Al for Software Engineering

Jibesh Patra
Week 14 - CS20202 - Spring 2020 - IIT Kharagpur

Materials adapted from “A Survey on Large Language Models for Software Engineering - Zhang et. al” and papers of respective authors.

Veek 14 - Software Engineering - Spring 2025

Intersection of Artificial Intelligence (Al) and
Software Engineering (SE)

Al4SE vs SE4Al

e AI4SE: Using Al to enhance Software Engineering tasks which helps in
building robust and reliable systems.
e SE4AIl: Using Software Engineering techniques to build robust Al systems.

This lecture: Al4SE

Popular Public Applications

Code generation - GitHub Copilot

Bug Detection - DeepCode

Automated Testing - Testim

Code Documentation - Swim (documentation + modernization)

https://github.com/features/copilot
https://snyk.io/platform/deepcode-ai/
https://www.testim.io/test-automation-tool/
https://swimm.io/how-it-works

Usages of Al in Software Development

= Q

100 15256.75 -132.25 (-0.86%) | India VIX 21.43 +0.99 (4.83%)]* | S&P BSE 200 10119.02

Home Latest News Markets News Premium Money Education

Over 25% of Google software is written by
Al, says CEO Sundar Pichai. Is it a threat to
engineers?

During an earnings call, Google CEO Sundar Pichai disclosed that more than 25

per cent of new code is generated by Al. However, they are later reviewed by
engineers.

Riya R Alex
Published * 30 Oct 2024, 07:37 PM IST

Te

Home e Technology e Meta's Al can replace mid-level coders in 2025: Zuckerberg

Meta's Al can replace mid-level coders in
2025: Zuckerberg

1805 Views | 14 Jan 2025, 04:12 PM | Gaurav Sharma

He went on also to explain that despite these Al systems being expensive to run at first, it is predicted
that their performance will improve and some of them will be able to take a huge percentage of code-
writing jobs that engineers have been doing.

Ul

Opinion of Developers — Do you use Al in Development Process?

Sentiment and usage / All Respondents

Al tools in the development process

Yes 61.8%
No, but | plan to soon

No, and | don't plan to

2024 .
§ b elonar Source: survey.stackoverflow.co/2024

Survey Data licensed under Open Database License (ODbL)

Opinion of Developers — Part of Development Process Al used?

Developer tools / Currently Using

Al in the development workflow

Writing code

Search for answers

Debugging and getting help
Documenting code

Generating content or syntheti...
Learning about a codebase
Testing code

Committing and reviewing code
Project planning

Predictive analytics

Deployment and monitoring

\ 2024 :
S Eaveilener Source: survey.stackoverflow.co/2024

L=] survey Data licensed under Open Database License (ODbL)

-~

Opinion of Developers —How much do you Trust Al Output?

Developer tools / All Respondents

Accuracy of Al tools

Highly trust 2.7%
Somewhat trust
Neither trust nor distrust
Somewhat distrust

Highly distrust

2024 .
§ Be/eloper Source: survey.stackoverflow.co/2024

L=] survey Data licensed under Open Database License (ODbL)

Large Language Models (LLMs) for Code

number of papers

600
LLMs of Code u SE studies sum
496
200 470
/7
400 | 376 7
361 P
'
L 7
300 | P
'
rd
rd
200 | -
Cd
”
Cd
3 ”~
- Cd
100 | .- a0 91
4 9 138 __-g~% 32 11. 15 i
0 — || .
2020 2021 2022 2023 2024
year

A Survey on Large Language Models for Software Engineering - Zhang et. al.

Papers over the years

Downstream Tasks

Number of papers for each task

Software
Requirements &
Design

Software
Development

Software Testing

Software
Maintenance

Software
Management

0 100 200 300 400

Number of Papers

A Survey on Large Language Models for Software Engineering - Zhang et. al.

Veek 14 - Software Engineering - Spring 2025 10

General Workflow of Al4SE Systems

fm& Pmb\wwﬁ% Examples |
oL UR ey Sung dakedds v
+o Solie mvﬁ V\&

Do c_umnum\m% W

Fo\\uy_ Dals I (Salack aﬂ)mpnjﬂt—{ Example "
windeL - Sw?m\/{mu! modaf
~ Thoiu for' fao\ sum
\L B — Eualuoke |90 bug dovoifcaba,
Rq;w_pw& e $
dada :
Exoammel\L: ¥ sak wlo Eromgla .
~ollek code, dowwwdlu, | SE dordflan | VSCodt PN -
&_HS‘M Cikduwo C.'L}CD lv\}L&/\QAO\!VJ

~ Rop ropamk m 6 shauckund
Lommal suds ap AST on
SKM?DQ on 4enk

11

Typical LLM4SE

Collect data

Pre-train

Fine-tune for specific tasks
Integrate into SE workflows

N -

12

Data Collection

Data collection is the first step of the system:

Source code from open source code repositories such as GitHub, GitLab.
Bug reports, Issues, Commits.
Documentations, Code reviews.

Example: The Stack Dataset

o Uses GitHub archive to extract the dataset
o Contains data from more than 350 programming languages
o 6 TB of code data

13

Pre-training

e Trained on massive corpora of code and natural language obtained from

o Public repositories such as GitHub, GitLab
o Q&A websites frequently visited by developers such as Stack Overflow, Reddit
o Documentations such as API docs

e Quality of the data Is very important.

e Example training objectives:
o Causal language modeling
o Masked language modeling
o Replaced token detection

14

Fine-tuning
Refine the pre-trained language model for particular tasks by training it further
using specific datasets.

Example: CodeBERT, a language model is fine-tuned for natural language code
search.

Integration Into SE Workflows

Integrate LLM for practical software engineering tasks.

Example: GitHub Copilot has been integrated as a plugin for VS Code and assists
developers with Al code completion, Natural language chats etc.

16

Software Requirement & Design

SpecGen

SpecGen: Automated Generation of Formal Program Specifications via Large
Language Models by Lezhi Ma et al. (2025)

e Program specifications encompass precise statements that describe the
Intended or actual behaviors of a particular program.

1 | class TwoSum {]
2 public int[] twoSum(int[] nums, int target) {
3 int n = nums.length;

4 for (int i = 9; i < n; ++i) {

5 for (int j =1+ 1; j<n; ++j) {

6 if (nums[i] + nums[j] == target) {
7 return new int[]{i, j};

8 3

9 3}

10 }

1 return new int[0];

12 }

13 |3

//@ requires nums != null;

//@ ensures \result != null;

//@ ensures \result.length == 2 ==> nums[\result[0]] + nums[\result[1]] == target;

//@ ensures \result.length == @ ==> (\forall int i; @ <= i & i < nums.length; (\forall int j; i + 1 <= j && j <
< nums.length; nums[i] + nums[j] != target));

//@ maintaining @ <= i && i <= n;
//@ maintaining (\forall int k; @ <= k & k < i; (\forall int j; k + 1 <= j & j < n; nums[k] + nums[j] != target));
//@ decreases n - i;

//@ maintaining i + 1 <= j && j <= n;

//@ maintaining (\forall int k; @ <= k & k < i; (\forall int 1; i <=1 && 1 < n; nums[k] + nums[1l] != target));
//@ maintaining (\forall int k; i < k & k < j; nums[i] + nums[k] != target);

//@ decreases n - j;

Program and corresponding specifications generated by SpecGen.

(a)
(b)
(c)
(d)

(e)
(f)
(8)

(h)
(1)
(3)
(k)

18

SpecCen

e Motivation: Existing automated program specification generation rely on

manually created templates resulting in simple and trivial specifications.
e Approach:
a. Given input code and a prompt, LLM generates a specification and verified by verifier.
b. This is refined further using conversation.
c. For the the still failing generated specs, mutate the code:
m Take locations of code where LLM generates wrong spec.
m Mutate the locations with various mutation operators.
d. Check with the verifier and select the best specification.

19

Examples of LLM Applications

e Requirement classification: Categorization of software requirements into

different classes or types e.g., functional or non-functional.

o NORBERT by Hey et al. (2020) fine-tunes an existing LM called BERT. Existing automatic
classification performs poorly on unseen projects which is improved by the authors.
m FEvaluate on a dataset containing classes of requirement.

e Requirement ambiguity detection: Ambiguity (where the natural language
description may be interpreted in more than one way) in software

requirements may result in production of poor quality software.
o TABASCO by Moharil et al. (2023) finds ambiguities using BERT to capture different meanings a
word can have depending on its context within a requirement.

https://github.com/AleksandarMitrevski/se-requirements-classification?tab=readme-ov-file#data-set-overview

doftware Development

ARCHCODE

ARCHCODE: Incorporating Software Requirements in Code Generation with Large
Language Models by Han et al.

Motivation

e A natural language description include both functional and nonfunctional
requirements.

e This can lead to LLM generated code that is functionally correct but violates
certain requirements.

ARCHCODE

Approach

e Start with textual software requirements. Use LLMs to extrapolate
unexpressed or implicit requirements and structure It.

e |Incorporates structured requirement in the prompt and generate code and
test cases.

Problem Description Given Generated by Existing Methods

A simple program which should return the value of x if n is a prime number | _ assert x_or_y(13,77,2)==77
and should return the value of y otherwise. assert x_or_y(24, 8, 9) ==
___________ R 2 ——
Functional Requirements (D Generated by ARCHCODE defxor_y(n, x,y): _Generated by
Input/Output Conditions ifn=="1: Existing Methods
! - The function takes three arguments: an integer 'n’, and two values "X" i rge_turn . :
'andy. i for.; mora.ngt_a(g_, n): .
- It returns a single value. I /t‘"" : Comparing Code and Test
Expected Behavior LORUITLY, —)
- If 'n" is a prime number, the function should return the value of "x'. H imeityompieXiy:i
| - I "n"is not a prime number. the function should return the value of 'y". | ot yclomatc Complexiy: 4 | SCNEration between
Edge Cases e
- Handle negative values of 'n’, returning the value of y'. ! AR @Gi”efatgd by ! i ARCHCODE and existin g
- Handle when "n" equals to O, returning the value of "y". : RCHCODE
q g y .| import math i approaches.
Non-Functional Requirements > defis_prime(n): i
i Time Performance i if not isinstance(n, int):
1 - Time complexity: O(sqrt(n)) for the “is_prime" helper function, where sys.stderr.write('Invalid input: n

‘n’ is the value of 'n". must be an integer.")

- Ensure efficiency even for extremely large inputs, providing results return None i et
within 5 seconds. | fn<2 i e Existing approaches
Robustness i return False H .
- If non-integer values are provided for *n’, print an error message to foriin range(2 int(math.sqrt(n)) + 1): 1 dire Ctly gene rates code
“stderr” and return None. ifn%i= .

i - If X" or “y" is not a numeric value, print an error message to stderr’ return False from descri ption.

! and return None. tum T .
Maintainability retim: True e [n comparison
- Target Cyclomatic Complexity: < 5. i def x_or i

B bk bt e b e SO I _y(n, X, y): ! :

y ¥ # Validate inputs ARCHCODE introduces

PRI, A S, A ——

! (2 Generated by ARCHCODE |

assert x_or_y(13, 77, 2) == 717, 'Failed to return the value of x for a prime number.’
assert x_or_y(24, 8, 9) == 9, 'Failed to return the value of y for a non-| pnme number.’

if not isinstance(x, (int, float)) or not
isinstance(y, (int, float)): structure.
sys.stderr.write('Invalid input: x

and y must be numeric values.’)

assert x_or_y(-7, 77 -5) == -5, 'Failed to handle a negative input number.’ return None
assert x_or_y(0, 77, 0) ==0, ‘Falled to handle a zero input number.’ if is_prime(n):
assert x_or_y(2**31-1, 34, 0) 34, 'Failed to handle large input size.’ —f .
assert not x_or _y('invalid', 34, 0), 'Failed to handle a non- integer input number.’ = s’:, umx

assert ComplexityVisitor.from_code("def x_or_y ...").total_ compIeX|ty <=5, 'Failed
to have a Cyclomatic Complexity less than or equal to 5 by Radon.'

__________ —— ———r mmdcnncnaaaa

Time Complexity: O(sqrt(n))
Cyclomatic Complexity: 5

return y

Examples of LLM Applications

e Code search: Given a natural language query, retrieve functionally relevant

code.
o CodeRetriever by Li et al. (2022) performs code-text contrastive pre-training to learn
function-level code semantics. This aids in better code search.
e Code Translation: Translating code in one programming language to another.
o TransMap by Wang et al. (2023) detects semantic mistakes in code translated by ChatGPT
using tests from source and translated program.

e Code Summarization: Use code as input and generates high-level natural

language summaries.

o ESALE by Fang et al. (2024) uses multi-task learning (unidirectional language modeling,
masked language modeling, action word prediction) to improve code summarization.

doftware lesting

Fuzz4All

Fuzz4All: Universal Fuzzing with Large Language Models by Xia et al. (2024)
Motivation

e Discover bugs using fuzzing.
e Traditional approach often target a specific language or features and can not
easily applied to other languages or features.

Fuzz4All

Approach

e Use LLMs for input generation and mutation engines.
e Since LLMs are trained on multiple programming languages, they are
applicable to multiple languages.

28

Examples of LLM Applications

e Fault localization: Identify specific locations in a software system where

faults or bugs are present.

o TROBO by Zhu et al,, (2021) performs cross-project knowledge transfer of bug report and code
file.

e Vulnerability detection: Identify potential security bugs in software systems.

o VUlLLM by Du et al,, (2024) performs multi-task learning (vulnerability localization task,
vulnerability interpretation) with LLMs to detect vulnerabilities.

e Unit test generation: Creating a set of test cases for testing the adequacy of

software programs.

o MUTAP by Dakhel et al,, (2023) performs mutation testing to augment prompts to guide LLMs
In generating test cases that can detect bugs.

29

THE END

