s

Instructors: Abir
Das and Jibest
Patra

Module 10: Programming in C++

Dynamic Memory Management

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand the dynamic memory management in C++

Objectives &
Outline

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Objectives &
Outline

Module Outline

@ Dynamic Memory Management in C
@ malloc & free

© Dynamic Memory Management in C++
@ new and delete operator
@ Dynamic memory allocation for Array
@ Placement new
@ Restrictions

© Operator Overloading for Allocation and De-allocation

© Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Fa
E

Instructor Abir
Das and Jibest
Patra

malloc & free

Program 10.01/02:

C Program

malloc() & free(): C & C++

C++ Program

#include <stdio.h>
#include <stdlib.h>

int main() {
int *p =
*p = 5;
printf("%d", *p); // Prints:

free(p);

(int *)malloc(sizeof (int));

5

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof (int));
*p = 5;

cout << *p; // Prints: §

free(p);

}

sizeof (int) needs to be provided

(€S20202: Software Engineering

Dynamic memory management functions in stdlib.h header for C (cstdlib header for C++)
malloc() allocates the memory on heap or free store

Pointer to allocated memory returned as void* — needs cast to intx*
Allocated memory is released by free() from heap or free store
calloc() and realloc() also available in both languages

Instructors: Abir Das and Jibesh Patra

Fa
E

Instructor Abir
Das and Jibest
Patra

new & delete

Program 10.02/03: operator new & delete:
Dynamic memory management in C+-+

o C++ introduces operators new and delete to dynamically allocate and de-allocate memory:

Functions malloc() & free()

operator new & operator delete

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;
cout << *p; // Prints: 5

free(p);

#include <iostream>
using namespace std;

int main() {
int *p = new int(5);

cout << *p; // Prints: b

delete p;

Function malloc() for allocation on heap
sizeof (int) needs to be provided
Allocated memory returned as void*
Casting to int* needed

Cannot be initialized

Function free() for de-allocation from heap
Library feature — header cstdlib needed

(€S20202: Software Engineering

e operator new for allocation on heap

e o size specification needed, type suffices

e Allocated memory returned as int*

e No casting needed

e Can be initialized

e operator delete for de-allocation from heap
e Core language feature — no header needed

Instructors: Abir Das and Jibesh Patra

Lt

Instructors: Ab
Das and Jibest
Patra

new & delete

Program 10.02/04: Functions:

operator new() & operator delete()

e C++ also allows operator new() and operator delete() functions to dynamically allocate

and de-allocate memory:

Functions malloc() & free()

Functions operator new() & operator delete()

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)malloc(sizeof(int));
*p = 5;

cout << *p; // Prints: 5

free(p);

#include <iostream>
#include <cstdlib>
using namespace std;

int main() {
int *p = (int *)operator new(sizeof (int));
*p = 5;

cout << x*p; // Prints: 5

operator delete(p);

e Function malloc() for allocation on heap
e Function free() for de-allocation from heap

e Function operator new() for allocation on heap
e Function operator delete() for de-allocation from heap

There is a major difference between operator new and function operator new(). We explore this angle later

(€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

Eé% Program 10.05/06: new[] & deletel[]:

b2 Dynamically managed Arrays in C++

Functions malloc() & free()

operator new[] & operator delete[]

Instructors: Abir #include <iostream>
2= H‘ Mg #include <cstdlib>
. using namespace std;

int main() {
int *a = (int *)malloc(sizeof (int)* 3);
a[0] = 10; a[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)
cout << "a[" << i << "] ="

<< ali] << " "

Array free(a);

a0l = 10 af1] = 20 af2] = 30

#include <iostream>
using namespace std;

int main() {
int *a = new int[3];
al[0] = 10; al[1] = 20; a[2] = 30;

for (int i = 0; i < 3; ++i)
cout << "a[" << i << "] ="

<< ali] << " ",

delete [1 a;

af0] = 10 af1] = 20 af2] = 30

e Allocation by malloc() on heap

o # of elements implicit in size passed to malloc()
® Release by free() from heap

(€S20202: Software Engineering

e Allocation by operator new[] (different from operator
new) on heap
e 7+ of elements explicitly passed to operator new[]
® Release by operator delete[] (different from operator
delete) from heap

Instructors: Abir Das and Jibesh Patra

Program 10.07: Operator new():

Placement new in C+—+

#include <iostream>

using namespace std;

int main() { unsigned char buf [sizeof(int)* 2]; // Byte buffer on stack
// placement new in buffer buf
int *pInt = new (buf) int (3);
int *qInt = new (buf+sizeof(int)) int (5);

int *pBuf = (int *) (buf + 0); // *pInt in buf[0] to buf [sizeof (int)-1]

int *qBuf = (int *) (buf + sizeof(int)); // *qInt in buf [sizeof (int)] to buf [2*sizeof (int)-1]
cout << "Buf Addr Int Addr" << pBuf << " " << pInt << endl << gBuf << " " << glInt << endl;
cout << "1st Int 2nd Int" << endl << *pBuf << " " << *qBuf << endl;

int *rInt = new int(7); // heap allocation

cout << "Heap Addr 3rd Int" << endl << rInt << " " << xrInt << endl;
delete riInt; // delete integer from heap
Placement new // No delete for placement new

Buf Addr Int Addr
001BFC50 001BFC50
001BFC54 001BFC54
1st Int 2nd Int

e Placement operator new takes a buffer address to place objects

e These are not dynamically allocated on heap — may be allocated on stack or heap or static,
wherever the buffer is located

e Allocations by Placement operator new must not be deleted

3 5
Heap Addr 3rd Int
003799B8 7

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

L i Mixing Allocators and De-allocators of C and C++

e Allocation and De-allocation must correctly match.

Das and Jibest o Do not free the space created by new using free()
Fete o And do not use delete if memory is allocated through malloc()

These may result in memory corruption

Allocator De-allocator
malloc() free()
operator new operator delete

operator new[] || operator deletel[]
operator new() || No delete

Restrictions

Passing NULL pointer to delete operator is secure

Prefer to use only new and delete in a C++ program

The new operator allocates exact amount of memory from Heap or Free Store
new returns the given pointer type — no need to typecast

new, new[| and delete, delete[] have separate semantics

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Program 10.08: Overloading

operator new and operator delete

#include <iostream>
#include <stdlib.h>
using namespace std;

void* operator new(size_t n) { // Definition of Operator new
cout << "Overloaded new" << endl;
void *ptr = malloc(n); // Memory allocated to ptr. Can be done by function operator new()
return ptr;
}
void operator delete(void *p) { // Definition of operator delete
cout << "Overloaded delete" << endl;
free(p); // Allocated memory released. Can be done by function operator delete()

int main() { int *p = new int; // Calling overloaded operator new

*p = 30; // Assign value to the location
cout << "The value is :™ << #p << endl;
delete p; // Calling overloaded operator delete
gngl‘::'"g new } ® operator new overloaded
“““ ® The first parameter of overloaded operator new must be size_t
Overloaded new ® The return type of overloaded operator new must be voidx
The value is : 30 e The first parameter of overloaded operator delete must be void*
Overloaded delete ® The return type of overloaded operator delete must be void

o More parameters may be used for overloading
® operator delete should not be overloaded (usually) with extra parameters

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Program 10.09: Overloading

operator newl[] and operator deletel]

#include <iostream>
#include <cstdlib>
using namespace std;

void* operator new [] (size_t os, char setv) { // Fill the allocated array with setv
void *t = operator new(os);
memset(t, setv, os);
return t;
}
void operator delete[] (void *ss) {
operator delete(ss);

int main() {
char *t = new(’#’)char[10]; // Allocate array of 10 elements and fill with ’#°

cout << "p = " << (unsigned int) (t) << endl;
for (int k = 0; k < 10; ++k)
Overloading new cout << t[k];
& delete
delete [] t; PR
} ® operator new[] overloaded with initialization
_____ e The first parameter of overloaded operator new[] must be size_t
p = 19421992 e The return type of overloaded operator new[] must be void*
e o Multiple parameters may be used for overloading

e operator delete [] should not be overloaded (usually) with extra parameters
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

L Module Summary

Tesmes A0 Introduced new and delete for dynamic memory management in C++
Das and Jibest

Understood the difference between new, new[] and delete, deletel]

Compared memory management in C with C++

Explored the overloading of new, new[] and delete, delete[] operators

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

s

Instructors: Abir
Das and Jibest
Patra

Module 11: Programming in C++

Classes and Objects

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand the concept of classes and objects in C4++

Objectives &
Outline

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module Outline

@ Classes
© Objects
__ e Data Members
Objectives &
Outline o Comp|ex
@ Rectangle
@ Stack
@ Member Functions
o Complex
@ Rectangle
@ Stack
© this Pointer
@ State of an Object
@ Rectangle
@ Stack

@ Module Summary
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Classes

T A e A class is an implementation of a type. It is the only way to implement User-defined
o ot Data Type (UDT)

e A class contains data members / attributes

e A class has operations /| member functions /| methods
ks e A class defines a namespace

e Thus, classes offer data abstraction / encapsulation of Object Oriented

Programming

e Classes are similar to structures that aggregate data logically

e A class is defined by class keyword

e Classes provide access specifiers for members to enforce data hiding that separates

implementation from interface

o private — accessible inside the definition of the class
o public — accessible everywhere

e A class is a blue print for its instances (objects)

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

Das and Jibest

Objects

Objects

An object of a class is an instance created according to its blue print. Objects can be
automatically, statically, or dynamically created

A object comprises data members that specify its state

A object supports member functions that specify its behavior

Data members of an object can be accessed by "."” (dot) operator on the object
Member functions are invoked by "." (dot) operator on the object

An implicit this pointer holds the address of an object. This serves the identity of the
object in CH++

this pointer is implicitly passed to methods

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Complex

Program 11.01/02: Complex Numbers: Attributes

C Program

C++ Program

// File Name:Complex_object.c
#include <stdio.h>

typedef struct Complex { // struct
double re, im; // Data members
} Complex;
int main() {
// Variable c declared, initialized
Complex ¢ = { 4.2, 5.3 };
printf("%1f %1f", c.re, c.im); // Use by dot

// File Name:Complex_object_c++.cpp
#include <iostream>
using namespace std;

class Complex { public: // class
double re, im; // Data members

H
int main() {
// Object c declared, initialized

Complex ¢ = { 4.2, 5.3 };
cout << c.re << " " << c.im; // Use by dot

e struct is a keyword in C for data aggregation

e struct Complex is defined as composite data type con-
taining two double (re, im) data members

e Data members are accessed using '." operator

® struct only aggregates

€S20202: Software Engineering

e class is a new keyword in C+ for data aggregation

e class Complex is defined as composite data type contain-
ing two double (re, im) data members

e Data members are accessed using '." operator.

o class aggregates and helps build a User-defined Data Type
(UDT)

Instructors: Abir Das and Jibesh Patra 6

Rectangle

Program 11.03/04: Points and Rectangles: Attributes

C Program

C++ Program

// File Name:Rectangle_object.c
#include <stdio.h>

typedef struct { // struct Point
int x; int y;

} Point;

typedef struct { // Rect uses Point

Point TL; // Top-Left. Member of UDT
Point BR; // Bottom-Right. Member of UDT
} Rect;

int main() { Rect x = { { 0, 2}, {5, 7} };
// r.TL <== { 0, 2 }; r.BR <-- { 5, 7 }
// r.TL.x <-= 0; r.TL.y <-- 2
// Members of Structure r accessed
printf ("[(%hd %d) (%d %d)1",
r.TL.x, r.TL.y, r.BR.x, r.BR.y);

[(02) (6 N]

// File Name:Rectangle_object_c++.cpp
#include <iostream>
using namespace std;

class Point { public: // class Point
int x; int y; // Data members

class Rect { public: // Rect uses Point

Point TL; // Top-Left. Member of UDT

Point BR; // Bottom-Right. Member of UDT
b
int main() { Rect r = { {0, 2}, {5, 7} };

// r.TL <== { 0, 2 }; r.BR <== { 5, 7 }

// r.TL.x <-= 0; r.TL.y <-- 2

// Rectangle Object r accessed

cout << "[(" << r.TL.x << " " << r.TL.y <<

") (" << r.BR.x << " " << r.BR.y << M]";

[0 2) (6 N1

e Data members are of user-defined data types
€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 7

Stack

Program 11.05/06: Stacks

C Program

. Attributes

C++ Program

// File Name:Stack_object.c
#include <stdio.h>

typedef struct Stack { // struct Stack
char data[100]; // Container for elements
int top; // Top of stack marker

} Stack;

// Codes for push(), pop(), top(), empty()
int main() {

// Variable s declared

Stack s;

s.top = -1;

// Using stack for solving problems

// File Name:Stack_object_c++.cpp
#include <iostream>
using namespace std;

class Stack { public: // class Stack
char data[100]; // Container for elements
int top; // Top of stack marker
// Codes for push(), pop(), top(), empty()
int main() {
// Object s declared
Stack s;
s.top = -1;

// Using stack for solving problems

e Data members of mixed data types

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

Complex

C Program

Program 11.07/08: Complex Numbers: Member Functions

C++ Program

// File Name:Complex_func.c
#include <stdio.h>
#include <math.h>

// Type as alias

typedef struct Complex { double re, im; } Complex;

// Norm of Complex Number - global fn.

double norm(Complex c) { // Parameter explicit
return sqrt(c.re*c.re + c.im*c.im); }

// Print number with Norm - global fn.

void print(Complex c) { // Parameter explicit
printf("|%1f+j%1f| = ", c.re, c.im);
printf("%1f", norm(c)); // Call global

}

int main() { Complex ¢ = { 4.2, 5.3 };
print(c); // Call global fn. with c as param

14.200000+35.300000| = 6.762396

// File Name:Complex_func_c++.cpp
#include <iostream>
#include <cmath>
using namespace std;
// Type as UDT
class Complex { public: double re, im;
// Norm of Complex Number - method
double norm() { // Parameter implicit
return sqrt(re*re + im*im); }
// Print number with Norm - method
void print() { // Parameter implicit
cout << "|"<< re<< "+j"<< im<< "| = ";
cout << norm(); // Call method

}s // End of class Complex
int main() { Complex ¢ = { 4.2, 5.3 };
c.print(); // Invoke method print of ¢

|4.2+j5.3| = 6.7624

€S20202: Software Engineering

e Access functions are global

Instructors:

o Access functions are members
Abir Das and Jibesh Patra 9

H‘ Program 11.09/10: Rectangles: Member Functions

Using struct

Using class

Instructors: Abir #include <iostream>
Das and Jibest #include <cmath>
Patra using namespace std;
typedef struct { int x; int y; } Point;
typedef struct {
Point TL; // Top-Left
Point BR; // Bottom-Right
} Rect;
// Global function

void computeArea(Rect r) { // Parameter explicit

cout << abs(r.TL.x - r.BR.x) *
abs(r.BR.y - r.TL.y);

}

int main() { Rect r = { { 0, 2}, {5, 7 } };

Rectangle

computeArea(r); // Global fn. call

#include <iostream>
#include <cmath>
using namespace std;
class Point { public: int x; int y; };
class Rect { public:
Point TL; // Top-Left
Point BR; // Bottom-Right

// Method
void computeArea() { // Parameter implicit
cout << abs(TL.x - BR.x) *
abs(BR.y - TL.y);

¥

}s

int main() { Rect r = { { 0, 2}, {5, 7} };
r.computeArea(); // Method invocation

e Access functions are global

(€S20202: Software Engineering

e Access functions are members

Instructors: Abir Das and Jibesh Patra 10

/2

Stack

and Jibest

Program 11.11/12: Stacks: Member Functions

Using struct

Using class

#include <iostream>

using namespace std;

typedef struct Stack { char data_[100]; int top_;

} Stack;

// Global functions

bool empty(const Stack& s) { return (s.top_ == -1);
char top(const Stack& s) { return s.data_[s.top_];
void push(Stack& s, char x) { s.data_[++(s.top_)] =
void pop(Stack& s) { --(s.top_); }

int main() { Stack s; s.top_ = -1;
char str[10] = "ABCDE"; int i;
for (i = 0; i < 5; ++i) push(s, strl[il);
cout << "Reversed String: ";
while (lempty(s)) {
cout << top(s); pop(s);

Reversed String: EDCBA

}
}.

#include <iostream>
using namespace std;
class Stack { public:
char data_[100]; int top_;
// Member functions
bool empty() { return (top_ == -1); }
char top() { return data_[top_]; }
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }
s
int main() { Stack s; s.top_ = -1;
char str[10] = "ABCDE"; int ij;
for (i = 0; i < 5; ++i) s.push(str[il);
cout << "Reversed String: ";
while (!s.empty()) {
cout << s.top(); s.pop();

Reversed String: EDCBA

e Access functions are global

(€S20202: Software Engineering

® Access functions are members

Instructors: Abir Das and Jibesh Patra 11

H‘ Program 11.13: this Pointer

e An implicit this pointer holds the address of an object

Instructors: Abi e this pointer serves as the identity of the object in C4++

Das and Jbest e Type of this pointer for a class X object: X * const this;
e this pointer is accessible only in member functions

#include <iostream>
using namespace std;
class X { public: int ml, m2;

void f(int k1, int k2) { // Sample member function
ml = ki; // Implicit access without this pointer
this->m2 = k2; // Explicit access with this pointer
cout << "Id = " << this << endl; // Identity (address) of the object

¥

int main() { X a;

a.f(2, 3);

cout << "Addr = " << &a << endl; // Address (identity) of the object

cout << "a.ml = " << a.ml << " a.m2 = " << a.m2 << endl;

this Pointer
return 0;

—
[N
|

= 0024F918
Addr = 0024F918

a.ml =2 a.m2 =3
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

H‘ this Pointer

e this pointer is implicitly passed to methods

B N In Source Code In Binary Code
Das and Jibest
Patra e class X { void f(int, int); ... } e void X::f(X # const this, int, int);
X a; a.f(2, 3); e X::f(%a, 2, 3); // &a = this

e Use of this pointer

o Distinguish member from non-member
class X { public: int ml, m2;
void f(int k1, int k2) {
ml = ki; // this->m1 (member) is valid; this->k1 is invalid
this->m2 = k2; // m2 (member) is valid; this->k2 is invalid
}
}s
o Explicit Use
// Link the object
this Pointer class DoublyLinkedNode { public: DoublyLinkedNode *prev, *next; int data;
void append(DoublyLinkedNode *x) { next = x; x->prev = this; }

// Return the object
Complex& inc() { ++re; ++im; return xthis; }

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Rectangle

e The state of an object is determined by the combined value of all its data members

// Data members of Rect class: Point TL; Point BR; // Point class type object
// Data members of Point class: int x; int y;

Rectangle r = { { 0, 56 }, { 5, 0 } }; // Initialization
// STATE 1 of x = { {0, 5}, {507} }

{r.TL.x = 0; r.TL.y = 5; r.BR.x = 5; r.BR.y = 0 }
r.TL.y = 9;

// STATE 2 of v = { {0, 9}, {5,0}}

r.computeArea();
// STATE 2 of v = { {0, 9}, {5, 07} } // llochange in state

Point p = { 3, 4 };
r.BR = p;
/) STATE 3 of r={ {0, 9%}, {3, 4}}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

State of an Object: Stack

// Data members of Stack class: char data[5] and int top;

Stack s;
// STATE 1 of s = {{?, ?, ?, ?, 7}, 7} // No data member is initialized

s.top_ = -1;
// STATE 2 of s = {{7, 7, 7, 7, 7}, -1}

s.push(’b?);
// STATE 3 of s

{{’v’, 7, 7, 7, 7}, 0}

s.push(’a’);
// STATE 4 of s = {{’b’, *a’, 7, ?, 7}, 1}

s.empty();
// STATE 4 of s = {{’b’, ’a’, 7, ?, 7}, 1} // No change of state

s.push(’t’);
// STATE 5 of s

{{v7, 22, 2w, 7, 7}, 2)

s.top();
// STATE 5 of s

{{’b’, ’a’, ’t’, 7, 7}, 2} // No change of state
Stack
s.pop();
// STATE 6 of s = {{’b>, ’a’, 't’, 7, ?}, 1}
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Module Summary

Module Summary

e Class

o Attributes
o Member Functions

e Object

® Access

e this Pointer

e State of Object

€S20202: Software Engineering

class Complex { public:
double re_, im_;

double norm() { // Norm of Complex Number
return sqrt(re_ * re_ + im_ * im_);
}

}s

Complex::re_, Complex::im_
double Complex::norm();
Complex ¢ = {2.6, 3.9};
c.re_ = 4.6;

cout << c.im_;
cout << c.norm();

double Complex::norm() { cout << this; return ... }

Rectangle r = { { 0, 5}, { 5,0} }; //sTAaTE1r={ {0,517}, {5,07}}
r.TL.y = 9; // STATE 2 r = { { 0,9}, {5,0}}
r.computeArea() ; // STATE 2 r={{0,9}, {5,0}}
Point p = { 3, 4 }; r.BR = p; // STATE 3 r={{0,9%}, {3,4}}

Instructors: Abir Das and Jibesh Patra 16

s

Instructors: Abir
Das and Jibest
Patra

Module 12: Programming in C++

Access Specifiers

Instructors: Abir Das and Jibesh Patra
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++

by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand access specifiers in C4++ classes to control the visibility of members

e Learn to design with Information Hiding

Objectives &
Outline

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Objectives &
Outline

Module Outline

@ Access Specifiers
@ Access Specifiers: Examples

© Information Hiding

© Information Hiding: Stack Example

@ Stack (public)
@ Risky

@ Stack (private)
@ Safe

@ Interface and Implementation
© Get-Set Idiom
© Encapsulation
@ Class as a Data-type
@ Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

H‘ Access Specifiers

T AT e Classes provide access specifiers for members (data as well as function) to enforce data

Das and Jibest

i hiding that separates implementation from interface

o private — accessible inside the definition of the class
> member functions of the same class
Access Specifiers

o public — accessible everywhere

> member functions of the same class
> member function of a different class
> global functions

e The keywords public and private are the Access Specifiers
e Unless specified, the access of the members of a class is considered private

® A class may have multiple access specifier. The effect of one continues till the next is
encountered

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

28

Instructors: Abi
Das and Jibest
Patra

Examples

Program 12.01/02: Complex Number: Access Specification

Public data, Public method

Private data, Public method

#include <iostream>
#include <cmath>
using namespace std;
class Complex { public: double re, im;
public:
double norm() { return sqrt(rexre + im¥im); }
}s

void print(const Complex& t) { // Global fn.
cout << t.re << "+j" << t.im << endl;

int main() { Complex ¢ = { 4.2, 5.3 }; // Okay

print(c);
cout << c.norm();

#include <iostream>
#include <cmath>
using namespace std;
class Complex { private: double re, im;
public:
double norm() { return sqrt(rexre + im¥im); }
}s
void print(const Complex& t) { // Global fn.
cout << t.re << "+j" << t.im << endl;
// Complex::re / Complex::im: cannot access
// private member declared in class ’Complex’
}
int main() { Complex ¢ = { 4.2, 5.3 }; // Error
// ’initializing’: cannot convert from
// ’initializer-list’ to ’Complex’
print(c);
cout << c.norm();

}

® public data can be accessed by any function
® norm (method) can access (re, im)
e print (global) can access (re, im)
e main (global) can access (re, im) & initialize

(€S20202: Software Engineering

e private data can be accessed only by methods
® norm (method) can access (re, im)

e print (global) cannot access (re, im)

e main (global) cannot access (re, im) to initialize

Instructors: Abir Das and Jibesh Patra 5

Information Hiding

Instructors: Abi e The private part of a class (attributes and member functions) forms its
Das and Jibest

Patra implementation because the class alone should be concerned with it and have the right
to change it

e The public part of a class (attributes and member functions) constitutes its interface
which is available to all others for using the class

Information
[]

i Customarily, we put all attributes in private part and the member functions in public
part. This ensures:

o The state of an object can be changed only through one of its member functions
(with the knowledge of the class)
o The behavior of an object is accessible to others through the member functions

e This is known as Information Hiding

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

u’k 2 Information Hiding

I A% e For the sake of efficiency in design, we at times, put attributes in public and / or
Das and Jibest

Patra member functions in private. In such cases:

o The public attributes should not decide the state of an object, and
o The private member functions cannot be part of the behavior of an object

We illustrate information hiding through two implementations of a stack

Information
Hiding

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Lt

Instructors: Ab
Das and Jibest
Patra

Stack (public)

Program 12.03/04: Stack: Implementations using public data

Using dynamic array

Using vector

#include <iostream>

#include <cstdlib>

using namespace std;

class Stack { public: char *data_; int top_;

public: int empty() { return (top_ == -1); }
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }

char top() { return data_[top_]; }

main() { Stack s; char str[10] = "ABCDE";
s.data_ = new char[100]; // Exposed Allocation
s.top_ = - 1; // Exposed Init

for(int i = 0; i < 5; ++i) s.push(str[il);

// Outputs: EDCBA -- Reversed string
while(!s.empty()) { cout << s.top(); s.pop(); }
delete [] s.data_; // Exposed De-Allocation

#include <iostream>

#include <vector>

using namespace std;

class Stack { public: vector<char> data_; int top_;

int

public: int empty() { return (top_ == -1);
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }

char top() { return data_[top_]; }

main() { Stack s; char str[10] = "ABCDE";
s.data_.resize(100); // Exposed Sizing
s.top_ = -1; // Exposed Init

for(int i = 0; i < 5; ++i) s.push(str[il);
// Outputs: EDCBA -- Reversed string
while(!s.empty()) { cout << s.top(); s.pop(Q); }

e public data reveals the internals of the stack (no information hiding)
e Spills data structure codes (Exposed Init / De-Init) into the application (main)
e To switch from array to vector or vice-versa the application needs to change

(€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 8

Lt

Das and Jibest

Risky

Program 12.03/04: Stack: Implementations using public data

Using dynamic array

Using vector

#include <iostream>

#include <cstdlib>

using namespace std;

class Stack { public: char *data_; int top_;

}s

int

public: int empty() { return (top_ == -1); }
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }

char top() { return data_[top_]; }

main() { Stack s; char str[10] = "ABCDE";
s.data_ = new char[100]; // Exposed Allocation
s.top_ = - 1; // Exposed Init

for(int i=0; i<5; ++i) s.push(str[il);

s.top_ = 2; // STACK GETS INCONSISTENT

// Outputs: CBA -- WRONG!!!

while (!s.empty()) { cout << s.top(); s.pop(); }
delete [] s.data_; // Exposed De-Init

#include <iostream>

#include <vector>

using namespace std;

class Stack { public: vector<char> data_; int top_;

int

public: int empty() { return (top_ == -1); }
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }

char top() { return data_[top_]; }

main() { Stack s; char str[10] = "ABCDE";
s.data_.resize(100); // Exposed Sizing
s.top_ = -1; // Exposed Init

for(int i=0; i<5; ++i) s.push(str[i]);

s.top_ = 2; // STACK GETS INCONSISTENT

// Outputs: CBA -- WRONG!!!

while (!s.empty()) { cout << s.top(); s.popQ); }

e Application may intentionally or inadvertently tamper the value of top- — this corrupts the stack!
e s.top- = 2; destroys consistency of the stack and causes wrong output

(€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 9

Lt

Safe

and Jibest

Program 12.05/06: Stack: Implementations using private data

Using dynamic array

Using vector

#include <iostream>

using namespace std;
class Stack { private: char *data_; int top_;
public: // Initialization and De-Initialization
Stack(): data_(new char[100]), top_(-1) { }
“Stack() { delete[] data_; }
// Stack LIFO Member Functions
int empty() { return (top_ == -1); }
void push(char x) { data_[++top_] = x; }
void pop() { --top_;
char top() { return data_[top_]; }
}s

int main() { Stack s; char str[10] = "ABCDE";
for (int i=0; i<5; ++i) s.push(str([i]l);
while (!s.empty()) { cout << s.top(); s.pop(); }

#include <iostream>
#include <vector>
using namespace std;
class Stack { private: vector<char> data_; int top_;
public: // Initialization and De-Initialization
Stack(): top_(-1) { data_.resize(100); }
“stack() { };
// Stack LIFO Member Functions
int empty() { return (top_ == -1); }
void push(char x) { data_[++top_] = x; }
void pop() { --top_; }
char top() { return data_[top_]; }
int main() { Stack s; char str[10] = "ABCDE";
for (int i=0; i<5; ++i) s.push(str[il);
while (!s.empty()) { cout << s.top(); s.pop(); }

e private data hides the internals of the stack (information hiding)

e Data structure codes contained within itself with initialization and de-initialization

e To switch from array to vector or vice-versa the application needs no change

e Application cannot tamper stack — any direct access to top- or data- is compilation error!

(€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 10

u,, Program 12.07: Interface and Implementation

Interface Implementation
Instructors: Abir // File: Stack.h -- Interface // File: Stack.cpp -- Implementation
Das and Jibest class Stack { private: // Implementation #include "Stack.h"
Patra char *data_; int top_;
public: // Interface Stack::Stack(): data_(new char[100]), top_(-1) { }
Stack(); Stack::"Stack() { delete[] data_; }
“Stack(); int Stack::empty() { return (top_ == -1); }
int empty(); void Stack::push(char x) { data_[++top_] = x; }
void push(char x); void Stack::pop() { --top_; }
void pop(); char Stack::top() { return data_[top_]; }
char top();
}s
Application

#include <iostream>
using namespace std;
Interface and #include "Stack.h"
Implementation int main() {
Stack s; char str[10] = "ABCDE";
for (int i = 0; i < 5; ++i) s.push(str[il);
while (!s.empty()) {
cout << s.top(); s.pop();

}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Get-Set Idiom

e We put attributes in private and the methods in public to restrict the access to data
® public methods to read (get) and / or write (set) data members provide fine-grained control

class MyClass { // private
int readWrite_; // Like re_, im_ in Complex -- common aggregated members

}

int readOnly_; // Like DateOfBirth, Emp_ID, RollNo -- should not need a change

int writeOnly_; // Like Password -- reset if forgotten
int invisible_; // Like top_, data_ in Stack -- keeps internal state
public:

// get and set methods both to read as well as write readWrite_ member
int getReadWrite() { return readWrite_; }
void setReadWrite(int v) { readWrite_ = v; }

// Only get method to read readOnly_ member - no way to write it
int getReadOnly() { return readOnly_; }

// Only set method to write writeOnly_ member - no way to read it
void setWriteOnly(int v) { writeOnly_ = v; }

// No method accessing invisible_ member directly - no way to read or write it

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

L Get, Set Methods

T A e Get, Set methods of a class are the interface defined for accessing and using the private

Das and Jibesh

Patra data members. The implementation details of the data members are hidden.

e Not all data members are allowed to be updated or read, hence based on the
requirement of the interface, data members can be read only, write only, read and write
both or not visible at all.

e Let get and set be two variables of bool type which signifies presence of get and set
methods respectively. In the below table, T denotes true (that is, method is present)
and F denotes False (that is, method is absent)

Variables get | set
Get-Set Idiom Non Visible F F
Read Only T F
Write Only F T
Read - Write | T T

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

H‘ Program 12.08: Get - Set Methods: Employee Class

Get-Set Methods

Instructors: Abir // File Name:Employee_c++.cpp:
Das and Jibest #include <iostream>
[Peide #include <string>
using namespace std;

class Employee { private:

string name; // read and write: get_name() and set_name() defined
string address; // write only: set_addr() defined. No get method
double sal_fixed; // read only: get_sal_fixed()defined. No set method

double sal_variable; // not visible: No get-set method

public: Employee() { sal_fixed = 1200; sal_variable = 10; } // Initialize
string get_name() { return name; }
void set_name(string name) { this->name = name; }
void set_addr(string address) { this->address = address; }
double get_sal_fixed() { return sal_fixed; }
// sal_variable (not visible) used in computation method salary()
Gap ks it double salary() { return sal_fixed + sal_variable; }

int main() {
Employee el; el.set_name("Ram"); el.set_addr("Kolkata");
cout << el.get_name() << endl; cout << el.get_sal_fixed() << endl << el.salary() << endl;

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Encapsulation

s AT ® classes wrap data and functions acting on the data together as a single data structure. This is

Das and Jibest

b Aggregation

® The important feature introduced here is that members of a class has a access specifier,
which defines their visibility outside the class

e This helps in hiding information about the implementation details of data members and
methods

o If properly designed, any change in the implementation, should not affect the interface
provided to the users

o Also hiding the implementation details, prevents unwanted modifications to the data
members.

e This concept is known as Encapsulation which is provided by classes in C++.

Encapsulation

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

Class as a
Data-type

Class as a Data-type

e We can conclude now that class is a composite data type in C++ which has similar behaviour
to built in data types. We explain below with the Complex class (representing complex

number) as an example

// declare i to be of int type
int i;

// initialise i

int i = 5;

// print i
cout << i;

// add two ints
int i =5, j = 6;
i+3;

// declare c¢ to be of Complex type
Complex c;

// initialise the real and imaginary components of ¢
Complex c = { 4, 5 };

// print the real and imaginary components of ¢

cout << c.re << c.im;

OR c.print(); // Method Complex::print() defined for printing
OR cout << c; // operator<<() overloaded for printing

// add two Complex objects

Complex c1 = { 4, 5 }, c2={ 4, 6 };

cl.add(c2); // Method Complex::add() defined to add
OR cl+c2; // operator+() overloaded to add

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 16

u’k i Module Summary

Tt AR e Access Specifiers help to control visibility of data members and methods of a class
Das and Jibest
Patra

e The private access specifier can be used to hide information about the implementation
details of the data members and methods

e Get, Set methods are defined to provide an interface to use and access the data
members

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 17

