
Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Module 27: Programming in C++
Polymorphism: Part 2: Static and Dynamic Binding

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Module Objectives

• Understand Static and Dynamic Binding

• Understand Polymorphic Type

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Module Outline

1 Type Binding

Type of an Object

Static and Dynamic Binding

Comparison of Static and Dynamic Binding

Static Binding

Dynamic Binding

2 Polymorphic Type

3 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Type of an Object

• The static type of the object is the type declared for the object while writing the code

• Compiler sees static type

• The dynamic type of the object is determined by the type of the object to which it
refers at run-time

• Compiler does not see dynamic type

class A { };
class B : public A { };

int main() {
A *p;
p = new B; // Static type of p is A*

// Dynamic type of p is B*
}

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Static and Dynamic Binding

• Static binding (early binding): When a function invocation binds to the function
definition based on the static type of objects
→ This is done at compile-time
→ Normal function calls, overloaded function calls, and overloaded operators are
examples of static binding

• Dynamic binding (late binding): When a function invocation binds to the function
definition based on the dynamic type of objects
→ This is done at run-time
→ Function pointers, Virtual functions are examples of late binding

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Comparison of Static and Dynamic Binding

Basis Static Binding Dynamic Binding

• Event

Occurrence

• Events occur at compile time –

Static Binding

• Events occur at run time – Dynamic

Binding

• Information • All information needed to call a

function is known at compile time

• All information needed to call a

function is known only at run time

• Advantage • E!ciency • Flexibility

• Time • Fast execution • Slow execution

• Actual

Object

• Actual object is not used for binding • Actual object is used for binding

• Alternate

name

• Early Binding • Late Binding

• Example • Method Overloading

Normal function call,

Overloaded function call,

Overloaded operators

• Method Overriding

Virtual functions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Static Binding

Inherited Method Overridden Method

#include<iostream>

using namespace std;

class B { public:

void f() { }
};
class D : public B { public:

void g() { } // new function

};
int main() { B b; D d;

b.f(); // B::f()

d.f(); // B::f() ----- Inherited

d.g(); // D::g() ----- Added

}

#include<iostream>

using namespace std;

class B { public:

void f() { }
};
class D : public B { public:

void f() { }
};
int main() { B b; D d;

b.f(); // B::f()

d.f(); // D::f() ----- Overridden

// masks the base class function

}

• Object d of derived class inherits the base class func-

tion f() and has its own function g()

• If a member function of a base class is redefined in a

derived class with the same signature then it masks the

base class method

• Function calls are resolved at compile time based on

static type

• The derived class method f() is linked to the object d.

As f() is redefined in the derived class, the base class

version cannot be called with the object of a derived

class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Member Functions: Overrides and Overloads: RECAP (Module 22)

Inheritance Override & Overload

class B { public: // Base Class

void f(int i);

void g(int i);

};
class D: public B { public: // Derived Class

// Inherits B::f(int)

// Inherits B::g(int)

};
B b;

D d;

b.f(1); // Calls B::f(int)

b.g(2); // Calls B::g(int)

d.f(3); // Calls B::f(int)

d.g(4); // Calls B::g(int)

class B { public: // Base Class

void f(int);

void g(int i);

};
class D: public B { public: // Derived Class

// Inherits B::f(int)

void f(int); // Overrides B::f(int)

void f(string&); // Overloads B::f(int)

// Inherits B::g(int)

void h(int i); // Adds D::h(int)

};
B b;

D d;

b.f(1); // Calls B::f(int)

b.g(2); // Calls B::g(int)

d.f(3); // Calls D::f(int)

d.g(4); // Calls B::g(int)

d.f("red"); // Calls D::f(string&)

d.h(5); // Calls D::h(int)

• D::f(int) overrides B::f(int)

• D::f(string&) overloads B::f(int)

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

using Construct – Avoid Method Hiding

#include<iostream>

using namespace std;

class A { public:

void f() { }
};

class B : public A { public:

// To overload, rather than hide the base class function f(),

// it is introduced into the scope of B with a using declaration

using A::f;

void f(int) { } // Overloads f()

};
int main() {

B b; // function calls resolved at compile time

b.f(3); // B::f(int)

b.f(); // A::f()

}

• Object b of derived class linked to with inherited base class function f() and the overloaded

version defined by the derived class f(int), based on the input parameters – function calls

resolved at compile time

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Dynamic Binding

Non-Virtual Method Virtual Method

#include<iostream>

using namespace std;

class B { public:

void f() { }
};
class D : public B { public:

void f() { }
};
int main() {

B b;

D d;

B *p;

p = &b; p->f(); // B::f()

p = &d; p->f(); // B::f()

}

#include<iostream>

using namespace std;

class B { public:

virtual void f() { }
};
class D : public B { public:

virtual void f() { }
};
int main() {

B b;

D d;

B *p;

p = &b; p->f(); // B::f()

p = &d; p->f(); // D::f()

}

• p->f() always binds to B::f() • p->f() binds to B::f() for a B object, and to D::f() for a D object

• Binding is decided by the type of pointer • Binding is decided by the type of object
• Static Binding • Dynamic Binding

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Static and Dynamic Binding

#include <iostream>

using namespace std;

class B { public:

void f() { cout << "B::f()" << endl; }
virtual void g() { cout << "B::g()" << endl; }

};
class D: public B { public:

void f() { cout << "D::f()" << endl; }
virtual void g() { cout << "D::g()" << endl; }

};
int main() { B b; D d;

B *pb = &b;

B *pd = &d; // UPCAST

B &rb = b;

B &rd = d; // UPCAST

b.f(); // B::f()

b.g(); // B::g()

d.f(); // D::f()

d.g(); // D::g()

pb->f(); // B::f() -- Static Binding

pb->g(); // B::g() -- Dynamic Binding

pd->f(); // B::f() -- Static Binding

pd->g(); // D::g() -- Dynamic Binding

rb.f(); // B::f() -- Static Binding

rb.g(); // B::g() -- Dynamic Binding

rd.f(); // B::f() -- Static Binding

rd.g(); // D::g() -- Dynamic Binding

return 0;

}

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Polymorphic Type: Virtual Functions

• Dynamic binding is possible only for pointer and reference data types and for member
functions that are declared as virtual in the base class

• These are called Virtual Functions

• If a member function is declared as virtual, it can be overridden in the derived class

• If a member function is not virtual and it is re-defined in the derived class then the
latter definition hides the former one

• Any class containing a virtual member function – by definition or by inheritance – is
called a Polymorphic Type

• A hierarchy may be polymorphic or non-polymorphic

• A non-polymorphic hierarchy has little value

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Polymorphism Rule

#include <iostream>

using namespace std;

class A { public:

void f() { cout << "A::f()" << endl; } // Non-Virtual

virtual void g() { cout << "A::g()" << endl; } // Virtual

void h() { cout << "A::h()" << endl; } // Non-Virtual

};
class B : public A { public:

void f() { cout << "B::f()" << endl; } // Non-Virtual

void g() { cout << "B::g()" << endl; } // Virtual

virtual void h() { cout << "B::h()" << endl; } // Virtual

};
class C : public B { public:

void f() { cout << "C::f()" << endl; } // Non-Virtual

void g() { cout << "C::g()" << endl; } // Virtual

void h() { cout << "C::h()" << endl; } // Virtual

};
int main() {

B *q = new C; A *p = q;

p->f();

p->g();

p->h();

q->f();

q->g();

q->h();

}

A::f()

C::g()

A::h()

B::f()

C::g()

C::h()

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 27

Instructors: Abir

Das and Jibesh

Patra

Type Binding

Type of an Object

Static and Dynamic

Binding

Comparison

Static Binding

Dynamic Binding

Polymorphic Type

Module Summary

Module Summary

• Discussed Static and Dynamic Binding

• Polymorphic type introduced

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Module 28: Programming in C++
Polymorphism: Part 3: Abstract Base Class

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Module Objectives

• Understand why destructor must be virtual in a class hierarchy

• Learn to work with class hierarchy

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Module Outline

1 Virtual Destructor
Slicing

2 Pure Virtual Function

3 Abstract Base Class
Shape Hierarchy

Pure Virtual Function with Body

4 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Virtual Destructor

#include <iostream>

using namespace std;

class B { int data_; public:

B(int d) :data_(d) { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
virtual void Print() { cout << data_; }

};
class D: public B { int *ptr_; public:

D(int d1, int d2) :B(d1), ptr_(new int(d2)) { cout << "D()" << endl; }
~D() { cout << "~D()" << endl; delete ptr_; }
void Print() { B::Print(); cout << " " << *ptr_; }

};
int main() {

B *p = new B(2);

B *q = new D(3, 5);

p->Print(); cout << endl;

q->Print(); cout << endl;

delete p;

delete q;

}

Output:

B()

B()

D()

2

3 5

~B()

~B()

Destructor of d (type D) not called!

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Virtual Destructor

#include <iostream>

using namespace std;

class B { int data_; public:

B(int d) :data_(d) { cout << "B()" << endl; }
virtual ~B() { cout << "~B()" << endl; } // Destructor made virtual

virtual void Print() { cout << data_; }
};
class D: public B { int *ptr_; public:

D(int d1, int d2) :B(d1), ptr_(new int(d2)) { cout << "D()" << endl; }
~D() { cout << "~D()" << endl; delete ptr_; }
void Print() { B::Print(); cout << " " << *ptr_; }

};
int main() {

B *p = new B(2);

B *q = new D(3, 5);

p->Print(); cout << endl;

q->Print(); cout << endl;

delete p;

delete q;

}

Output:

B()

B()

D()

2

3 5

~B()

~D()

~B()

Destructor of d (type D) is called!

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Virtual Destructor: Slicing

• Slicing is where we assign an object of a derived class to an instance of a base class, thereby
losing part of the information - some of it is sliced away
#include <iostream>

using namespace std;

class Base { protected: int i; public:

Base(int a) i = a;

virtual void display() { cout << "I am Base class object, i = " << i << endl; }
};
class Derived : public Base { int j; public:

Derived(int a, int b) : Base(a) { j = b; }
virtual void display() { cout<< "I am Derived class object, i = " << i << ", j = " << j <<endl; }

};
// Global method, Base class object is passed by value

void somefunc (Base obj) { obj.display(); }
int main() { Base b(33); Derived d(45, 54);

somefunc(b);

somefunc(d); // Object Slicing, the member j of d is sliced off

}
I am Base class object, i = 33

I am Base class object, i = 45

• If the destructor is not virtual in a polymorphic hierarchy, it leads to Slicing
• Destructor must be declared virtual in the base class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Pure Virtual Function

Pure Virtual Function

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Hierarchy of Shapes

• We want to have a polymorphic draw() function for the hierarchy
• draw() will be overridden in every class based on the drawing algorithms
• What is the draw() function for the root Shapes class?

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Pure Virtual Function

• For the polymorphic hierarchy of Shapes, we need draw() to be a virtual function

• draw() must be a member of Shapes class for polymorphic dispatch to work

• But we cannot define the body of draw() function for the root Shapes class as we do

not have an algorithm to draw an arbitrary share. In fact, we cannot even have a

representation for shapes in general!

• Pure Virtual Function solves the problem

• A Pure Virtual Function has a signature but no body!

• Example:

class Root { public:

void f(); // Non-Virtual Function

virtual void g(); // Virtual Function

virtual void h() = 0; // Pure Virtual Function

};

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Abstract Base Class

Abstract Base Class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Abstract Base Class

• A class containing at least one Pure Virtual Function is called an Abstract Base Class

• Pure Virtual Functions may be inherited or defined in the class

• No instance can be created for an Abstract Base Class

• Naturally it may not have a constructor or a virtual destructor

• An Abstract Base Class, however, may have other virtual (non-pure) and

non-virtual member functions as well as data members

• Data members in an Abstract Base Class should be protected. Of course, private and

public data are also allowed

• Member functions in an Abstract Base Class should be public. Of course, private and

protected methods are also allowed

• A Concrete Class must override and implement all Pure Virtual Functions so that it can

be instantiated

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Shape Hierarchy

#include <iostream> // Abstract Base Class shown in red

using namespace std; // Concrete Class shown in green

class Shapes { public: // Abstract Base Class

virtual void draw() = 0; // Pure Virtual Function

};
class Polygon: public Shapes { public: void draw() { cout<< "Polygon: Draw by Triangulation" <<endl; } };
class ClosedConics: public Shapes { public: // Abstract Base Class

// draw() inherited - Pure Virtual

};
class Triangle: public Polygon { public: void draw() { cout << "Triangle: Draw by Lines" << endl; } };
class Quadrilateral: public Polygon { public:

void draw() { cout << "Quadrilateral: Draw by Lines" << endl; }
};
class Circle: public ClosedConics { public:

void draw() { cout << "Circle: Draw by Breshenham Algorithm" << endl; }
};
class Ellipse: public ClosedConics { public: void draw() { cout << "Ellipse: Draw by ..." << endl; } };
int main() {

Shapes *arr[] = { new Triangle, new Quadrilateral, new Circle, new Ellipse };

for (int i = 0; i < sizeof(arr) / sizeof(Shapes *); ++i)

arr[i]->draw();

// ...

}
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Shape Hierarchy

int main() {
Shapes *arr[] = { new Triangle, new Quadrilateral, new Circle, new Ellipse };

for (int i = 0; i < sizeof(arr) / sizeof(Shapes *); ++i)

arr[i]->draw();

// ...

return 0;

}

Triangle: Draw by Lines

Quadrilateral: Draw by Lines

Circle: Draw by Breshenham Algorithm

Ellipse: Draw by ...

• Instances for class Shapes and class ClosedConics cannot be created

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Shape Hierarchy: A Pure Virtual Function may have a body!

#include <iostream>

using namespace std;

class Shapes { public: // Abstract Base Class

virtual void draw() = 0 // Pure Virtual Function

{ cout << "Shapes: Init Brush" << endl; }
};
class Polygon: public Shapes { public: // Concrete Class

void draw() { Shapes::draw(); cout << "Polygon: Draw by Triangulation" << endl; }
};
class ClosedConics: public Shapes { public: // Abstract Base Class

// draw() inherited - Pure Virtual

};
class Triangle: public Polygon { public: // Concrete Class

void draw() { Shapes::draw(); cout << "Triangle: Draw by Lines" << endl; }
};
class Quadrilateral: public Polygon { public: // Concrete Class

void draw() { Shapes::draw(); cout << "Quadrilateral: Draw by Lines" << endl; }
};
class Circle: public ClosedConics { public: // Concrete Class

void draw() { Shapes::draw(); cout << "Circle: Draw by Breshenham Algorithm" << endl; }
};
class Ellipse: public ClosedConics { public: // Concrete Class

void draw() { Shapes::draw(); cout << "Ellipse: Draw by ..." << endl; }
};

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Shape Hierarchy

int main() {
Shapes *arr[] = { new Triangle, new Quadrilateral, new Circle, new Ellipse };

for (int i = 0; i < sizeof(arr) / sizeof(Shapes *); ++i)

arr[i]->draw();

}

Shapes: Init Brush

Triangle: Draw by Lines

Shapes: Init Brush

Quadrilateral: Draw by Lines

Shapes: Init Brush

Circle: Draw by Breshenham Algorithm

Shapes: Init Brush

Ellipse: Draw by ...

• Instances for class Shapes and class ClosedConics cannot be created
• Some compilers do not allow to inline the function body for a pure virtual function

class Shapes { public: virtual void draw() = 0 { cout << "Shapes: Init Brush" << endl; } };
Outline the function body:

class Shapes { public: virtual void draw() = 0; };
void Shapes::draw() { cout << "Shapes: Init Brush" << endl; }

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 28
Instructors: Abir
Das and Jibesh

Patra

Virtual
Destructor

Slicing

Pure Virtual
Function

Abstract Base
Class

Shape Hierarchy

Pure Virtual
Function with Body

Module Summary

Module Summary

• Discussed why destructors must be virtual in a polymorphic hierarchy

• Introduced Pure Virtual Functions

• Introduced Abstract Base Class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Module 29: Programming in C++

Polymorphism: Part 4: Sta! Salary Processing using C

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Module Objectives

• Understand design with ISA related concepts

• Understand the problems with C design

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Module Outline

1 Binding: Exercise

Exercise 1

Exercise 2

2 Sta! Salary Processing

C Solution

Engineer + Manager

Engineer + Manager + Director

Advantages and Disadvantages

3 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Binding: Exercise 1

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pA = &a; pA = &b; pA = &c;

pA->f(2);
pA->g(3.2);
pA->h(&a);
pA->h(&b);

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Binding: Exercise 1: Solution

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pA = &a; pA = &b; pA = &c;

pA->f(2); A::f B::f B::f
pA->g(3.2); A::g A::g C::g
pA->h(&a); A::h A::h A::h
pA->h(&b); A::h A::h A::h

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Binding: Exercise 2

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pB = &a; pB = &b; pB = &c;

pB->f(2);
pB->g(3.2);
pB->h(&a);
pB->h(&b);

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Binding: Exercise 2: Solution

// Class Definitions
class A { public:

virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};

// Application Codes
A a;
B b;
C c;

A *pA;
B *pB;

Initialization
Invocation pB = &a; pB = &b; pB = &c;

pB->f(2); Error B::f B::f
pB->g(3.2); Downcast A::g C::g
pB->h(&a); (A *) to No conversion (A *) to (B *)
pB->h(&b); (B *) B::h C::h

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Sta! Salary Processing: Problem Statement

• An organization needs to develop a salary processing application for its sta!

• At present it has an engineering division only where Engineers and Managers work.

Every Engineer reports to some Manager. Every Manager can also work like an Engineer

• The logic for processing salary for Engineers and Managers are di!erent as they have

di!erent salary heads

• In future, it may add Directors to the team. Then every Manager will report to some

Director. Every Director could also work like a Manager

• The logic for processing salary for Directors will also be distinct

• Further, in future it may open other divisions, like Sales division, and expand the

workforce

• Make a suitable extensible design

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

• How to represent Engineers and Managers?

→ Collection of structs

• How to initialize objects?

→ Initialization functions

• How to have a collection of mixed objects?

→ Array of union

• How to model variations in salary processing algorithms?

→ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

→ Function Switch

→ Function Pointers

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef enum E_TYPE { Er, Mgr } E_TYPE; // Tag for type of staff

typedef struct Engineer { char *name_; } Engineer;
Engineer *InitEngineer(const char *name) {

Engineer *e = (Engineer *)malloc(sizeof(Engineer));
e->name_ = strdup(name); return e;

}
void ProcessSalaryEngineer(Engineer *e) { printf("%s: Process Salary for Engineer\n", e->name_); }

typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager;
Manager *InitManager(const char *name) {

Manager *m = (Manager *)malloc(sizeof(Manager));
m->name_ = strdup(name); return m;

}
void ProcessSalaryManager(Manager *m) { printf("%s: Process Salary for Manager\n", m->name_); }

typedef struct Staff { // Aggregation of staffs
E_TYPE type_;
union { Engineer *pE; Manager *pM; };

} Staff;

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager

int main() {
Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");

for (int i = 0; i < 5; ++i) {
E_TYPE t = allStaff[i].type_;
if (t == Er)

ProcessSalaryEngineer(allStaff[i].pE);
else if (t == Mgr)

ProcessSalaryManager(allStaff[i].pM);
else

printf("Invalid Staff Type\n");
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

→ Collection of structs

• How to initialize objects?

→ Initialization functions

• How to have a collection of mixed objects?

→ Array of union

• How to model variations in salary processing algorithms?

→ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

→ Function switch

→ Function pointers

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE;

typedef struct Engineer { char *name_; } Engineer;
Engineer *InitEngineer(const char *name) { Engineer *e = (Engineer *)malloc(sizeof(Engineer));

e->name_ = strdup(name); return e;
}
void ProcessSalaryEngineer(Engineer *e) { printf("%s: Process Salary for Engineer\n", e->name_); }

typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager;
Manager *InitManager(const char *name) { Manager *m = (Manager *)malloc(sizeof(Manager));

m->name_ = strdup(name); return m;
}
void ProcessSalaryManager(Manager *m) { printf("%s: Process Salary for Manager\n", m->name_); }

typedef struct Director { char *name_; Manager *reports_[10]; } Director;
Director *InitDirector(const char *name) { Director *d = (Director *)malloc(sizeof(Director));

d->name_ = strdup(name); return d;
}
void ProcessSalaryDirector(Director *d) { printf("%s: Process Salary for Director\n", d->name_); }

typedef struct Staff { E_TYPE type_; union { Engineer *pE; Manager *pM; Director *pD; };
} Staff;
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

int main() { Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");
allStaff[5].type_ = Dir; allStaff[5].pD = InitDirector("Ranjana");

for (int i = 0; i < 6; ++i) { E_TYPE t = allStaff[i].type_;
if (t == Er)

ProcessSalaryEngineer(allStaff[i].pE);
else if (t == Mgr)

ProcessSalaryManager(allStaff[i].pM);
else if (t == Dir)

ProcessSalaryDirector(allStaff[i].pD);
else

printf("Invalid Staff Type\n");
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Function Switch: Engineer + Manager + Director

Instead of if-else chain, we can use switch to explicitly switch on the type of employee

int main() { Staff allStaff[10];
allStaff[0].type_ = Er; allStaff[0].pE = InitEngineer("Rohit");
allStaff[1].type_ = Mgr; allStaff[1].pM = InitManager("Kamala");
allStaff[2].type_ = Mgr; allStaff[2].pM = InitManager("Rajib");
allStaff[3].type_ = Er; allStaff[3].pE = InitEngineer("Kavita");
allStaff[4].type_ = Er; allStaff[4].pE = InitEngineer("Shambhu");
allStaff[5].type_ = Dir; allStaff[5].pD = InitDirector("Ranjana");

for (int i = 0; i < 6; ++i) { E_TYPE t = allStaff[i].type_;
switch (t) {

case Er: ProcessSalaryEngineer(allStaff[i].pE); break;
case Mgr: ProcessSalaryManager(allStaff[i].pM); break;
case Dir: ProcessSalaryDirector(allStaff[i].pD); break;
default: printf("Invalid Staff Type\n"); break;

}
}

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

C Solution: Advantages and Disadvantages

• Advantages

→ Solution exists!

→ Code is well structured – has patterns

• Disadvantages

→ Employee data has scope for better organization

ω No encapsulation for data

ω Duplication of fields across types of employees – possible to mix up types for them (say, char *
and string)

ω Employee objects are created and initialized dynamically through Init... functions. How to

release the memory?

→ Types of objects are managed explicitly by E Type:

ω Di”cult to extend the design – addition of a new type needs to:

↑ Add new type code to enum E Type
↑ Add a new pointer field in struct Staff for the new type

↑ Add a new case (if-else or case) based on the new type

ω Error prone – developer has to decide to call the right processing function for every type

(ProcessSalaryManager for Mgr etc.)

• Recommendation

→ Use classes for encapsulation on a hierarchy

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 29

Instructors: Abir

Das and Jibesh

Patra

Binding: Exercise

Exercise 1

Exercise 2

Sta! Salary

Processing

C Solution

Engineer +

Manager

Engineer +

Manager + Director

Advantages and

Disadvantages

Module Summary

Module Summary

• Practiced exercise with binding – various mixed cases

• Started designing for a sta! salary problem and worked out C solutions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

Module 30: Programming in C++
Polymorphism: Part 5: Sta! Salary Processing using C++

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

Module Objectives

• Understand design with class hierarchy

• Understand the process of design refinement to get to a good solution from a starting

one

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

Module Outline

1 Sta! Salary Processing: C++ Solution

Non-Polymorphic Hierarchy

Advantages and Disadvantages

Polymorphic Hierarchy

Advantages and Disadvantages

Polymorphic Hierarchy (Flexible)

Advantages and Disadvantages

2 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy: Engineer + Manager

• How to represent Engineers and Managers?

→ Non-Polymorphic class hierarchy

• How to initialize objects?

→ Constructor / Destructor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing algorithms?

→ Member functions

• How to invoke the correct algorithm for a correct employee type?

→ Function switch

→ Function pointers
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy: Engineer + Manager

#include <iostream>

#include <string>

using namespace std;

enum E_TYPE { Er, Mgr };

class Engineer {
protected:

string name_; E_TYPE type_;

public:

Engineer(const string& name, E_TYPE e = Er) : name_(name), type_(e) { }
E_TYPE GetType() { return type_; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};

class Manager : public Engineer {
Engineer *reports_[10];

public:

Manager(const string& name, E_TYPE e = Mgr) : Engineer(name, e) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");

Manager m1("Kamala"), m2("Rajib");

Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3 };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i) {
E_TYPE t = staff[i]->GetType();

if (t == Er)

staff[i]->ProcessSalary();

else if (t == Mgr)

((Manager *)staff[i])->ProcessSalary();

else cout << "Invalid Staff Type" << endl;

}
}

Rohit: Process Salary for Engineer

Kamala: Process Salary for Manager

Rajib: Process Salary for Manager

Kavita: Process Salary for Engineer

Shambhu: Process Salary for Engineer

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy:
Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

→ Non-Polymorphic class hierarchy

• How to initialize objects?

→ Constructor / Destructor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing algorithms?

→ Member functions

• How to invoke the correct algorithm for a correct employee type?

→ Function switch

→ Function pointers

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager + Director
#include <iostream>

#include <string>

using namespace std;

enum E_TYPE { Er, Mgr, Dir };

class Engineer {
protected:

string name_; E_TYPE type_;

public:

Engineer(const string& name, E_TYPE e = Er) : name_(name), type_(e) {}
E_TYPE GetType() { return type_; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer {

Engineer *reports_[10];

public:

Manager(const string& name, E_TYPE e = Mgr) : Engineer(name, e) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager {

Manager *reports_[10];

public:

Director(const string& name) : Manager(name, Dir) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy
Engineer + Manager + Director

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");

Manager m1("Kamala"), m2("Rajib");

Director d("Ranjana");

Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i) {
E_TYPE t = staff[i]->GetType();

if (t == Er)

staff[i]->ProcessSalary();

else if (t == Mgr)

((Manager *)staff[i])->ProcessSalary();

else if (t == Dir)

((Director *)staff[i])->ProcessSalary();

else cout << "Invalid Staff Type" << endl;

}
}

Rohit: Process Salary for Engineer

Kamala: Process Salary for Manager

Rajib: Process Salary for Manager

Kavita: Process Salary for Engineer

Shambhu: Process Salary for Engineer

Ranjana: Process Salary for Director

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Non-Polymorphic Hierarchy:
Advantages and Disadvantages

• Advantages
→ Data is encapsulated

→ Hierarchy factors common data members

→ Constructor / Destructor to manage lifetime

→ struct-specific functions made member function (overridden)

→ E Type subsumed in class – no need for union
→ Code reuse evidenced

• Disadvantages
→ Types of objects are managed explicitly by E Type:

ω Di!cult to extend the design – addition of a new type needs to:

↑ Add new type code to enum E Type
↑ Application code need to have a new case (if-else) based on the new type

ω Error prone because the application programmer has to cast to right type to call

ProcessSalary

• Recommendation
→ Use a polymorphic hierarchy with dynamic dispatch

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director

• How to represent Engineers, Managers, and Directors?

→ Polymorphic class hierarchy

• How to initialize objects?

→ Constructor / Destructor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing algorithms?

→ Member functions

• How to invoke the correct algorithm for a correct employee type?

→ Virtual Functions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director
#include <iostream>

#include <string>

using namespace std;

class Engineer {
protected:

string name_;

public:

Engineer(const string& name) : name_(name) {}
virtual void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};

class Manager : public Engineer {
Engineer *reports_[10];

public:

Manager(const string& name) : Engineer(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};

class Director : public Manager {
Manager *reports_[10];

public:

Director(const string& name) : Manager(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy
Engineer + Manager + Director

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");

Manager m1("Kamala"), m2("Rajib");

Director d("Ranjana");

Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i)

staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer

Kamala: Process Salary for Manager

Rajib: Process Salary for Manager

Kavita: Process Salary for Engineer

Shambhu: Process Salary for Engineer

Ranjana: Process Salary for Director

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy:
Advantages and Disadvantages

• Advantages

→ Data is fully encapsulated

→ Polymorphic Hierarchy removes the need for explicit E Type
→ Application code is independent of types in the system (virtual functions manage

types through polymorphic dispatch)

→ High Code reuse – code is short and simple

• Disadvantages

→ Di!cult to add an employee type that is not a part of this hierarchy (for example,

employees of Sales Division

• Recommendation

→ Use an abstract base class for employees

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

• How to represent Engineers, Managers, Directors, etc.?

→ Polymorphic class hierarchy with an Abstract Base Employee

• How to initialize objects?

→ Constructor / Destructor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing algorithms?

→ Member functions

• How to invoke the correct algorithm for a correct employee type?

→ Virtual Functions (Pure in Employee)

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others
#include <iostream>

#include <string>

using namespace std;

class Employee {
protected: string name_;

public:

virtual void ProcessSalary() = 0;

virtual ~Employee() { }
};
class Engineer: public Employee { public:

Engineer(const string& name) { name_ = name; }
void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer { Engineer *reports_[10]; public:

Manager(const string& name) : Engineer(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager { Manager *reports_[10]; public:

Director(const string& name) : Manager(name) {}
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};
class SalesExecutive : public Employee { public:

SalesExecutive(const string& name) { name_ = name; }
void ProcessSalary() { cout << name_ << ": Process Salary for Sales Executive" << endl; }

};
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");

Manager m1("Kamala"), m2("Rajib");

SalesExecutive s1("Hari"), s2("Bishnu");

Director d("Ranjana");

Employee *staff[] = { &e1, &m1, &m2, &e2, &s1, &e3, &d, &s2 };

for (int i = 0; i < sizeof(staff) / sizeof(Employee*); ++i)

staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer

Kamala: Process Salary for Manager

Rajib: Process Salary for Manager

Kavita: Process Salary for Engineer

Hari: Process Salary for Sales Executive

Shambhu: Process Salary for Engineer

Ranjana: Process Salary for Director

Bishnu: Process Salary for Sales Executive

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible):
Advantages and Disadvantages

• Advantages

→ Data is fully encapsulated

→ Flexible Polymorphic Hierarchy makes addition of any class possible on the hierarchy

→ Application code is independent of types in the system (virtual functions manage

types through polymorphic dispatch)

→ Maximum Code reuse – code is short and simple

• Disadvantages

→ Still needs to maintain employee objects in code and add them to the sta” array -

this is error prone

• Recommendation

→ Use vector as a collection and insert sta” as created

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 18

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others
#include <iostream>

#include <string>

#include <vector>

using namespace std;

class Employee { protected: string name_; // Name of the employee

vector<Employee*> reports_; // Collection of reportees aggregated

public: virtual void ProcessSalary() = 0; // Processing salary

virtual ~Employee() { }
static vector<Employee*> staffs; // Collection of all staffs

void AddStaff(Employee* e) { staffs.push_back(e); }; // Add a staff to collection

};
class Engineer : public Employee { public:

Engineer(const string& name) { name_ = name; // Why init like name_(name) won’t work?

AddStaff(this); } // Add the staff

void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }
};
class Manager : public Engineer { public: Manager(const string& name) : Engineer(name) { }

void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }
};
class Director : public Manager { public: Director(const string& name) : Manager(name) { }

void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }
};
class SalesExecutive : public Employee { public:

SalesExecutive(const string& name) { name_ = name; AddStaff(this); } // Add the staff

void ProcessSalary() { cout << name_ << ": Process Salary for Sales Executive" << endl; }
};
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 19

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible)
Engineer + Manager + Director + Others

vector<Employee*> Employee::staffs; // Collection of all staffs

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");

Manager m1("Kamala"), m2("Rajib");

SalesExecutive s1("Hari"), s2("Bishnu");

Director d("Ranjana");

vector<Employee*>::const_iterator it; // Iterator over staffs

for (it = Employee::staffs.begin(); // Iterate on staffs

it < Employee::staffs.end();

++it)

(*it)->ProcessSalary(); // Process respective salary

}

Rohit: Process Salary for Engineer

Kavita: Process Salary for Engineer

Shambhu: Process Salary for Engineer

Kamala: Process Salary for Manager

Rajib: Process Salary for Manager

Hari: Process Salary for Sales Executive

Bishnu: Process Salary for Sales Executive

Ranjana: Process Salary for Director

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 20

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

C++ Solution: Polymorphic Hierarchy (Flexible):
Advantages and Disadvantages

• Advantages

→ Data is fully encapsulated

→ Flexible Polymorphic Hierarchy makes addition of any class possible on the hierarchy

→ Application code is independent of types in the system (virtual functions manage

types through polymorphic dispatch)

→ Maximum Code reuse – code is short and simple

→ Collection of sta” encapsulated with creation

→ vector and iterator increases e!ciency and e!cacy

• Disadvantages

→ None in particular

• Recommendation

→ Enjoy the solution

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 21

Module 30

Instructors: Abir

Das and Jibesh

Patra

Sta! Salary

Processing: C++

Solution

Non-Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy

Advantages and

Disadvantages

Polymorphic

Hierarchy (Flexible)

Advantages and

Disadvantages

Module Summary

Module Summary

• Completed design for a sta” salary problem using hierarchy and worked out extensible

C++ solution

• Learnt about iterative refinement of solutions in the process

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 22

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module 31: Programming in C++
Virtual Function Table

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Weekly Recap

• Understood type casting – implicit as well as explicit – for built-in types, unrelated

types, and classes on a hierarchy

• Understood the notions of upcast and downcast

• Understood Static and Dynamic Binding for Polymorphic type

• Understood virtual destructors, Pure Virtual Functions, and Abstract Base Class

• Designed the solution for a sta! salary processing problem using iterative refinement –

starting with a simple C solution and repeatedly refining finally to an easy, e”cient, and

extensible C++ solution based on flexible polymorphic hierarchy

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Objectives

• Introduce a new C solution with function pointers

• Understand Virtual Function Table for dynamic binding (polymorphic dispatch)

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Outline

1 Weekly Recap

2 Sta! Salary Processing: New C Solution

3 Sta! Salary Processing: C++ Solution

4 C and C++ Solutions: A Comparison

5 Virtual Function Pointer Table

6 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Sta! Salary Processing: New C Solution

Sta! Salary Processing: New C Solution

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Sta! Salary Processing: Problem Statement: RECAP (Module 29)

• An organization needs to develop a salary processing application for its sta!

• At present it has an engineering division only where Engineers and Managers work.

Every Engineer reports to some Manager. Every Manager can also work like an Engineer

• The logic for processing salary for Engineers and Managers are di!erent as they have

di!erent salary heads

• In future, it may add Directors to the team. Then every Manager will report to some

Director. Every Director could also work like a Manager

• The logic for processing salary for Directors will also be distinct

• Further, in future it may open other divisions, like Sales division, and expand the

workforce

• Make a suitable extensible design

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers
Engineer + Manager + Director: RECAP (Module 29)

• How to represent Engineers, Managers, and Directors?

→ Collection of structs

• How to initialize objects?

→ Initialization functions

• How to have a collection of mixed objects?

→ Array of union

• How to model variations in salary processing algorithms?

→ struct-specific functions

• How to invoke the correct algorithm for a correct employee type?

→ Function switch

→ Function pointers

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

• In Module 29, we have developed a flat C Solution using function switch

• In Module 30, we refined the C Solution to develop two types of C++ Solution using

→ Non-polymorphic hierarchy - employing function switch
→ Polymorphic hierarchy - eomploying virtual function

• In Module 29, we had mentioned that in the flat C Solution it is not easy to use function

pointers as the processing functions void ProcessSalaryEngineer(Engineer *), void
ProcessSalaryManager(Manager *), and void ProcessSalaryDirector(Director *) all

have di!erent types of arguments and therefore a common function pointer type cannot be

defined

• We can work around this by:

→ Passing the sta! object as void *, instead of Engineer *, Manager *, or Director *
→ Cast it to respective object type in the respective function. That is, cast to Engineer * in

ProcessSalaryEngineer(Engineer *) and so on

→ We can then use a function pointer type void (*)(void *)

• We illustrate in the Solution

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE; // Staff tag type
typedef void (*psFuncPtr)(void *); // Processing func. ptr. type, passing the object by void *
typedef struct Engineer { char *name_; } Engineer; // Engineer Type
Engineer *InitEngineer(const char *name) { Engineer *e = (Engineer *)malloc(sizeof(Engineer));

e->name_ = strdup(name); return e;
}
void ProcessSalaryEngineer(void *v) { Engineer *e = (Engineer *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Engineer\n", e->name_);
}
typedef struct Manager { char *name_; Engineer *reports_[10]; } Manager; // Manager Type
Manager *InitManager(const char *name) { Manager *m = (Manager *)malloc(sizeof(Manager));

m->name_ = strdup(name); return m;
}
void ProcessSalaryManager(void *v) { Manager *m = (Manager *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Manager\n", m->name_);
}
typedef struct Director { char *name_; Manager *reports_[10]; } Director; // Director Type
Director *InitDirector(const char *name) { Director *d = (Director *)malloc(sizeof(Director));

d->name_ = strdup(name); return d;
}
void ProcessSalaryDirector(void *v) { Director *d = (Director *)v; // Cast explicitly to the staff object

printf("%s: Process Salary for Director\n", d->name_);
}CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Function Pointers: Engineer + Manager + Director

typedef struct Staff {
E_TYPE type_; // Staff tag type
void *p; // Pointer to staff object

} Staff; // Staff object wrapper
int main() {

// Array of function pointers
psFuncPtr psArray[] = { ProcessSalaryEngineer, ProcessSalaryManager, ProcessSalaryDirector };

// Array of staffs
Staff staff[] = { { Er, InitEngineer("Rohit") }, { Mgr, InitEngineer("Kamala") },

{ Mgr, InitEngineer("Rajib") }, { Er, InitEngineer("Kavita") },
{ Er, InitEngineer("Shambhu") }, { Dir, InitEngineer("Ranjana") } };

for (int i = 0; i < sizeof(staff) / sizeof(Staff); ++i)
psArray[staff[i].type_] // Pick the right processing function for the tag - staff type

(staff[i].p); // Pass the pointer to the object - implicitly cast to void*
}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C Solution: Advantages and Disadvantages: RECAP (Module 26)
Annotated for Function Pointers
• Advantages

→ Solution exists!
→ Code is well structured – has patterns

• Disadvantages

→ Employee data has scope for better organization
ω No encapsulation for data
ω Duplication of fields across types of employees – possible to mix up types for them (say, char *

and string)
ω Employee objects are created and initialized dynamically through Init... functions. How to

release the memory?
→ Types of objects are managed explicitly by E Type:

ω Di”cult to extend the design – addition of a new type needs to:
↑ Add new type code to enum E Type
↑ Add a new pointer field in struct Staff for the new type
↑ Add a new case (if-else or case) based on the new type: Removed using function pointer

ω Error prone – developer has to decide to call the right processing function for every type
(ProcessSalaryManager for Mgr etc.): Removed using function pointer

→ Unable to use Function Pointers as each processing function takes a parameter of di!erent type - no
common signature for dispatch

• Recommendation

→ Use classes for encapsulation on a hierarchy
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Sta! Salary Processing: C++ Solution

Sta! Salary Processing: C++ Solution

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

• How to represent Engineers, Managers, and Directors?

→ Polymorphic class hierarchy

• How to initialize objects?

→ Constructor / Destructor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing algorithms?

→ Member functions

• How to invoke the correct algorithm for a correct employee type?

→ Virtual Functions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

#include <iostream>
#include <string>
using namespace std;

class Engineer {
protected:

string name_;
public:

Engineer(const string& name) : name_(name) { }
virtual ~Engineer() { }
virtual void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }

};
class Manager : public Engineer {

Engineer *reports_[10];
public:

Manager(const string& name) : Engineer(name) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }

};
class Director : public Manager {

Manager *reports_[10];
public:

Director(const string& name) : Manager(name) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

};

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C++ Solution: Polymorphic Hierarchy: RECAP
Engineer + Manager + Director: (Module 30)

int main() {
Engineer e1("Rohit"), e2("Kavita"), e3("Shambhu");
Manager m1("Kamala"), m2("Rajib");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &m2, &e2, &e3, &d };

for (int i = 0; i < sizeof(staff) / sizeof(Engineer*); ++i)
staff[i]->ProcessSalary();

}

Rohit: Process Salary for Engineer
Kamala: Process Salary for Manager
Rajib: Process Salary for Manager
Kavita: Process Salary for Engineer
Shambhu: Process Salary for Engineer
Ranjana: Process Salary for Director

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C and C++ Solutions: A Comparison

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C Solution C++ Solution

• How to represent Engineers, Managers, and
Directors?

→ structs

• How to initialize objects?

→ Initialization functions

• How to have a collection of mixed objects?

→ array of union wrappers

• How to model variations in salary processing
algorithms?

→ functions for structs

• How to invoke the correct algorithm for a cor-
rect employee type?

→ Function pointers

• How to represent Engineers, Managers, and
Directors?

→ Polymorphic hierarchy

• How to initialize objects?

→ Ctor / Dtor

• How to have a collection of mixed objects?

→ array of base class pointers

• How to model variations in salary processing
algorithms?

→ class member functions

• How to invoke the correct algorithm for a cor-
rect employee type?

→ Virtual Functions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

C and C++ Solutions: A Comparison

C Solution (Function Pointer) C++ Solution (Virtual Function)

typedef enum E_TYPE { Er, Mgr, Dir } E_TYPE;
typedef void (*psFuncPtr)(void *);
typedef struct { E_TYPE type_; void *p; } Staff;
typedef struct { char *name_; } Engineer;
Engineer *InitEngineer(const char *name);
void ProcessSalaryEngineer(void *v);
typedef struct { char *name_; } Manager;
Manager *InitManager(const char *name);
void ProcessSalaryManager(void *v);
typedef struct { char *name_; } Director;
Director *InitDirector(const char *name);
void ProcessSalaryDirector(void *v);
int main() { psFuncPtr psArray[] = {

ProcessSalaryEngineer, // Function
ProcessSalaryManager, // pointer
ProcessSalaryDirector }; // array
Staff staff[] = {
{ Er, InitEngineer("Rohit") },
{ Mgr, InitEngineer("Kamala") },
{ Dir, InitEngineer("Ranjana") } };
for (int i = 0; i <

sizeof(staff)/sizeof(Staff); ++i)
psArray[staff[i].type_](staff[i].p);

}

class Engineer { protected: string name_;
public: Engineer(const string& name);

virtual void ProcessSalary(); };
virtual ~Engineer(); };

class Manager : public Engineer {
public: Manager(const string& name);

void ProcessSalary(); };
class Director : public Manager {
public: Director(const string& name);

void ProcessSalary(); };
int main() {

// Function pointer array is subsumed in
// virtual function tables of classes

Engineer e1("Rohit");
Manager m1("Kamala");
Director d("Ranjana");
Engineer *staff[] = { &e1, &m1, &d };
for(int i = 0; i <

sizeof(staff)/sizeof(Engineer*); ++i)
staff[i]->ProcessSalary();

}
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 18

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

Virtual Function Pointer Table

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 19

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

How do virtual functions work?

• The C Solution with function pointers gives us the lead to implement virtual functions. Here

→ We have used an array of function pointers (psFuncPtr psArray[]) to keep the

processing functions (void ProcessSalaryEngineer(Engineer *), void
ProcessSalaryManager(Manager *), and void ProcessSalaryDirector(Director *))
indexed by the type tag (enum E TYPE { Er, Mgr, Dir })

→ In C++, every class is a separate type - so the tag can be removed if we bind this table

(Virtual Function Table or VFT) with the class

→ Every class can have a VFT with its appropriate processing function pointer put there

→ By override, all these functions can have the same signature (void ProcessSalary()) and
can be called through the same expression ((Engineer *)->ProcessSalary())

• We now illustrate Virtual Function Table through simple examples to show how does it work

for inherited, overridden and overloaded member functions

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 20

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

Base Class Derived Class

class B {
int i;

public:
B(int i_): i(i_) { }

void f(int); // B::f(B*const, int)
virtual void g(int); // B::g(B*const, int)
};

B b(100);
B *p = &b;

b Object Layout

Object VFT

vft → 0 B::g(B*const, int)
B::i 100

Source Expression Compiled Expression

b.f(15);
p->f(25);
b.g(35);
p->g(45);

B::f(&b, 15);
B::f(p, 25);
B::g(&b, 35);
p->vft[0](p, 45);

class D: public B {
int j;

public:
D(int i_, int j_): B(i_), j(j_) { }

void f(int); // D::f(D*const, int)
void g(int); // D::g(D*const, int)

};

D d(200, 500);
B *p = &d;

d Object Layout

Object VFT

vft → 0 D::g(D*const, int)
B::i 200
D::j 500

Source Expression Compiled Expression

d.f(15);
p->f(25);
d.g(35);
p->g(45);

D::f(&d, 15);
B::f(p, 25);
D::g(&d, 35);
p->vft[0](p, 45);

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 21

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

• Whenever a class defines a virtual function a hidden member variable is added to the

class which points to an array of pointers to (virtual) functions called the Virtual

Function Table (VFT)

• VFT pointers are used at run-time to invoke the appropriate function implementations,

because at compile time it may not yet be known if the base function is to be called or

a derived one implemented by a class that inherits from the base class

• VFT is class-specific – all instances of the class has the same VFT

• VFT carries the Run-Time Type Information (RTTI) of objects

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 22

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Virtual Function Pointer Table

class A { public:
virtual void f(int) { }
virtual void g(double) { }
int h(A *) { }

};
class B: public A { public:

void f(int) { }
virtual int h(B *) { }

};
class C: public B { public:

void g(double) { }
int h(B *) { }

};
A a; B b; C c;
A *pA; B *pB;

Source Expression Compiled Expression

pA->f(2);
pA->g(3.2);
pA->h(&a);
pA->h(&b);

pB->f(2);
pB->g(3.2);
pB->h(&a);
pB->h(&b);

pA->vft[0](pA, 2);
pA->vft[1](pA, 3.2);
A::h(pA, &a);
A::h(pA, &b);

pB->vft[0](pB, 2);
pB->vft[1](pB, 3.2);
pB->vft[2](pB, &a);
pB->vft[2](pB, &b);

a Object Layout

Object VFT

vft → 0 A::f(A*const, int) Defined
1 A::g(A*const, double) Defined

b Object Layout

Object VFT

vft → 0 B::f(B*const, int) Overridden
1 A::g(A*const, double) Inherited
2 B::h(B*const, B*) Overloaded

c Object Layout

Object VFT

vft → 0 B::f(B*const, int) Inherited
1 C::g(C*const, double) Overridden
2 C::h(C*const, B*) Overridden

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 23

Module 31
Instructors: Abir
Das and Jibesh

Patra

Weekly Recap

Objectives &
Outline

Sta! Salary
Processing: New
C Solution

Sta! Salary
Processing: C++
Solution

C and C++
Solutions: A
Comparison

Virtual Function
Pointer Table

Module Summary

Module Summary

• Leveraging an innovative solution to the Salary Processing Application in C using

function pointers, we compare C and C++ solutions to the problem

• The new C solution with function pointers is used to explain the mechanism for

dynamic binding (polymorphic dispatch) based on virtual function tables

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 24

