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Abstract—Reducing the test input given to a program while
preserving some property of interest is important, e.g., to localize
faults or to reduce test suites. The well-known delta debugging
algorithm and its derivatives automate this task by repeatedly
reducing a given input. Unfortunately, these approaches are
limited to blindly removing parts of the input and cannot
reduce the input by restructuring it. This paper presents the
Generalized Tree Reduction (GTR) algorithm, an effective and
efficient technique to reduce arbitrary test inputs that can be
represented as a tree, such as program code, PDF files, and
XML documents. The algorithm combines tree transformations
with delta debugging and a greedy backtracking algorithm. To
reduce the size of the considered search space, the approach
automatically specializes the tree transformations applied by the
algorithm based on examples of input trees. We evaluate GTR by
reducing Python files that cause interpreter crashes, JavaScript
files that cause browser inconsistencies, PDF documents with
malicious content, and XML files used to tests an XML val-
idator. The GTR algorithm reduces the trees of these files to
45.3%, 3.6%, 44.2%, and 1.3% of the original size, respectively,
outperforming both delta debugging and another state-of-the-art
algorithm.

I. INTRODUCTION

Developers often have a test input that triggers behavior

of interest, such as inducing a failure in a buggy program or

covering particular parts of a program under test. However,

the input may be larger than needed to preserve the property

of interest. For example, consider a program that crashes the

compiler or interpreter when given as an input. The larger this

input program is, the more difficult it is to localize the fault,

making the debugging process unnecessarily cumbersome [1].

To ease the task of dealing with such overly complex

test inputs, several automated techniques have been proposed.

Given a test input and an oracle that determines whether a

reduced version of the input still preserves the property of

interest, these techniques automatically reduce the input. With

a reduced test input, the developer is likely to find the root

cause of the bug faster and may even turn the reduced test

input into a regression test case after the bug has been fixed.

Similar, reducing test inputs while preserving some testing

goal, such as coverage, can help to reduce a test suite.

Existing techniques for reducing inputs roughly fall into

two categories. On the one hand, delta debugging [2] and its

derivatives [3] reduce inputs in a language-independent way

by repeatedly removing parts of the input until no further

This work has been supported by the DFG within ConcSys, and by the
BMBF and the HMWK within CRISP.

reduction is possible. While being simple and elegant, these

approaches disregard the language of the input and therefore

miss opportunities for input reduction. In particular, these tech-

niques cannot restructure inputs, which often enables further

reductions. As an example, consider the following JavaScript

code and suppose that it triggers a bug, e.g., by crashing the

underlying JavaScript engine.

1 for (var i = 0; i < 10; i++) {

2 if (cond1 || cond2) {

3 partOfBug();

4 }

5 if (cond3) {

6 otherPartOfBug();

7 }

8 }

Further suppose that the two function calls are sufficient to

trigger the bug. That is, the following code is sufficient as a

test input to enable a developer to reproduce and localize the

bug:

1 partOfBug();

2 otherPartOfBug();

Unfortunately, existing language-independent techniques are

challenged by this example. The original delta debugging

algorithm blindly removes parts of the program, which is

likely to lead to a syntactically invalid program or to a

local minimum that is larger than the fully reduced example.

Hierarchical delta debugging [3], a variant of delta debugging

that considers the tree structure of the input, fails to find the

reduced input because it can remove only entire subtrees, but

it cannot restructure the input.

On the other hand, some techniques [4] exploit domain

knowledge about the language of the test input. While being

potentially more effective, hard-coding language knowledge

into the approach limits it to a single kind of test input.

This paper presents the Generalized Tree Reduction al-

gorithm (GTR), a language-independent technique to reduce

arbitrary tree-structured test inputs. The approach is enabled by

two key observations. First, we observe that transformations

beyond removing entire parts of the input are beneficial in

reducing inputs. GTR exploits this observation by incorpo-

rating tree transformations into the reduction process. The

challenge is how to know which transformations to apply

without hard-coding knowledge about a particular language.

Addressing this challenge improves the effectiveness of test

input reduction. Second, we observe that for most relevant in-

put formats, there are various examples that implicitly encode
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information about the language. For example, there are various

programs in public code repositories, millions of HTML files,

and many publicly available XML documents. GTR exploits

this situation to improve the efficiency of input reduction by

automatically pruning the search space of transformations for

a particular language after learning from a corpus of example

data.

Our work focuses on inputs that can be represented as a

tree. This focus is motivated by the fact that the inputs of

many programs have an inherent tree structure, e.g., XML

documents, or can be easily converted into a tree, e.g., the

abstract syntax tree of source code. The input to GTR is a

tree with a desirable property, such as triggering a bug, and

an oracle that determines whether a reduced version of the

tree still has the desirable property. The algorithm reduces

the tree level by level, i.e., it considers all nodes of a level

to minimize the whole tree, before continuing with the next

level. The output of the algorithm is a reduced tree that has

the desirable property according to the oracle.

At the core of our approach are tree transformations that

modify a tree into a new tree with fewer nodes. We describe

two transformation templates that we find to be particularly

effective. The first template removes a node and all its children,

drastically shrinking the tree’s size. As deleting nodes alone is

insufficient for various inputs, the second template replaces a

node with one of its children, i.e., it pulls up a subtree to the

next level of the tree. While we find these two transformation

templates to be effective, the algorithm is easily extensible

with additional templates. In principle, these transformation

templates are applicable to arbitrary kinds of nodes in the tree.

To reduce the size of the search space considered by GTR, i.e.,

ultimately the time required to reduce an input, we specialize

the transformation patterns to a specific input language by

learning from a corpus of example data. Since the learning is

fully automatic, the approach remains language-independent.

To evaluate GTR, we apply the algorithm to a total of 429

inputs in the form of Python programs, JavaScript programs,

PDF documents, and XML documents. The Python pro-

grams each trigger a bug in the Python interpreter, while the

JavaScript programs cause inconsistencies between browsers.

The PDF documents contain malicious content. The XML

documents achieve a certain coverage when given to an XML

validator, and that coverage should be preserved during the re-

duction. We find that GTR reduces the inputs to 45.3%, 3.6%,

44.2%, and 1.3% of the original size, respectively. Compared

to the best existing approach [3], GTR consistently improves

efficiency and also significantly improves the effectiveness of

reduction in three of four experiments.

To summarize, we make the following contributions:

• We identify the lack of restructuring as a crucial limi-

tation of existing language-independent input reduction

techniques.

• We present a novel tree reduction algorithm that trans-

forms trees based on tree transformation templates.

If a set of example inputs is available, the approach

automatically specializes the templates to the language

of the input.

• We show the presented algorithm to be significantly

more effective and efficient than two state-of-the-art

techniques.

• We make our implementation available to the public.1

II. BACKGROUND

A. Delta Debugging

Zeller and Hildebrandt proposed delta debugging (DD) [2],

a greedy algorithm for isolating failure inducing inputs. In a

nutshell, DD splits the input in chunks of decreasing sizes,

trying to remove some chunks while maintaining a property

of the input. “Chunk” can refer, e.g., to individual characters

or lines of a document. Often but not necessarily, the property

is that the input induces a bug when fed to a program. DD

does not guarantee to find the smallest possible input but

instead ensures 1-minimality. This property guarantees that no

single part of the input can be removed without loosing the

property of interest. For example, when applying line-based

delta debugging to reduce a program that triggers a compiler

bug, 1-minimality means that removing any line of the input

will cause the input to not trigger the bug anymore.

DD has an important disadvantage for structured input

because it disregards the structure of the input when splitting

it into chunks. As a result, DD may generate various invalid

inputs and invoke the oracle unnecessarily. For instance,

when applying DD to the example from the introduction, the

algorithm may delete a closing bracket without removing its

counterpart, generating a syntactically invalid program. Since

each candidate input is given to the oracle, such invalid inputs

increase the execution time of the algorithm.

B. Hierarchical Delta Debugging

Hierarchical delta debugging (HDD) [3] addresses the lim-

itation that DD disregards the structure of the input. The

algorithm considers the input to be a tree, which is a natural

way to interpret various inputs, e.g., code represented as an

abstract syntax tree (AST). HDD starts from the root of the

tree and visits each level. At every level, the algorithm applies

the original DD algorithm to all nodes at this level to find the

smallest set of nodes necessary. The algorithm terminates after

running DD on the last level of the tree.

HDD often purges large parts of the input early, leading

to more reduction than DD, while also requiring fewer or-

acle invocations. In contrast to DD, HDD does not provide

1-minimality. To guarantee this property, HDD* repeatedly

uses HDD, until no more changes to the tree are performed [3].

A limitation of HDD is that it only removed nodes (and all

their children), but it does not use any other tree transfor-

mations. Therefore, for an input where the important part

is deeply nested in the input tree, HDD produces far-from-

minimal results. An example is the code excerpt provided in

1https://github.com/sherfert/GTR

862
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ExprStmt
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expression

callee arguments
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1 if(!c) {

2 var a = 5; // root cause of failure

3 } else {

4 isNaN(2);

5 }

Fig. 1. An abstract syntax tree and code for our running example.

the introduction. Here, HDD attempts to remove the entire

if-branches, which yields a program that does not trigger the

bug anymore. The algorithm yields the following code as the

reduced input:

1 for (;;) {

2 if (cond1 || cond2) {

3 partOfBug();

4 }

5 if (cond3) {

6 otherPartOfBug();

7 }

8 }

III. PROBLEM STATEMENT

Previous approaches for reducing failure-inducing inputs

miss opportunities for reduction because they ignore the

structure of the input and because they are limited to removing

parts of the input. Motivated by these limitations, we aim for

an algorithm that exploits the structure of the inputs, and that

finds near-minimal results even when the root cause of a failure

is deeply nested inside the input. Our work focuses on inputs

that can be represented as a tree.

Definition 1. A labeled ordered tree is a recursive data

structure (l, c), where l is a textual label and c is the (possibly

empty) ordered list of outgoing edges. An edge e ∈ c is a tuple

(l, t), where l is a textual label for the edge and t is the child

node, which itself is a labeled ordered tree. We use T to refer

to the set of all trees.

Figure 1 shows an example: A small piece of JavaScript

code that triggers a bug, e.g., in a JavaScript engine. Suppose

that the bug is triggered by the statement at line 2. The example

input can be represented as a tree – in this case, the AST.

We will refer to a labeled ordered tree hereafter simply as

a tree or node, depending on the context. Trees have several

properties. The size of a tree is the number of its nodes: size :
T → N. The tree in Figure 1 has a size of 19. The context of

a tree is a partial function that returns the label of the parent

node and the label of the incoming edge: context : T →
(String × String). The context of the root node is undefined.

For the example, the context of the UnaryExpr node on the

left side of our tree is (IfStmt , test). The level of a node in

a tree is the edge-distance from the node to the tree’s root

node. All nodes of a particular level in a tree can be obtained

by a function level : (T ×N) → P (T ), where P (T ) denotes

the power set of T . The depth of a tree is defined as the

maximum distance of a leaf node to the root: depth : T → N.

The example tree has a depth of 5. Finally, we say that a

tree t′ is derived from another tree t, written derived(t′, t), if

one can build t′ from t by deleting nodes and edges, or by

moving nodes and edges within the tree without changing a

single label.

Definition 2. An oracle o is a function that, given a tree,

decides whether the tree provides a desired property: o : T →
Bool . We use O to denote the set of all oracles.

A tree t′ is minimal w.r.t. an oracle o and a source tree

t if t′ satisfies the oracle and if there is no smaller derived

tree that also satisfies the oracle. Formally, t′ is minimal if

derived(t′, t) ∧ o(t′) = true ∧
(

∄t′′ 6= t′ : derived(t′′, t) ∧
o(t′′) = true ∧ size(t′′) < size(t′)

)

.

Definition 3. A tree reduction algorithm is a function A :
(T × O) → T that, given a tree t and an oracle o where

o(t) = true , returns another tree t′ for which o(t′) = true

and size(t′) 6 size(t).

The algorithm tries to find a smaller tree that still provides

a property of interest, as decided by the oracle. If a reduction

algorithm cannot further reduce a tree, it will return the same

tree.

The goal of this work is to provide a tree reduction algo-

rithm that returns near-minimal trees with respect to the given

oracle, while maintaining the number of oracle invocations

low. A small number of oracle invocations is important, as

they can be costly operations, such as running a compiler, that

significantly increase the overall runtime of the algorithm. In

general, finding the minimal tree is impractical because the

number of trees to check with the oracle grows exponentially

with the size of the input tree.

IV. THE GENERALIZED TREE REDUCTION ALGORITHM

This section introduces a novel tree reduction algorithm,

called Generalized Tree Reduction or GTR. Figure 2 shows

the components of the approach and how they interact with

each other. Given an input tree (step 1), the algorithm traverses

the tree from top to bottom while applying transformations to

reduce the tree. For example, a transformation may remove

an entire subtree or restructure the nodes of the tree. The

transformations are based on tree transformation templates

(step 2) that specify a set of candidate transformations (step 3).

To specialize a generic template to a particular input format,

the approach optionally filters these candidates based on

knowledge inferred from a corpus of example inputs (step 4).

The algorithm applies the transformations and queries the
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Fig. 2. Overview of the GTR approach.

oracle to check whether a reduced tree preserves the property

of interest, e.g., whether it still triggers a particular bug (steps 5

and 6). The algorithm repeatedly reduces the tree until no more

tree reductions are found. Finally, GTR returns the reduced

tree (step 7).

We call the GTR algorithm “generalized” because it can

express different tree reduction algorithms, depending on

the provided tree transformation templates. For example, by

providing a single template that reduces entire subtrees, GTR

is equivalent to the existing HDD algorithm [3] (Section IV-E).

Before delving into the details of GTR, we illustrate its

main ideas using the running example in Figure 1. Given

the tree representation of the input, the algorithm analyzes

the tree level by level, starting at the root node. For exam-

ple, the algorithm considers a transformation that removes

the root node IfStmt and all its children, but discards this

transformation because the reduced tree (an empty program)

does not trigger the bug anymore. As another example, the

algorithm considers transformations that replace the root node

with one of its children. Replacing the root node with the

BlockStmt that represents the then-branch yields a smaller tree

that still triggers the bug. Therefore, the algorithm applies this

transformation and continues to further reduce the remaining

tree. Eventually, the algorithm reaches a tree that represents

only the statement var a = 5, which cannot be reduced

without destroying the property of interest.

The remainder of this section explains the GTR algorithm

in detail. At first, we present the tree transformations applied

by the algorithm (Sections IV-A and IV-B). Then, we describe

how GTR combines different transformations into an effective

tree reduction algorithm (Section IV-C).

A. Tree Transformation Templates

The core ingredient of GTR are transformations that reduce

the size of a tree. We specify such transformations with

templates:

Definition 4. A transformation template is a function T →
P (T ) ∪ {DEL} that returns a set of candidate trees that are

the result of transforming a given input tree. In addition to

candidate trees, the template may return the special symbol

DEL, which indicates that the tree should be removed rather

than modified.

Algorithm 1 Substitute-by-child template

Input: a tree tree
Output: a set of candidates nodes

1: function SBC TEMPLATE(tree)
2: candidates ← ∅
3: for i ∈ [0, |tree.c|] do
4: c← tree.c[i].t
5: candidates ← candidates ∪ {c}

6: return candidates

In this paper, we focus on two transformation templates,

which yield a tree reduction algorithm that is more effective

than the best existing algorithms.

a) Deletion Template: The first template addresses situ-

ations where an entire subtree of the input given to GTR is

irrelevant for the property of interest. In our running example

(Figure 1), the subtree rooted at the right-most BlockStmt node

is such a subtree. To enable GTR to remove such subtrees, the

deletion template simply suggests for each given tree to delete

it by returning the special DEL symbol.

b) Substitute-by-child Template: The second template

addresses situations where simply removing an entire subtree

is undesirable because the subtree contains nodes relevant for

the property of interest. We observe that a common pattern

is that the root node of a subtree is irrelevant but one of its

children is important for the property of interest. In the running

example, the tree rooted at the IfStmt matches this pattern,

because the if statement is irrelevant, but the nested variable

declaration is crucial. To address this pattern, the substitute-

by-child template (Algorithm 1) returns each child of a given

tree’s root node as a candidate for replacing the given tree.

The template iterates over all children of the given tree and

adds each of them to the set of candidates. Applying this

transformation template to the IfStmt of the running example

yields a set of three candidates, namely the three subtrees

rooted at nodes UnaryExpr, BlockStmt, and BlockStmt.

Beyond these two templates, additional templates can be

easily integrated into GTR, enabling the approach to express

different tree reduction algorithms.

B. Corpus-Based Filtering

The templates defined above are completely language inde-

pendent. When applying these templates to a tree that ought to

conform to a specific input format, many of the candidates may

be rejected by the oracle simply because they violate the input

format. For example, when the deletion template suggests to

remove the UnaryExpr from the tree in Figure 1, the result-

ing tree corresponds to syntactically invalid JavaScript code

because every if statement requires a condition. Suggesting

such invalid candidates does not influence the effectiveness of

our approach because the oracle rejects all invalid candidates.

However, a high number of invalid candidates negatively

influences the efficiency of the approach since invoking the

oracle often imposes a significant runtime cost.

To address the challenge of invalid candidates, we enhance

the approach with a language-specific filtering of candidates

trees that rejects invalid trees before invoking the oracle. To
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preserve the language-independence of GTR, the filtering is

based on knowledge that gets automatically inferred from a

corpus of example inputs in the specific input format. For

example, the approach learns from a set of JavaScript programs

that if-statements require a condition, and therefore, will filter

any candidates that violate this requirement.

a) Deletion Template: To specialize the deletion template

to a particular language, we need to know which edges are

mandatory for particular node types. The approach analyzes

the code corpus to find a set of mandatory edge labels for each

node label. An edge is considered mandatory, if it appears on

all nodes with the label across the whole corpus. Based on the

mandatory edges, we modify the deletion template so that a

node only can be deleted if it is not a mandatory child of its

parent node.

For the running example, consider again the candidate that

suggests to remove from the IfStmt the UnaryExpr subtree.

The corpus analysis finds that the set of mandatory edges for

an IfStmt is {test, cons}. Based on this inferred knowledge, the

algorithm will not attempt to delete the UnaryExpr anymore,

but discards this candidate before needlessly passing the tree

to the oracle.

b) Substitute-by-child Template: To specialize the

substitute-by-child template, we gather information on the

parent node labels and incoming edge labels of nodes. Specifi-

cally, for each node label we collect a set of pairs (p, e) where

p is the label of the parent, and e is the label of the incoming

edge. This set of pairs is equivalent to all distinct contexts

of nodes with that label and we call it the allowed contexts.

We then replace line 5 of the substitute-by-child template

(Algorithm 1) with the following steps:

5: if context(tree) ∈ allowedContexts(tree.c[i].l) then
6: candidates ← candidates ∪ {c}

The specialized variant of the template checks if the child

that we replace the node with can also appear in the same

context as the node. For example, the approach infers that there

is one valid context for a VarDecl node, namely (VarDecls,

declarations). Since (BlockStat, body) is not a valid context,

the algorithm will immediately discard a candidate that tries

to substitute VarDecls with VarDecl.

Inferring from a corpus of examples how to specialize

language-independent transformation templates to an input

format is optional and automatic. It is automatic because for

most input formats used in practice, there are sufficiently

many examples to learn from. An alternative approach could

be to use a formal grammar of the input language to filter

syntactically invalid trees. We rejected this idea because (i) a

grammar may not be available, e.g., for proprietary formats,

(ii) the checks performed by the specialized transformation

templates are more lightweight than parsing the entire input

tree with a grammar. Our evaluation measures the effectiveness

and efficiency of GTR with and without the corpus-based

filtering of candidate trees (Section V-D).

Algorithm 2 Generalized tree reduction

Input: tree t, oracle o, set L of templates
Output: reduced tree

1: for i ∈ [0, depth(t)] do
2: for l ∈ L do
3: t← APPLYTEMPLATE(t, i, o, l)

4: function APPLYTEMPLATE(t, i, o, l)
5: levelNodes ← level(t, i) ⊲ All nodes of level i
6: if l returns at most one transformation then
7: newNodes ← apply DD to replace levelNodes using l
8: return tree where newNodes replace levelNodes
9: else

10: return reduceLevelNodes(t, levelNodes , o, l) ⊲ Alg. 3

C. GTR Algorithm

Based on the transformation templates described above, the

GTR algorithm reduces a given tree by applying transforma-

tions at each level of the tree. Algorithm 2 summarizes the

main steps. Starting at the root node, the algorithm considers

each level of the tree and applies all available transformation

templates to each level using a helper function applyTemplate

(lines 1 to 3).

a) Delta Debugging-based Search: When applying a

template to the nodes at a particular level, the algorithm

distinguishes between templates that return at most one can-

didate transformation, such as the deletion template, and other

templates. In the first case, the algorithm needs to decide

for which nodes to apply the suggested transformations. This

problem can be reduced to delta debugging (DD). The chunks

needed as input for DD are the nodes of the level. DD then tries

to combine as many replacements as possible while querying

the oracle to check if a replacement preserves the property

of interest. For each node n for which the transformation

template returns a node n′, DD will try to replace n with

n′. For each node where the symbol DEL is returned, DD

will try to delete n. After deciding on the replacements, the

result is a new list of nodes for the current level. The helper

function applyTemplate replaces the nodes on the level with

the new nodes and returns the resulting tree to the main loop

of the algorithm (lines 7 and 8).

b) Backtracking-based Search: For templates that may

return more than one candidate, the algorithm must decide

not only whether to apply a candidate replacement but also

which of the suggested candidate replacements to apply. This

problem cannot be easily mapped to DD because DD assumes

to have exactly one option per chunk (typically, whether to

delete it or not). Instead, we present a backtracking-based

algorithm that searches for a replacement of nodes on a

particular level that reduces the overall tree. Similar to DD,

the algorithm is a greedy search.

Algorithm 3 summarizes the main steps of the backtracking-

based search for replacements of nodes on a particular level.

The algorithm is called at line 10 of the main GTR algorithm.

The central idea is to try different configurations that specify

which replacements to use for each node. The algorithm starts

with a configuration that replaces each node with itself (lines 1
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Algorithm 3 Backtracking-based reduction of level nodes

Input: tree t, list of nodes on the same level, oracle o, template t
Output: reduced tree

⊲ Maps each node to its current replacement:
1: conf ← empty map
2: for n ∈ nodes do
3: conf .put(n, n)

4: repeat
5: improvementFound ← false
6: for n ∈ nodes do
7: currentRep ← conf .get(n)
8: for n′ ∈ l(n) where size(n′) < size(currentRep) do
9: t′ ← t with each n replaced by n′

10: conf .put(n, n′)
11: if oracle(t′) then
12: improvementFound ← true
13: currentRep ← n′

14: else
15: conf .put(n, currentRep) ⊲ Backtrack

16: until ¬improvementFound
17: return t′

to 3). Then, the algorithm iterates through all nodes (line 6)

and tries all configurations where the replacement candidate

is smaller than the currently chosen replacement. That is, the

algorithm avoids invoking the oracle for replacements that

are less effective than an already found replacement. If the

oracle confirms that replacing a node preserves the property of

interest, an improvement was found w.r.t. the current replace-

ment (lines 12 and 13). Otherwise, the algorithm must revert

the replacement and backtracks to the previous configuration

(line 15).

The algorithm repeats the search for a replacement of any of

the nodes on the current level until no further improvement is

found. The reason for repeatedly considering the list of nodes

is that using an effective replacement at a later node may

enable using previously impossible replacements at previous

nodes, which have already been tested in the current itera-

tion. For example, consider the following input, where the

crash(b) call ensures the property of interest:

1 a = b = 0;

2 if (a)

3 crash(b);

During the first iteration of the main loop (lines 4 to 16),

the algorithm cannot reduce the assignments in the first

line but reduces the input by substituting the if-statement

with the crash(b) call. Now, during the second iteration,

the algorithm again considers the assignment statement and

successfully reduces it to b = 0, which yields the following

reduced input:

1 b = 0;

2 crash(b);

The search for a reduction of the nodes in the current level

guarantees to find a local optimum, i.e., a configuration where

using any other replacement that yields a smaller subtree

would not satisfy the oracle. As the search is greedy, it may

miss a configuration that yields a smaller overall tree satisfying

the oracle. Searching for a global optimum would require to

Algorithm 4 GTR*

Input: tree t, oracle o, set L of templates
Output: 1-transformation-minimal tree

1: current ← t
2: repeat
3: previous ← current
4: current ← GTR(previous, o,L)
5: until size(previous) = size(current)
6: return current

explore all possible configurations, which is exponential in the

number of candidates suggested.

c) Example: We illustrate GTR on the running example.

Recall that only line 2 of Figure 1 is relevant for reproducing

the bug. The algorithm starts on level 0, which contains only

the IfStmt, and invokes applyTemplate with the deletion tem-

plate. Deletion returns at most one transformation. Therefore,

the algorithm applies DD to the node on this level and tries

to delete it with all its children. However, this deletion would

make bug disappear and is discarded by the oracle.

Next, applyTemplate is invoked with the substitute-by-child

template. Since this template may return multiple candidates,

the algorithm invokes the backtracking-based reduceLevelN-

odes function, i.e., Algorithm 3. There is only one node

to consider in line 6 of Algorithm 3, and in line 8 three

different candidates are tested. The first is the UnaryExpr on

the left side. This candidate has a size of 4. But, since the

important code piece is removed, line 15 reverts this change.

The next candidate is the BlockStatement in the middle. It has

a size of 7. The oracle returns true for this transformation, so

currentRep is updated in line 13. The third candidate is the

BlockStatement on the right. Since it also has a size of 7, which

is not smaller than the size of currentRep, the candidate is not

tested. Now that an improvement was found, the main loop

(lines 4 to 16) is repeated. As there is only one node, nothing

new will be tested. After having finished both templates on

level 0, GTR will advance to level 1 and continue in the same

manner.

D. GTR* Algorithm

The existing DD and HDD* algorithms guarantee 1-

minimality and 1-tree-minimality, respectively. In essence, this

property states that, given a reduced input, there is no single

reduction step that can further reduce the input. We define a

similar minimality property for GTR:

Definition 5. A tree t is called 1-transformation-minimal w.r.t.

an oracle o and a set of templates L if o(t) = true ∧ ∀n
in t and ∀l ∈ L, there is no candidate n′ in l(n) that,

when replacing n with n′ yields a tree t′ with o(t′) =
true ∧ size(t′) < size(t).

In other words, for 1-transformation-minimal trees, all trees

obtained by single replacements of one node of the tree cause

the oracle to return false . The main difference to the existing

1-minimality and 1-tree-minimality properties is to consider

arbitrary tree transformations.

The GTR algorithm does not guarantee to find a 1-transfor-

mation-minimal tree. The reason is that by optimizing a tree
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TABLE I
INPUT FILES USED FOR THE EVALUATION.

Format Inputs Bytes Lines Nodes

Min Med Max Min Med Max Min Med Max

Python 7 212 483 1,574 19 22 73 82 232 591
JavaScript 41 32 515 21,806 1 28 458 19 223 5,529
PDF 371 2,901 22,966 1,167,807 – – – 155 258 4,324
XML 10 7,225 29,065 51,180 170 500 888 319 1,042 1,823

on one level, a transformation on a higher level, which had

been rejected by the oracle before, can become possible. To

guarantee 1-transformation-minimality, we present a variant of

GTR, the GTR* algorithm (Algorithm 4). GTR* repeats GTR

until the tree does not change its size anymore, which indicates

that no transformation can be applied thereafter.

E. Generalization of HDD and HDD*

GTR and GTR* generalize the existing HDD and HDD*

algorithms, respectively. To obtain HDD, we configure GTR

to include only the deletion template, without specializing

the template to a particular language. The resulting algorithm

applies DD on every level of the input tree by deleting a subset

of the nodes on this level. This behavior is exactly what HDD

does, i.e., the reduced tree is the same as returned by HDD.

This generalization also applies to HDD*, where we simply

run GTR* with the variant of GTR that is equivalent to HDD.

V. EVALUATION

We evaluate GTR by applying it to four input formats

and usage scenarios, including reducing fault-inducing inputs

for debugging, reducing malicious inputs for easier security

analysis, and reducing test inputs for more efficient testing.

The evaluation compares GTR and GTR* to the existing DD,

HDD, and HDD* algorithms. We focus on three research

questions:

• RQ1: How effective is the approach in reducing trees?

• RQ2: How efficient is the approach?

• RQ3: What are the effects of specializing transformation

templates to an input format?

A. Experimental Setup

1) Input Formats and Oracles: We consider four sets of

inputs that comprise a total of 429 input files that can be

represented as a tree. Table I summarizes the inputs and shows

their size in terms of bytes, lines, and number of tree nodes.

For the binary PDF format we do not report lines.

a) Failure-inducing Python Code: We use GTR to re-

duce Python files that cause the Python interpreter to crash.

To obtain such files, we search the Python bug tracker for

segmentation faults and stack overflows reported along with

code to reproduce it. Because these files have been reported

by users or developers, they are likely to have been manually

reduced, presenting a non-trivial challenge to any input reduc-

tion algorithm. We use a Python parser [5] to represent code

as trees. The oracle to check whether a reduced Python file

preserves the property of interest is to execute the file and to

check the status code returned by the Python interpreter. Only

checking the status code bears the risk of misclassification,

e.g., if the program is altered to return that status code without

triggering the bug. Given the low number of inputs, we could

exclude this possibility manually for the given inputs. As a

corpus to specialize the transformation templates, we gather

900 files from popular (measured by number of stars) GitHub

projects.

b) Inconsistency-exposing JavaScript Code: We also use

GTR to reduce JavaScript files that cause inconsistencies

between browsers. The files are generated by TreeFuzz [6],

an existing fuzz testing technique. We configure TreeFuzz to

generate 3,000 files and keep all files that trigger a browser

inconsistency, which results in 41 files. Since these files are

automatically generated, they generally contain parts that are

not required to trigger a browser inconsistency, providing a

good data set to complement the manually written Python

files. We use Esprima [7] to transform code to trees. As

the oracle, we compare the runtime behavior of a JavaScript

file in Firefox 25 and Chrome 48, as described in [6]. This

oracle compares read and written values as well as error

types and messages. The JavaScript corpus for specializing

transformation templates comprises around 140,000 files [8].

c) Malicious PDF Documents: As a usage scenario

beyond reducing inputs for debugging, we use GTR to re-

duce malicious PDF files while preserving their malicious-

ness, which facilitates further security analysis. We download

malicious PDF files from the Contagio malware dump [9].

PDF documents are binary data but have an internal tree

structure. Using the pdfminer [10] and iTextPDF [11] libraries,

we convert between PDFs and trees. We filter the PDFs to

keep only those that are classified as malicious according to

PDF Scrutinizer [12] and that are compatible with our tree

conversion. Out of the over 8,000 remaining files we chose a

random subset of 371 files. As the oracle, we check whether

PDF Scrutinizer classifies a file as malicious. This oracle may

accept a malformed PDF and classify it as malicious. This

behavior is desired, since PDF viewers try to display even

malformed PDFs and could thus still execute harmful code.

In contrast to the above formats, PDF trees have weaker con-

straints over their nodes, and the malicious content, contained

in embedded objects, is typically not spread over the tree. The

PDF corpus for specializing templates are 16,000 files from the

Contagio malware dump, including both malicious and benign

documents.

d) Test Suite of XML Files: As another usage scenario,

we use GTR for test suite reduction, i.e., reducing test cases

while preserving the code coverage. We download a corpus

of more than 140,000 XML files that adhere to the same

XML document type definition (DTD) [13]. From the corpus,

we select a random subset of 10 XML files and parse them

using the xmllint [14] XML validation tool. Subsequently, we

measure the coverage in xmllint using gcov [15]. As the oracle,

the coverage in xmllint using a reduced XML file must be at

least the original coverage. For XML there was no necessity to

specialize the templates because both valid and invalid XML

files are accepted by xmllint. Therefore, we omit the template
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Fig. 3. Effectiveness of reduction measured in terms of the number of the
remaining tree nodes. The boxes indicate the median and the first and third
quartiles. The whiskers include up to 1.5 inter-quartile-ranges above and below
the box.

specialization step.

2) State of the Art Approaches: We compare our approach

to our own implementations of the existing DD, HDD, and

HDD* algorithms. The DD implementation works on the line-

level, i.e., each line of the input is a chunk considered by DD.

The HDD implementation uses the same tree representation

of the inputs as the GTR implementation.

B. Effectiveness

To evaluate the effectiveness in reducing test inputs, we

apply GTR and GTR* to the inputs in Table I. To measure

effectiveness, we compute the remaining size relative to the

original inputs, measured both in terms of the file size and

the tree size. Since DD does not represent inputs as trees, we

measure only the file size for DD-reduced inputs.

Table II summarizes the results. The table shows for each

approach the remaining file sizes and nodes, along with the

percentage of the original size. Each value is the median over

all inputs we consider. The best approach for a particular

measure and input format is highlighted. Overall, GTR* con-

sistently yields the smallest remaining trees (closely followed

by GTR), with 43.1%, 3.6%, 44.2%, and 1.3% of the original

size for Python, JavaScript, PDFs, and XML files, respectively.

To better understand the variations in effectiveness across

different inputs of a format, Figure 3 shows the distribution of

remaining tree sizes. The figure shows that, even though the

effectiveness varies across inputs, GTR and GTR* outperform

the other approaches for most inputs.

We further discuss our results for the different formats:

• Python. For the Python data set, GTR* produces the

smallest trees and GTR the second smallest. The relative

reduction is not as high as for other formats. The reason

is that these inputs have been reduced manually before

reporting them to the Python developers, which leaves

little room for any subsequently applied tree reduction

algorithm.

• JavaScript. For the JavaScript data set, we observe larger

reductions by all algorithms, sometimes removing more

than 99% of the file. The main reason is that these files

are generated by a fuzz tester and have not been processed

by a human. GTR and GTR* consistently outperform all

other algorithms.

• PDF. For the PDF data set, all tree-based algorithms

are equally efficient, leaving only 44.2% of the nodes

in a tree, on average. The reduced file size is about

75%, i.e., larger than the reduced tree size. The reason

is that a few nodes in the tree representation of a PDF

are large objects, such as images or embedded code,

and that these large objects often contain the malicious

content. Surprisingly, DD actually achieves marginally

better file size reductions compared to the other algo-

rithms. However, after examining these files manually,

we noticed they were not valid PDF files anymore, even

though PDF Scrutinizer still flags them as malicious.

These syntactically invalid files would likely not help a

security analyst that much. In contrast, removing more

than half of a PDF’s nodes is a vast improvement for a

security analyst who manually inspects the file’s content.

• XML. For the XML test suite, GTR and GTR* achieve

the best reductions, sometimes removing up to 98% of the

trees. DD is only able to reduce the XML files minimally.

Our hypothesis is that when DD removes random lines, a

malformed XML file result, which trigger only the error

handling code of xmllint.

In summary, GTR and GTR* are more or as effective as

the best existing input reduction approach with respect

to the remaining tree size. Using GTR, the median per-

centage of nodes after reduction for four different input

formats is 45.3%, 3.6%, 44.2%, and 1.3%, respectively.

C. Efficiency

We evaluate the efficiency of our approach by measuring the

number of oracle invocations required to reduce a tree. Using

this metric instead of, e.g., wall clock time, is motivated by

two reasons. First, invoking the oracle typically is the most

important operation during automated input reduction, because

it often involves running a complex piece of software, such as

a compiler or interpreter, on non-trivial inputs, such as large

programs. Second, wall clock time is highly dependent on

the implementation of the tree reduction and the oracle. To

check that the number of oracle invocation is a meaningful

measure, we compare the time spent in the oracle with the

time in other parts of the algorithm for the JavaScript data

set. For each algorithm, the oracle invocation time dominates

and comprises more than 98% of the total execution time, on

average.

Table II shows the median number of oracle invocations

required by the different approaches to a reduce a single file.

Figure 4 illustrates the distributions of this number for each

input format. For three of the four formats, GTR and GTR*

require fewer oracle invocations, i.e., are more efficient, than

their counterparts HDD and HDD*. The GTR* and HDD*

algorithms both need more invocations than their *-less coun-

terparts, which is unsurprising because they run the algorithm,

including oracle invocations, multiple times.
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TABLE II
EFFECTIVENESS AND EFFICIENCY OF REDUCTION BY GTR AND GTR* COMPARED TO BASELINE APPROACHES. FOR EACH MEASURE, THE BEST

APPROACH IS HIGHLIGHTED . WE REPORT THE MEDIAN VALUES OVER ALL FILES OF A DATA SET.

DD HDD HDD* GTR GTR*

Failure-inducing Python code:

Remaining file size 359 (74.3%) 437 (90.5%) 423 (87.6%) 301 (62.3%) 261 (54.0%)
Remaining nodes - 175 (75.4%) 166 (71.6%) 105 (45.3%) 100 (43.1%)
Oracle invocations 125 809 1,089 205 492

Inconsistency-exposing JavaScript code:

Remaining file size 84 (16.3%) 49 (9.5%) 49 (9.5%) 28 (5.4%) 28 (5.4%)
Remaining nodes - 20 (9.0%) 20 (9.0%) 8 (3.6%) 8 (3.6%)
Oracle invocations 77 21 22 16 17

Malicious PDF documents:

Remaining file size 17,225 (75.0%) 17,304 (75.3%) 17,304 (75.3%) 17,304 (75.3%) 17,304 (75.3%)
Remaining nodes - 114 (44.2%) 114 (44.2%) 114 (44.2%) 114 (44.2%)
Oracle invocations 358 509 665 239 389

Test suite of XML files:

Remaining file size 28,897 (99.4%) 1,259 (4.3%) 1,246 (4.3%) 1,271 (4.4%) 940 (3.2%)
Remaining nodes - 21 (2.0%) 20 (1.9%) 14 (1.3%) 14 (1.3%)
Oracle invocations 1,746 92 107 100 114
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Fig. 4. Number of oracle invocations. Note the logarithmic scale. The boxes
indicate the median and the first and third quartiles. The whiskers include up
to 1.5 inter-quartile-ranges above and below the box.

We next discuss the results for the different formats:

• Python. GTR needs 64% more invocations than DD but

HDD needs 295% more invocations than GTR.

• JavaScript. GTR is the most efficient approach. HDD

needs 31% more invocations, and DD 381% more in-

vocations.

• PDF. GTR is the most efficient approach. HDD needs

113% more invocations, and DD 150% more invocations.

• XML. HDD is the most efficient approach. GTR needs

9% more invocations, and DD 1898% more invocations.

The large difference in the results for DD can be explained

by the size of the input files. Since the Python files are rela-

tively small and cannot be reduced as much as the relatively

large JavaScript files, DD reduces them quickly. In contrast,

the structure-unaware search of DD takes significantly more

oracle invocations for larger files.

To summarize, GTR is either more efficient or only

slightly less efficient than the best existing approach.

D. Benefits of Corpus-Based Filtering

Our approach specializes language-independent transfor-

mation templates to a specific input language by learning

filtering rules from a corpus of examples of inputs. To evaluate

how the corpus-based filtering influences the effectiveness and

efficiency of GTR, we compare the approach with a variant

of GTR that does not filter any candidate transformations. For

both variants, we perform the same experiments as described

in Sections V-B and V-C, except for the XML format, where

we do not use any corpus.

We find that the GTR variant without filtering of candidates

achieves the same effectiveness for JavaScript and PDF and

slightly higher reductions (5%) for Python. The reason is

that the corpus does not mirror all facets of the target lan-

guages, which may cause the filtering to overly constrain the

transformations. For example, if the corpus would not contain

any if-statement without an else-branch, then GTR would not

consider removing the else-branch. Fortunately, the results

show that such overly constrained filtering is very unlikely.

The GTR variant without filtering needs significantly more

oracle invocations. For the Python data set, the variant needs

423 invocations (median), whereas the full GTR approach

needs only 205 invocations. For the JavaScript data set, the

results are 30 and 16 invocations without and with filtering,

and for the PDF data set 611 and 239 invocations, respectively.

Finally, we measure how long extracting language-specific

information from the corpus takes. In total, extracting this

knowledge takes around 21 minutes, 19 seconds, and 15

seconds for the JavaScript, Python and PDF data sets, respec-

tively.

In summary, comparing GTR with and without specializa-

tion transformations shows that both variants are roughly

equally effective and that the specialization significantly

improves the efficiency of the algorithm.
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VI. RELATED WORK

A. Minimizing Test Inputs

Delta debugging (DD) [2] sets the foundations to automate

the process of minimizing test inputs. In contrast to GTR,

it cannot handle large structured inputs effectively. Recently,

parallelization of DD has been explored [16], which is orthog-

onal to our contributions. The hierarchical variant HDD [3]

applies DD on hierarchical documents. However, HDD fails

to restructure trees in a way that allows obtaining significantly

smaller results, and also is less efficient than GTR. An

improved HDD variant proposed later uses a different kind of

grammars [17]. This targets the conversion of code documents

to trees and is complementary to our findings.

C-Reduce [4] is a variant of DD that applies domain-specific

transformations to reduce C code. These transformations in-

clude changing identifiers and constants, removing pairs of

parentheses or curly braces, or inlining functions. One big

advantage of C-Reduce is to never produce any input with non-

deterministic or undefined behavior. There are two big differ-

ences in comparison to our approach. First, the transformations

are source-to-source and not tree-to-tree. Second, C-Reduce

loses generality by applying domain-specific changes to the

document. However, many of the transformation included by

C-Reduce can be expressed in a more general way and are

included in our approach. For example, “removing an operator

and one of its operands (e.g., changing a+b into a or b)”

is equivalent to replacing the operator node with one of its

children in the tree.

When the input to a program is not as complex as a code

document itself, more efficient techniques can be employed.

One possibility is to minimize the path constraints of the

input that led to a particular failure [19]. However, the set of

path constraints grows exponentially for more complex inputs,

rendering this approach unfeasible for code inputs.

Another interesting approach taints parts of each input to

identify the parts relevant to a failure [20]. The default setting

taints each byte independently, making it possible to also

account for complex inputs. At the same time, this disregards

the structure of the document, similar to DD, and thus becomes

overly expensive. Another setting tracks inputs on a per-entity

basis, which is insufficient for test input reduction.

Test input reduction is particularly important for automati-

cally generated test inputs. Fuzzing [21] is a popular technique

to create such inputs. It has been successfully applied to

various kinds of input formats, including program code to test

compilers and runtime engines [22, 23, 24, 25, 26], program

code to test refactoring engines [27], document formats to test

word processors [28], and structured text formats for security

testing [29, 30]. All these formats can be represented as a tree

and may benefit from reduction via GTR.

B. Fault Localization

Various techniques aim at localizing a fault in the buggy

program itself, instead of the input. Zeller applied DD also

to the program with this goal [31]. There are various other

approaches for fault localization [32, 33, 34]. Program slicing

reduces a program while maintaining its behavior with respect

to a particular variable [35]. Ideally, the smaller slice contains

the bug and eases its localization. Dynamic slicing [36] focuses

on the subset of the program that give a variable its value

with the current input. Just slicing the variables that appear

in the line causing the bug (if known) does not guarantee

to obtain a program that produces the same buggy behavior,

though. The combination of DD with dynamic forward and

backward slicing has also been explored previously [37].

Another approach is to record traces to find shorter program

executions with the observed buggy behavior [38, 39, 40],

which ultimately also reveals likely locations for the bug.

Fault localization and test input reduction have different

goals. In a first step, a tester confronted with a failure needs

a small (and fast running) input to reproduce the failure. In

a second step, the bug must be located in the program and

fixed. Finally, the small input can be turned into a regression

test. Thus, both techniques complement each other.

C. Minimizing Test Suites

While randomly generating tests, high code coverage can

be achieved. The tests in randomly generated suites are

often rather big and can also benefit from a reduction with

DD [41, 42]. To maintain the good coverage of the test suite,

the oracle can be modified to account for that, instead of

testing for particular failures [43, 44].

D. Inference of Language Constraints

Our corpus-based filtering relates to work on inferring

grammars [18, 45, 46] and probabilistic models of structured

program inputs [6]. As an alternative to inferring language

constraints from a corpus, GTR could reuse inferred grammars

and models to prune candidate trees.

VII. CONCLUSION

We present GTR, a novel algorithm to reduce tree-structured

test inputs in a generalized and language-independent way.

Our algorithm applies tree transformations hierarchically to

reduce a given test input. The algorithm combines Delta

Debugging and a greedy backtracking-based search to choose

which transformations to apply. To specialize generic tree

transformation templates to a particular input format, GTR

automatically infers language-specific filters from a corpus

of examples. We compare our approach with three existing

algorithms, DD, HDD, and HDD*, on 429 test inputs. In

three of four experiments, GTR outperforms other algorithms

in reduction effectiveness. At the same time, GTR is either

only slightly less or even more efficient than the best existing

approach. We envision GTR to be applied to various problems

that benefit from reduced inputs, e.g., to reduce bug-triggering

inputs provided by users or fuzz testing techniques, to reduce

test suites for more efficient test execution, or to reduce

potentially malicious code or documents before a manual

security analysis.
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