represented as a tree and may benefit from
reduction via GTR.





9
C O N C L U S I O N S

The current dissertation presents six approaches, all of which use
corpus-based analyses to either complement or improve state-of-the-
art approaches to bug finding or input reduction. In the following,
we provide a summary of the primary contributions of the thesis and
provide some insights into possible future research directions.

9.1 contributions

Broadly, our contributions can be divided into three parts. First, we
analyze source code examples to either train statistical models or ex-
tract code idioms. While the trained models are useful for generating
new valid source code examples or for finding inconsistencies in code,
the extracted code idioms are useful for mutating existing code to
generate new realistic code. Second, we use runtime information by
executing code corpora to either find bugs or train neural classifiers
that can effectively predict inconsistencies between identifier names
and the corresponding assigned values. Finally, we use corpus-based
analysis to guide our input reduction approach that aid in debugging.
We find our approach to be effective in reducing source code as well
as other input formats that can be represented as a tree structure.

9.2 future research directions

We envision the following potential research directions based on our
thesis. In particular, we believe corpus-based reasoning can provide
useful training data for machine learning-based models. The follow-
ing highlights some of the most promising research directions that
we believe to be natural extension to our thesis:

203
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generation of realistic examples : A large body of research
is focused on the applications of machine learning in solving software
engineering problems [208]. This has been primarily driven by the
availability of large corpora of code. For machine learning models
that primarily deal with the classification of correct to incorrect code,
the available code is used as correct or positive examples during train-
ing. The negative or incorrect examples are in most cases generated
using some ad-hoc heuristics. We believe to make the trained models
more effective, it is necessary to invest more research efforts into gen-
erating realistic code examples. Although in Chapter 3, we present
one such approach and find that it improves upon a popular baseline,
we believe there is ample room for improvement. For example, the
current approach in SemSeed mutates code location first based on
an abstracted token-based similarity. As a future work, a more gen-
eralized approach can be adopted that reasons about similarity not
simply based on token level but possibly on code fragments.

hybrid analysis for generating training data : In this
dissertation, we only use either data obtained from static or dynamic
analysis of the code corpora. We believe training using a dataset
obtained by the combination of both type of analysis is a promising
research direction worth pursuing.

meta-learning on code : Machine learning approaches are
primarily data driven. As a result, most of the machine learning
approaches on source code have been developed for popular pro-
gramming languages such as Java, JavaScript (Chapter 2, Chapter 4),
Python (Chapter 6). This can limit the ability of machine learning
approaches to generalize for other programming languages. A future
research direction worth pursuing is the application of meta-learning
approaches for source code. For example, a model is trained using
samples obtained from one programming language and is used for
another.

explainable artificial intelligence : The works presented
in this dissertation, such as Nalin (Chapter 6) to classify a name-value
pair as buggy or NL2Type (Chapter 4) to predict types, are considered
as black boxes i.e., it is not possible to properly explain why any of
these models take a particular decision. With the adoption of machine
learning approaches for wide range of software engineering tasks
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such as bug finding, code completion, program repair, it is needless
to say that future research efforts are required to explain the decision
mechanisms of the models involved. With explainability, developers
will be more confident about the models and will boost adoption.
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