
NL2Type: Inferring JavaScript Function Types from
Natural Language Information

Rabee Sohail Malik
TU Darmstadt,

Germany
sohail.rabee@gmail.com

Jibesh Patra
TU Darmstadt,

Germany
jibesh.patra@gmail.com

Michael Pradel
TU Darmstadt,

Germany
michael@binaervarianz.de

Abstract—JavaScript is dynamically typed and hence lacks the
type safety of statically typed languages, leading to suboptimal
IDE support, difficult to understand APIs, and unexpected run-
time behavior. Several gradual type systems have been proposed,
e.g., Flow and TypeScript, but they rely on developers to annotate
code with types. This paper presents NL2Type, a learning-based
approach for predicting likely type signatures of JavaScript
functions. The key idea is to exploit natural language information
in source code, such as comments, function names, and parameter
names, a rich source of knowledge that is typically ignored
by type inference algorithms. We formulate the problem of
predicting types as a classification problem and train a recurrent,
LSTM-based neural model that, after learning from an annotated
code base, predicts function types for unannotated code. We
evaluate the approach with a corpus of 162,673 JavaScript
files from real-world projects. NL2Type predicts types with a
precision of 84.1% and a recall of 78.9% when considering only
the top-most suggestion, and with a precision of 95.5% and a
recall of 89.6% when considering the top-5 suggestions. The
approach outperforms both JSNice, a state-of-the-art approach
that analyzes implementations of functions instead of natural
language information, and DeepTyper, a recent type prediction
approach that is also based on deep learning. Beyond predicting
types, NL2Type serves as a consistency checker for existing
type annotations. We show that it discovers 39 inconsistencies
that deserve developer attention (from a manual analysis of 50
warnings), most of which are due to incorrect type annotations.

Index Terms—JavaScript, deep learning, type inference, com-
ments, identifiers

I. INTRODUCTION

JavaScript has become one of the most popular program-
ming languages. It is widely used not only for client-side web
applications but, e.g., also for server-side applications running
on Node.js [1], desktop applications running on Electron,
and mobile applications running in a web view. However,
unlike many other popular languages, such as Java and C++,
JavaScript is dynamically typed and does not require develop-
ers to specify types in their code.

While the lack of type annotations allows for fast proto-
typing, it has significant drawbacks once a project grows and
matures. One drawback is that modern IDEs for other lan-
guages heavily rely on types to make helpful suggestions for
completing partial code. For example, when accessing the field
of an object in a Java IDE, code completion suggests suitable
field names based on the object’s type. In contrast, JavaScript

/** Calculates the area of a rectangle.

* @param {number} length The length of the rectangle.

* @param {number} breadth The breadth of the rectangle.

* @returns {number} The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {
return length * breadth;

}

Fig. 1: Function with JSDoc annotations. The annotations
include comments, parameter types, and the return type.

IDEs often fail to make accurate suggestions because the types
of the code elements are unknown. Another drawback is that
APIs become unnecessarily hard to understand, sometimes
forcing developers to guess what types of values a function
expects or returns. Finally, type errors that would be detected
at compile time in other languages may remain unnoticed in
JavaScript, which causes unexpected runtime behavior.

To mitigate the lack of types in JavaScript, several solutions
have been proposed. In particular, gradual type systems, such
as Flow [2] developed by Facebook and TypeScript [3] devel-
oped by Microsoft, use a combination of developer-provided
type annotations and type inference to statically detect type
errors. A popular format to express types in JavaScript are
JSDoc annotations. Figure 1 shows an example of such anno-
tations for a simple JavaScript function. The main bottleneck
of these existing solutions is that they rely on developers to
provide type annotations, which remains a manual and time-
consuming [4] task.

Previous work has addressed the type inference problem
through static analyses of code [5]–[8]. Unfortunately, the
highly dynamic nature of languages like JavaScript prevent
these approaches from being accurate enough in practice. In
particular, analyses that aim for sound type inference yield
various spurious warnings.

This paper addresses the type inference problem from a
new angle by exploiting a valuable source of knowledge that
is often overlooked by program analyses: the natural language
information embedded in source code. We present NL2Type,
a learning-based approach that uses the names of functions
and formal parameters, as well as comments associated with
them, to predict a likely type signature of a function. Type
signature here means the types of function parameters and the

return type of the function, e.g., expressed via @param and
@return in Figure 1. We formulate the type inference task
as a classification problem and show how to use an LSTM-
based recurrent neural network to address it effectively and
efficiently. The approach trains the machine learning model
based on a corpus of type-annotated functions, and then
predicts types for previously unseen code.

There are four reasons why NL2Type works well in prac-
tice. First, developers use identifier names and comments to
communicate the semantics of code. As a result, most human-
written code contains meaningful natural language elements,
which provide a rich source of knowledge. Second, source
code has been found to be repetitive and predictable, even
across different developers and projects [9]. Third, probabilis-
tic models, such as the deep learning model used by NL2Type,
are a great fit to handle the inherently fuzzy natural language
information [10]. Finally, our work benefits from the fact that
some developers annotate their JavaScript code with types,
giving NL2Type sufficient data to learn from.

We are aware of two existing approaches, JSNice [15] and
DeepTyper [16], that also use machine learning to predict
types in JavaScript. JSNice analyzes the structure of code,
in particular relationships between program elements, to infer
types. Instead, we consider natural language information,
which allows NL2Type to make predictions even for functions
with very little code. Moreover, our approach is language-
independent, as it does not depend on a language-specific
analysis to extract relations between program elements. Deep-
Typer uses a sequence-to-sequence neural network to predict
a sequence of types from a sequence of tokens. Similar to us,
they also consider some natural language elements of the code.
However, their approach considers only identifier names, not
comments, missing a valuable source of type hints, and they
frame the problem as sequence-to-sequence translation, while
we frame it as a classification problem.

We envision NL2Type to be valuable in several usage sce-
narios. For code that does not yet have formal type annotations,
the approach serves as an assistance tool that suggests types to
reduce the manual annotation effort. For code that already has
type annotations, NL2Type checks for inconsistencies between
these annotations and natural language information, which
exposes incorrect annotations, misleading identifier names, and
confusing comments. Another usage scenario is improving
type-related IDE features, such as code completion or refac-
toring, for code that does not have any type annotations.

We evaluate NL2Type with 162,673 JavaScript files from
open-source projects. After learning from a subset of these
files, the approach predicts types in the remaining files with
a precision of 84.1% and a recall of 78.9%, giving an F1-
score of 81.4%. When considering the top-5 suggested types,
precision and recall even increase to 95.5% and 89.6%, re-
spectively. Comparing our approach to JSNice [15] and Deep-
Typer [16], we find that NL2Type significantly outperforms
both approaches. When combining NL2Type with JSNice, we
find that 27.8% of all correctly predicted types are found
exclusively by NL2Type, showing that our approach not only

Data extraction

Preprocessing

Data representation

Neural network learning

NL2Type model

Corpus of
annotated
functions

New
function

Likely type
signature

NL information and types

Canonicalized NL and types

Vector prepresentations

Fig. 2: Overview of the approach.

improves upon, but also complements existing work. Beyond
predicting likely types for code where annotations are missing,
we use NL2Type to check for inconsistencies in existing type
annotations. We rank the reported inconsistency warnings by
the confidence of the prediction and manually inspect the top
50. 39 out of 50 warnings are valuable, in the sense that
developers should fix an incorrect type annotation or improve
a misleading natural language element in the code. Finally, the
approach is efficient enough for practical use. Training takes
93 minutes in total, and predicting types for a function takes
72ms, on average.

In summary, this paper contributes the following:
• The insight that natural language information is a valuable,

yet currently underused source of information for inferring
types in a dynamically typed language.

• A neural network-based machine learning model that ex-
ploits this insight to predict type annotations for JavaScript
functions.

• Empirical evidence that the approach is highly effective at
suggesting types and that it clearly outperforms state-of-
the-art approaches.

• Empirical evidence that the approach is effective at find-
ing inconsistencies between type annotations and natural
language elements, a problem not considered before.

II. LEARNING A MODEL TO PREDICT TYPES

This section describes NL2Type, our learning-based ap-
proach for predicting the type signatures of functions from
natural language information embedded in code. Figure 2 gives
an overview of the approach, which consists of two phases:
a learning phase, shown in blue in the top part of the figure,
which learns a neural model from a corpus of code with
type annotations, and a prediction phase, shown in gray in
the bottom part of the figure, which uses the learned model
to predict types for previously unseen code. To prepare the
given code for learning, a lightweight static analysis extracts
natural language and type data (Section II-A) and preprocesses
these data using natural language processing techniques (Sec-
tion II-B). Section II-C describes how NL2Type transforms the
data into a representation that captures the semantic relations
between words, which is then fed into a neural network that

Extracted function data:
nf cf cr tr

getArea Calculates the area
of a rectangle.

The area of the rectangle
in meters. May also be
used for squares.

number

Preprocessed function data:
nf cf cr tr

get area calculate area rect-
angle

area rectangle meter
may also use square

number

Fig. 3: Example of data extraction and preprocessing.

learns to predict type signatures (Section II-D). Once the
model is trained, querying it with natural language information
extracted from a previously unseen function yields a likely
type signature for the function (Section II-E).

A. Data Extraction

The goal of the data extraction step is to gather natural
language information and type signatures associated with
functions. To this end, a lightweight static analysis visits each
function in the given corpus of code. We focus on functions
with JSDoc annotations, an annotation format that is widely
used to specify comments and types. For each JavaScript
function, the analysis extracts the following:

Definition 1 (Function data): For a given function f , the
extracted function data is a tuple (nf , cf , cr, tr, P) where

nf = name of the function f
cf = comment associated with f
cr = comment associated with return type of f
tr = return type of f
P = sequence of parameter data

The sequence P of parameter data is a sequence of tuples
(np, cp, tp) where

np = name of the formal parameter p
cp = comment associated with p
tp = type of p

For example, the upper table in Figure 3 shows the function
data extracted from the JavaScript code in Figure 1. We omit
the parameter data for space reasons.

B. Preprocessing

To prepare the natural language information extracted in
the previous step for effective learning, NL2Type automati-
cally preprocesses the function data using natural language
processing techniques. The goal of this step is to canonicalize
natural language words and to remove uninformative words.

At first, we tokenize all natural language data into words.
The approach tokenizes the extracted comments, cf , cr, and
cp, on the space character. For the extracted names of functions
and parameters, nf and np, we tokenize each name based on
the camel-case convention, which is the recommended naming
convention in JavaScript. For example, the name “getRectan-
gleArea” is tokenized into three words: “get”, “Rectangle”,

and “Area”. Beyond camel-case, other tokenization techniques
for identifier names [17] could be plugged into NL2Type.

After tokenization, the approach removes all punctuation,
except for periods, and converts all characters to lowercase.
By converting to lowercase, we reduce the vocabulary size
without losing much semantic information. The approach also
removes stopwords, i.e., words that appear in various contexts
and therefore do not add much information, such as “the” and
“a”. Finally, the approach lemmatizes all words, i.e., it reduces
the inflicted forms of a word, e.g., “running”, “runs”, “ran”,
to its base form, e.g., “run”.

For our running example in Figure 1, the lower table in
Figure 3 shows the function data after preprocessing.

C. Data Representation

To feed the extracted data into a machine learning model,
we need to represent it as vectors. The following describes our
vector representations of natural language words and of types.

1) Representing Natural Language Information: To enable
NL2Type to reason about the meaning of natural language
words, we build upon word embeddings, a popular technique
to map words into a continuous vector space. The key property
of embeddings is to preserve semantic similarities by mapping
words that have a similar meaning to similar vectors. For
example, assuming we map words into a 3-dimensional space,
then “nation” and “country” may have vectors [0.5, 0.9,−0.6]
and [0.5, 0.8,−0.7]. In practice, embeddings map words into
larger spaces; we use vectors of length 100 for our evaluation.

More formally, a word embedding is a map E : V → Rk

that assigns to each word w ∈ V in the vocabulary a k-
dimensional vector of real numbers. To learn word embed-
dings, NL2Type builds upon Word2Vec [18], which takes
a set S of sentences composed of words in V and learns
the embedding of a word w from the contexts in which w
occurs. Context here means the words preceding and following
w, where the number of context words to consider is a
configurable parameter (ten in our evaluation).

NL2Type learns two word embeddings: an embedding Ec

for words that occur in comments and an embeddings En for
words that occur in identifier names. The rationale for having
two instead of just one embedding is that identifier names tend
to contain more source code-specific jargon and abbreviations
than comments. To learn Ec, the set of sentences S consists
of all sequences of words in the preprocessed comments cf ,
cr, and cp. For example, for the word “rectangle” in the lower
table in Figure 3, the comments cf and cr give two sequences
of words in which “rectangle” occurs. For a larger corpus of
code, many more such sequences are available. Similarly, to
learn En, the set of sentences S consists of the sequences of
words in the preprocessed identifier names nf and np. For
both embeddings, we consider only words that occur at least
five times in the training data, to prevent the embedding from
overfitting to few contexts.

A possible alternative to learning word embeddings from
data extracted from a code corpus would be to use publicly
available, pre-trained embeddings, e.g., the Google News word

embeddings.1 However, such pre-trained embeddings are typi-
cally trained on sentences that use a different vocabulary than
that found in real-world JavaScript code or on sentences where
some words have a different meaning than in source code. For
example, words like “push” or “float” may have a different
meaning in a programming context than in common usage,
while other words, e.g., “int”, occur often in a programming
context but not at all in common usage.

2) Representing Types: In addition to the natural language
information, which is the input to NL2Type, we must also
represent the to-be-predicted types as vectors. Given the set
Tall of all types that occur either as a function return type tf
or as a parameter type tp in the training corpus, the approach
focuses on a subset T ⊆ Tall of frequently occurring types.
The reason for bounding the size of T is that types have a long-
tail distribution, i.e., a few types occur very frequently while
many other types occur only rarely (Section IV-F). Predicting
more frequent types covers a large percentage of all type
occurrences, whereas predicting less frequent types is more
difficult, as there is less data to learn from. For a specific
size |T |, we select the |T | − 1 most frequent types from Tall

and add an artificial type “other” that represent all other types
and that indicates that NL2Type cannot predict the type. The
size of T is a configuration parameter and we evaluate its
influence in Section IV-F. For the evaluation, we consider the
1,000 most common types, including the built-in types of the
JavaScript language, e.g., boolean and number, and custom
types, e.g., Graphics and Point3d.

Given the set T , we represent a type t ∈ T using a one-hot
vector, i.e., a vector of length |T |, where all elements are zero
except for one specific element set to one for each word. For
example, the type boolean may be represented by a vector
[0, 0, 1, , 0, .., 0] that consists of 999 zeros and a single one.

D. Training the Model

Based on the vector representations of natural language
information and types, NL2Type learns to predict the latter
from the former. We use a neural network-based machine
learning model for this purpose because neural networks have
been shown to be highly effective at reasoning about natural
language information. Specifically, we adopt a recurrent neural
network based on long short-term memory (LSTM) units.
Recurrent neural networks are well suited for ordered input
data, such as sequences of natural language words. LSTMs
are effective for data with both long-term and short-term de-
pendencies. They have been successfully applied to a number
of problems in natural language processing that are similar to
our classification problem, such as sentiment analysis, which
classifies texts into different categories [13], [14], [19]. The
following describes the data points used for training the model
and the architecture of the neural network.

1) Data Points: We transform the extracted and prepro-
cessed function data into a set of data points. Each data point
represents a single type and the natural language information

1https://code.google.com/archive/p/word2vec/

associated with it. We distinguish two kinds of data points,
one for return types and another for parameter types.

Definition 2 (Data points): A data point is a pair (N, t)
of natural language information N and a type t. Given the
function data (nf , cf , cr, tr, P) of a function, where P is a
sequence P = [(n1

p, c
1
p, t

1
p), .., (n

|P |
p , c

|P |
p , t

|P |
p)] of parameter

data, we have two kinds of data points:
1) One data point for the return type with:

N = (nf , cf , cr, n
1
p, .., n

|P |
p) and t = tr.

2) |P | data points for the parameter types with:
N = (ni

p, c
i
p) and t = tip.

For example, for the function in Figure 1, there are three
data points:
1) For the return type:

N = (area, calculate area rectangle, area rectangle meter
may also use square, length, breadth)

t = number
2) For the first parameter:

N = (length, length rectangle)
t = number

For the second parameter:
N = (breadth, breadth rectangle)
t = number

Given a set of data points (N, t), the task solved by the
neural network is to predict t from N . We train a single model
for both return types and parameter types because both tasks
are similar and it enables the model to learn from all available
data. To feed data points into the neural network, we transform
each data point into a sequence of input vectors and an output
vector, using the vector representations from Section II-C.
Intuitively, the input is the sequence of embeddings of words
in the natural language information N , and the output vector
is the vector representation of the type t.

To formally define the input vectors, consider a helper
function E∗ : w1, .., wl → Rl×k that takes a sequence of
l words, maps each word to a vector representation using
the embedding function E : w → Rk, and then yields the
sequence of these vectors. The embedding E refers to En

and Ec for names and comments, respectively, as described in
Section II-C. To ensure that all input vectors have the same
length l× k, no matter how many natural language words the
static analysis could extract from the source code, the helper
function E∗ truncates word sequences to a maximum length
and pads word sequences that are too short with zeros. We
discuss and evaluate the length limits in Section IV-F.

Based on this helper function, the input for a data point that
represents a return type is the following sequence of vectors
(where ◦ chains vectors into a sequence):

Kret ◦ E∗(cf) ◦ E∗(n1
p) ◦ ... ◦ E∗(n|P |p) ◦ E∗(nf) ◦ E∗(cr)

Likewise, the input for a data point that represents a parameter
type is the following sequence of vectors:

Kparam ◦ E∗(cp) ◦ Z ◦ ... ◦ Z ◦ E∗(np) ◦ E∗(cr)

The vectors Kret and Kparam are special marker vectors that
indicate to the network what kind of type to predict, i.e.,

E(w1)

E(wn)

 Hidden Layer

 Softmax Layer

LSTM
t1

t1 t2 tn

tn-1tn

E(w2)

LSTM LSTM

LSTM LSTM LSTM

Fig. 4: Architecture of neural network used in NL2Type.

whether the type is a return type or a parameter type. Making
the kind of type explicit enables the network to distinguish
between both kinds if necessary. The Z vectors are padding
vectors of zeros that we use to ensure that the input sequences
of return types and parameter types have the same length.
In addition to concatenating vectors, each ◦ also inserts a
vector of ones into the sequence, as a delimiter between the
different natural language elements, which helps the network
understand the structure of the data.

For instance, recall the three examples of data points given
above. The natural language part N of each of them is
transformed into a sequence of real-valued vectors based on
the embeddings of the natural language words in N . Due to
the padding, all three sequences have the same length.

2) Neural Network Architecture: Given the data points
described above, NL2Type learns a function m : Rx×k 7→ R|T |
where x is the total number of word embeddings in an input
sequence and |T | is the number of types we are trying to
predict. Using the length limits as set in our evaluation, the
network maps a sequence of x = 43 vectors of length k = 100
to a vector of length |T | = 1, 000.

To learn the function m, we use a bi-directional LSTM-
based recurrent neural network, as illustrated in Figure 4.
The network takes a sequence of Rk vectors, at each step
consumes one vector, and updates its internal state (represented
by the “LSTM” nodes). After consuming all the vectors for a
single data point, the network feeds the internal state through
a hidden layer to the output layer. The output layer uses the
softmax function, which yields a vector of real-valued numbers
in [0, 1] so that the sum of all numbers is equal to one. That
is, the output can be interpreted as a probability distribution.
During training, the backpropagation algorithm adapts the
weights of the network to minimize the error between the
predicted and the expected type.

E. Prediction

Once the model is sufficiently trained, it can predict the
types of previously unseen functions. To query the model
with a new function, we extract and preprocess all natural
language information associated with the function, and create
one sequence of input vectors for each type associated with
the function (i.e., one sequence for the return type and one
sequence for each parameter type). Then, each such input
sequence is given to the network, which yields a type vector

in R|T |. The type vector can be interpreted as a probabil-
ity distribution over the types in T . For example, suppose
that T = {number, boolean, function, other} and that the
predicted type vector is [0.6, 0.2, 0.1, 0.1]. We interpret this
prediction as a 60% probability that the type is “number”, 20%
that the type is “boolean”, 10% that the type is “function”, and
10% that the type is any other type. If the most likely type is
“other”, the network essentially says that it cannot predict a
suitable type for the given natural language information.

III. APPLICATIONS

The previous section describes a general model to predict
the return type and the parameter types of functions from natu-
ral language information. This model has several applications,
which we present in the following. All these applications query
NL2Type as described in Section II-E.

A. Suggesting Type Annotations

The perhaps most obvious application of NL2Type is to
support developers in the process of annotating code with
types by suggesting type annotations. Adding type annotations
to functions enables an effective use of type systems for
JavaScript, such as Flow and TypeScript, and it provides useful
API documentation. For the large number of functions in
legacy JavaScript code without type annotations, NL2Type
can suggest types during the annotation process. To this end,
the developer queries the model for each type and uses the
predicted type vector as a ranked list of type suggestions.

B. Improving Type-based IDE Features

IDEs use type information for making suggestions to de-
velopers, such as how to complete partial code. For example,
consider a developer that implements the body of a function
and wants to access a property of a parameter of this function.
Without type information, the IDE cannot make any accurate
suggestions about the property name. For example, the popular
WebStorm IDE will simply suggest an alphabetically ordered
list of all identifier names used in the current file. NL2Type
can improve these suggestions by probabilistically predicting
the parameter type of the function, which the IDE can then
use to prioritize the suggested property names.

C. Detecting Inconsistencies

In addition to predicting types for functions that are not yet
type-annotated, NL2Type can check existing type annotations
for inconsistencies. In this scenario, the approach checks
whether the natural language information associated with a
type matches the annotated type. Finding mismatches is useful
for fixing broken type annotations, for changing misleading
identifier names, and for improving confusing comments.

Given an annotated function type, we query the NL2Type
model with the natural language information associated with
the type and compare the type predicted as the most likely
with the actual type. To avoid overwhelming developers with
spurious inconsistencies, the approach ranks all inconsistencies
by how certain the model is in its prediction. One possible

ranking approach would be to consider the predicted type
vectors and to rank inconsistencies by the highest probability
in each vector. For example, suppose the type vector is
[0.9, 0.025, 0.025, 0.05] but the type represented by the first
element does not match the annotated type. Based on the type
vector, the model appears to be very certain of its prediction
and we would rank this inconsistency high. Unfortunately, this
naive ranking approach does not work well in practice because
neural networks tend to be too confident in their predictions.
The underlying reason, as shown by Guo et al. [20], is that
for a softmax function over more than two classes, the output
of the softmax function is not a true probability distribution.

Instead of ranking inconsistencies by the highest value
in the type vector, we compute a more reliable estimate
of the network’s confidence [21]. The key idea is to use
dropout, i.e., to purposefully deactivate some neurons, during
prediction and to measure how much it influences the outcome
of the prediction. For every sequence of input vectors, we
query the model multiple times, each time deactivating some
probabilistically selected neurons, and record the predicted
type vectors. We then measure the variance of the type vectors
and consider a prediction with lower variance to be more
confident. Finally, we rank all potential inconsistencies by their
confidence and report the ranked list to the developer.

IV. EVALUATION

Our evaluation on real-world JavaScript code focuses on
the following research questions:
RQ1: How effective is NL2Type at predicting function type
signatures from natural language information?
RQ2: How does the approach compare to existing type
prediction techniques [15], [16]?
RQ3: How useful is NL2Type for detecting inconsistencies
in existing type annotations?
RQ4: What is the influence of hyperparameters, such as
the number |T | of considered types, on the effectiveness of
NL2Type?
RQ5: Is NL2Type efficient enough to be applied in practice?

Our implementation and data to reproduce our results are
available at https://github.com/sola-da/NL2Type.

A. Implementation

We implement NL2Type in Python based on several existing
tools and libraries. For the data extraction, the implementation
parses every JavaScript file using the JSDoc tool [22], which
extracts the comments, the function name, and the parameter
names of a function. The preprocessing, including removing
stopwords and lemmatization, is implemented based on the
Python NLTK library [23]. To convert natural language words
into embeddings, we use gensim’s Word2Vec module [24].
The neural network that predicts types from a sequence of
embeddings is implemented on top of Keras, a high-level deep
learning library, using TensorFlow as a backend [25].

TABLE I: Precision, recall, and F1-score as percentages of
NL2Type, with and without considering comments, and of a
naive baseline.
Approach Top-1 Top-3 Top-5

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NL2Type 84.1 78.9 81.4 93.0 87.3 90.1 95.5 89.6 92.5
NL2Type w/o comments 72.3 68.3 70.3 86.6 81.8 84.1 91.4 86.3 88.8
Naive baseline 18.5 17.3 17.9 49.0 46.0 47.4 66.3 62.3 64.2

B. Experimental Setup

We evaluate NL2Type on a corpus of 162,673 JavaScript
files composed of a corpus from prior work [26] and popular
JavaScript libraries downloaded from a content-delivery ser-
vice [27]. Following common practice in large-scale machine
learning, including on software [15], [16], [28]–[30], we divide
these files into disjoint sets of training files (80%) and testing
files (20%). A fixed split into training data and validation
data, instead of k-fold cross-validation, reduces computational
cost, yet gives accurate results due to the large amount of
available data. For all files, we extract data points as described
in Section II, which gives a total of 618,990 data points. 31.1%
and 68.9% of them are for function return types and parameter
types, respectively. Not all data points contain all pieces of
natural language information. In particular, 20.3% of all data
points do not contain a comment cf or cp. Given the data
extracted from the training files, we train the embeddings and
our model, and then use the data extracted from the testing
files to evaluate the trained model. All experiments are run
on an Ubuntu 16.04 computer with an Intel Xeon E5-2650
processor with 48 cores, 64GB of memory, and an NVIDIA
Tesla P100 GPU with 16GB of memory.

C. RQ1: Effectiveness at Predicting Types

1) Metrics: To evaluate the effectiveness of NL2Type in
predicting types, we measure precision, recall, and F1-score.
Intuitively, precision is the percentage of correct predictions
among all predictions, and recall is the percentage of cor-
rect predictions among all data points. The F1-score is the
harmonic mean of precision and recall. Similar to previous
work [16], we report these evaluation metrics for the top-k
predicted types, assuming that a user of NL2Type inspects
up to k suggested types. We also report the top-1 results,
which means that the user considers only the single most likely
predicted type.

We define top-k precision as precision = predcorr

predall
where

predcorr is the number of predictions where the actual type is
in the top-k and predall is the number of data points for which
the model makes a prediction at all. If the model suggests
“other” as the most likely type, it indicates that it cannot make
a good prediction, and we count it neither in predall nor in
predcorr. The top-k recall is defined as recall = predcorr

dps
where dps is the number of all data points.

2) Results: Table I shows the precision, recall, and F1-
score of the type predictions. The first row shows the default
approach, as described in Section II. When considering the first

/** Get the appropriate anchor and focus node/offset

* pairs for IE.

* @param {DOMElement} node

* @return {object}

*/
function getIEOffsets(node) {
...

}

Fig. 5: Function with correctly predicted type signature.

50000 100000
Number of points

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

string
number
boolean
array
object
function
integer
element
observable
mixed

Fig. 6: Relation between F1-score and amount of data available
for a type.

suggested type only, the approach achieves 84.1% precision
with a recall of 78.9%. When considering the top-5 suggested
types, the precision and recall increase to 95.5% and 89.6%,
respectively. The results for parameter types and for return
types are similar to each other, showing that NL2Type is
effective for both kinds of types. For example, Figure 5
shows a function for which NL2Type correctly predicts the
parameter type and the return type. Note that the parameter
type, DOMElement, is not a built-in JavaScript type, but
nevertheless predicted correctly, presumably from the words
“node” and “IE”. Overall, these results show that the approach
is highly effective at making accurate type suggestions for the
majority of JavaScript functions.

To better understand whether the effectiveness depends on
the amount of training data, Figure 6 shows for the ten
most common types the F1-score along with the number of
data points for the type. We find little correlation between
the amount of available data and the prediction’s F1-score,
suggesting that the data we train NL2Type on is sufficient
for commonly used types in JavaScript. Interestingly, the F1
scores differ between types, presumably because some types
are more likely than others to have a comment or name
that reveals the type. For example, functions with return type
boolean often have a name that begins with “is” or “has”,
while for “object”, inferring the type is less straightforward.

Because not all functions come with comments, but all
functions and their parameters have a name, we also evaluate
a variant of NL2Type that does not consider any comments.
Instead, the input given to the neural network consist only
of the function name and parameter names. The second row
in Table I shows the results for this variant of the approach.
As expected, the precision, recall, and F1-score are lower
than for the full approach, because some valuable parts of
the input are omitted. However, the approach still makes

accurate suggestions that are likely to be useful in practice. We
conclude from these results that using comments as part of the
input considered by NL2Type is beneficial, but that comments
are not essential to the effectiveness of the approach.

We also compare NL2Type to a naive baseline that simply
predicts the k most common types every time it is queried.
In particular, when asked for the top-1 type suggestion, the
baseline always suggests string because this is the most
common type. The third row in Table I shows the effectiveness
of this baseline. NL2Type is clearly better than the baseline,
e.g., improving the F1-score for the top-1 suggestion by a
factor of 4.5x.

D. RQ2: Comparison with Prior Work

The two closest existing approaches are JSNice [15] and
DeepTyper [16]. Both use the implementation of a function
to infer the function’s type signature, whereas our approach
ignores the function implementation and instead focuses on
natural language information associated with the function.
JSNice uses structured prediction on a graph of dependencies
that express structural code properties, such as what kind
of statement a variable occurs in. Similar to our work, they
train their model with existing type-annotated JavaScript code.
DeepTyper is similar to our work in the sense that they also use
a neural network model. However, they train the model with
an aligned code corpus, i.e., pairs of TypeScript and JavaScript
programs, which are generated from existing TypeScript code.

1) Comparison with JSNice: To compare with JSNice, we
download their publicly available artifact [31] and train a
model with the same training data as for NL2Type, using the
command line arguments given in the artifact’s README file.
We run the tool with a time limit of two minutes per file and
remove any files that exceed that limit from the training corpus
of both JSNice and NL2Type. In total, 7,025 files are removed
for this reason. Once trained, we evaluate JSNice on our testing
set. Because JSNice tries to predict types only for minified
files, we minify the testing files using a script provided in
the JSNice artifact. All results reported for JSNice are for
the top-1 suggestion only, because the JSNice artifact reports
only the most likely type suggestion. Beside types, JSNice
also predicts other code properties, e.g., identifier names; we
consider only the predicted parameter types and return types
for our comparison.

The precision achieved by JSNice is 62.5% with a recall
of 45.0%, which gives an F1-score of 52.3%.2 Comparing
these results to those in Table I shows that NL2Type clearly
outperforms the state-of-the-art approach. In particular, the
F1-score of NL2Type is 29.1% higher than that of JSNice,
which is a significant improvement. One reason why NL2Type
outperforms JSNice is that it successfully predicts types for
functions independent of the amount of code in the function
body, whereas JSNice relies on type hints provided by the
function body. To evaluate to what extent NL2Type and JSNice

2Note that our definition of recall is different from the one used in [15],
which defines recall as the percentage of data points for which any prediction
is made, either correct or incorrect.

27.8% 7.5%
64.7%

 NL2Type and JSNice

NL2Type
only

JSNice
only

Fig. 7: Venn diagram showing the overlap of data points
correctly predicted by NL2Type and JSNice.

/** Utility function to ensure that object properties are

* copied by value, and not by reference

* @private

* @param {Object} target Target object to copy

* properties into

* @param {Object} source Source object for the

* proporties to copy

* @param {string} propertyObj Object containing

* properties names we

* want to loop over

*/
function deepCopyProperties(target, source, propertyObj) {
...

}

Fig. 8: Incorrect type annotation found by NL2Type: Our
model correctly predicts the third parameter to be object.

complement each other, Figure 7 shows how many of the
correctly predicted types overlap. The figure considers the
top-1 predictions only. Of all data points that are predicted
correctly by either NL2Type or JSNice, 27.8% are predicted
only by NL2Type, while 7.5% are predicted only by JSNice.
Overall, these results show that our approach of considering
natural language information complements and improves upon
prior work that focuses on the implementation of a function.

2) Comparison with DeepTyper: We compare with Deep-
Typer [16] based on their publicly available artifact [32].
As we do for JSNice, we compare the top-1 predictions of
DeepTyper and compute our precision and recall metrics.
For a fair comparison, we implement a TypeScript frontend
for NL2Type and then use the TypeScript data set used
in [16]. NL2Type achieves a precision of 77.5% and a recall
of 44.6%, compared to 68.6% precision and 44.0% recall
by [16].3 That is, when using the same data set for both
approaches, our model significantly improves precision while
slightly improving recall. The results of NL2Type are less
strong than when applying it to the JavaScript data set because
the TypeScript data set is smaller and because its types have
a longer-tail distribution.

E. RQ3: Usefulness for Detecting Inconsistencies

An application of NL2Type that goes beyond predicting
types in code without type annotations is as a tool to detect
inconsistencies in existing type annotations. To evaluate the
usefulness of NL2Type for this task, we get a ranked list of

3The results differ from those reported in [16] for two reasons: (i) We use
a different definition of recall (predcorr

dps
and not predall

dps
). (ii) We do not

apply any confidence threshold when using DeepTyper, whereas their best
precision/recall results are with a threshold optimized after-the-fact.

/** Tests to see if a point (x, y) is within a range of

* current Point

* @param {Numeric} x - the x coordinate of tested point

* @param {Numeric} y - the x coordinate of tested point

* @param {Numeric} radius - the radius of the vicinity

**/
near: function(x, y, radius) {
var distance = Math.sqrt(Math.pow(this.x - x, 2)

+ Math.pow(this.y - y, 2));
return (distance <= radius);

}

Fig. 9: Non-standard type annotation detected by NL2Type:
Our model predicts the parameters to have type number, but
the code annotates them as Numeric, which is not a legal
JavaScript type.

/** Calculate the average of two 3d points

* @param {Point3d} a

* @param {Point3d} b

* @return {Point3d} The average, (a+b)/2

*/
Point3d.avg = function(a, b) {
return new Point3d((a.x + b.x) / 2, (a.y + b.y) / 2,

(a.z + b.z) / 2);
}

Fig. 10: Misclassification: NL2Type predicts a number return
value, but the code indeed returns an object of type Point3d.

potential inconsistencies, as described in Section III-C, and
manually inspect the top 50 of this list. We classify each
potential inconsistency into one of three categories.

1) Inconsistency. We classify a warning as an inconsistency
if the source code, the comments, and the type annotations are
inconsistent with each other, because at least two of these three
are contradictory. Developers should fix these inconsistencies
by adapting either the type annotations, the comments, or the
code. Figure 8 shows an example of an inconsistency due to
an incorrect type annotation. Our model correctly predicts that
the type of the propertyObj should be object, but the
code instead annotates it as string.

2) Non-standard type annotation. We classify a warning as
non-standard type annotation if the type annotation refers to a
“type” that is not a legal JavaScript type, but may nevertheless
convey the intended type to a human developer. For example,
Figure 9 shows a function where the parameters are annotated
as Numeric. However, this type is not a legal JavaScript
type, and the developer intended the types to be number,
which NL2Type correctly predicts. Because NL2Type learns
conventions from a large corpus of code, it tends to predict
the standard type instead of the non-standard type. To benefit
from one of the type checkers built on top of JavaScript [2],
[3] and from improved IDE support, developers should replace
non-standard types with the corresponding standard type.

3) Misclassification. We call a warning a misclassification
if the type predicted by NL2Type is incorrect and the code
need not be changed in any way. For example, the function
in Figure 10 returns an object that represents a point in the
3-dimensional space, as specified in the @return annotation.
However, the function name and the comment of the function
mislead NL2Type to predict number. Misclassifications can
result because NL2Type has not seen enough data similar
to the given natural language information during training or

TABLE II: Classification of potential inconsistencies reported
by NL2Type.
Category Total Percentage

All inspected warnings 50 100%
Inconsistencies 25 50%
Non-standard type annotations 14 28%
Misclassifications 11 22%

TABLE III: Length limits for inputs processed by the neural
network.

Avg. in Maximum Fully covered
data set considered data points

Words in function or parameter
name

1.6 6 99.9%

Words in function comment 5.9 12 89.9%
Words in parameter or return com-
ment

0.5 10 99.8%

Number of parameters 1.1 10 98.5%

because the code, comments, or identifier names are unusual
w.r.t. the training corpus.

Table II shows how the 50 manually inspected warnings
reported by NL2Type distribute across the above categories.
Most warnings point to code that deserves action by the
developer: fixing a type annotation, improving a comment, or
changing the code. The percentage of actionable warnings is
78%. We conclude that NL2Type provides a useful tool for
checking type annotations for inconsistencies. To the best of
our knowledge, our work is the first to show probabilistic type
inference to be effective for this task.

F. RQ4: Parameter Selection

1) Parameters for Input Representation: As discussed in
Section II-D, each part of the input sequence has a fixed length,
and data that are too short or too long are padded with zeros
or truncated, respectively. Table III shows the length limits we
use and how many of all data points these limits cover without
any truncation. For example, we consider up to six words as
part of a function or parameter name, which covers 99.9% of
all names in our data set. The parameters are selected to cover
the large majority of the available natural language data.

2) Parameters for Output Representation: The output of
the neural network is a type vector of length |T |, which
determines how many different types the model can predict.
The set Tall of all types in our data set contains 11,454
types. Because classification problems become harder when
the number of classes increases, and because the frequency
of types follows a long-tail distribution, we focus on a subset
|T | ⊆ Tall. Table IV shows how the size of |T | influences the
percentage of all data points covered by the considered types.
For example, |T | = 1, 000 covers 94.1% of all data points.

The trade-off in choosing |T | is between precision and
recall. Choosing a larger |T | has the potential to increase recall
because the model can predict the types of more data points.
However, this potential increase of recall comes at the cost
of lower precision because the model must choose from more
possible types and because the amount of training data quickly

TABLE IV: Impact of the number of considered types on the
number of covered unique types and data points.
Number of types Unique types covered Data points covered

5 0.04% 61.9%
50 0.44% 81.6%

500 4.37% 91.7%
1,000 8.73% 94.1%
5,000 43.65% 98.6%

10,000 87.30% 99.9%

0 1000 2000 3000 4000 5000
Number of types being considered

60

65

70

75

80

85

90

Pe
rc

en
ta

ge

F1 score
Precision
Recall

Fig. 11: Effectiveness of NL2Type depending on the number
|T | of types.

decreases for less frequent types. To pick |T |, we train and
evaluate models for 5 ≤ |T | ≤ 5, 000 and measure precision,
recall, and F1-score for the top-1 prediction. The results in
Figure 11 show the tradeoff between precision and recall.
The approach reaches the maximum F1-score at |T | = 1, 000,
which is the value we select for the evaluation.

3) Parameters for Learning: Table V summarizes the val-
ues of parameters related to the learning parts of NL2Type.
The hyperparameters of the neural networks are selected based
on values suggested by previous work and by our initial
experiments. We stop training after twelve epochs because it
is sufficient to saturate the accuracy.

G. RQ5: Efficiency

The total time taken by NL2Type is the sum of the time for
five subtasks. First, data extraction takes 44ms per function,
on average, most of which is spent in the JSDoc tool while
parsing JavaScript code. Second, data pre-processing takes
23ms per function, on average. Third, learning both the word
embeddings takes about 2 minutes in total. Fourth, the one-
time effort of training the model takes about 93 minutes.
This time is relatively little, compared to some other neural
networks, because of the small number of units in the hidden
layer. Finally, predicting types for a new function takes the
time to extract and pre-process data from the function plus 5ms
per function, on average, to query the model. We conclude that
NL2Type is efficient enough to apply to real-world JavaScript
code and to quickly give feedback to developers.

V. RELATED WORK

a) Type Inference through Program Analysis: Static type
inference addresses the lack of type annotations in dynamically

TABLE V: Parameters and their default values.
Parameter Value

Neural network to predict word embeddings:

Word embedding size 100
Context size 5
Minimum occurrences of a word 5

Neural network to predict types:

Hidden layer size 256
Batch size 256
Number of epochs used for training 12
Dropout of model 20%
Loss function for model Categorical cross entropy
Optimizer Adam

typed languages [5]–[8], which can help detecting otherwise
missed bugs [33]. Hackett et al. use type inference in a JIT
compiler to type-specialize the emitted machine code [34].
TypeDevil observes types at runtime and reports type in-
consistencies as potential bugs [35]. Because none of these
approaches can guarantee to infer correct types for all values,
lots of real-world JavaScript code still lacks type information.
Our work addresses the problem by analyzing natural language
elements instead of code.

b) Probabilistic Type Inference: Besides NL2Type, we
are aware of two other probabilistic type inference approaches
for JavaScript: JSNice [15] and DeepTyper [16]. Section IV-D
discusses and compares with both approaches, showing that
NL2Type outperforms both of them.

c) Analysis of Comments: Prior work on analyzing com-
ments focuses on finding inconsistencies between comments
and code [36]–[38], on inferring executable specifications for
a method [39], on identifying comments that have textual
references to identifier names [40], on finding semantically
similar verbs that occur in method names and method-level
comments [41], and on finding redundant comments [42]. To
the best of our knowledge, NL2Type is the first to predict
types from comments.

d) Natural Language Information and Code: Code
search allows developers to find code snippets through nat-
ural language queries [43]–[46]. Similar to our work, these
approaches use embeddings of natural language words. Huo
et al. propose a neural network that predicts which file is
buggy from a natural language bug report [47]. Other ap-
proaches predict natural language information from source
code, e.g., by predicting function name-like summaries for
code snippets [48], or by de-obfuscating minified JavaScript
code [15], [49], [50]. In contrast, NL2Type uses the available
identifier names, along with comments, to make predictions.
Finally, DeepBugs uses natural language information in code,
in particular identifier names, to detect code that is likely
to be incorrect [28]. NL2Type differs from all the above by
exploiting natural language information for predicting types.

e) Embeddings of Code: Related to our use of embed-
dings to represent natural language words embedded in code,
recent work studies how to compute embeddings of code itself.
Embeddings can be learned, e.g., from a graph representation

of code [51], by randomly walking a control-flow graph [52],
by walking an abstract syntax tree [53], or from program
executions [54]. Future work could integrate code embeddings
into NL2Type to reason about the code of a function, in
addition to its comments and identifier names.

f) Statistical Modeling and Learning on Code: NL2Type
contributes to a recent stream of research that applies sta-
tistical modeling and machine learning to programs. Hindle
et al. show that code is “natural” and therefore amenable to
statistical language modeling [9]. Dnn4C is a neural model of
code that learns not only from tokens, but also from syntactic
and type information [55]. Other work uses neural networks
to predict parts of code [29], to detect vulnerabilities [30], to
generate inputs for fuzz testing [56], [57], to detect and fix
syntactic programming mistakes [58], and to predict whether
a file is likely to contain a bug [59].

g) JavaScript Analysis: Program analyses for JavaScript
include dynamic analyses to find violations of common coding
rules [60], JIT-unfriendly code [61], type inconsistencies [35],
conflicts between libraries [62], and to understand asyn-
chronous behavior [63], as well as static analysis to extract
call graphs [64]. A recent survey gives a comprehensive
overview of JavaScript analyses [65]. Even though we imple-
ment NL2Type for JavaScript, we believe that the approach is
applicable to other dynamic languages, because we make very
few assumptions about the underlying language.

VI. CONCLUSION

This paper addresses the lack of type annotations in dynam-
ically typed languages. In contrast to traditional techniques,
which infer types from the program source code, we tackle the
problem by analyzing natural language information embedded
in the code. We present NL2Type, a new learning-based
approach that feeds identifier names and comments into a
recurrent neural network to predict function signatures. The
approach yields a neural model that helps annotating not
yet annotated JavaScript code by suggesting types to the
developer. Our experiments show that NL2Type predicts types
with an F1-score of 81.4% for the top-most prediction and of
92.5% for the top-5 predictions, which clearly outperforms
existing work on learning to predict types. In addition to
predicting missing types, we show how to use the model
to identify inconsistencies in existing type annotations. By
inspecting 50 warnings about such inconsistencies, we find 39
problems that require developer attention, e.g., because type
annotations are incorrect or because they do not match the
comments associated with a function. The broader impact of
our work is to show that natural language information in code
is a currently underused resource that is useful for predicting
program properties.

Acknowledgments. Thanks to Andrew Habib and the anonymous reviewers
for their comments on this paper, and to Rohan Bavishi for helping to compare
with JSNice. This work was supported by the German Federal Ministry of
Education and Research and by the Hessian Ministry of Science and the Arts
within CRISP, by the German Research Foundation within the ConcSys and
Perf4JS projects, and by the Hessian LOEWE initiative within the Software-
Factory 4.0 project.

REFERENCES

[1] The Linux Foundation, “2018 Node.js User Survey Report,” May 2018.
[2] “Flow,” https://github.com/facebook/flow, accessed: 2018-07-22.
[3] “Typescript,” https://github.com/Microsoft/TypeScript, accessed: 2018-

07-22.
[4] J. Ore, S. G. Elbaum, C. Detweiler, and L. Karkazis, “Assessing

the type annotation burden,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, 2018, pp. 190–201.
[Online]. Available: https://doi.org/10.1145/3238147.3238173

[5] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi,
“Tejas: Retrofitting type systems for javascript,” in Proceedings
of the 9th Symposium on Dynamic Languages, ser. DLS ’13.
New York, NY, USA: ACM, 2013, pp. 1–16. [Online]. Available:
http://doi.acm.org/10.1145/2508168.2508170

[6] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript,”
in Proc. 16th International Static Analysis Symposium (SAS), ser. LNCS,
vol. 5673. Springer-Verlag, August 2009.

[7] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks, “Static type inference
for ruby,” in Proceedings of the 2009 ACM Symposium on Applied
Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 1859–
1866. [Online]. Available: http://doi.acm.org/10.1145/1529282.1529700

[8] J.-h. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks, “Dynamic
inference of static types for ruby,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: ACM, 2011, pp. 459–
472. [Online]. Available: http://doi.acm.org/10.1145/1926385.1926437

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE), June 2012, pp. 837–847.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. P. Kuksa, “Natural language processing (almost) from scratch,”
Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2078186

[11] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 4580–4584.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[13] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for
text classification with multi-task learning,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016, pp. 2873–2879.
[Online]. Available: http://www.ijcai.org/Abstract/16/408

[14] J. Y. Lee and F. Dernoncourt, “Sequential short-text classification with
recurrent and convolutional neural networks,” in NAACL HLT 2016,
The 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San
Diego California, USA, June 12-17, 2016, 2016, pp. 515–520. [Online].
Available: http://aclweb.org/anthology/N/N16/N16-1062.pdf

[15] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from ”big code”,” in Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’15. New York, NY, USA: ACM, 2015, pp. 111–124. [Online].
Available: http://doi.acm.org/10.1145/2676726.2677009

[16] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 12th Joint Meeting on
Foundations of Software Engineering. ACM, 2018.

[17] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in European Conference on Object-
Oriented Programming (ECOOP). Springer, 2011, pp. 130–154.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[19] D. Tang, B. Qin, and T. Liu, “Document modeling with gated
recurrent neural network for sentiment classification,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
2015, pp. 1422–1432. [Online]. Available: http://aclweb.org/anthology/
D/D15/D15-1167.pdf

[20] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, D. Precup and Y. W. Teh, Eds., vol. 70. International
Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017,
pp. 1321–1330. [Online]. Available: http://proceedings.mlr.press/v70/
guo17a.html

[21] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 1050–1059. [Online]. Available:
http://proceedings.mlr.press/v48/gal16.html

[22] “JSDoc tool,” https://github.com/jsdoc3/jsdoc, accessed: 2018-07-22.
[23] S. Bird, E. Klein, and E. Loper, Natural Language Processing with

Python, 1st ed. O’Reilly Media, Inc., 2009.
[24] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling

with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[25] F. Chollet et al., “Keras,” https://keras.io, 2015.
[26] V. Raychev, P. Bielik, M. Vechev, and A. Krause, “Learning programs

from noisy data,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’16. New York, NY, USA: ACM, 2016, pp. 761–774. [Online].
Available: http://doi.acm.org/10.1145/2837614.2837671

[27] “CDNJS,” https://cdnjs.com/, accessed: 2018-07-22.
[28] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based

bug detection,” PACMPL, vol. 2, no. OOPSLA, pp. 147:1–147:25,
2018. [Online]. Available: https://doi.org/10.1145/3276517

[29] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

[30] Z. Li, S. X. Deqing Zou and, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong, “VulDeePecker: A deep learning-based system for vulnera-
bility detection,” in NDSS, 2018.

[31] “JSNice Artifact,” https://files.sri.inf.ethz.ch/jsniceartifact/index.html,
accessed: 2018-07-22.

[32] “DeepTyper artifact,” https://github.com/deeptyper/deeptyper, accessed:
2018-07-22.

[33] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: quantifying
detectable bugs in javascript,” in Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, 2017, pp. 758–769. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.75

[34] B. Hackett and S.-y. Guo, “Fast and precise hybrid type inference for
javascript,” in Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’12.
New York, NY, USA: ACM, 2012, pp. 239–250. [Online]. Available:
http://doi.acm.org/10.1145/2254064.2254094

[35] M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dynamic type inconsis-
tency analysis for JavaScript,” in International Conference on Software
Engineering (ICSE), 2015.

[36] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*iComment: bugs or bad
comments?*/,” in Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,
October 14-17, 2007, 2007, pp. 145–158.

[37] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment: Testing
javadoc comments to detect comment-code inconsistencies,” in Fifth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, 2012,
pp. 260–269.

[38] E. W. Høst and B. M. Østvold, “Debugging method names,” in European
Conference on Object-Oriented Programming (ECOOP). Springer,
2009, pp. 294–317.

[39] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè,
and S. D. Castellanos, “Translating code comments to procedure spec-
ifications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018, 2018, pp. 242–253.

[40] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
Proceedings of the 32nd IEEE/ACM International Conference on Au-

tomated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, 2017, pp. 112–122.

[41] M. J. Howard, S. Gupta, L. L. Pollock, and K. Vijay-Shanker, “Automati-
cally mining software-based, semantically-similar words from comment-
code mappings,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May
18-19, 2013, 2013, pp. 377–386.

[42] A. Louis, S. K. Dash, E. T. Barr, and C. Sutton, “Deep Learning to
Detect Redundant Method Comments,” ArXiv e-prints, Jun. 2018.

[43] X. Ye, H. Shen, X. Ma, R. C. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, 2016, pp. 404–415.

[44] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 631–642. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950334

[45] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in ICSE, 2018.
[46] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval

on source code: a neural code search,” in Proceedings of the 2nd
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. ACM, 2018, pp. 31–41.

[47] X. Huo, M. Li, and Z. Zhou, “Learning unified features from natural
and programming languages for locating buggy source code,” in Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016, pp.
1606–1612.

[48] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, 2016, pp. 2091–2100.

[49] B. Vasilescu, C. Casalnuovo, and P. T. Devanbu, “Recovering clear,
natural identifiers from obfuscated JS names,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, 2017, pp. 683–693.

[50] R. Bavishi, M. Pradel, and K. Sen, “Context2Name: A deep learning-
based approach to infer natural variable names from usage contexts,”
TU Darmstadt, Tech. Rep. TUD-CS-2017-0296-1, Feb 2018.

[51] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, 2017, pp. 363–376.

[52] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based function
embedding and its application to specification mining,” CoRR, vol.
abs/1802.07779, 2018.

[53] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in PLDI, 2018.

[54] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding
for program repair,” CoRR, vol. abs/1711.07163, 2017. [Online].
Available: http://arxiv.org/abs/1711.07163

[55] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen, “A
deep neural network language model with contexts for source code,”
in SANER, 2018.

[56] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: machine learning
for input fuzzing,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL,
USA, October 30 - November 03, 2017, 2017, pp. 50–59.

[57] J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Tech. Rep. TUD-CS-2016-14664, 2016.

[58] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing
common c language errors by deep learning.” in AAAI 2017, 2017.

[59] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016, 2016, pp. 297–308.

[60] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: Dynamically
checking bad coding practices in JavaScript,” in International Sympo-
sium on Software Testing and Analysis (ISSTA), 2015, pp. 94–105.

[61] L. Gong, M. Pradel, and K. Sen, “JITProf: Pinpointing JIT-unfriendly
JavaScript code,” in European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE),
2015, pp. 357–368.

[62] J. Patra, P. N. Dixit, and M. Pradel, “ConflictJS: Finding and understand-
ing conflicts between JavaScript libraries,” in ICSE, 2018, pp. 741–751.

[63] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding asyn-
chronous interactions in full-stack javascript,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, 2016, pp. 1169–1180.

[64] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for javascript IDE services,” in
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, 2013, pp. 752–761.

[65] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen,
and C.-A. Staicu, “A survey of dynamic analysis and test generation for
JavaScript,” ACM Computing Surveys, 2017.

