s

Instructors: Abir
Das and Jibest
Patra

Module 20: Programming in C++

Namespaces

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand namespace as a free scoping mechanism to organize code better

Objectives &
Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

s 2\

s

Objectives &
Outlines

Fen
(5]

Module Outline

@ namespace Fundamental
© namespace Scenarios

© namespace Features
Nested namespace
@ using namespace

@ Global namespace
o
]

std namespace
namespaces are Open

© namespace vis-a-vis class
© Lexical Scope
© Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

namespace Fundamental

I A% e A namespace is a declarative region that provides a scope to the identifiers (the names
Das and Jibest

Patra of types, functions, variables, etc) inside it

It is used to organize code into logical groups and to prevent name collisions that can
occur especially when your code base includes multiple libraries

namespace

e e namespace provides a class-like modularization without class-like semantics

Obliviates the use of File Level Scoping of C (file) static

A good resource for File Level Scoping in C Something Linky

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

https://www.it.uc3m.es/pbasanta/asng/course_notes/variables_en.html

namespace
Fundamental

Program 20.01: namespace Fundamental

® Example:

#include <iostream>
using namespace std;

namespace MyNameSpace {

int

int myData; // Variable in namespace
void myFunction() { cout << "MyNameSpace myFunction" << endl; } // Function in namespace
class MyClass { int data; // Class in namespace
public:

MyClass(int d) : data(d) { }

void display() { cout << "MyClass data = " << data << endl; }
main() {
MyNameSpace: :myData = 10; // Variable name qualified by namespace name
cout << "MyNameSpace::myData = " << MyNameSpace::myData << endl;
MyNameSpace : :myFunction() ; // Function name qualified by namespace name

MyNameSpace: :MyClass obj(25); // Class name qualified by namespace name
obj.display();

e A name in a namespace is prefixed by the name of it
e Beyond scope resolution, all namespace items are treated as global

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Scenario 1: Redefining a Library Function

P2Y Program 20.02

cstdlib has a function int abs(int n); that returns the absolute value of parameter n

® You need a special int abs(int n); function that returns the absolute value of parameter n if n is between -128 and

Instructors: Abir 127. Otherwise, it returns 0
Das and Jibest

Patra ® Once you add your abs, you cannot use the abs from library! It is hidden and gone!

® namespace comes to your rescue
Name-hiding: abs()

namespace: abs()

#include <iostream>
#include <cstdlib>

namespace int abs(int n) {

Scenarios if (n < -128) return 0;
if (n > 127) return 0;
if (n < 0) return -n;
return n;

}

int main() { std::cout << abs(-203) << " "
<< abs(-6) << " "
<< abs(77) << " "
<< abs(179) << std::endl;
// Output: 0 6 77 O

(€S20202: Software Engineering

#include <iostream>

#include <cstdlib>

namespace myNS {

int abs(int n) {

if (n < -128) return 0O;
if (n > 127) return 0;
if (n < 0) return -n;
return n;

}

int main() { std::cout << myNS::abs(-203) << " "

<< myNS::abs(-6) << " "
<< myNS::abs(77) << " "
<< myNS::abs(179) << std::endl;

// Output: 0 6 77 O

std::cout << abs(-203) << " " << abs(-6) << " "
<< abs(77) << " " << abs(179) << std::endl;

// Output: 203 6 77 179

} Instructors: Abir Das and Jibesh Patra 6

Scenario 2: Students’ Record Application: Setting

P2Y Program 20.03

® An organization is developing an application to process students records
® class St for Students and class StReg for list of Students are:

Instructors: Abir #include <iostream>
““W“ ww’ #include <cstring>
using namespace std;
class St { public: // A Student
typedef enum GENDER { male = 0, female };
St(char *n, GENDER g) : name(strcpy(new char([strlen(n) + 1], n)), gender(g) { }
void setRoll(int r) { roll = r; } // Set roll while adding the student
GENDER getGender() { return gender; } // Get the gender for processing

2?::5::8 friend ostream& operator<< (ostream& os, const St& s) { // Print a record
cout << ((s.gender == St::male) 7 "Male " : "Female ")
<< s.name << " " << s.roll << endl;

return os;

private: char *name; GENDER gender; // name and gender provided for the student
int roll; // roll is assigned by the system
s

class StReg { // Students’ Register

St *xrec; /* List of students */ int nStudents; // Number of student
public: StReg(int size) : rec(new St*[sizel), nStudents(0) { }

void add(St* s) { rec[nStudents] = s; s->setRoll(++nStudents); }

St *getStudent(int r) { return (r == nStudents + 1) ? 0 : rec[r - 1]; }
s

® The classes are included in a header file Students.h
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Fa
E

Instructor Abir
Das and Jibest
Patra

namespace
Scenarios

Scenario 2: Students’ Record Application: Team at Work

Program 20.03

® Two engineers — Sabita and Niloy — are assigned to develop processing applications for male and female students

respectively. Both are given the Students.h file

® The lead Purnima of Sabita and Niloy has the responsibility to integrate what they produce and prepare a single
application for both male and female students. The engineers produce:

Processing for males by Sabita

Processing for females by Niloy

Appl.cpp
#include <iostream>
using namespace std;
#include "Students.h"
extern StReg *reg;
void ProcSt() { cout << "MALE STUDENTS: " << endl;
int r = 1; St *s;
while (s = reg->getStudent (r++))
if (s->getGender() == St::male) cout << *s;
cout << endl << endl;
return;

}

///1111111//// Main.cpp /////1111/111/

#include <iostream>

using namespace std;

#include "Students.h"

StReg *reg = new StReg(1000);

int main()

{ St s("Ravi", St::male); reg->add(&s); ProcSt(); }

(€S20202: Software Engineering

App2. cpp
#include <iostream>
using namespace std;
#include "Students.h"
extern StReg *reg;
void ProcSt() { cout << "FEMALE STUDENTS: " << endl;
int r = 1; St *s;
while (s = reg->getStudent (r++))

if (s->getGender() == St::female) cout << *s;
cout << endl << endl;
return;

}

///1111/11/1// Main.cpp /////1/11/111/

#include <iostream>

using namespace std;

#include "Students.h"

StReg *reg = new StReg(1000);

int main()

{ St s("Rhea", St::female); reg->add(&s); ProcSt(); }

Instructors: Abir Das and Jibesh Patra 8

Scenario 2: Students’ Record Application: Integration Nightmare:

Program 20.03

® To integrate, Purnima prepares the following main() in her Main.cpp where she intends to call the processing
functions for males (as prepared by Sabita) and for females (as prepared by Niloy) one after the other:
#include <iostream>
using namespace std;
#include "Students.h"

void ProcSt(); // Function from Appl.cpp by Sabita
void ProcSt(); // Function from App2.cpp by Niloy

namespace StReg *reg = new StReg(1000);
Scenarios
int main() {
St s1("Rhea", St::female); reg->add(&sl);
St s2("Ravi", St::male); reg->add(&s2);

ProcSt(); // Function from Appl.cpp by Sabita
ProcSt(); // Function from App2.cpp by Niloy
}
® But the integration failed due to name clashes
® Both use the same signature void ProcSt(); for their respective processing function. Actually, they have several
functions, classes, and variables in their respective development with the same name and with same / different
purposes
® How does Purnima perform the integration without major changes in the codes? — namespace

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Scenario 2: Students’ Record Application: Wrap in namespace

p22

Program 20.03

® Introduce two namespaces — App1 for Sabita and App2 for Niloy

: N ® Wrap the respective codes:
nstructor Y
Das and Jibest Processing for males by Sabita

Processing for females by Niloy

Patra Appl.cpp
#include <iostream>
using namespace std;
#include "Students.h"

extern StReg *reg;
namespace
Scenarios namespace Appl {
void ProcSt() {
cout << "MALE STUDENTS: " << endl;
int r = 1;
St *s;

while (s = reg->getStudent(r++))
if (s->getGender() == St::male)
cout << *s;

cout << endl << endl;
return;

}
}s

(€S20202: Software Engineering

App2. cpp //
#include <iostream>
using namespace std;
#include "Students.h"

extern StReg *reg;

namespace App2 {
void ProcSt() {
cout << "FEMALE STUDENTS:
int r = 1;
St *s;

" << endl;

while (s = reg->getStudent (r++))
if (s->getGender() == St::female)
cout << *s;

cout << endl << endl;
return;
}s

Instructors: Abir Das and Jibesh Patra 10

Scenario 2: Students’ Record Application: A Good Night's Sleep

Program 20.03

® Now the integration gets smooth:
using namespace std;

#include "Students.h"
namespace Appl { void ProcSt(); } // Appl.cpp by Sabita
namespace App2 { void ProcSt(); } // App2.cpp by Niloy
namespace
SEESE StReg *reg = new StReg(1000);
int main() {
St s1("Ravi", St::female); reg->add(&sl);
St s2("Rhea", St::male); reg->add(&s2);

App1l::ProcSt(); // Appl.cpp by Sabita
App2: :ProcSt(); // App2.cpp by Niloy

return O;
}

® Clashing names are made distinguishable by distinct names

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Program 20.04: Nested namespace

® A namespace may be nested in another namespace
#include <iostream>
using namespace std;

int data = 0; // Global name

namespace namel {

int data = 1; // In namespace namel
namespace name2 {

int data = 2; // In nested namespace namel::name2

}

int main() {
cout << data << endl; // 0
cout << namel::data << endl; // 1
cout << namel::name2::data << endl; // 2

Nested nam

return O;

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

12

Program 20.05: Using using namespace and using for shor

® Using using namespace we can avoid lengthy prefixes

#include <iostream>
using namespace std;

namespace namel {
int vi11 = 1;
int v12 = 2;

}

namespace name2 {
int v21 = 3;
int v22 = 4;

}

using namespace namel; // All symbols of namespace namel will be available
using name2::v21; // Only v21 symbol of namespace name2 will be available

using namespace

int main() {

cout << v11l << endl; // namel::vil
cout << namel::v12 << endl; // namel::v12
cout << v21 << endl; // name2::v21
cout << name2::v21 << endl; // name2::v21
cout << v22 << endl; // Treated as undefined

}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Program 20.06: Global namespace

® using or using namespace hides some of the names

#include <iostream>
using namespace std;

int data = 0; // Global Data
namespace namel {

int data = 1; // namespace Data

int main() {
using namel::data;

Global namespace

cout << data << endl; // 1 // namel::data -- Hides global data
cout << namel::data << endl; // 1
cout << ::data << endl; // 0 // ::data -- global data

}

e Items in Global namespace may be accessed by scope resolution operator (::)

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

std namespace

Program 20.07: std Namespace

e Entire C+-+ Standard Library is put in its own namespace, called std

Without using using std

With using using std

#include <iostream>

int main() {

int num;

std::cout << "Enter a value: " ;
std::cin >> num;

std::cout << "value is: " ;

std::cout << num ;

}

e Here, cout, cin are explicitly qualified by their
namespace. So, to write to standard output, we spec-
ify std::cout; to read from standard input, we use

std::cin

e It is useful if a few library is to be used; no need to
add entire std library to the global namespace

€S20202: Software Engineering

#include <iostream>
using namespace std;

int main() {
int num;
cout << "Enter a value: " ;
cin >> num;
cout << "value is: " ;
cout << num ;

}

e By the statement using namespace std; std
namespace is brought into the current namespace,
which gives us direct access to the names of the func-
tions and classes defined within the library without hav-
ing to qualify each one with std::

o When several libraries are to be used it is a convenient
method

Instructors: Abir Das and Jibesh Patra

15

Program 20.08: namespaces are Open

® namespace are open: New Declarations can be added

#include <iostream>
using namespace std;

namespace open // First definition
{ int x = 30; }

namespace open // Additions to the last definition
{ int y = 40; }

int main() {
using namespace open; // Both x and y would be available
mamespaces e x =y = 20;
cout << x << " " <Ky ;

OQutput: 20 20

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

16

i) namespace vis-a-vis class

namespace class

Instructor Abir
Das and Jibest
Patra

e Every namespace is not a class e Every class defines a namespace
e A namespace can be reopened and more | ® A class cannot be reopened
declaration added to it
e No instance of a namespace can be created | e A class has multiple instances

e using-declarations can be used to short- | e No using-like declaration for a class
cut namespace qualification
e A namespace may be unnamed e An unnamed class is not allowed

namespace
vis-a-vis class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

H‘ Lexical Scope

Instructors: Abir ® The scope of a name binding — an association of a name to an entity, such as a variable — is
Das and Jbest the part of a computer program where the binding is valid: where the name can be used to
refer to the entity

o C++ supports a variety of scopes:

Expression Scope — restricted to one expression, mostly used by compiler
Block Scope — create local context

Function Scope — create local context associated with a function

Class Scope — context for data members and member functions
Namespace Scope — grouping of symbols for code organization

File Scope — limit symbols to a single file

Global Scope — outer-most, singleton scope containing the whole program

O O O O 0O O O

Lexical Scope

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 18

H‘ Lexical Scope

‘ N ® Scopes may be named or Unnamed
nstructor Y

Das and Jibest O Named Scope — Option to refer to the scope from outside
e D> Class Scope — class hame
> Namespace Scope — namespace name or unnamed
D> Global Scope —"::"
O Unnamed Scope
D> Expression Scope
D> Block Scope
> Function Scope
> File Scope
® Scopes may or may not be nested
O Scopes that may be nested
> Block Scope
> Class Scope
> Namespace Scope
O Scopes that cannot be nested
> Expression Scope
D> Function Scope — may contain Class Scopes
D> File Scope — will contain several other scopes
D> Global Scope — will contain several other scopes

Lexical Scope

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 19

% ,. Module Summary

Understood namespace as a scoping tool in c++

Instructors: Abir
Das and Jibest

Analyzed typical scenarios that namespace helps to address

Studied several features of namespace

e Understood how namespace is placed in respect of different lexical scopes of C++

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 20

s

Instructors: Abir
Das and Jibest
Patra

Module 21: Programming in C++

Inheritence (Part 1)

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

In Abi e Understand ISA Relationship in OOAD and understand how hierarchy can be created in
Patra C++ with Inheritance

Objectives &
Outline

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Objectives &
Outline

Module Outline

© ISA Relationship

@ Inheritance in C++
@ Phones
@ Semantics

© Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

ISA Relationship

e We often find one object is a specialization / generalization of another
e OOAD models this using ISA relationship
e C++ models ISA relationship by /nheritance of classes

ISA Relationship

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

ISA Relationship

e Rose ISA Flower
o Rose has the properties of Flower — like fragrance, having petals etc.
Das and Jibest o Rose has some additional properties — like rosy fragrance
o Rose is a specialization of Flower
o Flower is a generalization of Rose
ISA Relationship ® Red Rose ISA Rose
o Red Rose has the properties of Rose — like rosy fragrance etc.
o Red Rose has some additional properties — like it is red
o Red Rose is a specialization of Rose

RZA i Rﬂ‘e
o Rose is a generalization of Red Rose D D

o TwoWheeler ISA Vehicle; ThreeWheeler ISA Vehicle

e
o Manager ISA Employee

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

ﬁ@; Inheritance in C++: Hierarchy

® Manager ISA Employee [Single Inheritance]

Das and Jibest

Patra
class Employee; // Base Class = Employee
class Manager: public Employee; // Derived Class = Manager; Base Class = Employee

® TwoWheeler ISA Vehicle; ThreeWheeler ISA Vehicle [Hybrid Inheritance]

Inheritance in
C++

class Vehicle; // Base Class = Vehicle -- Root
class TwoWheeler: public Vehicle; // Derived Class = TwoWheeler; Base Class = Vehicle
class ThreeWheeler: public Vehicle; // Derived Class = ThreeWheeler; Base Class = Vehicle

® Red Rose ISA Rose ISA Flower [Multi-Level Inheritance]

Red Rose Rose Flocoer

class Flower; // Base Class = Flower -- Root
class Rose: public Flower; // Derived Class = Rose; Base Class = Flower
class RedRose: public Rose; // Derived Class = RedRose; Base Class = Rose

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Inheritance in C4+-+: Phones

o Landline Phone ® Smart Phone
© Call: By dial / keyboard o Call: By touchscreen — shows number &
O Answer photo
o Caller ID (with special attached device) > By Number
® Mobile Phone > By Name
0 Call: By keyboard — shows number o Answer
> By Number o Caller ID
> By Name O Redial
Ehenes o Answer 0 Set Ring Tone
o Caller ID o Add Contact
O Redial > Number
o0 Set Ring Tone > Name
o Add Contact > Photo
> Number
> Name

e There exists a substantial overlap between the functionality of the phones
e A mobile phone is more capable than a land line phone and can perform (almost) all its functions
e A smart phone is more capable than a mobile phone and can perform (almost) all its functions
o These phones belong to a Specialization / Generalization Hierarchy
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Inheritance in C++: Semantics

e Derived ISA Base

Base 1 | Derived

L

class Base; // Base Class = Base
class Derived: public Base; // Derived Class = Derived

e Use keyword public after class name to denote inheritance

Semantics

e Name of the Base class follow the keyword

Public inheritance means "is-a.” Everything that applies to base classes must
also apply to derived classes, because every derived class object is a base class
object

— Scott Meyers in Item 32, Effective C++ (3rd. Edition)

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Inheritance in C++: Semantics

® Derived ISA Base
® Data Members

O Derived class inherits all data members of Base class
0 Derived class may add data members of its own

Instructors: Abir
Das and Jibest
Patra

® Member Functions
O Derived class inherits all member functions of Base class
O Derived class may override a member function of Base class by redefining it with the same signature
0 Derived class may overload a member function of Base class by redefining it with the same name;
but different signature
O Derived class may add new member functions

Semantics

® Access Specification
O Derived class cannot access private members of Base class
O Derived class can access protected members of Base class
® Construction-Destruction
O A constructor of the Derived class must first call a constructor of the Base class to construct the
Base class instance of the Derived class
O The destructor of the Derived class must call the destructor of the Base class to destruct the Base
class instance of the Derived class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

L Module Summary

I A% e Understood Hierarchy or ISA Relationship in OOAD

Das and Jibest

Patra e Introduced the Semantics of Inheritance in C++

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

s

Instructors: Abir
Das and Jibest
Patra

Module 22: Programming in C++

Inheritence (Part 2): Override and Overload

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

€ Module Objectives
u,)

Tt AR e Understand how inheritance impacts data members and member functions

Das and Jibest

Patra e Introduce overriding of member function and its interactions with overloading

Objectives &
Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Objectives &
Outlines

Module Outline

© Inheritance in C++

© Data Members
@ Object Layout

© Member Functions
@ Overrides and Overloads

@ Comparison

© Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

Inheritance in C++: Semantics

® Derived ISA Base
® Data Members

O Derived class inherits all data members of Base class
0 Derived class may add data members of its own

Instructors: Abir
Das and Jibest
Patra

® Member Functions
e i O Derived class inherits all member functions of Base class
C+ O Derived class may override a member function of Base class by redefining it with the same signature
0 Derived class may overload a member function of Base class by redefining it with the same name;
but different signature
O Derived class may add new member functions
® Access Specification

O Derived class cannot access private members of Base class
O Derived class can access protected members of Base class
® Construction-Destruction
O A constructor of the Derived class must first call a constructor of the Base class to construct the
Base class instance of the Derived class
O The destructor of the Derived class must call the destructor of the Base class to destruct the Base
class instance of the Derived class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

% ,. Data Members

Instructors: Abir e Derived ISA Base

Das and Jibest

Patra e Data Members

o Derived class inherits all data members of Base class
o Derived class may add data members of its own

e Object Layout

Data Members

o Derived class /ayout contains an instance of the Base class

o Further, Derived class layout will have data members of its own

o C++ does not guarantee the relative position of the Base class instance and
Derived class members

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Object Layout

class B { // Base Class
int datalB_;
public:
int data2B_;
//
b
class D: public B { // Derived Class
// Inherits B::datalB_

// Inherits B::data2B_
int infoD_; // Adds D::infoD_

B b; // Base Class Object

D d; // Derived Class Object

€S20202: Software Engineering

Object Layout

Object b Object d

—

data2B_ -
infoD_

e d cannot access datalB_ even though is a part of d!
e d can access data2B_

Instructors: Abir Das and Jibesh Patra 6

% ,. Member Functions

e Derived ISA Base

i e Member Functions
o o Derived class inherits all member functions of Base class
> Note: Derived class does not inherit the Constructors and Destructor of Base
class but must have access to them

o Derived class may override a member function of Base class by redefining it with

the same signature
o o Derived class may overload a member function of Base class by redefining it with

Functions
the same name; but different signature
o Derived class may add new member functions

e Static Member Functions
o Derived class does not inherit the static member functions of Base class

e Friend Functions
o Derived class does not inherit the friend functions of Base class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Overrides and Overloads

Inheritance Override & Overload
class B { public: // Base Class class B { public: // Base Class
void f(int i); void f(int);
void g(int i); void g(int i);
}s }s
class D: public B { public: // Derived Class class D: public B { public: // Derived Class
// Inherits B::f(int) // Inherits B::f(int)
void f(int); // Overrides B::f(int)
void f(string&); // Overloads B::f(int)
// Inherits B::g(int) // Inherits B::g(int)
void h(int i); // Adds D::h(int)
}s }s
B b; B b;
Overrides and D d; D d;
b.f(1); // Calls B::f(int) b.f(1); // Calls B::f(int)
b.g(2); // Calls B::g(int) b.g(2); // Calls B::g(int)
d.f(3); // Calls B::f(int) d.f(3); // Calls D::f(int)
d.g(4); // Calls B::g(int) d.g(4); // Calls B::g(int)
d.f("red"); // Calls D::f(stringk)
d.h(5); // Calls D::h(int)

e D::f(int) overrides B: :f (int)
o D::f(string&) overloads B::f(int)
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

@

Instructor
Das and
Patra

Comparison

Abi

esh

Comparison

Basis

of Overloading vis-a-vis Overriding

Function Overloading

Function Overriding

Name of Function
Signature
Type of Function

Inheritance
Polymorphism
Scope

Purpose
Constructor

Destructor
Usage

(€S20202: Software Engineering

e All overloads have the same function name
e Function signatures must be different

e Can be global, friend, static or non-static
member function

e Can happen with or without inheritance

e Static (Compile time)

e Overloaded functions are in the same scope

e To have multiple functions with same name
that act differently depending on parameters
e Constructors can be overloaded

® The destructor cannot be overloaded

e Can be overloaded multiple times

e All overrides have the same function name
e Function signatures are same

e Must be a non-static member function - non-
virtual or virtual

e Happens only with inheritance

o Static (Compile time) or Dynamic (Runtime)
e Functions are in different scopes (base clase
and derived class)

e To perform additional or different tasks than
the base class function

e Constructors cannot be overridden

e The destructor cannot be overridden

e Can be overridden once in the derived class

Instructors: Abir Das and Jibesh Patra

u’k i Module Summary

T A e Discussed the effect of inheritance on Data Members and Object Layout

Das and Jibest

Patra e Discussed the effect of inheritance on Member Functions with special reference to
Overriding and Overloading

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

s

Instructors: Abir
Das and Jibest
Patra

Module 23: Programming in C++

Inheritence (Part 3): Constructors, Destructors & Object Lifetime

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

u’k i Module Recap

T A e Discussed the effect of inheritance on Data Members and Object Layout

Das and Jibest

Patra e Discussed the effect of inheritance on Member Functions with special reference to
Objectives & Overriding and Overloading

Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

% ; Module Objectives

I A% e Understand protected access specifier

Das and Jibest

Patra e Understand the construction and destruction process on an object hierarchy

Objectives & e Revisit Object Lifetime for a hierarchy

Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Objectives &
Outlines

Module Outline

© Inheritance in C++

© protected Access
@ Streaming

© Constructor & Destructor
@ Object Lifetime

© Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

Inheritance in C++: Semantics

® Derived ISA Base
® Data Members

O Derived class inherits all data members of Base class
0 Derived class may add data members of its own

Instructors: Abir
Das and Jibest
Patra

® Member Functions
e i O Derived class inherits all member functions of Base class
C+ O Derived class may override a member function of Base class by redefining it with the same signature
0 Derived class may overload a member function of Base class by redefining it with the same name;
but different signature
O Derived class may add new member functions
® Access Specification

O Derived class cannot access private members of Base class
O Derived class can access protected members of Base class
® Construction-Destruction
O A constructor of the Derived class must first call a constructor of the Base class to construct the
Base class instance of the Derived class
O The destructor of the Derived class must call the destructor of the Base class to destruct the Base
class instance of the Derived class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

E‘@;j protected Access

protected

class

protected
Access

private
data

protected Access

Accessible to
Outside world

Accessible to
derived classes

Notaccessible
outside

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra

% i Access Members of Base: protected Access

Instructors: Abir e Derived ISA Base

)as and Jibe

Patra e Access Specification

o Derived class cannot access private members of Base class
o Derived class can access public members of Base class

e protected Access Specification

protected

ecess o A new protected access specification is introduced for Base class
o Derived class can access protected members of Base class
o No other class or global function can access protected members of Base class
o A protected member in Base class is like public in Derived class
o A protected member in Base class is like private in other classes or global functions

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

H‘ protected Access

private Access

protected Access

class B {
private: // Inaccessible to child
// Inaccessible to others
Patra int data_;
public: // ...
void Print() { cout << "B Object: ";
cout << data_ << endl;
}
I

class D: public B { int info_; public: //
void Print() { cout << "D Object: ";
cout << data_ << ", "; // Inaccessible
cout << info_ <<endl;

Instructors: Abir
Das and Jibest

protected
Access

b.data_ = 5; // Inaccessible to all

b.Print();
d.Print();

e D::Print () cannot access B: :data_ as it is private

(€S20202: Software Engineering

class B {
protected: // Accessible to child
// Inaccessible to others

int data_;
public: // ...

void Print() { cout << "B Object: ";

cout<<data_<<endl;

}

}s

class D: public B { int info_; public: //
void Print() { cout << "D Object: ";
cout << data_ << ", "; // Accessible
cout << info_ << endl;

}s

B b(0);
D d(1, 2);

b.data_ = 5; // Inaccessible to others

b.Print();
d.Print();

® D::Print () can access B::data_ as it is protected

Instructors: Abir Das and Jibesh Patra 8

H 7 Why do we need protected access?

® Handling Encapsulation: Encapsulation, the first principle of OOAD, can be enforced in a single class
Instructors: Abir by private and public access specifiers

Das and Jibesh

Patra O private hides the state (data) of the object and public allows the service (method / interface) to
be exposed
O We fine-grain this by get/set paradigm to achieve effective information hiding
O Further friend provides a way to sneak through encapsulation for easy yet safe coding
® Encapsulation-Inheritance Conflict: The above approach to Encapsulation conflicts with Inheritance,
protected the second principle of OOAD
Aceess What should be the access specification for data members of a Base class?

O If they are public, the encapsulation is lost for the base class objects
O If they are private, even the derived class methods cannot access them
O So the derived class object contains the base class data members but cannot access them
Notably, the state of the derived class object depends on the state of its base class part
O The get/set paradigm does not work as it is clumsy and creates an encapsulation hole like public
if used for all data members
® Solution: The protected access specifier provides a neat solution by making protected base class
members available to the derived class while being hidden from the rest of the world
® Caveat: protected specifier still does not solve all situations and we need to use friend to provide a
way to sneak through encapsulation as the next example illustrates

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Streaming

Streaming

Streaming in B

Streaming in B & D

€S20202: Software Engineering

class B { protected: int data_;
public:
friend ostream& operator<<(ostream& os,
const B& b) { os << "B Object: ";
os << b.data_ << endl;
return os;
}
I
class D: public B { int info_;
public:
//friend ostream& operator<<(ostream& os,
// const D& d) { os << "D Object: ";

// os << d.data_ << ’ ’ << d.info_ << endl;
// return os;
//}

s

B b(0); cout << b; // Printed a B object

D d(1, 2); cout << d; // Printed a B object

B Object: 0

B Object: 1

e d printed as a B object; info_ missing

class B { protected: int data_;
public:
friend ostream& operator<<(ostream& os,
const B& b) { os << "B Object: ";
0os << b.data_ << endl;
return os;

}
}s
class D: public B { int info_;
public:
friend ostream& operator<<(ostream& os,
const D& d) { os << "D Object: ";
os << d.data_ << ’ ? << d.info_ << endl;
return os;

}s
B b(0); cout << b; // Printed a B object
D d(1, 2); cout << d; // Printed a D object

B Object: 0O
D Object: 1 2

e d printed as a D object as expected

Instructors: Abir Das and Jibesh Patra 10

L) Constructor and Destructor

Instructors: Abir e Derived ISA Base

Das and Jibest

Patra e Constructor-Destructor

o Derived class does not inherit the Constructors and Destructor of Base class but
must have access to them

o Derived class must provide its own Constructors and Destructor

o Derived class cannot override or overload a Constructor or the Destructor of Base
class

Constructor &

Destraen e Construction-Destruction
o A constructor of the Derived class must first call a constructor of the Base class to
construct the Base class instance of the Derived class
o The destructor of the Derived class must call the destructor of the Base class to
destruct the Base class instance of the Derived class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

ﬁ@; Constructor and Destructor

class B { protected: int data_; public:

B(int d = 0) : data_(d) { cout << "B::B(int): " << data_ << endl; }
Instructors: Abir “B() { cout << "B::"B(): " << data_ << endl; }
Das and Jibest //

Patra
+s
class D: public B { int info_; public:

D(int d, int i) : B(d), info_(i) // ctor-1: Explicit construction of Base

{ cout << "D::D(int, int): " << data_ << ", " << info_ << endl; }
D(int i) : info_(i) // ctor-2: Default construction of Base
{ cout << "D::D(int): " << data_ << ", " << info_ << endl; }
“D() { cout << "D::"D(): " << data_ << ", " << info_ << endl; }
//
Constructor & b
Destructor
B b(5);
D di(1, 2); // ctor-1: Explicit construction of Base
D d2(3); // ctor-2: Default construction of Base

Object Layout
Object b Object d1 Object d2

= |3 |

2 3

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Object Lifetime

class B { protected: int data_; public:
B(int d = 0) : data_(d) { cout << "B::B(int): " << data_ << endl; }
“B() { cout << "B::"B(): " << data_ << endl; }
//
I
class D: public B { int info_; public:
D(int d, int i) : B(d), info_(i) // ctor-1: Explicit construction of Base

{ cout << "D::D(int, int): " << data_ << ", " << info_ << endl; }
D(int i) : info_(i) // ctor-2: Default construction of Base
{ cout << "D::D(int): " << data_ << ", " << info_ << endl; }
“D() { cout << "D::"D(): " << data_ << ", " << info_ << endl; }
//
}
B b;
D di(1, 2); // ctor-1: Explicit construction of Base
Object Lifetime D d2(3); // ctor-2: Default construction of Base
Construction O/P Destruction O/P
B::B(int): // Object b D::"D(): 0, 3 // Object d2
B::B(int): 1 // Object di B::"B(): 0 // Object d2
D::D(int, int): 1, 2 // Object di D::"D(): 1, 2 // Object di
B::B(int): 0 // Object d2 B::"BO: 1 // Object di
D::D(int): 0, 3 // Object d2 B::"BO): 0 // Object b

e First construct base class object, then derived class object

e First destruct derived class object, then base class object
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

% ,. Module Summary

T A e Understood the need and use of protected Access specifier

Das and Jibest

Patra e Discussed the Construction and Destruction process of class hierarchy and related
Object Lifetime

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

