
ConflictJS: Finding and Understanding Conflicts Between
JavaScript Libraries

Jibesh Patra
TU Darmstadt

jibesh.patra@gmail.com

Pooja N. Dixit
TU Darmstadt

poojandixit@gmail.com

Michael Pradel
TU Darmstadt

michael@binaervarianz.de

ABSTRACT
It is a common practice for client-side web applications to build on
various third-party JavaScript libraries. Due to the lack of names-
paces in JavaScript, these libraries all share the same global names-
pace. As a result, one library may inadvertently modify or even
delete the APIs of another library, causing unexpected behavior of li-
brary clients. Given the quickly increasing number of libraries, man-
ually keeping track of such conflicts is practically impossible both
for library developers and users. This paper presents ConflictJS, an
automated and scalable approach to analyze libraries for conflicts.
The key idea is to tackle the huge search space of possible conflicts
in two phases. At first, a dynamic analysis of individual libraries
identifies pairs of potentially conflicting libraries. Then, targeted
test synthesis validates potential conflicts by creating a client ap-
plication that suffers from a conflict. The overall approach is free
of false positives, in the sense that it reports a problem only when
such a client exists. We use ConflictJS to analyze and study conflicts
among 951 real-world libraries. The results show that one out of
four libraries is potentially conflicting and that 166 libraries are
involved in at least one certain conflict. The detected conflicts cause
crashes and other kinds of unexpected behavior. Our work helps
library developers to prevent conflicts, library users to avoid com-
bining conflicting libraries, and provides evidence that designing a
language without explicit namespaces has undesirable effects.
ACM Reference Format:
Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: Finding
and Understanding Conflicts Between JavaScript Libraries. In ICSE ’18:
ICSE ’18: 40th International Conference on Software Engineering , May 27-
June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180184

1 INTRODUCTION
The popularity of JavaScript has lead to the development of numer-
ous JavaScript libraries. For example, a popular content delivery
network that hosts JavaScript libraries provides over 3,000 differ-
ent libraries.1. Libraries are ubiquitous and many applications use
multiple libraries. One estimate is that 75% of the top 10 million
1https://cdnjs.com/libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180184

// Strophe.js
window.Base64 = {

encode: function
(b) {

/* code */
}
decode: function

(b) {
/* code */
}

};

// JSEncrypt.js
window.Base64 = {
unarmor: function

(t) {
/* code */

}
decode: function(

i) {
/* code */

}
};

// Library client
jsEncrypt = new JSEncrypt();
jsEncrypt.setKey(...);

// Returns false instead of
// decrypted data when
// Strophe.js is loaded
// after JSEncrypt.js.
jsEncrypt.encrypt(...);

Figure 1: Example of two conflicting libraries and a client
that will experience unexpected behavior when loading
both libraries.

websites use at least one of the top 18 libraries.2 A recent study
on the top 75,000 Alexa websites [29] reports that the number of
externally hosted scripts that a website includes has a median of 9
and a maximum of 202.

Unfortunately, using multiple independently developed libraries
together may cause unexpected behavior. The reason is that Java-
Script does not have namespaces but instead, all libraries share
a single global namespace. As a result, a value or a function “ex-
ported” by one library may be easily overwritten, modified, deleted,
or accidentally used by another library. Moreover, libraries may
overwrite built-in APIs, sometimes called “monkey patching”, and
multiple libraries may try to overwrite the same API in different
ways. In practice, the problem is compounded by the loose typing in
JavaScript, which allows one library to overwrite another library’s
API even with a type-incompatible value.

As a real-world example of a library conflict found by our ap-
proach, consider Figure 1. The left side of the figure shows an
excerpt of Strophe.js, a library that implements the XMPP middle-
ware protocol. The center part of the figure shows JSEncrypt.js, a
library that provides OpenSSL RSA encryption. Both libraries write
to the global variable Base64.3 When included together, the library
that is included last will overwrite the Base64 object of the library
that was included first. Such overwriting may cause unexpected
behavior in a client of either of these libraries. For example, the
right side of the figure shows a client that tries to encrypt some
data using JSEncrypt.js. When executing this client after loading
only JSEncrypt.js, the last call returns the encrypted data. However,
when executing the client after loading JSEncrypt.js and then Stro-
phe.js, the last call simply returns false. The fact that including an
apparently unrelated library breaks the core feature of the encryp-
tion library will surprise users and is unintended by the developers
of both libraries.

Problems caused by conflicting libraries may occur whenever a
developer loads two libraries, which is common practice. Even if a
2https://w3techs.com/technologies/overview/javascript_library/all
3The window variable is the global object in client-side JavaScript.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jibesh Patra, Pooja N. Dixit, and Michael Pradel

developer explicitly loads only one library, other libraries may be
implicitly loaded. Due to the highly dynamic nature of JavaScript,
where some code may dynamically load other code, an application
developer may implicitly load libraries without even noticing it.
For example, websites built on top of content management systems
often use plugins, each of which implicitly loads some libraries.4
Other common ways of implicitly loading libraries are third-party
ads, social media services, and news feeds. When a conflict between
libraries exists, JavaScript often follows a “no crash” philosophy, i.e.,
misbehavior may not lead to an exception. As a result, conflicts eas-
ily remain unnoticed at library load time or even later, until a user
triggers the unexpected behavior, as illustrated in the motivating
example.

In principle, there is a sane way for libraries to share the global
namespace. Ideally, library developers all follow a “single API object”
pattern, where the entire API of the library is encapsulated into a
single object. The library then writes this object to a single global
variable, e.g., named like the library itself, to minimize the potential
for conflicts. In practice, not all libraries follow this pattern, and
some global variables, such as $ and _, are particularly popular.
Our empirical results show that 71% of all libraries do not follow
the “single API object” pattern.

Library conflicts are challenging to detect for a program analysis
and difficult to avoid for library developers. One reason is that
unintended effects of conflicts typically manifest only at runtime. A
purely static analysis can either soundly overapproximate potential
conflicts and their effects, which is likely to produce a large number
of false positives, in particular for JavaScript, or unsoundly under-
approximate them, which may miss conflicts. Another challenge for
detecting conflicts is the large number of JavaScript libraries. With
thousands of libraries available, and new libraries being added and
updated every day, analyzing all possible combinations of libraries
leads to a combinatorial explosion that is prohibitive in practice.
Currently, there exists no technique for library developers to check
whether their library conflicts with another and for library clients
to check which combinations of libraries to avoid. Furthermore, it is
currently unknown to what extent the problem of library conflicts
matters in practice.

This paper presents ConflictJS, the first automated and scalable
technique that analyzes JavaScript libraries for conflicts. We address
the huge search space of possible conflicts and the difficulties of
statically analyzing JavaScript through a two-phase approach that
combines dynamic analysis and test synthesis. In the first phase,
ConflictJS dynamically analyzes individual libraries to detect writes
to the global namespace while loading a library. An offline com-
parison of these global writes yields a set of potential conflicts
between libraries. In the second phase, ConflictJS synthesizes and
dynamically analyzes library clients to check if potential conflicts
indeed lead to unexpected behavior. The second phase, and there-
fore also the overall approach, is precise in the sense that every
validated conflict certainly occurs in the synthesized client and
leads to different behavior depending on the loaded libraries.

We use ConflictJS to analyze and study 951 libraries. The re-
sults show that 268 (28%) libraries are potentially conflicting and

4For a real-world example, see http://simple-press.com/documentation/codex/faq/
troubleshooting/what-is-this-jquery-conflict/.

that 166 (17%) libraries are certainly conflicting with at least one
other library. The conflicts may lead to crashes, unexpected be-
havior, and globally reachable state with unexpected values and
types. A manual analysis of conflicting libraries reveals several
recurring patterns of root causes for conflicts, which are instructive
for library developers, API designers, and language designers. We
reported seven of the detected conflicts to the respective library
developers, of which four already have been acknowledged and
confirmed as problematic. Of the four conflicts, two have been fixed
by the developers of the respective libraries.

Compared to existing work on analyzing JavaScript [3], our work
is the first to address conflicts among libraries. Existing static anal-
yses focus on type checks of single libraries [11] or assume the
presence of library clients [30]. Existing dynamic analyses that
target type inconsistencies [38] and other coding problems [17]
assume to have inputs to exercise the program, whereas our work
synthesizes library clients automatically. JSNose [10] identifies ex-
cessive uses of global variables, but focuses on single libraries.
Finally, our empirical results relate to existing large-scale studies
of JavaScript libraries and their usage [29, 34]. Our work is the first
to study library conflicts.

We envision ConflictJS to be useful for developers of libraries and
library clients alike. Library developers may use ConflictJS to check
whether their library conflicts with others, allowing them to avoid
the conflicts by adapting the library. Developers of library clients
may use ConflictJS to check which libraries conflict, allowing them
to avoid including them together.

In summary, this paper contributes the following:
• We are the first to address the problem of conflicts among libraries
in a language without explicit namespaces.
• We present ConflictJS, an automated and scalable technique to
precisely detect conflicts in JavaScript libraries through a combi-
nation of dynamic analysis and test synthesis.
• We provide empirical evidence that the approach scales to 951
libraries, where it effectively detects and validates 1,840 conflicts
among them.
• We provide our implementation as open-source.5

2 MOTIVATION AND PROBLEM STATEMENT
This section provides some background, motivates the problem of
conflicts among libraries with examples from real-world libraries,
and formulates the problem addressed in this paper.

2.1 Background
The JavaScript version that is fully supported by most modern
browsers is ECMAScript 5 [7]. It does not provide any kind of
namespaces or modules at the language level. Instead, library de-
velopers rely on several ad-hoc mechanisms to encapsulate code
and to export APIs. First, some libraries follow a “single API ob-
ject” pattern, where the library initializes itself in a local scope and
provides its API as properties of a single global object. The most
obvious choice for naming this global API object is the name of the
library, which typically is unique. For example, react.js follows this
pattern by exporting its APIs into the global React object. The popu-
lar jQuery library furthermore enables developers to avoid conflicts
5https://github.com/sola-da/ConflictJS

ConflictJS: Finding and Understanding Conflicts Between JavaScript Libraries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

by specifying the global variable where to provide the library or to
even export the library into an existing, non-global object.6 Second,
some libraries build upon the asynchronous module specification
(AMD), a module system targeted at client-side JavaScript and im-
plemented as a library, e.g., RequireJS7. Third, some libraries use
CommonJS, a module system targeted at non-client-side JavaScript
and implemented as the default module system on the Node.js plat-
form. Unfortunately, these options are neither compatible with each
other nor available on all JavaScript platforms. ECMAScript 6 [8]
unifies ideas from CommonJS and AMD into language-level module
support, and popular JavaScript platforms have started to adopt it.
However, since widely used libraries cannot rely on recently added
language features, they typically ensure backward compatibility
by relying on other ways to export their APIs. In summary, the
lack of namespace and modules in currently deployed versions of
JavaScript creates a non-trivial problem for library developers.

2.2 Motivating Examples and Classification of
Conflicts

The following section motivates the problem of conflicts between
libraries with real-world examples (Table 1) found using our ap-
proach. Furthermore, we use these examples to define four classes
of conflicts, based on how the conflicts manifest to a library client.
For each example, we show code from two conflicting libraries and
a client application that observes different behavior depending on
which of the libraries are included and on the order of inclusion.

Inclusion Conflicts. This kind of conflict raises an exception when
including multiple libraries, without any further interaction be-
tween the client and the libraries. The example in the first column
illustrates the problem with the curl and dojo libraries. Loading the
second library after loading the first library causes an exception.
For a library user, finding such conflicts is non-trivial because the
exception depends on the order of including the libraries: Only if
a client loads dojo before loading curl the exception occurs. The
documentation of neither of the libraries provides any reference
to the other library, presumably because the respective developers
are not aware of each other.

Type Conflicts. Type conflicts occur whenmultiple libraries write
type-incompatible values to the same globally reachable location.
Table 1 presents an example of two libraries, ocanvas.js and aframe.js,
that write to window.logs an array and a function, respectively. A
client using one of these libraries may rely on the type of the con-
flicting value and will be surprised if including another library or
changing the order of library inclusion breaks the type assumption.
This and the following kinds of conflict are more subtle than inclu-
sion conflicts because they do not lead to an obvious error when
simply including the libraries.

Value Conflicts. Similar to type conflicts, this kind of conflict is
caused by multiple libraries writing different values to the same
globally reachable location. We classify a conflict as value conflict
if the values are type-compatible but different. Table 1 provides
an example where two libraries, pako and 3Dmol, write different

6https://api.jQuery.com/jQuery.noconflict
7http://requirejs.org/

values to the same variable pako. The root cause of this conflict is
that 3Dmol contains an outdated version of pako.

Behavior Conflicts. A behavior conflict occurs when multiple
libraries store functions at the same globally reachable location, but
these functions do not provide the same behavior. Table 1 presents
an example where two libraries, jsface and matreshka, overwrite
the same variable Class. As illustrated by the client code, the two
functions provide different behaviors, which may surprise a client
that is not aware of the fact that both libraries provide dissimilar
implementations of the same global function.

2.3 Problem Statement
Based on these four types of conflicts, we now formulate the prob-
lem addressed in this paper. The input to our approach is a set L of
libraries. We assume that each l ∈ L is supposed to be usable with-
out including any other library in L. In particular, this assumption
excludes libraries that extend another library, e.g., libraries that
extend the popular jQuery library with additional features.

Libraries are used by clients that interact with the APIs of a
library. Client here means any sequence of statements that is ex-
ecuted after loading one or more libraries. We denote a client c
that executes after loading libraries l1, .., lk as cl1, ..,lk . We call the
sequence l1, .., lk of libraries loaded before executing a client the
library configuration. The “client” row of Table 1 shows examples
of clients.

We target conflicts due to libraries that write to the same globally
accessible memory location. In JavaScript, such memory locations
are properties of an object. Properties are accessed using either dot
notation, e.g., x.p, or bracket notation, e.g., x["p"]. In either case,
the name of a property is represented by an identifier of string type.
For properties of nested objects, the property accessors consist
of multiple identifiers, e.g., window.foo.bar. We call all property
accessors, using either single or multiple identifiers, access paths. If
the first segment of an access path is globally reachable, we call it a
global access path. For example, window.foo.bar and window.baz are
global access paths. Since the window-prefix is optional in JavaScript,
we omit it in the remainder of the paper, unless needed.

Based on these definitions, we can now define conflicts between
pairs of libraries:

Definition 1 (Conflict). Let l1, l2 ∈ L be two libraries that both
write to the same global access path p. These libraries are conflicting
with each other if there exists a client so that any of the following is
true:
(1) cl1 behaves differently than cl2
(2) cl1 behaves differently than cl1,l2
(3) cl1 behaves differently than cl2,l1
(4) cl2 behaves differently than cl1,l2
(5) cl2 behaves differently than cl2,l1
(6) cl1,l2 behaves differently than cl2,l1

The first case means that the same client behaves differently
depending on which library is loaded. Such a conflict is relevant for
the developers of the libraries because these libraries write different
data or functions to the same globally accessible memory location.
Cases 2 to 5 mean that a client that includes a single library will
change its behavior simply because another library is also included.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jibesh Patra, Pooja N. Dixit, and Michael Pradel

Table 1: Examples of conflicts between real-world libraries.

Problem Inclusion conflict Type conflict Value conflict Behavior conflict

Code
Example

/* curl.js */
window.define

= function K() { ... };

/* dojo.js */
var def = function() { ... };
var req = function() { ... };
if (window.define) {

...
} else {

window.define = def;
window.require = req;

}
window.require(); // exception

/* ocanvas.js */
(function(a, b, c) {
a.logs = [];

}(window, document));

/* aframe.js */
c = function(e) {
...

};
window.logs = c

/* pako */
var pako = {

Deflate: function() { ... },
Inflate: function() { ... },
...

}

/* 3Dmol */
var pako = {

inflate: function() { ... },
inflateRaw: function() { ... },
...

}

/* jsface */
function O(t, o) {

...
}
window.Class = O;

/* matreshka */
window.Class

= function(a, b) { ... }

Client

// client that includes first
// curl.js and then dojo.js

// exception because require
// is undefined

// try to add to
// the 'logs' array
logs.push("log");

// exception because
// logs is a function

Object.keys(pako);

// returns 35 with pako
// but 4 with 3Dmol

var v1 = null;
var v2 = "";
v0 = window.Class(v1, v2);

// TypeError with matreshka
// but no errors with jsface

Description Both libraries write to the global variable define.
To avoid overwriting an already defined variable,
e.g, when the same library is included multiple
times, dojo checks whether define is already
defined. Unfortunately, the code incorrectly as-
sumes that require is always defined together
with define, causing an exception when trying
to call this function. The problem is triggered by
any client that includes first curl and then dojo.

Both libraries write to
a global variable logs.
The type of logs is ar-
ray in ocanvas but func-
tion in aframe.

Both libraries overwrite the global
variablepako. The size of the global
variable is different in both cases.
This overwriting happens because
3Dmol ships a variant of the pako
library that misses some features.

Both libraries write to the
same global variable Class.
The implementation of both
differ as illustrated by the
client.

Such a conflict is relevant for developers of clients who may be
surprised that simply including another library causes new behavior.
The last case means that a client’s behavior changes when swapping
the order in which two libraries are included. Again, this case is
relevant for client developers because such a change in behavior is
surprising.

Based on Definition 1, we say that a library is conflicting if there
exists another library so that both are conflicting with each other.
The problem addressed in this paper is how to find conflicting
libraries in a precise way, i.e., without false positives.

2.4 Challenges
Due to the increasing popularity of JavaScript, there exist thousands
of libraries. Only few of them come with representative clients that
could serve as test cases. Our work aims at detecting conflicts in
an automated and scalable way. Automated here means that the
approach requires no input except for a set of libraries. Scalable
here means that this set may contains thousands of libraries.

To find conflicts in an automated and scalable way, we must
address several challenges. First, the sheer number of JavaScript
libraries makes it practically impossible for an analysis to compare
all combinations or even all pairs of libraries. For example, given
1,000 libraries, there are about 500,000 pairs of libraries. We address
this challenge by identifying potential conflicts during an analysis
of individual libraries (Section 3.1), which significantly reduces the
number of combinations to analyze further. Second, the approach
cannot rely on any a-priori available library clients. We address this
challenge by synthesizing library clients, guided by the potential
conflicts (Section 3.2). Third, to validate whether a potential conflict
is indeed a conflict, we need to check whether the behavior of

clients differs depending on the library configuration. We address
this challenge by comparing the runtime behavior of synthesized
clients executed with different library configurations (Section 3.2).

2.5 Scope and Limitations
Some challenges are out of the scope of this work. One of them
is detecting all library conflicts. While our approach is precise, it
is not sound, i.e., it may miss some conflicts. For most interesting
program analysis tasks, providing a sound and precise answer is
impossible, and we opt for precision in this work. Another out-
of-scope question is how many real-world clients suffer from a
detected conflict. Instead of addressing this question, our approach
shows the existence of a client by synthesizing the client, so that
library developers could anticipate conflicts that any possible client
may run into and prevent conflicts before they occur. Finally, we
focus on pairwise library conflicts and ignore conflicts that arise
only if three or more libraries interact with each other.

3 APPROACH
This section presents ConflictJS, a scalable and automated approach
to find conflicts between libraries. Given a set of libraries, the ap-
proach consists of two main steps:
(1) Detection of potential conflicts. At first, ConflictJS dynamically

analyzes individual libraries to identify which globally reach-
able memory locations they write to. Based on the global writes
of each library, the first step then reports a potential conflict
for each pair of libraries that write to the same location.

(2) Validation of conflicts. This step validates whether two libraries
that write to the same globally reachable location can indeed

ConflictJS: Finding and Understanding Conflicts Between JavaScript Libraries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

cause a client to behave differently depending on the library
configuration. To this end, ConflictJS synthesizes clients and
compares their behavior across different library configurations.
If and only if the approach finds a client with diverging behavior,
it reports a conflict.

The remainder of this section explains these two steps in more
detail.

3.1 Detection of Potential Conflicts
To find potential conflicts between libraries, ConflictJS analyzes
the global access paths written to by a library. To this end, we
dynamically analyze the loading of each library to keep track of
the writes made to the global namespace:

Definition 2 (Global Writes of a Library). The global writes of
a library l is a set Gl = {p1, ..,pk } of global access paths to which l
writes while loading l .

For example, if the global object is called window and a library
writes to it using window.obj = {prop1:1, prop2:2}, then the set of
global writes is {obj, obj.prop1, obj.prop2}.

To compute the global writes of a library, ConflictJS generates a
trivial client that simply loads the library and dynamically analyzes
the execution. The dynamic analysis updates the setGwhen specific
runtime events occur, as summarized in Table 2. The analysis is
guaranteed to observe all global writes that occur while loading
the library. In particular, the analysis handles writes to aliases of
globally reachable objects, as illustrated by the example involving
window.Array in Table 2. The access paths of all reachable values,
i.e., paths (v) mentioned in Table 2 are computed by recursively
traversing the properties of the object v . The information whether
a variable is global is provided by Jalangi [46] on top of which we
implement the analysis.

After extracting the global writes of each library, ConflictJS com-
pares the global writes of all libraries with each other to check for
writes to the same global access path. If two libraries share a global
write, we classify them as potentially conflicting:

Definition 3 (Potentially Conflicting Libraries). Two libraries
l1, l2 ∈ L are potentially conflicting if Gl1 ∩ Gl2 , ∅, i.e., if the two
libraries share at least one access path in their global writes.

The first phase of ConflictJS reduces the search space of potential
conflicts to be considered by the second phase of the approach. The
first phase scales well to a large number of libraries because each
library is analyzed in isolation. Comparing the global writes across
libraries requires computing pairwise intersections of sets, which
easily scales to a large number of sets. As mentioned in Section 2.5,
the analysis might miss potential conflicts, e.g., because a library
might perform a global write after the library has been loaded. A
manual inspection of a subset of libraries suggests this limitation
to be negligible in practice, because libraries tend to initialize their
APIs at load time.

3.2 Precise Validation of Conflicts
The second step of ConflictJS is to validate potential conflicts iden-
tified in the first step. At first, we motivate the need for this second
step with an example. Then, we explain the details of the validation.

Table 2: Actions performed by the global-writes analysis.

Runtime
event

Action Example

Variable
write
w = v

Ifw is a global variable:
• Add w to G. Let paths(v) be
the access paths of all values
reachable from v . For each
pv ∈ paths(v), add pv to G.

(function() {
var x = {a: 23};
window.foo = x;

})();

G → G ∪ {foo, foo.a}

Property
write
x .p = v

Let paths(window) be the ac-
cess paths of all globally reach-
able values. For each pw ∈
paths(window):
• If pw points to x :
– Add concat (pw ,p) to
G. Let paths(v) be the
access paths of all values
reachable from v . For
each pv ∈ paths(v), add
concat (pw ,pv) to G.

(function() {
var x = window.Array;
x.p = {b: 42};
var y = {};
y.q = 5;

})();

G → G ∪
{Array.p,Array.p.b}

Declara-
tion of
function f

If the global variable f points to
the declared function (i.e., the
function is globally declared),
add f to G.

(function() {
function foo() {}

})();
function bar() {}

G → G ∪ {bar}
/* JSLite.js */
Array.prototype.remove =

function(t) {
var n = this.indexOf(t);
return n > -1 && this.splice(

n, 1),
this

}

/* ext-core.js */
Array.prototype.remove =

function(e) {
var t = this.indexOf(e);
return -1 != t && this.splice

(t, 1),
this

}

Figure 2: Example to show the need for validating potential
conflicts.

3.2.1 Motivation for Validation. Potentially conflicting libraries
write to the same globally accessible memory location. This sit-
uation may or may not cause a client to suffer from a conflict as
defined in Definition 1. For example, consider Figure 2, which shows
code snippets from two potentially conflicting libraries, JSLite.js
and ext-core.js. The global access path to which both libraries write
is Array.prototype.remove. Both libraries extend the built-in Ar-
ray object by adding a new method remove, which can be called
with one argument. Even though the two methods are syntacti-
cally different, close inspection shows that both pieces of code are
functionally equivalent. This example illustrates that reporting all
potential conflicts would cause false positives because for some
potential conflicts, all clients are guaranteed to observe the same
behavior, irrespective of the library configuration.

3.2.2 Synthesizing Clients and Comparing their Behavior. To
check whether a potential conflict between two libraries is indeed a
conflict, ConflictJS synthesizes library clients and checks whether
their runtime behavior differs depending on the library configura-
tion. The basic idea is to consider each of the six scenarios listed in
Definition 1 by comparing the behavior of two clients with each
other. The two clients contain exactly the same code, except that

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jibesh Patra, Pooja N. Dixit, and Michael Pradel

Algorithm 1 Validate potential conflicts
Input: Libraries l1, l2 that both write to global access path p
Output: Validated conflict between l1 and l2
1: cempty ← empty client
2: if conf lictinдConf iдs (cempty) then return “inclusion con-

flict”
3: ctypes ← synthesize client that checks type of p
4: if conflictingConfigs(ctypes) then return “type conflict”
5: if type of p is non-function then
6: cvalues ← synthesize client that checks value of p
7: if conflictingConfigs(cvalues) then return “value conflict”
8: else
9: Cbehavior ← synthesize clients that call function p
10: for each cbehavior ∈ Cbehavior do
11: if conflictingConfigs(cbehavior) then return “behavior

conflict”

12: function conflictingConfigs(c)
13: B ← ∅ ▷ Set of observed runtime behaviors
14: for each config ∈ {l1, l2, l1l2, l2l1} do
15: bconfig ← execute cconfig
16: B ← B ∪ {bconfig }
17: if |B| > 1 then return true
18: else return false

they run with different library configurations. If ConflictJS observes
a behavioral difference between the two clients, the potential con-
flict between the two libraries is indeed a conflict.

For illustration, consider the behavior conflict illustrated in Ta-
ble 1. Our approach tries to validate this conflict by synthesizing
clients, such as the client shown in the table. The approach com-
pares the behavior of this client with different library configurations.
For the example, ConflictJS finds that on calling Class, there is one
library that throws an exception while the other does not. That is,
the approach has validated the conflict and reports it, along with
the synthesized client that illustrates the conflict.

Algorithm 1 summarizes our approach for validating potential
conflicts by synthesizing and dynamically executing library clients.
The main idea is to compare the execution of a client c with different
library configurations, i.e., cl1, cl2, cl1,l2, and cl2,l1, as summarized
in function conflictingConfigs. If there are multiple different behav-
iors, then the algorithm has validated a conflict. The following
describes how ConflictJS creates clients to detect the four kinds of
conflicts presented in Section 2.2.

3.2.3 Checking for Inclusion Conflicts. At first, ConflictJS checks
for inclusion conflicts (lines 1 to 2). An inclusion conflict is triggered
by simply including libraries, i.e., the client is an empty client that
does not contain any statements. To compare library configurations,
the behavior bconfig indicates whether including libraries causes the
client to throw an exception. If one library configuration causes an
exception, whereas another configuration does not, then ConflictJS
reports an inclusion conflict.

For the inclusion conflict example of Table 1, ConflictJS reports
a conflict because trying to execute the empty client after loading
curl.js and dojo.js causes an exception, whereas executing the empty

client after loading only one of these libraries does not throw any
exception.

3.2.4 Checking for Type Conflicts. For any pair of libraries l1, l2
and shared global access path p for which the approach has not
validated an inclusion conflict, the next step is to check for type
conflicts. To this end, ConflictJS synthesizes a client that reads the
value at the access path p and then checks its type (lines 3 to 4).
The approach again executes this client with all possible library
configurations and summarizes the behavior of each configuration
as the type of the access path p. If one library configuration causes
the client to see type t1, whereas another library configuration
causes the client to see type t2 , t1, then ConflictJS reports a type
conflict.

An example of a library pair with a type conflict is given in
the second column of Table 1. The approach reports this conflict
because push is an array when loading one library but a function
when loading the other library. The “client” cell of the table shows a
client that suffers from this type conflict because the conflict causes
the client to crash when it tries to call a function that turns out to
be an array.

3.2.5 Checking for Value Conflicts. While checking for type
conflicts, the analysis gathers information about the types of values
stored at a global access path. For potential conflicts that are neither
validated to be an inclusion conflict nor to be a type conflict, both
libraries write values of the same type to the access path. Based on
this type, ConflictJS checks for the remaining two kinds of conflicts.
If the type is function, the approach compares the behavior of
clients that call this function, as described below. If the type is a
non-function, then the approach synthesizes a client that reads the
value at the access path p (lines 6 to 7). To compare the behavior
of this client across library configurations, ConflictJS compares the
value read at p. The analysis directly compares primitive values and
deeply compares objects. If different library configurations cause
the client to read different values, then ConflictJS reports a value
conflict.

The “value conflict” column of Table 1 gives an example of a type
conflict on the pako access path. ConflictJS synthesizes a client that
extracts the number of properties of the value stored at pako and
the then recursively extracts the values of these properties. The
approach reports a conflict because the number of pako’s properties
depends on whether the pako library or the 3Dmol library is loaded.

3.2.6 Checking for Behavior Conflicts. The most challenging
kind of conflict are behavior conflicts. These conflicts occur when
different libraries write functions to the same global access path but
the behaviors of these functions differ. In general, deciding whether
the behavior of two functions differs is undecidable. ConflictJS
approaches this problem by trying to synthesize clients that expose
a difference in behavior. If the analysis succeeds in generating such
a client within a fixed time budget, it reports a behavior conflict.

To synthesize clients we use a simple test generator inspired by
Randoop’s feedback-directed, random test generation [36]. Other
test generation techniques, such as symbolic or concolic execu-
tion [5, 15, 28] or search-based test generation [12], could also be
used for this step. Given a function-typed access path p defined by
two libraries, the test generator starts by estimating the number

ConflictJS: Finding and Understanding Conflicts Between JavaScript Libraries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

n of arguments that the function expects. To this end, we use the
length property of the function object at p, which in JavaScript
yields the number of declared function parameters. This number is
an estimate because a function body may also access additional ar-
guments using the built-in arguments value. Next, to generate a call
to the function, the test generator randomly decides on a random
number ranging between 0 and n of arguments to pass. For each
argument, the test generator decides on the type of argument to
create by randomly choosing between the following types: boolean,
string, number, array, object, undefined and null. To create a boolean,
string, or number, the generator picks from a pre-defined pool of
values. For arrays, the generator randomly picks a length ranging
between 0 and 10 and fills it with random strings and numbers.
Finally, to create an object, the generator creates up to 10 properties
and assigns randomly generated values to them.

Once the arguments are generated, the function is called using
the generated arguments. If and only if the call succeeds, without
raising an exception, for at least one library configuration, the
generator synthesizes a client that contains this call.

To compare the behavior of synthesized clients across library
configurations, ConflictJS summarizes the behavior of the client
execution based on the return value of the function and based on
whether the function raises an exception. The approach reports a
behavior conflict in two cases: (i) if one library configuration causes
the client to crash whereas another library configuration does not
cause a crash, or (ii) if both configurations do not crash but the
return value of the function at p differs.

For example, consider the last column of Table 1. ConflictJS
synthesizes clients that call the function stored at the conflicting
access path Class. The client shown in the table throws an exception
for one of the two libraries but not for the other, which is why
ConflictJS reports a behavior conflict.

4 IMPLEMENTATION
We implement ConflictJS as a client-server-based tool that analyzes
JavaScript libraries. The client component synthesizes, executes,
and analyzes clients in a browser, and sends a summary of the
runtime behavior to the server. The server detects potential conflicts
and validates them based on execution behavior gathered in the
first and second phase, respectively. Our dynamic analyses to find
global writes is build on top of Jalangi [46]. When synthesizing
clients to detect behavior conflicts, we set the testing budget to 50
tests per access path. In this paper, we implement the approach only
for client side JavaScript libraries and it would be straightforward
to adapt for server-side npm libraries but the problem is less severe
for Node.js because there is a commonly accepted module system.

5 RESULTS AND DISCUSSION
We apply ConflictJS to 951 popular JavaScript libraries to evaluate
the effectiveness of the approach in detecting library conflicts. We
focus on the following research questions:
• How effective is ConflictJS in finding library conflicts and what
kinds of conflicts occur in practice? (Section 5.2)
• What are the root causes of conflicts between libraries? (Sec-
tion 5.3.1)

Table 3: JavaScript libraries used for the evaluation.
Min Median Max Total

Libraries - - - 951
Lines of code 9 574 275,0852 2,750,852
Size (bytes) 148 14,645 2,517,510 68,412,720

• Do library developers make an effort to avoid conflicting scenar-
ios by following the "single API object" pattern? (Section 5.3.2)
• What are the popular access paths that developers tend to choose?
(Section 5.3.3)
• Is there a correlation between conflicts and the popularity of a
library? (Section 5.3.4)
• How are the global writes and conflicts distributed across libraries
and access paths, respectively? (Sections 5.3.5 and 5.3.6)

5.1 Experimental Setup
Our evaluation uses 951 real-world JavaScript libraries with a total
of 2,750,852 lines of JavaScript code (Table 3). The libraries include
the popular jQuery, Underscore, and Dojo projects, as well as var-
ious other highly popular libraries. We obtain these libraries by
downloading them from the CDNJS content delivery network.8 At
the time of starting our experiments, the content delivery network
offered a total of 2,095 libraries. We remove libraries that cannot
be used in isolation in a standard desktop browser, e.g., because
they rely on another library or because they target mobile devices.
We heuristically check for such libraries by loading each library in
isolation and filtering away all libraries that throw an exception.
After filtering, 951 libraries remain, which is our benchmark set
for the evaluation. To run our experiments, we use an Intel Core
i7–4790 CPU machine clocked at 3.60GHz with 32 GB of memory,
running Chrome 55, Node.js 6.9.1 on Ubuntu 16.04.

5.2 Effectiveness in Finding Library Conflicts
5.2.1 Potential Conflicts. When analyzing the global writes of

individual libraries, ConflictJS records writes to a total of 130,714
different access paths across the 951 libraries. Intersecting the global
writes of libraries reveals that 4,121 of the access paths cause a
potential conflict, i.e., at least two libraries write to each of these
access paths. These conflicting writes are performed by 268 of the
951 libraries, i.e., roughly one out of four libraries is involved in a
potential conflict.

5.2.2 Validated Conflicts. Out of the 268 potentially conflicting
libraries, ConflictJS validates 166 as certainly conflicting by synthe-
sizing a client whose behavior depends on the library configuration.
The validated conflicts are due to 1,840 distinct access paths. In
other words, ConflictJS successfully validates 62% of the potentially
conflicting libraries (i.e., of 268 libraries) as certainly conflicting and
finds a validated conflict in 17% of all libraries (i.e., of 951 libraries).

5.2.3 Kinds of Validated Conflicts. Figure 3 summarizes how
prevalent the four kinds of conflicts are among all validated conflicts.
The two sides of the figure provide different views on the same data.
Figure 3a focuses on pairs of conflicting libraries and shows how
many of these pairs are caused by the four kinds of conflicts. If a pair
of libraries is involved in multiple kinds of conflicts, then this pair

8https://cdnjs.com/

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jibesh Patra, Pooja N. Dixit, and Michael Pradel

66
4

134

0
0

0

0
2

40

0
0 0

0

55

0

Inclusion Type
Value Behavior

(a) Library pairs classified by the type of conflict.

41
5

37

3
7

1

1
12

14

11
5 0

2

25

2

Inclusion Type
Value Behavior

(b) Libraries classified by the type of conflict.
Figure 3: Prevalence of the four kinds of validated conflicts.
Note that the surface is not proportional to the numbers.

is shown at the set intersection. For example, there are four pairs
of libraries that have a value conflict for a global access path and a
behavior conflict for another global access path. Figure 3b shows
the distribution among the four kinds of conflicts for individual
libraries. Since a single library may be involved in conflicts with
different libraries, these sets overlap. For example, there are seven
libraries that are involved in at least one inclusion conflict, value
conflict, and behavior conflict.

There are two main take-aways of these results. First, all four
kinds of conflicts are prevalent in practice, which confirms our de-
cisions to consider all four kinds in ConflictJS. Second, the majority
of conflicts are non-inclusion conflicts, i.e., they do not cause an
exception just after loading the conflicting libraries. Finding such
conflicts and reasoning about them is challenging for both library
developers and users alike.

5.3 Empirical Study of Library Conflicts
The large number of libraries considered and conflicts detected
in our evaluation, enables us to learn more about how and why
conflicts occur in JavaScript libraries. We discuss these findings
in the following and discuss what impact they have on library
developers, library users, and language designers.

5.3.1 Root Causes of Conflicts. To understand the root causes
of conflicts between libraries we manually inspect a random sam-
ple of 25 conflicting libraries. During the manual inspection, we
identified seven recurring patterns. Table 4 describes each pattern
and and illustrates it with an example.

Five of the seven patterns, which account for 18 out of the 25
inspected conflicts, are unintended by the developers and likely
to cause surprising behavior for library users. These patterns are
shown in the upper part of Table 4. The patterns cover conflicts

caused by independently developed variants of the same functional-
ity, copied third-party code, poor API usage, repeated use of conve-
nient global identifier name, and incorrect attempts to patch built-in
JavaScript APIs. To double-check our intuition about whether con-
flicts are intended by the library developers, we reported seven
conflicts to the developers of conflicting libraries. At the time of
writing, four of our reports have been acknowledged and confirmed
as worth fixing by the respective developers. Of the four acknowl-
edged libraries, two have been fixed by the developers. Apart from
this, based on our bug report, the developer of a library has reported
a bug to another library with which it was conflicting. Subsequently,
this bug report also got fixed.

For all of these five patterns, the root cause boils down to subop-
timal decisions by library developers, such as programming errors
or copy-and-paste of existing code. However, at least for some of
them, the design of the JavaScript language and APIs may also be
partially to blame. For example, instances of the “Poor API usage”
pattern are caused by the fact that the JavaScript web APIs provide
two orthogonal ways to attach event handlers: Setting the handler,
e.g., onmessage = .., which overwrites any already attached han-
dler, and adding a handler via addEventListener("message", ..),
which preserves already attached handlers. The conflicts detected
by ConflictJS are the result of libraries overwriting each other’s
event handlers by directly setting the handler. Another example is
the “Incorrect monkey patching” pattern. The term “monkey patch-
ing” refers to extending built-in APIs of the JavaScript language,
which is possible but non-trivial to implement without removing
existing functionality.

The remaining two patterns, shown in the lower part of Table 4,
both occur in a situation where library users are unlikely to be
surprised by the conflict. One reason is that libraries depend on each
other and document these dependencies clearly, so that library users
know in which order to load them. Ideally, our experimental setup
would filter such libraries, as we assume each library is supposed
to be used independently. Another reason is that libraries provide
the same or very similar overall functionality, so that library users
would never include both together.

Overall, we draw two conclusion from our manual inspection.
First, most conflicts reported by ConflictJS are programming errors
that should be fixed by library developers to prevent clients from
surprising behavior. Second, the root causes of conflicts are diverse
but can be classified into a set of recurring patterns. Knowing these
patterns may become the basis of guidelines for library developers
what mistakes to avoid. Furthermore, the patterns can guide the
design of future program repair techniques that fix conflicting code.

5.3.2 The “Single API Object” Pattern. The “single API object”
pattern (Section 2.1) allows developers to avoid conflicts by storing
all globally accessible data into a single object named like the library.
If all libraries follow this pattern, no conflicts occur. To understand
whether libraries follow this pattern, we check for each library
whether for all writes to a global access path, the path begins with
a segment that matches the name of the library, as listed in the
CDNJS content delivery network. When matching an access path
and a library name, we omit the .js suffix that some libraries use.

We find that 273 out of the 951 libraries follow the “single API ob-
ject” pattern.While promising, this means that 71% of all libraries do

ConflictJS: Finding and Understanding Conflicts Between JavaScript Libraries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 4: Recurring patterns among the root causes of conflicts.

Pattern Description Nb. Example(s)

Independent imple-
mentations

Two libraries implement similar functionality and use
the same global access path to store the function, but the
behavior slightly differs.

5/25 polymer and trix both define wrap and unwrap functions. Other
examples: Figure 1 and issue #434 of es6-shim.

Copied third-party
code

Two libraries both copy code from a third party, e.g., an-
other library. At least one version of the code is outdated.

5/25 qooxdoo includes an outdated copy of sinon. See issue #9277 of
qooxdoo. Another example: Issue #1068 of d3fc.

Poor API usage A library adds an event handler in a way that removes all
other handlers for this kind of event, instead of adding to
the existing event handlers.

4/25 rxjs and gifshot both write to onmessage to handle postMessage
communication. Instead, they should use addEventListener,
which allows multiple event handlers.

Convenient identi-
fier

Two libraries use a convenient, global identifier for differ-
ent purposes.

3/25 mermaid, a library for generating diagrams, writes to _, which is
also used by score-js and others. See issue #512 of mermaid.

Incorrect monkey
patching

A library tries to extend a built-in API but accidentally
removes existing functionality.

1/25 PreloadJS and zingchart both overwrite the built-in JSON in a way
that destroys existing functionality. See issue #226 of PreloadJS.

Documented depen-
dency

One library depends on another and documents this de-
pendency.

4/25 alloy-ui is a framework built on top of yui. Clients should not be
surprised by “conflicts” between them.

Fork One library is derived from another library and modifies
or extends the functionality of the original library.

3/25 wysihtml is an extended version of wysihtml5. Clients should never
use both together.

Table 5: Popularity of global access paths (measured in the
number of libraries that write to an access path).

Libs. Global access paths
13 $
12 localStorage.debug
10 requestAnimationFrame
9 _, jQuery, onload, require
8 clearImmediate, Promise, __core-js_shared__, __core-

js_shared__.wks, setImmediate, __core-js_shared__.wks.iterator,
__core-js_shared__.wks.toStringTag

not follow the pattern, but instead use the shared global namespace
in a possibly conflicting way.We conclude that relying on developer
discipline in an open environment, such as the JavaScript library
ecosystem, is insufficient to enforce a conflict-avoiding policy.

5.3.3 Popular Global Access Paths. The large number of poten-
tial conflicts detected by ConflictJS raises the question what global
access paths are particularly popular among library developers.
Table 5 lists the most popular global access paths along with the
number of libraries that write to it. Perhaps unsurprisingly, the
most popular access path is the dollar sign, $, which is a legal iden-
tifier name in JavaScript and used by several libraries, including
jQuery to export their API. Another popular choice is the under-
score sign, _, which is shared, e.g., by the Underscore and Lodash
libraries. Choosing a short identifier name to export an API is tempt-
ing for library developers and potentially convenient for library
users. However, the downside is that multiple libraries may (either
knowingly or not) pick the same short identifier name, which likely
causes surprises if these libraries are used together.

5.3.4 Conflicts Versus Library Popularity. To better understand
to what extent library conflicts depend on a library’s popularity,
Figure 4a shows for each library how many stars it has and in how
many conflicts it is involved. Each data point corresponds to one
library. For example, one library that has 45,901 starts is involved in
two conflicts. Overall, the figure shows that most conflicts are due
to libraries with less than 10,000 stars. The main reason is that only
few libraries have more than 10,000 stars, as illustrated in Figure 4b.
This figure shows how the libraries validated to be conflicting from

� ����� ����� ����� ����� ����� ����� �����

����������������������

�

�

�

�

�

�
�
���

��
��

�
��
��
��
��
���
�
��

��
���

���
�
�
��
�
�
���

(a) Number of conflicts each library is involved in.

� ����� ����� ����� ����� ����� ����� �����

����������������������

�

�

�

�

�
�
��
�
��
��
�
��

��
�
�

(b) Popularity measure of libraries validated to be conflicting
Figure 4: Influence of popularity on number of conflicts and
number of libraries. Each data point represents one library.
(twelve out of 166 libraries do not have a Github repository
and hence are not included here)

our benchmark are distributed across the popularity measure. Both
figures look similar, which explains the distribution of conflicts
across popularity. At the same time, it is interesting to note that
even some highly popular libraries are involved in conflicts, as
indicated by the data points on the right end of Figure 4a.

5.3.5 Distribution of Global Writes Across Libraries. To better
understand the large number of 130,714 global writes performed by
the 951 libraries, we analyze how these writes are distributed across
the libraries. The results show a highly skewed distribution, with a
few libraries writing to many global access paths but with a median

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jibesh Patra, Pooja N. Dixit, and Michael Pradel

of only one global write. The libraries that write to most global
access paths are large and popular libraries, such as Amazon’s
AWS JDK (36,049 access paths) and Microsoft’s implementation
of TypeScript (5,678 global writes). Their high number of global
writes does not imply bad coding practice. For example, the many
access paths written by the AWS SDK library almost all start with
AWS., i.e., they follow the “single API object” pattern. We conclude
that judging libraries based on their total number of global writes,
which might have been a simple alternative to ConflictJS, is not an
effective way to find conflict-triggering libraries.

5.3.6 Distribution of Conflicts Across Access Paths. A reader
may wonder how many libraries write to the same global access
path. Investigating this question yields a long-tail distribution: Most
global access paths (3,836) are contended for by only two libraries,
but a large number of highly popular global access paths is writ-
ten to by up to 13 libraries. We conclude that preventing library
developers from using a few highly contended access paths, such
as $ and _, is insufficient to solve the problem of library conflicts,
because there are many other access paths that cause conflicts.

6 RELATEDWORK
Lint-like Checkers. Lint-like checkers search for bad coding prac-

tices through lightweight static analysis9, dynamic analysis [17],
and combinations of both [10]. Some of them, e.g., ESLint and JS-
Nose [10], warn about excessive use of global variables within a
single file, but they do not analyze conflicts across files or libraries.

Analysis of Libraries. Existing analyses of JavaScript libraries
check that a library implementation matches its interface specifi-
cation [11], statically analyze library clients to understand types
and other properties of a library [30], and search for code injection
vulnerabilities [49]. Our work synthesizes library clients instead
of analyzing existing clients. Beyond JavaScript, Pollux [27] deter-
mines the effects of upgrading a library. Our work differs from
all the above by analyzing multiple libraries and their potential
interactions, instead of a single library.

Dynamic Analysis for JavaScript. A survey [3] summarizes dy-
namic analyses for JavaScript. Existing analyses include determi-
nacy analysis [43], dynamic data race detectors [23, 33, 37, 41],
dynamic model checkers [24], profilers to detect performance prob-
lems [16, 26, 44], taint- and information-flow analyses [4, 6, 21],
and analyses to understand code changes [2] and the root cause
of a crash [31]. All these techniques are orthogonal to ConflictJS,
which is the first to focuses on library conflicts.

Test Generation. The test synthesis part of ConflictJS relates to
generating test cases, such as feedback-directed, random test gener-
ation [36], symbolic and concolic execution [5, 15, 47], and search-
based testing [12]. JSeft [32] exploits fixtures extracted from ex-
ecutions to create tests. These techniques could help the second
phase of ConflictJS to further increase the percentage of validated
behavior conflicts.

Type Checking and Type Inference. Type conflicts relate to type
errors and type inconsistencies [38]. Several approaches infer and

9Popular tools include http://eslint.org/, http://jshint.com/, and http://www.jslint.com/.

check types through static [18, 22, 25, 50], dynamic [38], or hy-
brid [19] analysis. None of these has been applied to multiple li-
braries. Another difference is that most type checkers focus on
soundness and therefore suffer from false positives, whereas ConflictJS
validates potential conflicts.

Studies of JavaScript Code. Studies show that JavaScript libraries
are widely used and often combined with each other. Nikiforakis
et al. [34] report that 88% of the websites include at least one remote
library, and that libraries are loaded from over 300.000 unique URLs.
Another study [29] shows that a web site includes a median of 9
and a maximum of 202 externally hosted scripts. These numbers
illustrate the risk of accidental conflicts between libraries. Beyond
JavaScript, Eshkevari et al. report conflict-like problems in PHP
applications [9]. Other studies investigate recurring performance
bottlenecks [45], dynamic code loading [40, 42], insecure coding
practices [48, 51], type coercions [39], type-related errors [14], re-
curring bug patterns [20], the use of trivial software packages [1],
the root causes of failures [35], and the use of callbacks [13].

7 CONCLUSION
JavaScript code, including independently developed libraries, shares
the same global namespace. Because the most widely used versions
of the language lack features designed for encapsulating exported
APIs, library developers risk to accidentally share the same globally
accessible memory locations and write different data and functions
to them. This paper defines and classifies such library conflicts,
presents an automatic and scalable approach to detect them, and
studies conflicts in a large set of libraries. We deal with the huge
search space of possible conflicts through a two-phase approach
that dynamically analyzes libraries in isolation to detect potential
conflicts and then synthesizes library clients to validate conflicts.
Among 951 real-world libraries, the approach finds 166 (17%) cer-
tainly conflicting libraries. Furthermore, we empirically study how
and why conflicts occur, showing that a diverse set of programming
errors in libraries are the primary root cause.

Our work not only provides a practical tool for library devel-
opers to detect conflicts and for library users to avoid conflicting
libraries, but also highlights the importance of language features
for encapsulating independently developed code. We believe that
our work provides ample opportunities for future work. One di-
rection is to complement our precise but unsound analysis with a
sound (and likely imprecise) checker for library conflicts. To help
developers avoid conflicts, another line of future work are repair
tools that either address the coding errors that cause conflicts. Fi-
nally, future work could develop automatic code transformations
to help libraries use encapsulation mechanisms provided in recent
and future versions of JavaScript.

Acknowledgments
This work was supported by the German Federal Ministry of Education and Research
and by the Hessian Ministry of Science and the Arts within CRISP, by the German
Research Foundation within the ConcSys and Perf4JS projects, and by the Hessian
LOEWE initiative within the Software-Factory 4.0 project.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case

ConflictJS: Finding and Understanding Conflicts Between JavaScript Libraries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Study on npm. In FSE.
[2] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2015. Hybrid DOM-

Sensitive Change Impact Analysis for JavaScript. In ECOOP. 321–345.
[3] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,

Koushik Sen, and Cristian alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. Comput. Surveys (2017).

[4] Thomas H. Austin and Cormac Flanagan. 2010. Permissive dynamic information
flow analysis.. In PLAS.

[5] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Symposium on Operating Systems Design and Implementation (OSDI). USENIX,
209–224.

[6] Ravai Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged
Information Flow for JavaScript. In Conference on Programming Language Design
and Implementation (PLDI). ACM, 50–62.

[7] ECMA. 2011. Standard ECMA-262, ECMAScript Language Specification, 5.1
Edition. (June 2011).

[8] ECMA. 2015. Standard ECMA-262, ECMAScript Language Specification, 6th
Edition. (June 2015).

[9] Laleh Eshkevari, Giuliano Antoniol, James R. Cordy, and Massimiliano Di Penta.
2014. Identifying and Locating Interference Issues in PHP Applications: The Case
of WordPress. In Proceedings of the 22Nd International Conference on Program
Comprehension (ICPC 2014). ACM, New York, NY, USA, 157–167. DOI:http:
//dx.doi.org/10.1145/2597008.2597153

[10] Amin Milani Fard and Ali Mesbah. 2013. JSNOSE: Detecting JavaScript code
smells. In Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th Interna-
tional Working Conference on. IEEE, 116–125.

[11] Asger Feldthaus and Anders Møller. 2014. Checking correctness of TypeScript
interfaces for JavaScript libraries. In Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA). ACM, 1–16.

[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.
416–419.

[13] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. 2015. Don’t Call Us, We’ll
Call You: Characterizing Callbacks in Javascript. In 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2015,
Beijing, China, October 22-23, 2015. 247–256.

[14] Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To type or not to type: quan-
tifying detectable bugs in JavaScript. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017. 758–769.

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed au-
tomated random testing. In Conference on Programming Language Design and
Implementation (PLDI). ACM, 213–223.

[16] Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
unfriendly JavaScript Code. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 357–368.

[17] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In International Sym-
posium on Software Testing and Analysis (ISSTA). 94–105.

[18] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2011. Typing Local
Control and State Using Flow Analysis. In European Symposium on Programming
(ESOP). 256–275.

[19] Brian Hackett and Shu-yu Guo. 2012. Fast and Precise Hybrid Type Inference for
JavaScript. In Conference on Programming Language Design and Implementation
(PLDI). ACM, 239–250.

[20] Quinn Hanam, Fernando Santos De Mattos Brito, and Ali Mesbah. 2016. Dis-
covering bug patterns in JavaScript. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016. 144–156.

[21] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
tracking information flow in JavaScript and its APIs. In SAC. 1663–1671.

[22] Phillip Heidegger and Peter Thiemann. 2010. Recency Types for Analyzing
Scripting Languages.. In European Conference on Object-Oriented Programming
(ECOOP). 200–224.

[23] Shin Hong, Yongbae Park, and Moonzoo Kim. 2014. Detecting Concurrency
Errors in Client-Side Java Script Web Applications.. In ICST. 61–70.

[24] Casper Svenning Jensen, Anders Moller, Veselin Raychev, and Martin Vechev.
2015. Stateless Model Checking of Event-Driven Applications. In Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA).

[25] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In Symposium on Static Analysis (SAS). Springer, 238–255.

[26] Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015.
MemInsight: platform-independent memory debugging for JavaScript. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. 345–356.

[27] Sukrit Kalra, Ayush Goel, Dhriti Khanna, Mohan Dhawan, Subodh Sharma,
and Rahul Purandare. 2016. POLLUX: safely upgrading dependent application
libraries. In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18,
2016. 290–300.

[28] J. C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7
(1976), 385–394.

[29] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In NDSS.

[30] Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical static
analysis of JavaScript applications in the presence of frameworks and libraries.
In ESEC/SIGSOFT FSE. 499–509.

[31] Magnus Madsen, Frank Tip, Esben Andreasen, Koushik Sen, and Anders Møller.
2016. Feedback-directed instrumentation for deployed JavaScript applications.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 899–910.

[32] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2015. JSEFT:
Automated Javascript Unit Test Generation. In ICST.

[33] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript
Races that Matter. In European Software Engineering Conference and International
Symposium on Foundations of Software Engineering (ESEC/FSE).

[34] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You Are What You Include: Large-scale Evaluation of Remote Javascript In-
clusions. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security (CCS ’12). ACM, New York, NY, USA, 736–747. DOI:
http://dx.doi.org/10.1145/2382196.2382274

[35] Frolin S. Ocariza Jr., Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013.
An Empirical Study of Client-Side JavaScript Bugs. In Symposium on Empirical
Software Engineering and Measurement (ESEM). 55–64.

[36] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In International Conference on Soft-
ware Engineering (ICSE). IEEE, 75–84.

[37] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012. Race
Detection for Web Applications. In Conference on Programming Language Design
and Implementation (PLDI).

[38] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic Type
Inconsistency Analysis for JavaScript. In International Conference on Software
Engineering (ICSE).

[39] Michael Pradel and Koushik Sen. 2015. The Good, the Bad, and the Ugly: An Em-
pirical Study of Implicit Type Conversions in JavaScript. In European Conference
on Object-Oriented Programming (ECOOP).

[40] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. 2010. JSMeter:
Comparing the Behavior of JavaScript Benchmarks with Real Web Applications.
In USENIX Conference on Web Application Development, WebApps’10, Boston,
Massachusetts, USA, June 23-24, 2010.

[41] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective Race Detec-
tion for Event-Driven Programs. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[42] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The Eval
That Men Do - A Large-Scale Study of the Use of Eval in JavaScript Applications.
In European Conference on Object-Oriented Programming (ECOOP). 52–78.

[43] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013. Dynamic
determinacy analysis. In PLDI. 165–174.

[44] Marija Selakovic, Thomas Glaser, and Michael Pradel. 2017. An Actionable
Performance Profiler for Optimizing the Order of Evaluations. In International
Symposium on Software Testing and Analysis (ISSTA). 170–180.

[45] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In International Conference on Software
Engineering (ICSE). 61–72.

[46] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 488–498.

[47] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In European Software Engineering Conference and International
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 263–272.

[48] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: At-
tacking and Defending postMessage in HTML5 Websites.. In NDSS.

[49] Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. 2018. Understanding
and Automatically Preventing Injection Attacks on Node.js. In NDSS.

[50] Peter Thiemann. 2005. Towards a Type System for Analyzing JavaScript Programs.
In European Symposium on Programming (ESOP). 408–422.

[51] Chuan Yue and Haining Wang. 2009. Characterizing insecure javascript practices
on the web. In Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, Madrid, Spain, April 20-24, 2009. 961–970.

