
Learning to Fuzz: Application-Independent
Fuzz Testing with Probabilistic, Generative
Models of Input Data

Jibesh Patra, Michael Pradel

Technical Report TUD-CS-2016-14664

TU Darmstadt, Department of Computer Science

November, 2016

Learning to Fuzz: Application-Independent Fuzz Testing
with Probabilistic, Generative Models of Input Data

Jibesh Patra
Department of Computer Science

TU Darmstadt
jibesh.patra@gmail.com

Michael Pradel
Department of Computer Science

TU Darmstadt
michael@binaervarianz.de

Abstract
Fuzzing is a popular technique to create test inputs for soft-
ware that processes structured data. It has been successfully
applied in various domains, ranging from compilers and in-
terpreters over program analyses to rendering engines, im-
age manipulation tools, and word processors. Existing fuzz
testing techniques are tailored for a particular purpose and
rely on a carefully crafted model of the data to be generated.
This paper presents TreeFuzz, a generic approach for gener-
ating structured data without an a priori known model. The
key idea is to exploit a given corpus of example data to au-
tomatically infer probabilistic, generative models that create
new data with properties similar to the corpus. To support a
wide range of different properties, TreeFuzz is designed as a
framework with an extensible set of techniques to infer gen-
erative models. We apply the idea to JavaScript programs
and HTML documents and show that the approach gener-
ates mostly valid data for both of them: 96.3% of the gener-
ated JavaScript programs are syntactically valid and there are
only 2.06 validation errors per kilobyte of generated HTML.
The performance of both learning and generation scales lin-
early w.r.t. the size of the corpus. Using TreeFuzz-generated
JavaScript programs for differential testing of JavaScript en-
gines exposes various inconsistencies among browsers, in-
cluding browser bugs and unimplemented language features.

1. Introduction
Testing complex programs requires complex input data. An
effective approach for testing such programs is fuzz test-
ing, i.e., to randomly generate input data. Fuzz testing has
been successfully applied, e.g., to compilers [49], runtime
engines [18, 23], refactoring engines [16], office applica-
tions [20], and web applications [45]. A common require-
ment for effective fuzz testing is to generate data that com-
plies or almost complies with the input format expected by
the program under test.

To generate (almost) valid input data, existing fuzz test-
ing techniques essentially use two approaches. First, model-
based approaches require a model of the input format, such
as a probabilistic context-free grammar (PCFG). Csmith [49],

FLAX [45], and LangFuzz [23] are examples of grammar-
based approaches. Unfortunately, manually creating such
a model is a time-consuming and strongly heuristic effort
that cannot be easily adapted to other languages and even
newer versions of the same language. Yang et al., who cre-
ated the popular Csmith compiler testing tool, report that it
took “substantial manual tuning of the 80 probabilities that
govern Csmith’s random choices” to “make the generated
programs look right” [49]. Second, whitebox approaches
analyze the program under test to generate input that trig-
gers particular paths, e.g., based on symbolic execution.
SAGE [20] and BuzzFuzz [17] are examples of whitebox
fuzzing approaches. Unfortunately the assumption, that the
tested program is available at input generation time, made
by these approaches is not always given. e.g., when creat-
ing inputs for differential testing across multiple supposedly
equivalent programs [33] or when fuzz testing remote web
applications. Moreover, whitebox techniques often suffer
from scalability issues.

This paper exploits the observation that for many input
formats, there are various example inputs to learn from. Re-
cent work on learning probabilistic models of code shows
that models learned from many examples can be very pow-
erful, e.g., for predicting missing parts of mostly complete
data [8, 10, 22, 37, 38, 41, 43]. However, existing work does
not use probabilistic, generative models to create completely
new input data. Instead, they are tuned to fill in relatively
small gaps in otherwise complete data, such as recommend-
ing an API call or an identifier name in an otherwise com-
plete program.

This paper merges two streams of research, fuzz testing
and learning probabilistic models of structured data, into a
novel approach for learning how to test complex programs
given examples of input data. We focus on input data that can
be represented as a labeled, ordered tree, which covers many
common formats, such as source code (represented as an
AST), documents (PDF, ODF, HTML), and images (SVG,
JPG). Our approach, called TreeFuzz, learns models of such
input data by traversing each tree once while accumulating
information. For each node and edge in the tree, TreeFuzz
gathers facts that explain why the node or edge has a partic-

1 2016/11/21

ular label and appears at a particular position in the tree. Af-
ter having traversed all input data, the approach summarizes
the gathered information into probabilistic models. Finally,
based on the learned models, TreeFuzz generates new input
data by creating trees in a depth-first manner.

Most existing works on probabilistic, generative models
of structured data uses a single model that describes the data,
such as n-gram-based models [22, 38] or graph-based mod-
els [37]. A key contribution of our work is to instead pro-
vide an extensible framework for expressing a wide range of
models. Each model describes a particular aspect of the input
format. We describe six models in this paper. For example,
one of these models suggests child nodes based on parent
nodes, similar to a PCFG. Another model suggests node la-
bels in a way that enforces definition-use-like relationships
between subtrees of a generated tree, a property that can-
not be easily expressed by existing probabilistic, generative
models. During generation, the approach reconciles mod-
els by ordering them and by letting one model refine the
suggestions of previous models. The main benefits of this
multi-model approach are that TreeFuzz considers different
aspects of the input format and that extending TreeFuzz with
additional models is straightforward.

The models supported by TreeFuzz are “single-traversal
models”, i.e., they are extracted during a single traversal of
each tree, and they generate new trees in a single pass. The
main benefit of this class of models is that they bound the
time of learning and generation, leading to linear time com-
plexity w.r.t. the number of examples to learn from and w.r.t.
the number of generated trees. Furthermore, these models
can express properties learned by n-gram-based models [22,
38], PCFGs, and conditioning function-based models [10,
41], as well as properties that cannot be expressed with ex-
isting approaches.

Our work is related to LangFuzz [23], which fuzz tests
language implementations by recombining existing pro-
grams into new programs. TreeFuzz differs by learning a
probabilistic, generative model of the input format of the
application under test and by not requiring built-in knowl-
edge about the format. Our work also relates to Deep3 [41],
which learns a probabilistic model for predicting individual
program elements. While learning, their approach synthe-
sizes functions that become part of the model. To deal with
the inherent complexity of synthesis, Deep3 must limit the
search space for these functions and use aggressive sampling
of input data. In contrast, TreeFuzz supports models that
cannot be synthesized by Deep3 and has linear time com-
plexity without sampling. Our work also differs by explor-
ing a novel application, generating new data from scratch,
whereas Deep3 predicts individual program elements in an
otherwise complete program. We are not aware of any ex-
isting work that combines learned probabilistic models with
fuzz testing.

As two examples of input formats that TreeFuzz is use-
ful for, we apply the approach to JavaScript programs and
HTML documents. As a concrete application of TreeFuzz-
generated data, we use generated JavaScript programs for
differential testing of web browsers.

Our evaluation assess the ability of TreeFuzz to generate
valid input data, its performance and scalability, as well as
its effectiveness for fuzz testing. The results show that, even
though we do not provide a model of the target language,
the approach generates input data that mostly complies
with the expected input format. Specifically, given a corpus
of less than 100 HTML documents, the approach creates
HTML documents that have only 2.06 validation errors per
generated kilobyte of HTML.1 Given a corpus of 100,000
JavaScript programs, 96.3% of the created programs are
syntactically valid and 14.4% of them execute without any
runtime errors. Practically all of the generated data differs
from the given example data. Using the TreeFuzz-generated
JavaScript programs to fuzz test web browsers has revealed
various inconsistencies, including browser bugs, unimple-
mented language features, and browser-specific behaviors
that developers should be aware of.

In summary, this paper contributes the following:

• We present a novel language-independent, blackbox fuzz
testing approach. It enables testing a variety of programs
that expect structured input data.

• We are the first to use learned probabilistic language
models for generating test input data.

• As a practical application, we show that TreeFuzz-
generated data is efficient and effective at finding browser
inconsistencies. We envision various other applications,
such as testing compilers, interpreters, program analysis
tools, image processors, and rendering engines.

2. Overview and Example
TreeFuzz consists of three phases. First, during the learning
phase, the approach infers from a corpus of examples a set of
probabilistic, generative models that encode properties of the
input format. Second, during the generation phase, TreeFuzz
creates new data based on the inferred models. Finally, the
generated data serves as input for the fuzz testing phase.

As a running example, consider applying TreeFuzz to
JavaScript programs and suppose that the corpus of exam-
ples consists only of the program in Figure 1(a)2. The ap-
proach represents data as a tree with labeled nodes and
edges. Figure 1(b) shows a tree representation of the exam-
ple program, which is the abstract syntax tree.

1 The example documents are not perfect either: they contain 0.59 errors per
kilobyte.
2 For the evaluation (Section 6), we apply the approach to significantly
larger corpuses.

2 2016/11/21

(a) Example data from corpus:

var valid = true , val = 0;

if (valid) {

function foo(num) {

num = num + 1;

valid = false;

return;

}

foo(val);

}

(b) Tree representation of example data:
Program

VarDeclaration

VarDeclarator

Idf

valid

Lit

true

. . .

IfStmt

Idf

valid

BlockStmt

FunctionDecl

Idf

foo

Idf

num

BlockStmt

ExprStmt

. . .

ExprStmt

. . .

ReturnStmt

null

ExprStmt

CallExpr

Idf

foo

Idf

val

bod
y

de
cl

id

n
a
m
e

init
va

lu
e

decl

body

test

n
a
m
e

consequent

body

id

n
a
m
e

pa
ra
m

n
a
m
e

body

bo
dy

exp
r

b
o
d
y

exp
r

body

arg

body

exp
r

ca
lle
e

n
a
m
e

arg
n
a
m
e

(c) Generated data:

// Program 1

var val = true , valid = true;

if (val) {

foo(val);

function foo(num) {

return;

return;

val = num + 1;

}

}

// Program 2

if (valid) {

function foo(num) {

return;

valid = false;

num = false;

}

foo(val);

}

var valid = 0, valid = 0;

// Program 3

if (valid) {

foo(val);

foo(val);

}

var valid = true , val = 0;

// Program 4

var valid = 0, valid = 0;

var valid = true , val = 0;

Figure 1. Corpus with a single example and new data generated from it. Parts of the abstract syntax tree have been abstracted
for the sake of conciseness. Idf and Lit denote Identifier and Literal, respectively.

2.1 Learning
The learning phase of TreeFuzz traverses the tree of the ex-
ample while inferring probabilistic, generative models of the
input format. The models capture structural properties of the
tree, which represent syntactic and semantic properties of the
JavaScript language. For example, the approach infers that
nodes labeled Program have outgoing body edges and that
these edges may lead to nodes labeled V arDeclaration and
IfStmt. Furthermore, the approach infers the probability of
particular destination nodes. For example, for nodes labeled
BlockStmt, an outgoing edge body leads to an ExprStmt
three out of five times. TreeFuzz infers similar properties for
the rest of the tree, providing a basic model of the syntactic
properties of the target language, similar to a PCFG. Exist-
ing grammar-based approaches use a pre-defined grammar,
along with manually tuned probabilities to decide which
grammar rules to expand.

TreeFuzz infers more complex properties in addition to
the PCFG-like properties introduced above. For example,
TreeFuzz considers the ancestors of nodes to find constraints

about the context in which a particular node may occur.
From the AST in Figure 1(b), the approach infers that nodes
labeledReturnStmt always occur as descendants of a node
FunctionDecl, i.e., the approach infers that return state-
ments occur inside functions. Another inferred property con-
siders repeatedly occurring subtrees. For example, the ap-
proach finds that the id edge of node FunctionDecl and
the callee edge of node CallExpr lead to identical subtrees
Idf

name−−−→ foo. If such a pattern occurs repeatedly in the
corpus, TreeFuzz infers that FunctionDecl and CallExpr
have a definition-use-like relation.

2.2 Generation
Based on the inferred models, TreeFuzz creates new trees.
Figure 1(c) shows four examples of trees, pretty-printed as
JavaScript programs. Tree generation starts in a top-down
manner and nodes are iteratively expanded guided by the
inferred models. For the example, an inferred model spec-
ifies that the root node of any tree is labeled Program, that
Program nodes have two outgoing edges, and that the chil-
dren may be labeled V arDeclaration or IfStmt. For this

3 2016/11/21

reason, all four generated programs contain two statements,
which are variable declarations or if statements. Generated
programs have the same identifiers and literals as in the cor-
pus because TreeFuzz infers the corresponding nodes.

To enforce the inferred constraint that return statements
must appear within a function declaration, TreeFuzz only
creates a ReturnStmt node when the currently expanded
node is a descendant of a FunctionDecl node. As a result,
the return statements in the first two programs of Figure 1(c)
are within a function. Enforcing such constraints avoids syn-
tax errors that TreeFuzz-generated programs would have
otherwise. As an illustration of using complex properties en-
coded in the inferred model, recall the definition-use-like re-
lation between FuncDecl and CallExpr that TreeFuzz in-
fers. Suppose the approach generates the Idf subtree of a
CallExpr node. To select a label for the destination node
of an edge name, the approach checks whether there al-
ready exists a FunctionDecl node with a matching subtree,
and if so, reuses the label of this subtree. As a result, most
generated function calls in Figure 1(c) have a corresponding
function declaration, and vice versa. Creating such relations
avoids runtime errors during fuzz testing, e.g., due to un-
defined functions, that TreeFuzz-generated programs would
have otherwise.

The models that TreeFuzz infers from a single example
obviously overfit the example, and consequently, the gen-
erated programs do not use all features of the JavaScript
language. The hypothesis of this work is that, given a large
enough corpus of examples (“big code”), the approach learns
a model that is general enough to create a variety of other
valid examples that go beyond the corpus.

2.3 Fuzz Testing
Finally, the data generated by TreeFuzz is given as input
to programs under test. For the running example, consider
executing the generated programs in multiple browsers to
compare their behavior. Executing the first program in Fig-
ure 1(c) exposes an inconsistency between Firefox 45 and
Chrome 50. A bug in Firefox3 causes the program to crash
because the function foo declared in the if block does
not get hoisted to the top of the block, which leads to a
ReferenceError when calling it.

3. Learning and Generation
This section describes the first two phases of TreeFuzz:
learning and generation. An important goal of TreeFuzz
is to support different kinds of structured data, including
programs written in arbitrary programming languages and
structured file formats. A common format to represent such
data are labeled, ordered trees, and we use this representation
in TreeFuzz.
Definition 1. A labeled, ordered tree t = (N,E) consists of
a set N of nodes and a set E of edges. Each node n ∈ N

3 Mozilla bug #585536

and each edge e ∈ E has a label. The function outgoing :
N → E × ... × E maps each node to a tuple of outgoing
edges. The function dest : E → N maps each edge to its
destination node.

For example, a labeled, ordered tree can represent the
AST of a program, the DOM tree of a web page, a JSON
file, an XML file, or a CSS file. Section 4 shows how to
apply TreeFuzz to some of these kinds of structured data. In
the remainder of the paper, we simply use the term “tree”
instead of “labeled, ordered tree”. To ease the presentation,
we do not explicitly distinguish between a node and its label,
or an edge and its label, if the meaning is clear from the
context.

3.1 Extensible Learning and Generation Framework
To enable learning from a corpus of trees and generating
new trees, TreeFuzz provides a generic framework that gets
instantiated with an extensible set of techniques to infer
probabilistic, generative models. We call these techniques
model extractors. Each model extractor infers a particular
kind of property from the given corpus and uses the inferred
model to steer the generation of new trees. We currently have
implemented six such model extractors, which Section 3.2
presents in detail.

3.1.1 Hooks
The TreeFuzz framework provides a set of hooks for imple-
menting model extractors. The hooks are designed to sup-
port single-traversal models, i.e., the hooks are called during
a single traversal of each example in the learning phase and
during a single pass that creates new data during the gener-
ation phase. During the learning phase, TreeFuzz calls two
hooks:
• visitNode(node, context), which enables model ex-

tractors to visit each node of each tree in the corpus once,
and

• finalizeLearning(), which enables model extractors to
summarize knowledge extracted while visiting nodes.

During the generation phase, TreeFuzz calls three hooks:
• startTree(), which notifies model extractors that a new

tree is going to be generated, enabling them to reset any
tree-specific state,

• pickNodeLabel(node, context, candidates), which asks
model extractors to recommend a label for a newly cre-
ated node,

• pickEdgeLabel(node, context, candidates), which asks
model extractors to recommend a label for the edge that
is going to be generated next, and

• haveP ickedNodeLabel(node, context), which notifies
model extractors that a particular node label has been
selected.

The context is the path of nodes and edges that lead from the
tree’s root node to the current node.

4 2016/11/21

Algorithm 1 Learning phase.
Input: Set T of trees.
Output: Probabilistic, generative models.

1: for all t ∈ T do
2: n← root(t)
3: c← initialize context with n
4: visitNode(n, c)
5: while c is not empty do
6: if visited all e ∈ outgoing(n) then
7: remove n from c
8: else
9: e← next not yet visited edge ∈ outgoing(n)

10: n← dest(e)
11: expand c with e and n
12: visitNode(n, c)
13: finalizeLearning()

One important insight of this paper is that this simple
API is sufficient to infer probabilistic models that enable
generating trees suitable for effective fuzz testing.

3.1.2 Learning
To infer probabilistic, generative models that describe

properties of the given set of trees, TreeFuzz traverses all
trees while calling the hooks implemented by the model ex-
tractors. Algorithm 1 summarizes the learning phase. The
algorithm traverses each tree in a top-down, depth-first man-
ner and calls the visitNode hook for each node. During
the traversal, the algorithm maintains the context of the cur-
rently visited node. After visiting all trees, the algorithm
calls finalizeLearning to let model extractors summarize
and store their extracted knowledge. Section 3.2 describes
the model extractors in detail.

3.1.3 Generation
Based on the inferred models, which probabilistically de-

scribe properties of the trees in the corpus, TreeFuzz gen-
erates new trees that comply with these inferred properties.
Algorithm 2 summarizes the generation phase of TreeFuzz.
Trees are created in a top-down, depth-first manner while
querying models about the labels a node should have, how
many outgoing edges a node should have, and how to label
these edges. The algorithm maintains a work list of nodes
that need to be expanded. For each such node, the algorithm
calls the pickNodeLabel function of all models and repeat-
edly calls the pickEdgeLabel function to determine the out-
going edges of the node. For each newly created outgoing
edge, the algorithm creates an empty destination node and
adds it to the work list. The algorithm has completed a tree
when the work list becomes empty. Once a tree is completed,
the algorithm adds it to the set G of generated trees.

Because models may continuously recommend to create
additional outgoing edges, generating a tree may not termi-
nate. To address this problem and to bound the size of gener-

Algorithm 2 Generation phase.
Input: Probabilistic, generative models.
Output: Set G of generated trees.

1: while |G| < maxTrees do
2: startTree()
3: nroot ← new node
4: c← initialize context with nroot
5: N ← empty stack B work list of nodes to expand
6: N.push([nroot, c])
7: while |N | > 0 do
8: [n, c]← N.pop()
9: pickNodeLabel(n, c)

10: le ← pickEdgeLabel(n, c)
11: while le 6= undefined do
12: add new edge with label le to outgoing(n)
13: le ← pickEdgeLabel(n, c)
14: for all e ∈ outgoing(n) do
15: ndest ← new node
16: dest(e)← ndest
17: cdest ← expand c with e and ndest
18: insert [ndest, cdest] into N
19: if |reachableNodes(nroot)| > θ then
20: discard tree and continue with main loop
21: G ← G ∪ {nroot}

ated trees, the algorithm checks (line 19) whether the current
tree’s total number of nodes exceeds a configurable thresh-
old θ (default: 1,000) and discards the tree in this case.

The approach described so far provides a generic frame-
work for inferring properties from a corpus of trees and for
generating new trees based on these properties. The follow-
ing section fills this generic framework with life by present-
ing a set of model extractors that are applicable across differ-
ent kinds of data formats, such as JavaScript programs and
HTML documents.

3.2 Model Extractors
To support a wide range of properties of data formats, Tree-
Fuzz uses an extensible set of model extractors. Each model
extractor implements the hooks from Section 3.1.1 to learn
a model from the corpus and to make recommendations for
generating new trees. The following explains six model ex-
tractors. They are sorted roughly by increasing conceptual
complexity, starting from simple model extractors that learn
PCFG-like properties and ending with model extractors that
encode properties out of reach for PCFGs. Section 3.3 ex-
plains how TreeFuzz reconciles the recommendations made
by different model extractors.

3.2.1 Determining the Root Node
Every generated tree needs a root node. This model extractor
infers from the corpus which label root nodes typically have.
During learning, the extractor builds a map Mroot that as-

5 2016/11/21

signs a label to the number of occurrences of the label in
a root node. During generation, the model is used to rec-
ommend a label for the root node: When Algorithm 2 calls
pickNodeLabel with a context that only contains the cur-
rent node (i.e., a root node), the model picks a label from the
domain dom(Mroot) of the map, where the probability to
pick a particular label n is proportional toMroot(n).

For the example in Figure 1(b),Mroot = {Program 7→
1}. When generating a new tree, the approach will recom-
mend the label Program for every root node.

3.2.2 Determining Outgoing Edges
The following model extractor infers the set of edges that
a particular node label n should have, and uses this knowl-
edge to suggest edge labels during the generation of trees.
To this end, the approach maintains two maps. The map
MedgeExists assigns to an edge label e the probability that n
has at least one outgoing edge e. The mapMedgeNb assigns
to an edge label e a probability mass function that describes
how many outgoing edges e the node n typically has.

Learning To construct these two maps, the model extrac-
tor implements the visitNode hook and stores, for each vis-
ited node, the label of the node and the label of its outgoing
edges, as well as how many outgoing edges with a particu-
lar label the node has. After all trees have been visited, the
model extractor uses the finalizeLearning hook to sum-
marize the extracted facts into the maps MedgeExists and
MedgeNb.

For the example in Figure 1(b), the model extractor infers
the following maps for node BlockStmt:
•MedgeExists = {body 7→ 1.0} because eachBlockStmt

has at least one outgoing edge labeled “body”.
•MedgeNb maps body to the probability mass function

fedgeNb(k) =

 0.5 for k = 2
0.5 for k = 3
0 otherwise

because 50% of all block statements have two outgoing
body edges and the other 50% have three outgoing body
edges.

Generation The inferred mapsMedgeExists andMedgeNb

are used by the pickEdgeLabel hook to steer the generation
of edges. At the first invocation of pickEdgeLabel for a par-
ticular node, a list of outgoing edges are pre-computed based
on the probabilities stored in these maps. At the first and all
subsequent invocations of pickEdgeLabel for a particular
node, the model returns edge labels from this pre-computed
list until each such label has been returned once. Afterwards,
the model returns undefined to indicate that no more edges
should be created.

For the running example, suppose that the generation
algorithm has created a node BlockStmt. When it calls
pickEdgeLabel, the model will decide based onMedgeExists

that there needs to be at least one body edge, and based

on MedgeNb, that two such edges should be created. As a
result, it will return body for the first two invocations of
pickEdgeLabel and undefined afterwards.

3.2.3 Parent-based Selection of Child Nodes
Each generated node needs a label. During learning, the fol-
lowing model extractor reads the incoming edge and the par-
ent node from the context provided to pickNodeLabel and
keeps track of how often a node n is observed for a particular
edge-parent pair. This information is then summarized using
the finalizeLearning hook into a mapMchild that assigns
a probability mass function fchild to each edge-parent pair.

For the example in Figure 1(b), the model extractor infers
the following probability mass function for the edge-parent
pair (body,BlockStmt):

fchild(n) =


0.6 if n = ExprStmt
0.2 if n = FunctionDecl
0.2 if n = ReturnStmt
0 otherwise

During generation, the approach uses the inferred proba-
bilities to suggest a label for a node based on the incoming
edge and the parent of the node. For this purpose, the ap-
proach picks a node label according to the probability distri-
bution described by fchild.

The properties learned by the previous three model ex-
tractors are similar to those encoded in a PCFG. Existing
grammar-based fuzzing approaches, such as Csmith [49],
hard code the knowledge that these model extractors in-
fers. For example, the grammar encodes which outgoing
edges a particular kind of node may have, and a set of man-
ually tuned probabilities specifies how many statements a
typical function body has, how many arguments a typical
function call passes, and what kinds of statements typically
occur within a block statement. Instead, TreeFuzz infers this
knowledge from a corpus.

3.2.4 Ancestor-based Selection of Child Nodes
The model extractor in Section 3.2.3 infers the probability of
a node label based on the immediate ancestor of the current
node. While the immediate ancestor is a good default indica-
tor for which node to create next, it may not provide enough
context. For example, consider determining the destination
node of the value edge of a Lit node. Based on the parent
only, the generator would choose among all literals observed
in the corpus, ignoring the context in which a literal has been
observed, such as whether it is part of a logical expression
or an arithmetic expression.

To exploit such knowledge, we generalize the idea from
Section 3.2.3 by increasing the amount of context to consider
the k closest ancestor nodes and their connecting edges.
We call the sequence of labels of these edges and nodes
the ancestor sequence. For each such ancestor sequence,
the model extractor infers a probability mass function, as
described in Section 3.2.3, and uses this function during

6 2016/11/21

generation to suggest labels for newly created nodes. In
addition to the model extractor from Section 3.2.3, which
is equivalent to k = 1, we also use a model extractor that
considers the parent and grand-parent of the current node,
i.e., k = 2. Supporting larger values of k is straightforward,
but we have not found any need for a value of k > 2.

Since a grammar only encodes the immediate context of
each node, existing grammar-based approaches cannot ex-
press such ancestor-based constraints. To avoid creating syn-
tactically incorrect programs, Csmith uses built-in filters that
encode syntactic constraints not obvious from a grammar.
Instead TreeFuzz infers them from a corpus of examples.

3.2.5 Constraints on the Selection of Child Nodes
Tree structures often impose constraints on where in a tree a
particular node may appear. For example, consider an AST
node that represents a return statement. In the AST of a
syntactically valid program, such a node appears only as a
descendant of a node that represents a function. Enforcing
such constraints while generating trees is challenging yet
important to reduce the probability to generate invalid trees.

To address this challenge, this model extractor infers con-
straints of the following form:

Definition 2. An ancestor constraint (n,N) states that a
node labeled n must have at least one ancestor from the set
N = {nA1, . . . , nAk}.

Ancestor constraints are inferred in two steps. First, in
the visitNode hook, the approach stores for each node the
set of labels of all ancestors of the node, as provided by the
node’s context. Second, in the finalizeLearning hook, the
approach iterates over all observed node labels and checks
for each node label n whether all occurrences of n have
at least one ancestor from a set N of node labels. If such
a set N exists, then the approach infers a corresponding
ancestor constraint. Otherwise, the approach adds n to the
set Nunconstr of unconstrained node labels.

During generation, the approach uses the pickNodeLabel
hook to suggest a set of nodes that are valid in the current
context. This set is the union of two sets. First, the set of
all unconstrained nodes Nunconstr, because these nodes are
always valid. Second, the set of all nodes n that have an
ancestor constraint (n,N) where N has a non-empty inter-
section with the set of node labels in the current context.

3.2.6 Enforcing Repeated Subtrees
Complex trees sometimes contain repeated subtrees that re-
fer to the same concept. For example, consider an AST that
contains a function call and its matching function declara-
tion, such as the two subtrees ending with foo in Figure 1(b).
The Idf nodes of the call and the declaration have an iden-
tical subtree that specifies the name of the function. The fol-
lowing model extractor infers rules that specify which nodes
of a tree are likely to share an identical subtree.

Definition 3. An identical subtree rule states that if there
exists a subtree nA

eA−−→ nB
eb−→ x in the tree, then there also

exists a subtree nD
ed−→ nB

nb−→ y in the same tree so that
x = y.

The notation n e−→ n′ denotes that a node labeled n has an
outgoing edge labeled e whose destination is a node labeled
n′. For each rule, the approach infers the support, i.e., how
many instances of this rule have been observed, and the
confidence, i.e., how likely the right-hand side of the rule
holds given that the left-hand side of the rule holds.

For example, given the corpus of JavaScript programs
that we use in the evaluation, TreeFuzz infers that

CallExpr
callee−−−−→ Idf

name−−−→ x

implies
FunctionDecl

id−→ Idf
name−−−→ y

so that x = y with support 59,146 and confidence 61.7%.
This rule expresses that function calls are likely to have a
corresponding function declaration with the same function
name. The reasons for confidence being lower than 100%
are that functions can also be declared through a function
expression and that functions may be defined in other files.

Learning To infer identical subtree rules, the model ex-
tractors uses the visitNode and finalizeLearning hooks.
When visiting a node n with context ... → nA

eA−−→ nB
eB−−→

n, the approach stores the information that the suffix nB
eB−−→

n has been observed with the prefix ...→ nA
eA−−→. After vis-

iting all trees, the finalizeLearning hook summarizes the
stored information into identical subtree rules by considering
all suffixes that have been observed with more than one pre-
fix. The approach increments the support of a rule for each
node n for which the rule holds. To compute the confidence
of a rule, the approach divides rule’s support by the number
of times the left-hand side of the rule has been observed.

Generation During generation, the approach uses the in-
ferred identical subtree rules to suggest labels for nodes that
are at positions x and y (as in Definition 3) of a rule. To
this end, the approach maintains two maps. First, the map
MpathToLabels associates to a subtree nD

eD−−→ nB
eB−−→ the

set of labels x that have already been used to label the des-
tination node of eB . Second, the map MpathToLabelTodos

associates with a subtree nD
eD−−→ nB

eB−−→ the set of labels
that the generator still needs to assign to a destination node
of eB to comply with a identical subtree rule. Whenever
the haveP ickedNodeLabel hook is called, the approach
checks if the current context matches any of the inferred
rules. If the current node matches the left-hand side of a rule,
then the approach decides with a probability equal to the
rule’s confidence that the right-hand side of the rule should
also be true. IfMpathToLabels indicates that the right-hand
side is not yet fulfilled, then the approach adds an entry to
MpathToLabelTodos. Whenever the pickNodelLabel hook

7 2016/11/21

is called, the approach checks whether the current context
matches an entry in MpathToLabelTodos. If it does, the ap-
proach fulfills the rule by suggesting the required label.

The last three model extractors show that single-traversal
models can express rather complex rules and constraints that
go beyond grammar-based approaches. Existing approaches,
such as Csmith, hard code such constraints into their ap-
proach. For example, if Csmith generates a function call, it
checks whether there is any matching function definition,
and otherwise, generates such a function definition. Tree-
Fuzz provides a general framework that allows for imple-
menting a wide range of models beyond the six that we de-
scribe here.

3.3 Combining Multiple Model Extractors
When Algorithms 1 and 2 call a hook function, they call the
function for each available model extractor. In particular, this
means that multiple model extractors may propose different
labels during the generation of trees. For example, suppose
that while generating a tree, the generation algorithm must
decide on the label of a newly created node. One model
extractor, e.g., the one from Section 3.2.5, may restrict the
set of available node labels to a subset of all nodes, and
another model extractor, e.g., the one from Section 3.2.3
may pick one of the labels in the subset. Furthermore, when
multiple model extractors provide contradicting suggestions,
then the generation algorithm must decide on a single label.

To reconcile the suggestions by different model extrac-
tors, TreeFuzz requires to specify an order of precedence
while querying the model extractors during generation. Each
model extractor obtains the set of label candidates from the
already queried extractors and returns another set of candi-
dates which must be a subset of the input set, i.e., a model
extractor can only select from the set of already pre-selected
candidates. If, after querying all model extractors, the set of
label candidates is non-empty, the generator randomly picks
one of the candidates. If the set of candidates is empty, the
generator falls back on a random default strategy, which sets
node labels to the empty string and suggests to create an-
other edge with an empty label with a configurable proba-
bility (default: 10%). During our evaluation, when using all
model extractors described in this section, the set of candi-
dates is practically never empty.

For the evaluation, we use the model extractors described
in this section in the following order of precedence (high
to low): Constraints on the selection child nodes, determin-
ing the root node, enforcing repeated subtrees, determining
outgoing edges, ancestor-based selection of child nodes, and
parent-based selection of child nodes.

4. Fuzz Testing
This section presents how to use TreeFuzz-generated data as
inputs for fuzz testing. We consider two data formats: pro-
grams in the JavaScript programming language (Section 4.1)

and documents in the web markup language HTML (Sec-
tion 4.2).

4.1 JavaScript Programs
TreeFuzz generates ASTs of JavaScript programs by learn-
ing from the ASTs of a set of example programs. Gener-
ated programs may serve as test input for program analyses,
refactoring tools, compilers, and other tools that process pro-
grams [23, 49]. We here use TreeFuzz-generated JavaScript
programs for differential testing across multiple browsers,
where the same program is executed in multiple browsers to
detect inconsistencies among the browsers.

Our differential testing technique classifies programs into
three categories: First, the behavior is consistent if there is
no observable difference across browsers, which may be be-
cause the program either crashes in all browsers or does not
crash all browsers. Second, the behavior is inconsistent if
we observe a difference across browsers. This may be ei-
ther because the program raises an exception in at least one
browser but does not crash in another browser, or because
the program crashes in all browsers but with different types
of error, such as TypeError and ReferenceError. To compare
errors with each other, we use the type of the thrown run-
time error, as specified in the language specification. Finally,
some programs are classified as non-deterministic because
the behavior of different executions in a single browser dif-
fers, which we check by executing each program twice.

4.2 HTML Documents
As another input format, we apply TreeFuzz to the hypertext
markup language HTML. Due to the popularity of HTML
documents, there are various tools that require HTML doc-
uments as their input, such as browsers, text editors, and
HTML processing tools. TreeFuzz generates inputs for these
tools based on a corpus of example HTML documents, with-
out requiring any explicitly given knowledge about the struc-
ture and content of HTML documents.

Since an HTML document consists of nested tags, there
is a natural translation from such documents to labeled, or-
dered trees. We represent each tag as a node, where the la-
bel represents the tag name, such as body and a. We rep-
resent nested tags through an edge between the parent and
the child. The label of this edge is childNode concatenated
with the label of the destination node. The reason for copy-
ing the destination’s label into the edge label is that other-
wise, most edges would have the generic label childNode,
which is not helpful in inferring the tree’s structure. We rep-
resent attributes of tags, such as id=’foo’, through child
nodes with label attribute. These nodes have two outgoing
edges, which point to the name and the value of the attribute,
e.g., id and foo.

5. Implementation
We implement the approach into a framework with an ex-
tensible set of model extractors. The implementation can be

8 2016/11/21

minimum median maximum

HTML

file size
(bytes) 39 77,604 703,327
number of

nodes 11 4,858 41,626

JS

file size
(bytes) 3 2,438 7,241,063
number of

nodes 0 262 1,045,978

Table 1. HTML and JS corpuses used for learning.

easily instantiated for different input formats because most
of the implementation of the framework and the model ex-
tractors is independent of the format. The JavaScript instan-
tiation builds upon an existing parser [2] and code genera-
tor [1] and adds less than 300 lines of JavaScript code to the
framework. The HTML instantiation builds upon an exist-
ing toolkit to parse and generate HTML documents [4] and
adds less than 200 lines of JavaScript code to the framework.
We implement differential testing as an HTTP server that
sends JavaScript programs to client code running in differ-
ent browsers, and that receives a summary of the programs’
runtime behavior from these clients.

6. Evaluation
6.1 Experimental Setup
Corpus We use a corpus of 100,000 JavaScript files from
GitHub [3]. For HTML, we visit the top 100 web sites
(according to the Alexa ranking) and store the HTML files of
their start page. Some sites appear multiple times in the top
100 list, e.g., google.com and google.co.in. We remove
all but one instance of such duplicates and obtain a corpus
of 79 unique HTML files. Table 1 summarizes the file size
and the number of nodes in the tree representations of the
corpuses.

Differential Cross-Browser Testing We instantiate the dif-
ferential testing technique described in Section 4.1 with
eight versions of the popular Firefox and Chrome browsers
released over a period of four years: Firefox 17, 25.0.1, 33.1,
44, and Chrome 23, 31, 39, and 48.

All performance-related experiments are carried out on an
Intel Core i7-4790 CPU (3.60GHz) machine with 32GB of
memory running Ubuntu 14.04. We use Node.js 6.5 and
provide it with 11GB of memory.

6.2 Validity of Generated Trees
TreeFuzz generates trees that are intended to comply with
an input format without any a priori knowledge about this
format. To assess how effective the approach is in achieving
this goal, we measure the percentage of generated trees that
pass language-specific validity checks.

JavaScript To measure whether a generated JavaScript
program is valid, we pretty print it and parse it again. If
the pretty printer rejects the tree or if the parser rejects the
generated program, then we consider the program as syntac-
tically invalid. 96.3% of 100,000 generated trees represent
syntactically valid JavaScript programs. Furthermore, 14.4%
of the syntactically valid programs execute without causing
any runtime error.

HTML To measure the validity of generated HTML doc-
uments, we use the W3C markup validator [6]. In practice,
most HTML pages are not fully compatible with the W3C
standards and therefore cause validation errors. As a mea-
sure of how valid an HTML document is, we compute the
number of validation errors per kilobyte of HTML.

The generated HTML documents have 2.06 validation er-
rors per kilobyte. As a point of reference, the corpus docu-
ments contain 0.59 validation errors per kilobyte. That is,
the generated documents have a slightly higher number of
errors, but overall, represent mostly valid HTML. We con-
clude that TreeFuzz effectively generates HTML documents
that mostly comply with W3C standards, without any a pri-
ori knowledge of HTML.

To the best of our knowledge, there is no existing approach
based on a learned, probabilistic language models that gen-
erates entire programs with so few mistakes.

6.3 Influence of Corpus Size on Validity and
Performance

Influence of Corpus Size on Validity To be effective, sta-
tistical learning approaches often need large amounts of
training data. We evaluate the influence of the corpus size on
the validity of TreeFuzz-generated programs. We measure
the percentage of syntactically correct generated JavaScript
programs while learning from a varying corpus size rang-
ing from 10 to 100,000. We observe that the percentages
vary between 96% and 98%, i.e., most generated programs
are syntactically correct independent of the corpus size. We
conclude from the results that the size of the corpus does
not have a significant influence on the validity of the gener-
ated trees, suggesting that TreeFuzz is useful even when few
examples are available.

Performance and scalability To enable TreeFuzz to learn
from many examples and to generate large amounts of new
data, the performance and scalability of the approach is
crucial. Figure 2 shows how long the approach takes to learn
depending on the size of the corpus, and how long it takes
to generate 100 trees. The presented results are averages
over three repetitions to account for performance variations.
We observe that both learning and generation scales linearly
with the size of the corpus. The main reason for obtaining
linear scalability is that the approach focuses on single-
traversal models, which scale well to larger corpuses.

9 2016/11/21

google.com
google.co.in

10 100 1000 10000 100000

Corpus size

5

25

125

625

3125

Av
er

ag
e

tim
e

in
 se

co
nd

s learning
generation

Figure 2. Learning and generation time based on varying
corpus sizes. Both axes are log-scaled.

6.4 Effectiveness for Differential Testing
As an application of TreeFuzz-generated JavaScript pro-
grams, we evaluate the effectiveness for differential testing
(Section 4.1) in two ways. First, we quantitatively assess to
what extent the generated trees reveal inconsistencies. Sec-
ond, we present a set of inconsistencies that we discovered
during our experiments and discuss some of them in detail.

Quantitative Evaluation of Differential Testing The be-
havior of most programs (97.2%) is consistent across all en-
gines, which is unsurprising because consistency is the in-
tended behavior. For 0.22% of all programs, the behavior is
non-deterministic, i.e., two executions in the same browser
have different behaviors. Each of the remaining 2.5% of pro-
grams expose an inconsistency, i.e., achieves the ultimate
goal of differential testing. Given the little time required to
generate programs (Section 6.3), we conclude that TreeFuzz
is effective at generating programs suitable for differential
testing.

Qualitative Evaluation of Differential Testing To better
understand the detected inconsistencies, we manually in-
spect a subset of all inconsistencies. Table 2 lists ten rep-
resentative inconsistencies and associates them with three
kinds of root causes. First, browser bugs are inconsisten-
cies caused by a particular browser that does not implement
the specified behavior. Second, browser-specific behavior
are inconsistencies due to unspecified or non-standard fea-
tures that some but not all browsers provide, or because the
standards allow multiple different behaviors. Third, missing
revised-specification behavior refers to inconsistencies due
to features of not yet implemented revised specifications,
such as ECMAScript 6 and DOM4. The examples listed in
Table 2 show that TreeFuzz-generated JavaScript programs
are effective at revealing different kinds of inconsistencies
among browsers.

6.5 Comparison with Corpus and Other Approaches
We compare TreeFuzz to three alternatives approaches:
• The simple, grammar-based approach creates JavaScript

programs based on built-in knowledge about the gram-
mar of JavaScript’s abstract syntax trees [5]. The ap-

proach generates programs by starting from the top-level
AST node Program and by iteratively expanding nodes
according to the grammar. When expanding a parent node
by adding child nodes, each possible child node has the
same probability of getting selected.

• LangFuzz [23], the state of the art approach that is clos-
est to our work. Similar to TreeFuzz, it supports multi-
ple languages and exploits a corpus of examples. In con-
trast to our work, LangFuzz requires built-in knowledge
of the target language, such as which AST nodes repre-
sent identifiers and which built-in variables and keywords
exist. For example, LangFuzz uses knowledge to adapt
program fragments by modifying its identifier names.
During our experiments, LangFuzz suffered from severe
scalability problems when providing it with the full cor-
pus of 100,000 programs. One reason is that the imple-
mentation keeps all programs in memory. Because of
these problems, we provide it with 10,000 randomly sam-
pled subset of of the corpus programs.
The root cause of these memory issues is that Lang-
Fuzz combines fragments of existing programs with each
other. Our approach avoids such problems by learning a
probabilistic model of JavaScript code, instead of storing
concrete code fragments.

• The corpus-only approach uses the 100,000 corpus pro-
grams as an input, i.e., no new programs get generated.
The simple, grammar-based approach suffers from two

main limitations. First, it often fails to terminate because
expanding a grammar rule often leads to the same grammar
rule again. Second, most of the programs generated by the
approach are repeated occurrences of very short programs,
such as a program that defines only a single variable, or a
even an empty program. Because of these limitations of the
simple grammar-based approach, the rest of our comparison
focuses on the other two approaches.

6.5.1 Comparison Based on Syntactical Differences
At first, we compare the approaches by syntactically com-
paring the programs that they provide. For this experiment,
we format all programs consistently and remove all com-
ments. We compare the programs generated by TreeFuzz
and by LangFuzz with the programs in the corpus to assess
whether any generated programs are syntactically equal to a
corpus program. 241 of the 100,000 programs generated by
LangFuzz are such duplicates, whereas only one of 100,000
TreeFuzz-generated programs is also present in the corpus.
We conclude that TreeFuzz is effective at creating a large
number of syntactically diverse programs.

The effectiveness of generated programs for fuzz testing
partly depends on whether the programs are syntactically
correct. The reason is that syntactically incorrect programs
are typically rejected by an early phase of the JavaScript en-
gine and therefore cannot reach any code beyond that phase.
Figure 3 shows for each of the three approaches the percent-

10 2016/11/21

ID Inconsistent browsers Description Root cause

1 Firefox vs. Chrome Mozilla bug #585536: Function declared in block statement
should get hoisted to top of block.

Browser bug

2 Firefox 17 and 25 vs. others Mozilla bug #597887: Calling setTimeout with an illegal argu-
ment causes runtime error.

Browser bug

3 Firefox 44 vs. others Mozilla bug #1231139: TypeError is thrown even though it
should be SyntaxError.

Browser bug

4 Firefox 17 and 25 vs. others Mozilla bug #409444: The type of window.constructor is
“object” in some browsers and “function” in others.

Browser bug

5 Firefox vs. Chrome Only Firefox provides window.content property. Browser-specific behavior
6 Firefox 44, Chrome 23, and

Chrome 31 vs. others
Some browsers throw an exception when calling scrollBy with-
out arguments.

Browser-specific behavior

7 Firefox vs. Chrome event is a global variable in Chrome but not in Firefox. Browser-specific behavior
8 Chrome 23 vs. others Some browsers throw an exception when calling setTimeout

without arguments.
Browser-specific behavior

9 Firefox 25–44 vs. others Some browsers throw an exception when redirecting to a mal-
formed URI.

Browser-specific behavior

10 Firefox 17–33 vs. others Call of Int8Array() without mandatory new keyword, as re-
quired by ECMAScript 6.

Missing revised-specification behavior

Table 2. Examples of inconsistencies found through differential testing with TreeFuzz-generated programs.

0 20 40 60 80 100
Percentage of syntactically correct programs

Corpus

LangFuzz

TreeFuzz

Figure 3. TreeFuzz compared to corpus and LangFuzz.

age of syntactically correct programs among all generated
programs. For TreeFuzz and the corpus programs, the per-
centage is 96.3% and 97.0%, respectively. The fact that both
values are similar confirms that TreeFuzz effectively learns
from the given corpus. In contrast, only 78.4% of the pro-
grams generated by LangFuzz are syntactically correct.

6.5.2 Comparison Based on Differential Testing
To compare the programs generated by the different ap-
proaches beyond their syntax, we compare what kinds of in-
consistencies the programs find when being used for differ-
ential testing. Since inspecting thousands of inconsistencies
manually is practically infeasible, we assign inconsistencies
to equivalence classes based on how an inconsistency mani-
fests. These equivalence classes are an approximation of the
actual root cause that triggers an inconsistency.

To compute the equivalence class of a program, we sum-
marize the behavior of this program in a particular browser
into a single string, such as “okay” for a non-crashing pro-
gram and “ReferenceError” or “TypeError” for a crashing
program. Based on these summaries, we compute a tuple
(b1, . . . , bn) of strings for each program, where each bi is
the summary from a particular browser. Two inconsistencies
belong to the same equivalence class if and only if they share
the same tuple. For example, two programs that both throw

87 2815

80

46 16
26

Corpus

TreeFuzz

LangFuzz

Figure 4. Equivalence classes of inconsistencies found by
the three approaches.

a “TypeError” in all versions of Chrome but do not crash in
any version of Firefox belong to the same equivalence class.

Figure 4 summarizes the results of the comparison. The
figure shows for each approach how many equivalence
classes of inconsistencies the approach detects, and how
many equivalence classes are shared by multiple approaches.
The results show that the three approaches are complemen-
tary to each other. Even though there is an overlap of 26
equivalence classes found by all three approaches, each in-
dividual approach contributes a set of otherwise missed in-
consistencies. In particular, TreeFuzz detects 28 otherwise
missed classes of inconsistencies.

Since Figure 4 is based on coarse-grained equivalence
classes, the number of unique inconsistencies found by each
approach is an underapproximation. To understand to what
extent this abstraction underapproximates the number of
unique root causes of inconsistencies that TreeFuzz finds,
we manually inspect a sample of programs. Specifically,
we randomly sample ten equivalence classes found by both
TreeFuzz and an alternative approach, and inspect for each

11 2016/11/21

class one program generated by TreeFuzz and one program
generated by the other approach. The median of the number
of programs in an equivalence class is one for corpus-only,
TreeFuzz and two for LangFuzz. The goal of this manual in-
spection is to determine whether the inconsistencies exposed
by the two programs are due to the same root cause.

In the pairs of programs inspected for the overlap be-
tween TreeFuzz and LangFuzz, we find for seven out of ten
program pairs, the two have different root causes. Likewise,
for the overlap between TreeFuzz and the corpus-only ap-
proach, the programs in eight out of ten pairs have different
root causes. We conclude from these results that our equiva-
lence classes are coarse-grained, i.e., Figure 4 is likely to be
a strong underapproximation of the number of root causes
exposed by the individual approaches.

7. Related work
Fuzz Testing Fuzz testing has been used to test UNIX util-
ities [34], compilers [49], runtime engines [18, 23], refactor-
ing engines [16], other kinds of applications [20], and to find
and exploit security vulnerabilities [28, 39, 45]. Blackbox
fuzz testing either starts from existing data or generates new
data based on a model that describes the required data for-
mat. For complex input formats, the model-based approach
has the advantage that it avoids producing input data that
is immediately rejected by the program. However, several
authors mention the difficulties of creating an appropriate
model for a particular target language [23, 39, 49], e.g., say-
ing that “HTML is a good example of a complex file format
for which it would be difficult to create a generator” [39].
Our work addresses this problem by inferring probabilistic,
generative models of the data format. Whitebox fuzz testing
analyzes the program under test to generate inputs that cover
not yet tested paths, e.g., using symbolic execution [20, 35],
concolic execution [19, 47], or taint analysis [17]. In con-
trast, TreeFuzz is independent of a particular program under
test and therefore trivially scales to complex programs.

Corpus Analysis and Statistical Models Based on the ob-
servation that source code can be treated similarly to nat-
ural language documents [22], several statistical language
models for programs have been proposed, e.g., based on
n-grams [7, 9, 38], graphs [37, 42] and recurrent neural
networks [43]. These models are useful for code comple-
tion [9, 22, 37, 38, 43], plagiarism detection [24], and to in-
fer appropriate identifier names [7, 42]. Our work differs by
learning probabilistic models that create entire programs and
by being applicable to data beyond programs.

PHOG [10] and Deep3 [41] learn a model to predict how
to complete existing data, e.g., for code completion. They
pick the model depending on the context of the prediction
and automatically synthesize a function that extracts this
context. For performance reasons, PHOG and Deep3 limit
the search space of the synthesis, e.g., by not synthesizing
functions with loops. As a result, these approaches cannot

express some of the model extractors supported by Tree-
Fuzz, such as ancestor constraints (Section 3.2.5) and identi-
cal subtree rules (Section 3.2.6). Furthermore, TreeFuzz dif-
fers from PHOG and Deep3 by applying probabilistic mod-
els to fuzz testing, which requires to create data from scratch
instead of predicting how to complete existing data.

Maddison and Tarlow propose a machine learning tech-
nique to generate “natural” source code [32]. TreeFuzz dif-
fers from their work by automatically inferring a generative
model, instead of creating it by hand. Moreover, we eval-
uate the usefulness of generated programs and show that
our approach applies to tree data other than programs. Our
work also relates to other corpus-based analyses, e.g., to find
anomalies that correspond to bugs [36], for code comple-
tion [12], to recommend API usages [50], for plagiarism de-
tection [31, 46], and to find copy-paste bugs [29].

Testing Compilers and Runtime Engines Various efforts
have been invested to test and validate compilers and runtime
engines, starting from work in the 1960s [44], 1970s [21,
40], and 1990s [13, 33]. Several surveys [11, 25] provide
an overview of older approaches. More recent work includes
the Csmith approach for generating C programs for differen-
tial testing [49] and other random-based program generation
techniques [30]. Instead of hard coding a model of the target
language into the approach, TreeFuzz infers models from a
corpus. Other work proposes oracles to determine whether
a program exposes a bug in the compiler or execution en-
gine [26, 27, 48] and on ranking generated programs [15].
Chen et al. empirically compare different compiler testing
approaches [14]. Section 6.5 compares the JavaScript instan-
tiation of TreeFuzz with a state of the art approach for gen-
erating JavaScript programs [23].

8. Conclusion
We present TreeFuzz, a language-independent, blackbox
fuzz testing approach that generates tree-structured data.
The core idea is to infer from a corpus of example data a
set of probabilistic, generative models, which then create
new data that has properties similar to the corpus. The ap-
proach does not require any a priori knowledge of the format
of the generated data, but instead infers syntactic and seman-
tic properties of the format. TreeFuzz supports an extensible
set of single-pass models, enabling it to learn a wide range
of properties of the data format. We apply the approach to
two different data formats, a programming language and a
markup language, and show that TreeFuzz generates data
that is mostly valid and effective for detecting bugs through
fuzz testing. Being easily applicable to any kind of tree-
structured data, we believe that TreeFuzz can serve as a ba-
sis for various avenues for future work, e.g., generating input
data for security testing and differential testing of program
analysis tools.

12 2016/11/21

References
[1] Escodegen ecmascript code generator. https://github.

com/estools/escodegen. Accessed: 1-Nov-2016.

[2] Esprima parsing infrastructure for multipurpose analysis.
http://esprima.org. Accessed: 1-Nov-2016.

[3] Learning from Big Code datasets. http://learnbigcode.
github.io/datasets/. Accessed: 1-Nov-2016.

[4] parse5: whatwg html5 specification-compliant, fast and ready
for production html parsing/serialization toolset for node.js.
https://github.com/inikulin/parse5. Accessed: 1-
Nov-2016.

[5] The ESTree specification. https://github.com/estree/
estree/blob/master/es2015.md. Accessed: 1-Nov-2016.

[6] W3C markup validation service. https://validator.w3.
org/. Accessed: 1-Nov-2016.

[7] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton. Learning
natural coding conventions. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, pages 281–293, 2014.

[8] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton. Sug-
gesting accurate method and class names. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 38–49, 2015.

[9] M. Allamanis and C. A. Sutton. Mining source code reposito-
ries at massive scale using language modeling. In Proceedings
of the 10th Working Conference on Mining Software Reposi-
tories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013,
pages 207–216, 2013.

[10] P. Bielik, V. Raychev, and M. T. Vechev. PHOG: probabilistic
model for code. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, pages 2933–2942, 2016.

[11] A. Boujarwah and K. Saleh. Compiler test case generation
methods: a survey and assessment. Information and Software
Technology, 39(9):617 – 625, 1997.

[12] M. Bruch, M. Monperrus, and M. Mezini. Learning from ex-
amples to improve code completion systems. In European
Software Engineering Conference and International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE),
pages 213–222. ACM, 2009.

[13] C. Burgess and M. Saidi. The automatic generation of test
cases for optimizing fortran compilers. Information and Soft-
ware Technology, 38(2):111 – 119, 1996.

[14] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang,
and B. Xie. An empirical comparison of compiler testing
techniques. In ICSE, 2016.

[15] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In Conference on
Programming Language Design and Implementation (PLDI),
pages 197–208, 2013.

[16] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated test-
ing of refactoring engines. In European Software Engineer-
ing Conference and International Symposium on Foundations

of Software Engineering (ESEC/FSE), pages 185–194. ACM,
2007.

[17] V. Ganesh, T. Leek, and M. C. Rinard. Taint-based directed
whitebox fuzzing. In 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings, pages 474–484, 2009.

[18] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. In PLDI, volume 43, pages 206–215. ACM,
2008.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In Conference on Programming
Language Design and Implementation (PLDI), pages 213–
223. ACM, 2005.

[20] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
whitebox fuzz testing. In Network and Distributed System
Security Symposium (NDSS), 2008.

[21] K. V. Hanford. Automatic generation of test cases. IBM Syst.
J., 9(4):242–257, Dec. 1970.

[22] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu. On
the naturalness of software. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland, pages 837–847, 2012.

[23] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code frag-
ments. In Proceedings of the 21st USENIX Conference on Se-
curity Symposium, Security’12, pages 38–38, Berkeley, CA,
USA, 2012. USENIX Association.

[24] C. Hsiao, M. J. Cafarella, and S. Narayanasamy. Using web
corpus statistics for program analysis. In Proceedings of
the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-
24, 2014, pages 49–65, 2014.

[25] A. S. Kossatchev and M. A. Posypkin. Survey of compiler
testing methods. Program. Comput. Softw., 31(1):10–19, Jan.
2005.

[26] V. Le, M. Afshari, and Z. Su. Compiler validation via equiva-
lence modulo inputs. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 216–226, New York, NY,
USA, 2014. ACM.

[27] V. Le, C. Sun, and Z. Su. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2015, pages 386–399, New York, NY, USA,
2015. ACM.

[28] S. Lekies, B. Stock, and M. Johns. 25 million flows later:
large-scale detection of dom-based xss. In ACM Conference
on Computer and Communications Security, pages 1193–
1204, 2013.

[29] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: find-
ing copy-paste and related bugs in large-scale software code.
Software Engineering, IEEE Transactions on, 32(3):176–192,
March 2006.

[30] C. Lindig. Random testing of c calling conventions. In
Sixth International Symposium on Automated and Analysis-

13 2016/11/21

https://github.com/estools/escodegen
https://github.com/estools/escodegen
http://esprima.org
http://learnbigcode.github.io/datasets/
http://learnbigcode.github.io/datasets/
https://github.com/inikulin/parse5
https://github.com/estree/estree/blob/master/es2015.md
https://github.com/estree/estree/blob/master/es2015.md
https://validator.w3.org/
https://validator.w3.org/

Driven Debugging (AADEBUG), pages 3–11. ACM Press,
Sept. 2005.

[31] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: Detection of
software plagiarism by program dependence graph analysis.
In Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’06,
pages 872–881, New York, NY, USA, 2006. ACM.

[32] C. J. Maddison and D. Tarlow. Structured generative models
of natural source code. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, pages 649–657, 2014.

[33] W. M. McKeeman. Differential testing for software. DIGITAL
TECHNICAL JOURNAL, 10(1):100–107, 1998.

[34] B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of unix utilities. Commun. ACM, 33(12):32–44,
Dec. 1990.

[35] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test gen-
eration to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th Conference on USENIX Security Sym-
posium, SSYM’09, pages 67–82, Berkeley, CA, USA, 2009.
USENIX Association.

[36] M. Monperrus, M. Bruch, and M. Mezini. Detecting missing
method calls in object-oriented software. In European Confer-
ence on Object-Oriented Programming (ECOOP), pages 2–
25. Springer, 2010.

[37] A. T. Nguyen and T. N. Nguyen. Graph-based statistical
language model for code. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1, pages 858–868, 2015.

[38] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.
A statistical semantic language model for source code. In
Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, ESEC/FSE’13, Saint Peters-
burg, Russian Federation, August 18-26, 2013, pages 532–
542, 2013.

[39] P. Oehlert. Violating assumptions with fuzzing. IEEE Security
& Privacy, 3(2):58–62, 2005.

[40] P. Purdom. A sentence generator for testing parsers. Bit
Numerical Mathematics, 12:366–375, 1972.

[41] V. Raychev, P. Bielik, and M. Vechev. Probabilistic model for
code with decision trees. In OOPSLA, 2016.

[42] V. Raychev, M. T. Vechev, and A. Krause. Predicting program
properties from ”big code”. In Principles of Programming
Languages (POPL), pages 111–124, 2015.

[43] V. Raychev, M. T. Vechev, and E. Yahav. Code completion
with statistical language models. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014,
page 44, 2014.

[44] R. L. Sauder. A general test data generator for cobol. In
Proceedings of the May 1-3, 1962, Spring Joint Computer
Conference, AIEE-IRE ’62 (Spring), pages 317–323, New
York, NY, USA, 1962. ACM.

[45] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnerabilities
in rich web applications. In NDSS, 2010.

[46] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. In Proceedings
of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’03, pages 76–85, New York, NY,
USA, 2003. ACM.

[47] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In European Software Engineering
Conference and International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 263–272. ACM,
2005.

[48] F. Sheridan. Practical testing of a c99 compiler using output
comparison. Softw. Pract. Exper., 37(14):1475–1488, Nov.
2007.

[49] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 283–294, 2011.

[50] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Min-
ing and recommending API usage patterns. In European Con-
ference on Object-Oriented Programming (ECOOP), pages
318–343, 2009.

14 2016/11/21

