
Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Module 16: Programming in C++

static Members

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Module Objectives

• Understand static data member and member function

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Module Outline

1 static Data Member
Example
Print Task
Order of Initialization

2 static Member function
Print Task
Count Objects

3 Comparison

4 Singleton Class

5 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

static Data Member

• A static data member

→ is associated with class not with object
→ is shared by all the objects of a class
→ needs to be defined outside the class scope (in addition to the declaration within the
class scope) to avoid linker error

→ must be initialized in a source file
→ is constructed before main() starts and destructed after main() ends
→ can be private / public

→ can be accessed

ω with the class-name followed by the scope resolution operator (::)
ω as a member of any object of the class

→ virtually eliminates any need for global variables in OOPs environment

• We illustrate first with a simple example and then with a Print Task where:

→ There is a printer which can be loaded with a paper from time to time
→ Several print jobs (each requiring a number of pages) may be fired on the printer

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.01: static Data Member: Example

Non static Data Member static Data Member

#include<iostream>
using namespace std;
class MyClass { int x; // Non-static
public:

void set() { x = 15; }
void print() { x = x + 10;

cout << "x =" << x << endl ;
}

};

int main() {
MyClass obj1, obj2; // Have distinct x
obj1.set(); obj2.set();
obj1.print(); obj2.print();

}

x = 25 , x = 25

#include<iostream>
using namespace std;
class MyClass { static int x; // Declare static
public:

void set() { x = 15; }
void print() { x = x + 10;

cout << "x =" << x << endl;
}

};
int MyClass::x = 0; // Define static data member
int main() {

MyClass obj1, obj2; // Have same x
obj1.set(); obj2.set();
obj1.print(); obj2.print();

}

x = 25 , x = 35

• x is a non-static data member • x is static data member
• x cannot be shared between obj1 & obj2 • x is shared by all MyClass objects including obj1 & obj2
• Non-static data members do not need separate def-
initions - instantiated with the object

• static data members must be defined in the global scope

• Non-static data members are initialized during ob-
ject construction

• static data members are initialized during program start-
up

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.02: static Data Member:

Print Task (Unsafe)

#include <iostream>
using namespace std;
class PrintJobs { int nPages_; /* # of pages in current job */ public:

static int nTrayPages_; /* # of pages in the tray */ static int nJobs_; // # of print jobs executing
PrintJobs(int nP): nPages_(nP) { ++nJobs_; cout << "Printing " << nP << " pages" << endl;

nTrayPages_ = nTrayPages_ - nP;
} // Job started
~PrintJobs() { --nJobs_; } // Job done

};
int PrintJobs::nTrayPages_ = 500; // Definition and initialization -- load paper
int PrintJobs::nJobs_ = 0; // Definition and initialization -- no job to start with
int main() {

cout << "Jobs = " << PrintJobs::nJobs_ << endl;
cout << "Pages= " << PrintJobs::nTrayPages_ << endl;
PrintJobs job1(10);
cout << "Jobs = " << PrintJobs::nJobs_ << endl;
cout << "Pages= " << PrintJobs::nTrayPages_ << endl;
{

PrintJobs job1(30), job2(20); // Different job1 in block scope
cout << "Jobs = " << PrintJobs::nJobs_ << endl;
cout << "Pages= " << PrintJobs::nTrayPages_ << endl;
PrintJobs::nTrayPages_ += 100; // Load 100 more pages

}
cout << "Jobs = " << PrintJobs::nJobs_ << endl;
cout << "Pages= " << PrintJobs::nTrayPages_ << endl;

}

Output:

Jobs = 0
Pages= 500
Printing 10 pages
Jobs = 1 // same nJobs_, nTrayPages_
Pages= 490
Printing 30 pages
Printing 20 pages
Jobs = 3 // same nJobs_, nTrayPages_
Pages= 440
Jobs = 1 // same nJobs_, nTrayPages_
Pages= 540

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.03/04: Order of Initialization: Order of Definitions

#include <iostream>
#include <string>
using namespace std;
class Data { string id_; public:

Data(const string& id) : id_(id)
{ cout << "Construct: " << id_ << endl; }
~Data()
{ cout << "Destruct: " << id_ << endl; }

};
class MyClass {

static Data d1_; // Listed 1st
static Data d2_; // Listed 2nd

};
Data MyClass::d1_("obj_1"); // Constructed 1st
Data MyClass::d2_("obj_2"); // Constructed 2nd

int main() { }

Construct: obj_1
Construct: obj_2
Destruct: obj_2
Destruct: obj_1

#include <iostream>
#include <string>
using namespace std;
class Data { string id_; public:

Data(const string& id) : id_(id)
{ cout << "Construct: " << id_ << endl; }
~Data()
{ cout << "Destruct: " << id_ << endl; }

};
class MyClass {

static Data d2_; // Order of static members swapped
static Data d1_;

};
Data MyClass::d1_("obj_1"); // Constructed 1st
Data MyClass::d2_("obj_2"); // Constructed 2nd

int main() { }

Construct: obj_1
Construct: obj_2
Destruct: obj_2
Destruct: obj_1

• Order of initialization of static data members does not depend on their order in the definition of the class. It depends
on the order their definition and initialization in the source

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

static Member Function

• A static member function

→ does not have this pointer – not associated with any object
→ cannot access non-static data members
→ cannot invoke non-static member functions
→ can be accessed

ω with the class-name followed by the scope resolution operator (::)
ω as a member of any object of the class

→ is needed to read / write static data members

ω Again, for encapsulation static data members should be private
ω get()-set() idiom is built for access (static member functions in public)

→ may initialize static data members even before any object creation
→ cannot co-exist with a non-static version of the same function
→ cannot be declared as const

• We repeat the Print Task with better (safer) modeling and coding

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.05: static Data & Member Function:

Print Task (Safe)

// #include <iostream> using namespace std;
class PrintJobs { int nPages_; // # of pages in current job

static int nTrayPages_; /* # of pages in the tray */ static int nJobs_; // # of print jobs executing
public: PrintJobs(int nP) : nPages_(nP) { ++nJobs_; cout << "Printing " << nP << " pages" << endl;

nTrayPages_ = nTrayPages_ - nP; } // Job started
~PrintJobs() { --nJobs_; } // Job done
static int getJobs() { return nJobs_; } // get on nJobs_. Readonly. No set provided
static int checkPages() { return nTrayPages_; } // get on nTrayPages_
static void loadPages(int nP) { nTrayPages_ += nP; } // set on nTrayPages_

};
int PrintJobs::nTrayPages_ = 500; // Definition and initialization -- load paper
int PrintJobs::nJobs_ = 0; // Definition and initialization -- no job to start with
int main() { cout << "Jobs = " << PrintJobs::getJobs() << endl;

cout << "Pages= " << PrintJobs::checkPages() << endl;
PrintJobs job1(10);
cout << "Jobs = " << PrintJobs::getJobs() << endl;
cout << "Pages= " << PrintJobs::checkPages() << endl;
{

PrintJobs job1(30), job2(20); // Different job1 in block scope
cout << "Jobs = " << PrintJobs::getJobs() << endl;
cout << "Pages= " << PrintJobs::checkPages() << endl;
PrintJobs::loadPages(100); // Load 100 more pages

}
cout << "Jobs = " << PrintJobs::getJobs() << endl;
cout << "Pages= " << PrintJobs::checkPages() << endl;

}

Output:

Jobs = 0
Pages= 500
Printing 10 pages
Jobs = 1 // same nJobs_, nTrayPages_
Pages= 490
Printing 30 pages
Printing 20 pages
Jobs = 3 // same nJobs_, nTrayPages_
Pages= 440
Jobs = 1 // same nJobs_, nTrayPages_
Pages= 540CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Counting Objects

• We illustrate another example and use for static data member and member function

→ Here we want to track the number of objects created and destroyed for a class at
any point in the program

→ Naturally no object can keep this information. So we hold two static data
members

ω nObjCons : Number of objects created since beginning. It is read-only and
incremented in every constructor

ω nObjDes : Number of objects destroyed since beginning. It is read-only and
incremented in the destructor

→ At any point (nObjCons - nObjDes) gives the number of Live objects
→ In an alternate (less informative model) we may just maintain static data member
nLive which is incremented in every constructor and decremented in the destructor

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.06: Count Objects

#include <iostream>
#include <string>
using namespace std;
class MyClass { string id_; // Object ID

static int nObjCons_, nObjDes_; // Object history
public:

MyClass(const string& id) : id_(id)
{ ++nObjCons_;
cout << "ctor: " << id_ << " "; getObjLive(); }
~MyClass() { ++nObjDes_;
cout << "dtor: " << id_ << " "; getObjLive(); }
static int getObjConstructed()
{ return nObjCons_; }
static int getObjDestructed()
{ return nObjDes_; }
// Get number of live objects
static int getObjLive() {

int nLive = nObjCons_ - nObjDes_;
cout << "Live Objects = " << nLive << endl;
return nLive;

}
};
int MyClass::nObjCons_ = 0;
int MyClass::nObjDes_ = 0;

int dummy1(MyClass::getObjLive()); // Before (main())
MyClass sObj("sObj");
int dummy2(MyClass::getObjLive()); // Before (main())
int main() { MyClass::getObjLive();

MyClass aObj("aObj");
MyClass *dObj = new MyClass("dObj");
{

MyClass bObj("bObj");
delete dObj;

}
MyClass::getObjLive();

}

Live Objects = 0 // Before any object (dummy1)
ctor: sObj Live Objects = 1
Live Objects = 1 // Before main() (dummy2)
Live Objects = 1 // Enter main()
ctor: aObj Live Objects = 2
ctor: dObj Live Objects = 3
ctor: bObj Live Objects = 4
dtor: dObj Live Objects = 3
dtor: bObj Live Objects = 2
Live Objects = 2 // Exit main()
: aObj Live Objects = 1
dtor: sObj Live Objects = 0 // After all objecst

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Comparison of static vis-a-vis non-static

static Data Members Non-static Data Members

• Declared using keyword static • Declared without using keyword static
• All objects of a class share the same copy / instance • Each object of the class gets its own copy / instance
• Accessed using the class name or object • Accessed only through an object of the class
• May be public or private • May be public or private
• Belongs to the namespace of the class • Belongs to the namespace of the class
• May be const • May be const
• Are constructed before main() is invoked • Are constructed during object construction
• Are destructed after (in reverse order) main() returns • Are destructed during object destruction
• Are constructed in the order of definitions in source • Are constructed in the order of listing in the class
• Has a lifetime encompassing main() • Has a lifetime as of the lifetime of the object
• Allocated in static memory • Allocated in static, stack, or heap memory as of the object

static Member Functions Non-static Member Functions

• Declared using keyword static • Declared without using keyword static
• Has no this pointer parameter • Has an implicit this pointer parameter
• Invoked using the class name or object • Invoked only through an object of the class
• May be public or private • May be public or private
• Belongs to the namespace of the class • Belongs to the namespace of the class
• Can access static data members and methods • Can access static data members and methods
• Cannot access non-static data members or methods • Can access non-static data members and methods
• Can be invoked anytime during program execution • Can be invoked only during lifetime of the object
• Cannot be virtual or const • May be virtual and / or const
• Constructor is static though not declared static • There cannot be a non-static Constructor

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Singleton Class

• Singleton is a creational design pattern

→ ensures that only one object of its kind exists and
→ provides a single point of access to it for any other code

• A class is called a Singleton if it satisfies the above conditions

• Many classes are singleton:

→ President of India
→ Prime Minister of India
→ Director of IIT Kharagpur
→ CEO of a Company
→ ...

• How to implement a Singleton Class?

• How to restrict that user can created only one instance?

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.07: static Data & Member Function

Singleton Printer

#include <iostream>
using namespace std;

class Printer { /* THIS IS A SINGLETON PRINTER -- ONLY ONE INSTANCE */
private: bool blackAndWhite_, bothSided_;

Printer(bool bw = false, bool bs = false) : blackAndWhite_(bw), bothSided_(bs)
{ cout << "Printer constructed" << endl; } // Private -- Printer cannot be constructed!
static Printer *myPrinter_; // Pointer to the Instance of the Singleton Printer

public: ~Printer() { cout << "Printer destructed" << endl; }
static const Printer& printer(bool bw = false, bool bs = false) { // Access the Printer

if (!myPrinter_) myPrinter_ = new Printer(bw, bs); // Constructed for first call
return *myPrinter_; // Reused from next time

}
void print(int nP) const { cout << "Printing " << nP << " pages" << endl; }

};

Printer *Printer::myPrinter_ = 0;

int main() {
Printer::printer().print(10);
Printer::printer().print(20);

delete &Printer::printer();
}

Output:

Printer constructed
Printing 10 pages
Printing 20 pages
Printer destructed

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Program 16.08: Using function-local static Data

Singleton Printer

#include <iostream>
using namespace std;

class Printer { /* THIS IS A SINGLETON PRINTER -- ONLY ONE INSTANCE */
bool blackAndWhite_, bothSided_;
Printer(bool bw = false, bool bs = false) : blackAndWhite_(bw), bothSided_(bs)
{ cout << "Printer constructed" << endl; }
~Printer() { cout << "Printer destructed" << endl; }

public:
static const Printer& printer(bool bw = false, bool bs = false) {

static Printer myPrinter(bw, bs); // The Singleton -- constructed the first time

return myPrinter;
}
void print(int nP) const { cout << "Printing " << nP << " pages" << endl; }

};
int main() {

Printer::printer().print(10);
Printer::printer().print(20);

}

Output:

Printer constructed
Printing 10 pages
Printing 20 pages
Printer destructed

• Function local static object is used
• No memory management overhead – so destructor too get private
• This is called Meyer’s Singleton

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 16

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outline

static Data
Member

Example

Print Task

Order of Initialization

static Member
function

Print Task

Count Objects

Comparison

Singleton Class

Module Summary

Module Summary

• Introduced static data member

• Introduced static member function

• Exposed to use of static members

• Singleton Class discussed

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Module 17: Programming in C++

friend Functions and friend Class

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Module Objectives

• Understand friend function and class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Module Outline

1 friend Function
Matrix-Vector Multiplication
Linked List

2 friend Class
Linked List
Iterator

3 Properties of friend

4 Comparison

5 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.01: friend function: Basic Notion

Ordinary function friend function

#include<iostream>
using namespace std;
class MyClass { int data_;
public:

MyClass(int i) : data_(i) { }

};
void display(const MyClass& a) { // gbl. func.

cout << "data = " << a.data_; // Error 1

}
int main() {

MyClass obj(10);

display(obj);
}

#include<iostream>
using namespace std;
class MyClass { int data_;
public:

MyClass(int i) : data_(i) { }

friend void display(const MyClass& a);
};
void display(const MyClass& a) { // global function

cout << "data = " << a.data_; // Okay
}
int main() {

MyClass obj(10);

display(obj);
}

• display() is a non-member function • display() is a non-member function; but friend to class
MyClass

• Error 1: ’MyClass::data ’ : cannot
access private member declared in class
’MyClass’

• Able to access data even though it is private in class
MyClass

• Output: data = 10

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

friend function

• A friend function of a class

→ has access to the private and protected members of the class (breaks the
encapsulation) in addition to public members

→ must have its prototype included within the scope of the class prefixed with the
keyword friend

→ does not have its name qualified with the class scope
→ is not called with an invoking object of the class
→ can be declared friend in more than one classes

• A friend function can be a

→ global function
→ a member function of a class
→ a function template

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.02: Multiply a Matrix with a Vector

#include <iostream>
using namespace std;

class Matrix; // Forward declaration

class Vector { int e_[3]; int n_; public:
Vector(int n) : n_(n) {

for (int i = 0; i < n_; ++i) // Arbitrary
e_[i] = i + 1; // init.

}
void Clear() { // Set a zero vector

for(int i = 0; i < n_; ++i)
e_[i] = 0;

}
void Show() { // Show the vector

for(int i = 0; i < n_; ++i)
cout << e_[i] << " ";

cout << endl << endl;
}
friend Vector Prod(Matrix *pM, Vector *pV);

};

class Matrix { int e_[3][3]; int m_, n_; public:
Matrix(int m, int n) : m_(m), n_(n) { // Arbitrary

for(int i = 0; i < m_; ++i) // init.
for(int j = 0; j < n_; ++j) e_[i][j] = i + j;

}
void Show() { // Show the matrix

for (int i = 0; i < m_; ++i) {
for (int j = 0; j < n_; ++j)

cout << e_[i][j] << " ";
cout << endl;

} cout << endl;
}
friend Vector Prod(Matrix *pM, Vector *pV);

};
Vector Prod(Matrix *pM, Vector *pV) {

Vector v(pM->m_); v.Clear();
for(int i = 0; i < pM->m_; i++)

for(int j = 0; j < pM->n_; j++)
v.e_[i] += pM->e_[i][j] * pV->e_[j];

return v;
}

• Vector Prod(Matrix*, Vector*); is a global function

• Vector Prod(Matrix*, Vector*); is friend of class Vector as well as class Matrix
• This function accesses the private data members of both these classes

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.02: Multiply a Matrix with a Vector

int main() {
Matrix M(2, 3);
Vector V(3);

Vector PV = Prod(&M, &V);

M.Show();
V.Show();
PV.Show();

return 0;
}

Output:

0 1 2 // Matrix M
1 2 3

1 2 3 // Vector V

8 14 // Product Vector PV

• Vector Prod(Matrix*, Vector*); is a global function

• Vector Prod(Matrix*, Vector*); is friend of class Vector as well as class Matrix
• This function accesses the private data members of both these classes

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.03: Linked List

#include <iostream>
using namespace std;

class Node; // Forward declaration
class List {

Node *head; // Head of the list
Node *tail; // Tail of the list

public:
List(Node *h = 0): head(h), tail(h) { }
void display();
void append(Node *p);

};
class Node {

int info; // Data of the node
Node *next; // Ptr. to next node

public:
Node(int i): info(i), next(0) { }
friend void List::display();
friend void List::append(Node *);

};

void List::display() { // friend of Node
Node *ptr = head;
while (ptr) { cout << ptr->info << " ";

ptr = ptr->next;
}

}
void List::append(Node *p) { // friend of Node

if (!head) head = tail = p;
else {

tail->next = p;
tail = tail->next;

}
}
int main() { List l; // Init. null list

Node n1(1), n2(2), n3(3); // Few nodes
l.append(&n1); // Add nodes to list
l.append(&n2);
l.append(&n3);
l.display(); // Show list

}

• List is built on Node. Hence List needs to know the internals of Node
• void List::append(Node *); needs the internals of Node – hence friend member function is used
• void List::display(); needs the internals of Node – hence friend member function is used
• We can do better with friend classes

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

friend class

• A friend class of a class

→ has access to the private and protected members of the class (breaks the
encapsulation) in addition to public members

→ does not have its name qualified with the class scope (not a nested class)
→ can be declared friend in more than one classes

• A friend class can be a

→ class
→ class template

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.04: Linked List

#include <iostream>
using namespace std;

class Node; // Forward declaration
class List {

Node *head; // Head of the list
Node *tail; // Tail of the list

public:
List(Node *h = 0): head(h), tail(h) { }
void display();
void append(Node *p);

};
class Node {

int info; // Data of the node
Node *next; // Ptr to next node

public:
Node(int i): info(i), next(0) { }
// friend void List::display();
// friend void List::append(Node *);
friend class List;

};

void List::display() {
Node *ptr = head;
while (ptr) { cout << ptr->info << " ";

ptr = ptr->next;
}

}
void List::append(Node *p) {

if (!head) head = tail = p;
else {

tail->next = p;
tail = tail->next;

}
}
int main() { List l; // Init null list

Node n1(1), n2(2), n3(3); // Few nodes
l.append(&n1); // Add nodes to list
l.append(&n2);
l.append(&n3);

l.display(); // Show list
}

• List class is now a friend of Node class. Hence it has full visibility into the internals of Node
• When multiple member functions need to be friends, it is better to use friend class

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Program 17.05: Linked List with Iterator

#include <iostream>
using namespace std;
class Node; class List; // Forward declarations
class Iterator { Node *node; // Current Node

List *list; // Current List
public: Iterator() : node(0), list(0) { }

void begin(List *); // Init
bool end(); // Check end
void next(); // Go to next
int data(); // Get node data

};
class List { Node *head, *tail; public:

List(Node *h=0): head(h), tail(h) { }
void append(Node *p);
friend class Iterator;

};
class Node { int info; Node *next; public:

Node(int i) : info(i), next(0) { }
friend class List;
friend class Iterator;

};

// Iterator methods
void Iterator::begin(List *l) {

list = l; node = l->head; // Set list & Init
}
bool Iterator::end() { return node == 0; }
void Iterator::next() { node = node->next; }
int Iterator::data() { return node->info; }

void List::append(Node *p) {
if (!head) head = tail = p;
else { tail->next = p; tail = tail->next; }

}
int main() { List l;

Node n1(1), n2(2), n3(3);
l.append(&n1); l.append(&n2); l.append(&n3);

Iterator i;
for(i.begin(&l); !i.end(); i.next()) {

cout << i.data() << " "; // Iteration Loop
}

}
• An Iterator now traverses over the elements of the List
• void List::display() is dropped from List and can be written in main()
• List class is a friend of Node class
• Iterator class is a friend of List and Node classes

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Properties of friend

• friendship is neither commutative nor transitive

→ A is a friend of B does not imply that B is a friend of A
→ A is a friend of B and B is a friend of C does not imply that A is a friend of C

• Visibility and Encapsulation

→ public: a declaration that is accessible to all
→ protected: a declaration that is accessible only to the class itself and its subclasses
→ private: a declaration that is accessible only to the class itself
→ friend: a declaration that is accessible only to friend’s of a class. friends tend
to break data hiding and must be used judiciously. Like:

ω A function needs to access the internals of two (or more) independent classes
(Matrix-Vector Multiplication)

ω A class is built on top of another (List-Node Access, List Iterator)
ω Certain situations of operator overloading (like streaming operators)

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Comparison of friend vis-a-vis Member Functions

friend Functions static & Non-static Member Functions

• Declared using the keyword friend • Declared in private, public, or protected specifier
• Declared in one or more classes • Declared only in scope of a particular class
• Not a part of the class, not defined in the namespace of
the classes

• Part of the class definition, defined in the namespace of
the class

• Has access to all private, public, and protected mem-
bers of classes

• Has access to all private, public, and protected mem-
bers of its class, if non-static
• Has access to only private, public, and protected
static members of its class, if static

• May be global or member function of some other class • Member function of the class
• Called with an object (non-static member), an object /
a class (static member), or as a global function

• Called with an object (non-static member) or an object
/ a class (static member) of the defining class

• Does not have this pointer (of the class it accesses).
Needs the pointer to the object

• Has this pointer of the defining class, if a Non-static
and no this pointer if static

• Breaks encapsulation • Ensures encapsulation

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 17

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

friend Function

Matrix-Vector
Multiplication

Linked List

friend Class

Linked List

Iterator

Properties

Comparison

Module Summary

Module Summary

• Introduced the notion of friend function

• Introduced the notion of friend class

• Studied the use of friend function and friend class with examples

• friend introduces visibility hole by breaking encapsulation – should be used with care

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module 18: Programming in C++
Overloading Operator for User-Defined Types: Part 1

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Objectives

• Understand how to overload operators for a user-defined type (class)

• Understand the aspects of overloading by global function and member

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Outline

1 Operator Function

Non-Member Function

Member Function

Operator Overloading Rules

2 Using Global Function

public data members

private data members

3 Using Member Function

operator+
operator=
Unary Operators

4 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

How can operator functions help?

• We have seen how overloading operator+ a C-string wrapped in struct allows us a compact

notation for concatenation of two strings (Module 09)

• We have seen how overloading operator= can define the deep / shallow copy for a UDT and /

or help with user-defined copy semantics (Module 14)

• In general, operator overloading helps us to build complete algebra for UDT’s much in the

same line as is available for built-in types:

→ Complex type: Add (+), Subtract (-), Multiply (*), Divide (/), Conjugate (!), Compare (==, !=,

...), etc.
→ Fraction type: Add (+), Subtract (-), Multiply (*), Divide (/), Normalize (unary *), Compare (==,

!=, ...), etc.
→ Matrix type: Add (+), Subtract (-), Multiply (*), Divide (/), Invert (!), Compare (==), etc.
→ Set type: Union (+), Di!erence (-), Intersection (*), Subset (< <=), Superset (> >=), Compare

(==, !=), etc.
→ Direct IO: read (<<) and write (>>) for all types

• Advanced examples include:

→ Smart Pointers: De-reference (unary *), Indirection (->), Copy (=), Compare (==, !=), etc.
→ Function Objects or Functors: Invocation (())

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Operator Functions in C++: RECAP (Module 9)

• Introduces a new keyword: operator
• Every operator is associated with an operator function that defines its behavior

Operator Expression Operator Function

a + b operator+(a, b)

a = b operator=(a, b)

c = a + b operator=(c, operator+(a, b))

• Operator functions are implicit for predefined operators of built-in types and cannot be

redefined

• An operator function may have a signature as:

MyType a, b; // An enum or struct

// Operator function

MyType operator+(const MyType&, const MyType&);

a + b // Calls operator+(a, b)

• C++ allows users to define an operator function and overload it

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Non-Member Operator Function

• A non-member operator function may be a

→ Global Function

→ friend Function

• Binary Operator:

MyType a, b; // An enum, struct or class

MyType operator+(const MyType&, const MyType&); // Global

friend MyType operator+(const MyType&, const MyType&); // Friend

• Unary Operator:

MyType operator++(const MyType&); // Global

friend MyType operator++(const MyType&); // Friend

• Note: The parameters may not be constant and may be passed by value. The return may also

be by reference and may be constant

• Examples:

Operator Expression Operator Function

a + b operator+(a, b)

a = b operator=(a, b)

++a operator++(a)

a++ operator++(a, int) Special Case

c = a + b operator=(c, operator+(a, b))

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Member Operator Function

• Binary Operator:

MyType a, b; // MyType is a class

MyType operator+(const MyType&); // Operator function

• The left operand is the invoking object – right is taken as a parameter

• Unary Operator:

MyType operator-(); // Operator function for Unary minus

MyType operator++(); // For Pre-Incrementer

MyType operator++(int); // For post-Incrementer

• The only operand is the invoking object

• Note: The parameters may not be constant and may be passed by value. The return may also

be by reference and may be constant

• Examples:

Operator Expression Operator Function

a + b a.operator+(b)

a = b a.operator=(b)

++a a.operator++()

a++ a.operator++(int) // Special Case

c = a + b c.operator =(a.operator+(b))

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Operator Overloading – Summary of Rules: RECAP (Module 9)

• No new operator such as **, <>, or &| can be defined for overloading

• Intrinsic properties of the overloaded operator cannot be change

→ Preserves arity
→ Preserves precedence
→ Preserves associativity

• These operators can be overloaded:

[] + - * / % ^ & | ~ ! = += -= *= /= %= ^= &= |=
<< >> >>= <<= == != < > <= >= && || ++ -- , ->* -> () []

• The operators :: (scope resolution), . (member access), .* (member access through pointer

to member), sizeof, and ?: (ternary conditional) cannot be overloaded
• The overloads of operators &&, ||, and , (comma) lose their special properties: short-circuit

evaluation and sequencing

• For a member operator function, invoking object is passed implicitly as the left operand but

the right operand is passed explicitly

• For a non-member operator function (Global/friend) operands are always passed explicitly

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.01: Using Global Function: public Data members
(Unsafe)

Overloading + for complex addition Overloading + for string cat

#include <iostream>

using namespace std;

struct complx { // public data member

double re, im;

} ;

complx operator+ (complx &a, complx &b) {
complx r;

r.re = a.re + b.re;

r.im = a.im + b.im;

return r;

}
int main() { complx d1 , d2 , d;

d1.re = 10.5; d1.im = 12.25;

d2.re = 20.5; d2.im = 30.25;

d = d1 + d2; // Overload operator +

cout << "Real:" << d.re << ", ";

cout << "Imag:" << d.im;

}

#include <iostream>

#include <cstdlib>

#include <cstring>

using namespace std;

typedef struct _String { char *str; } String;

String operator+(const String& s1, const String& s2) {
String s;

s.str = (char *) malloc(strlen(s1.str) +

strlen(s2.str) + 1);

strcpy(s.str, s1.str); strcat(s.str, s2.str);

return s;

}
int main() { String fName, lName, name;

fName.str = strdup("Partha ");

lName.str = strdup("Das");

name = fName + lName; // Overload operator +

cout << "First Name: " << fName.str << endl;

cout << "Last Name: " << lName.str << endl;

cout << "Full Name: " << name.str << endl;

}
• Output: Real: 31, Imag: 42.5 • Output: First Name: Partha, Last Name: Das, Full name:

Partha Das
• operator+ is overloaded to perform addition of two
complex numbers which are of struct complx type

• operator+ is overloaded to perform concat of first name
and last to form full name. The data type is String

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.02: Using Global Function: private Data members
(Safe)

#include <iostream>

using namespace std;

class Complex { // Private data members

double re, im;

public:

Complex(double a=0.0, double b=0.0):

re(a), im(b) { } ~Complex() { }
void display();

double real() { return re; }
double img() { return im; }
double set_real(double r) { re = r; }
double set_img(double i) { im = i; }

} ;

void Complex::display() {
cout << re << " +j " << im << endl;

}

Complex operator+(Complex &t1, Complex &t2) {
Complex sum;

sum.set_real(t1.real() + t2.real());

sum.set_img(t1.img() + t2.img());

return sum;

}
int main() {

Complex c1(4.5, 25.25), c2(8.3, 10.25), c3;

cout << "1st complex No:"; c1.display();

cout << "2nd complex No:"; c2.display();

c3 = c1 + c2; // Overload operator +

cout << "Sum = "; c3.display();

}

• Output:

1st complex No: 4.5 +j 25.25

2nd complex No: 8.3 +j 10.25

Sum = 12.8 +j 35.5

• Accessing private data members inside operator functions is clumsy
• Critical data members need to be exposed (get/set) violating encapsulation
• Solution: Member operator function or friend operator function
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.03: Using Member Function

#include <iostream>

using namespace std;

class Complex { // Private data members

double re, im;

public:

Complex(double a=0.0, double b=0.0):

re(a), im(b) { } ~Complex() { }
void display();

Complex operator+(const Complex &c) {
Complex r;

r.re = re + c.re;

r.im = im + c.im;

return r;

}
} ;

void Complex::display() {
cout << re;

cout << " +j " << im << endl;

}
int main() {

Complex c1(4.5, 25.25), c2(8.3, 10.25), c3;

cout << "1st complex No:";

c1.display();

cout << "2nd complex No:";

c2.display();

c3 = c1 + c2; // Overloaded operator +

cout << "Sum = ";

c3.display();

return 0;

}

• Output:

1st complex No: 4.5 +j 25.25

2nd complex No: 8.3 +j 10.25

Sum = 12.8 +j 35.5

• Performing c1 + c2 is equivalent to c1.operator+(c2)

• c1 invokes the operator+ function and c2 is passed as an argument
• Similarly we can implement all binary operators (%, -, *, etc..)
• Note: No need of two arguments in overloading
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 14.14: Overloading operator=: RECAP (Module 14)

#include <iostream>

#include <cstdlib>

#include <cstring>

using namespace std;

class String { public: char *str_; size_t len_;

String(char *s) : str_(strdup(s)), len_(strlen(str_)) { } // ctor

String(const String& s) : str_(strdup(s.str_)), len_(s.len_) { } // cctor

~String() { free(str_); } // dtor

String& operator=(const String& s) {
if (this != &s) { free(str_); str_ = strdup(s.str_); len_ = s.len_; }
return *this;

}
void print() { cout << "(" << str_ << ": " << len_ << ")" << endl; }

};
int main() { String s1 = "Football", s2 = "Cricket";

s1.print(); s2.print();

s1 = s1; s1.print();

}
(Football: 8)

(Cricket: 7)

(Football: 8)

• Check for self-copy (this != &s)

• In case of self-copy, do nothing

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Notes on Overloading operator=: RECAP (Module 14)

• Overloaded operator= may choose between Deep and Shallow Copy for Pointer

Members

→ Deep copy allocates new space for the contents and copies the pointed data

→ Shallow copy merely copies the pointer value – hence, the new copy and the original

pointer continue to point to the same data

• If operator= is not overloaded by the user, compiler provides a free one.

• Free operator= can makes only a shallow copy

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.04: Overloading Unary Operators

#include <iostream>

using namespace std;

class MyClass { int data; public:

MyClass(int d): data(d) { }

MyClass& operator++() { // Pre-increment:

++data; // Operate and return the operated object

return *this;

}
MyClass operator++(int) { // Post-Increment:

MyClass t(data); // Return the (copy of) object; operate the object

++data;

return t;

}
void disp() { cout << "Data = " << data << endl; }

};
int main() {

MyClass obj1(8); obj1.disp();

MyClass obj2 = obj1++; obj2.disp(); obj1.disp();

obj2 = ++obj1;

obj2.disp(); obj1.disp();

}

• Output
Data = 8
Data = 8
Data = 9
Data = 10
Data = 10

• The pre-operator should first perform the oper-
ation (increment / decrement / other) and then
return the object. Hence its return type should be
MyClass& and it should return *this;

• The post-operator should perform the operation
(increment / decrement / other) after it returns
the original value. Hence it should copy the original
object in a temporary MyClass t; and then return

t;. Its return type should be MyClass - by value

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Program 18.05: Overloading Unary Operators:
Pre-increment & Post Increment

#include <iostream>

using namespace std;

class MyClass { int data;

public:

MyClass(int d) : data(d) { }

MyClass& operator++() { // Pre-Operator

data *= 2;

return *this;

}
MyClass operator++(int) { // Post-Operator

MyClass t(data);

data /= 3;

return t;

}
void disp() { cout << "Data = " << data << endl; }

};
int main() {

MyClass obj1(12); obj1.disp();

MyClass obj2 = obj1++; obj2.disp(); obj1.disp();

obj2 = ++obj1;

obj2.disp(); obj1.disp();

}

• Output
Data = 12
Data = 12
Data = 4
Data = 8
Data = 8

• The pre-operator and the post-operator need not
merely increment / decrement

• They may be used for any other computation as
this example shows

• However, it is a good design practice to keep
close to the native semantics of the operator

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 18

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Operator
Function

Non-Member

Member

Rules

Global Function

public data
members

private data
members

Member Function

operator+

operator=

Unary Operators

Module Summary

Module Summary

• Introduced operator overloading for user-defined types

• Illustrated methods of overloading operators using global functions and member

functions

• Outlined semantics for overloading binary and unary operators

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Module 19: Programming in C++

Overloading Operator for User-Defined Types: Part 2

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh}@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Module Objectives

• Understand how to overload operators for a user-defined type (class)

• Understand the aspects of overloading by friend function and its advantages

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Module Outline

1 Issues in Operator Overloading

2 operator+

3 operator==

4 operator<<, operator>>

5 Guidelines for Operator Overloading

6 Module Summary

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Operator Function for UDT: RECAP (Module 18)

• Operator Function options:

→ Global Function

→ Member Function

→ friend Function

• Binary Operator:

MyType a, b; // An enum, struct or class

MyType operator+(const MyType&, const MyType&); // Global

MyType operator+(const MyType&); // Member

friend MyType operator+(const MyType&, const MyType&); // Friend

• Unary Operator:

MyType operator++(const MyType&); // Global

MyType operator++(); // Member

friend MyType operator++(const MyType&); // Friend

• Examples:

Expression Function Remarks

a + b operator+(a, b) global / friend
++a operator++(a) global / friend
a + b a.operator+(b) member
++a a.operator++() member

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Issue 1: Extending operator+

• Consider a Complex class. We have learnt how to overload operator+ to add two Complex
numbers:

Complex d1(2.5, 3.2), d2(1.6, 3.3), d3;

d3 = d1 + d2; // d3 = 4.1 +j 6.5

• Now we want to extend the operator so that a Complex number and a real number (no

imaginary part) can be added together:

Complex d1(2.5, 3.2), d2(1.6, 3.3), d3;

d3 = d1 + 6.2; // d3 = 8.7 +j 3.2

d3 = 4.2 + d2; // d3 = 5.8 +j 3.3

• We show why global operator function is not good for this

• We show why member operator function cannot do this

• We show how friend function achieves this

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Issue 2: Overloading IO Operators: operator<<, operator>>

• Consider a Complex class. Suppose we want to overload the streaming operators for this class

so that we can write the following code:

Complex d;

cin >> d;

cout << d;

• Let us note that these operators deal with stream types defined in iostream, ostream, and
istream:

→ cout is an ostream object

→ cin is an istream object

• We show why global operator function is not good for this

• We show why member operator function cannot do this

• We show how friend function achieves this

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.01: Extending operator+ with Global Function

#include <iostream>

using namespace std;

class Complex { public: double re, im;

explicit Complex(double r = 0, double i = 0): re(r), im(i) { } // No implicit conversion is allowed

void disp() { cout << re << " +j " << im << endl; }
};
Complex operator+(const Complex &a, const Complex &b) { // Overload 1

return Complex(a.re + b.re, a.im + b.im);

}
Complex operator+(const Complex &a, double d) { // Overload 2

Complex b(d); return a + b; // Create temporary object and use Overload 1

}
Complex operator+(double d, const Complex &b) { // Overload 3

Complex a(d); return a + b; // Create temporary object and use Overload 1

}
int main() { Complex d1(2.5, 3.2), d2(1.6, 3.3), d3;

d3 = d1 + d2; d3.disp(); // d3 = 4.1 +j 6.5. Overload 1

d3 = d1 + 6.2; d3.disp(); // d3 = 8.7 +j 3.2. Overload 2

d3 = 4.2 + d2; d3.disp(); // d3 = 5.8 +j 3.3. Overload 3

}
• Works fine with global functions - 3 separate overloading are provided
• A bad solution as it breaks the encapsulation – as discussed in Module 18
• Let us try to use member function

• Note: A simpler solution uses Overload 1 and implicit casting (for this we need to remove explicit before constructor).
But that too breaks encapsulation. We discuss this when we take up cast operators
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.02: Extending operator+ with Member Function

#include <iostream>

using namespace std;

class Complex { double re, im;

public:

explicit Complex(double r = 0, double i = 0) : re(r), im(i) { } // No implicit conversion is allowed

void disp() { cout << re << " +j " << im << endl; }
Complex operator+(const Complex &a) { // Overload 1

return Complex(re + a.re, im + a.im);

}
Complex operator+(double d) { // Overload 2

Complex b(d); // Create temporary object

return *this + b; // Use Overload 1

}
};
int main() { Complex d1(2.5, 3.2), d2(1.6, 3.3), d3;

d3 = d1 + d2; d3.disp(); // d3 = 4.1 +j 6.5. Overload 1

d3 = d1 + 6.2; d3.disp(); // d3 = 8.7 +j 3.2. Overload 2

//d3 = 4.2 + d2; // Overload 3 is not possible - needs an object on left

//d3.disp();

}
• Overload 1 and 2 works
• Overload 3 cannot be done because the left operand is double – not an object
• Let us try to use friend function

• Note: This solution too avoids the feature of cast operators
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Operator Overloading using friend

• Using global function, accessing private data members inside operator function is gets di!cult

• It increases writing overhead, makes code complicated, else violates encapsulation

• As we saw till now most operators can actually be overloaded either by global function or

member function, But If the left operand is not an object of the class type then it cannot be
overloaded through member function

• To handle such situation, we require friend function

→ Example: For two objects d1 & d2 of the same class, we cannot overload (constant + d2) using
member function. However, using friend function we can overload (d1 + d2), (d1 + constant),
or (constant + d2)

→ Reason: While computing (d1 + d2) with member function, d1 calls the operator+() and d2 is
passed as an argument. Similarly in (d1 + constant), d1 calls the operator+() and constant is
passed as an argument. But while calling (constant + d2) a constant cannot call the member
function

Similar analysis will also hold when d1 & d2 are objects of di!erent classes and we cannot add the
operator to the class of d1

• So operators like <<, >>, relational (<, >, ==, !=, <=, >=) should be overloaded through friend

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.03: Extending operator+ with friend Function

#include <iostream>

using namespace std;

class Complex { double re, im; public:

explicit Complex(double r = 0, double i = 0) : re(r), im(i) { } // No implicit conversion is allowed

void disp() { cout << re << " +j " << im << endl; }
friend Complex operator+(const Complex &a, const Complex &b) { // Overload 1

return Complex(a.re + b.re, a.im + b.im);

}
friend Complex operator+(const Complex &a, double d) { // Overload 2

Complex b(d); // Create temporary object

return a + b; // Use Overload 1

}
friend Complex operator+(double d, const Complex &b) { // Overload 3

Complex a(d); // Create temporary object

return a + b; // Use Overload 1

}
};
int main() { Complex d1(2.5, 3.2), d2(1.6, 3.3), d3;

d3 = d1 + d2; d3.disp(); // d3 = 4.1 +j 6.5. Overload 1

d3 = d1 + 6.2; d3.disp(); // d3 = 8.7 +j 3.2. Overload 2

d3 = 4.2 + d2; d3.disp(); // d3 = 5.8 +j 3.3. Overload 3

}
• Works fine with friend functions - 3 separate overloading are provided and Preserves the encapsulation too
• Note: A simpler solution uses only Overload 1 and implicit casting (for this we need to remove explicit before
constructor) will be discussed when we take up cast operators
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.04: Overloading operator== for strings with friend

Function

#include <iostream>

#include <string>

#include <cstdlib>

#include <cstring>

using namespace std;

class MyStr { const char *name_; public:

explicit MyStr(const char *s) : name_(strdup(s)) { } ~MyStr() { free((void *)name_); }
friend bool operator==(const MyStr& s1, const MyStr& s2) { return !strcmp(s1.name_, s2.name_); } // 1

friend bool operator==(const MyStr& s1, const string& s2) { return !strcmp(s1.name_, s2.c_str()); } // 2

friend bool operator==(const string& s1, const MyStr& s2) { return !strcmp(s1.c_str(), s2.name_); } // 3

};
int main() {

MyStr mS1("red"), mS2("red"), mS3("blue"); string sS1("red"), sS2("red"), sS3("blue");

if (mS1 == mS2) cout << "Match "; else cout << "Mismatch "; // MyStr, MyStr: Overload 1

if (mS1 == mS3) cout << "Match "; else cout << "Mismatch "; // MyStr, MyStr: Overload 1

if (mS1 == sS2) cout << "Match "; else cout << "Mismatch "; // MyStr, string: Overload 2

if (mS1 == sS3) cout << "Match "; else cout << "Mismatch "; // MyStr, string: Overload 2

if (sS1 == mS2) cout << "Match "; else cout << "Mismatch "; // string, MyStr: Overload 3

if (sS1 == mS3) cout << "Match "; else cout << "Mismatch "; // string, MyStr: Overload 3

if (sS1 == sS2) cout << "Match "; else cout << "Mismatch "; // string, string: C++ Lib

if (sS1 == sS3) cout << "Match "; else cout << "Mismatch "; // string, string: C++ Lib

}
Output: Match Mismatch Match Mismatch Match Mismatch Match Mismatch

• MyStr is a user-defined string class while string is from C++ Standard Library. These are compared here by operator==.

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Overloading IO Operators: operator<<, operator>>

• Consider operator<< for Complex class. This operator should take an ostream object (stream

to write to) and a Complex (object to write). Further it allows to chain the output. So for the

following code

Complex d1, d2;

cout << d1 << d2; // (cout << d1) << d2;

the signature of operator<< may be one of:

// Global function

ostream& operator<< (ostream& os, const Complex &a);

// Member function in ostream

ostream& ostream::operator<< (const Complex &a);

// Member function in Complex

ostream& Complex::operator<< (ostream& os);

• Object to write is passed by constant reference

• Return by reference for ostream object is used so that chaining would work

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.05: Overloading IO Operators with Global Function

#include <iostream>

using namespace std;

class Complex {
public: double re, im;

Complex(double r = 0, double i = 0): re(r), im(i) { }
};
ostream& operator<<(ostream& os, const Complex &a) {

os << a.re << " +j " << a.im << endl;

return os;

}
istream& operator>>(istream& is, Complex &a) {

is >> a.re >> a.im;

return is;

}
int main() {

Complex d;

cin >> d;

cout << d;

}

• Works fine with global functions
• A bad solution as it breaks the encapsulation – as discussed in Module 18
• Let us try to use member function

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Overloading IO Operators with Member Function

• Case 1: operator<< is a member in ostream class:

ostream& ostream::operator<< (const Complex &a);

This is not possible as ostream is a class in C++ standard library and we are not allowed to

edit it to include the above signature

• Case 2: operator<< is a member in Complex class:

ostream& Complex::operator<< (ostream& os);

In this case, the invocation of streaming will change to:

d << cout; // Left operand is the invoking object

This certainly spoils the natural syntax

• IO operators cannot be overloaded by member functions

• Let us try to use friend function

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Program 19.06: Overloading IO Operators with friend Function

#include <iostream>

using namespace std;

class Complex { double re, im;

public:

Complex(double r = 0, double i = 0): re(r), im(i) { }
friend ostream& operator<<(ostream& os, const Complex &a);

friend istream& operator>>(istream& is, Complex &a);

};
friend ostream& operator<<(ostream& os, const Complex &a) {

os << a.re << " +j " << a.im << endl;

return os;

}
friend istream& operator>>(istream& is, Complex &a) {

is >> a.re >> a.im;

return is;

}
int main() { Complex d;

cin >> d;

cout << d;

}

• Works fine with friend functions
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Guidelines for Operator Overloading

• Use global function when encapsulation is not a concern. For example, using struct String
{ char* str; } to wrap a C-string and overload operator+ to concatenate strings and build

a String algebra

• Use member function when the left operand is necessarily an object of a class where the

operator function is a member. E.g., operator=, operator new etc. must be member functions

• Use friend function, otherwise for operators like <<, >>, relational (<, >, ==, !=, <=, >=)
should be overloaded through friend

• While overloading an operator, try to preserve its natural semantics for built-in types as much

as possible. For example, operator+ in a Set class should compute union and NOT

intersection

• Usually stick to the parameter passing conventions (built-in types by value and UDT’s by

constant reference)

• Decide on the return type based on the natural semantics for built-in types as illustrated in the

examples

• Only overload the operators that you may need (minimal design)

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Module 19

Instructors: Abir
Das and Jibesh

Patra

Objectives &
Outlines

Issues in Operator
Overloading

operator+

operator==

operator<<,
operator>>

Guidelines

Module Summary

Module Summary

• Several issues in operator overloading has been discussed

• Use of friend is illustrated in versatile forms of overloading with examples

• Discussed the overloading IO (streaming) operators

• Guidelines for operator overloading is summarized

• Use operator overloading to build algebra for:

→ Complex numbers

→ Fractions

→ Strings

→ Vector and Matrices

→ Sets

→ and so on ...

CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

