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Intersection of Artificial Intelligence (AI) and 
Software Engineering (SE)
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AI4SE vs SE4AI

● AI4SE: Using AI to enhance Software Engineering tasks which helps in 
building robust and reliable systems.

● SE4AI:  Using Software Engineering techniques to build robust AI systems.

This lecture: AI4SE
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Popular Public Applications

● Code generation - GitHub Copilot
● Bug Detection - DeepCode
● Automated Testing - Testim
● Code Documentation - Swim (documentation + modernization)
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https://github.com/features/copilot
https://snyk.io/platform/deepcode-ai/
https://www.testim.io/test-automation-tool/
https://swimm.io/how-it-works
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Usages of AI in Software Development
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Opinion of Developers – Do you use AI in Development Process?
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Opinion of Developers – Part of Development Process AI used?
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Opinion of Developers – How much do you Trust AI Output?
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Large Language Models (LLMs) for Code
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A Survey on Large Language Models for Software Engineering - Zhang et. al.

Papers over the years
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Downstream Tasks 
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A Survey on Large Language Models for Software Engineering - Zhang et. al.
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General Workflow of AI4SE Systems
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Typical LLM4SE

1. Collect data
2. Pre-train
3. Fine-tune for specific tasks
4. Integrate into SE workflows
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Data Collection 

Data collection is the first step of the system:

● Source code from open source code repositories such as GitHub, GitLab.
● Bug reports, Issues, Commits.
● Documentations, Code reviews.
● Example: The Stack Dataset

○ Uses GitHub archive to extract the dataset
○ Contains data from more than 350 programming languages
○ 6 TB of code data
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Pre-training

● Trained on massive corpora of code and natural language obtained from
○ Public repositories such as GitHub, GitLab
○ Q&A websites frequently visited by developers such as Stack Overflow, Reddit
○ Documentations such as API docs

● Quality of the data is very important.
● Example training objectives:

○ Causal language modeling
○ Masked language modeling
○ Replaced token detection
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Fine-tuning

Refine the pre-trained language model for particular tasks by training it further 
using specific datasets.

Example: CodeBERT, a language model is fine-tuned for natural language code 
search.
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Integration Into SE Workflows

Integrate LLM for practical software engineering tasks.

Example: GitHub Copilot has been integrated as a plugin for VS Code and assists 
developers with AI code completion, Natural language chats etc.
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Software Requirement & Design
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SpecGen

SpecGen: Automated Generation of Formal Program Specifications via Large 
Language Models  by Lezhi Ma et al. (2025)

● Program specifications encompass precise statements that describe the 
intended or actual behaviors of a particular program. 

18

Program and corresponding specifications generated by SpecGen.
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SpecGen

● Motivation: Existing automated program specification generation rely on 
manually created templates resulting in simple and trivial specifications.

● Approach: 
a. Given input code and a prompt, LLM generates a specification and verified by verifier.
b. This is refined further using conversation.
c. For the the still failing generated specs, mutate the code:

■ Take locations of code where LLM generates wrong spec.
■ Mutate the locations with various mutation operators.

d. Check with the verifier and select the best specification.
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Examples of LLM Applications

● Requirement classification: Categorization of software requirements into 
different classes or types e.g., functional or non-functional.
○ NoRBERT by Hey et al. (2020) fine-tunes an existing LM called BERT. Existing automatic 

classification performs poorly on unseen projects which is improved by the authors.
■ Evaluate on a dataset containing classes of requirement.

● Requirement ambiguity detection: Ambiguity (where the natural language 
description may be interpreted in more than one way) in software 
requirements may result in production of poor quality software.
○ TABASCO by Moharil et al. (2023) finds ambiguities using BERT to capture different meanings a 

word can have depending on its context within a requirement.
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https://github.com/AleksandarMitrevski/se-requirements-classification?tab=readme-ov-file#data-set-overview
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Software Development
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ARCHCODE

ARCHCODE: Incorporating Software Requirements in Code Generation with Large 
Language Models by Han et al.

Motivation

● A natural language description include both functional and nonfunctional 
requirements.

● This can lead to LLM generated code that is functionally correct but violates 
certain requirements. 
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ARCHCODE

Approach

● Start with textual software requirements. Use LLMs to extrapolate 
unexpressed or implicit requirements and structure it.

● Incorporates structured requirement in the prompt and generate code and 
test cases.
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Comparing Code and Test 
generation between 
ARCHCODE and existing 
approaches.

● Existing approaches 
directly generates code 
from description.

● In comparison 
ARCHCODE introduces 
structure.
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Examples of LLM Applications

● Code search: Given a natural language query, retrieve functionally relevant 
code. 
○ CodeRetriever by Li et al. (2022) performs code-text contrastive pre-training to learn 

function-level code semantics. This aids in better code search.
● Code Translation: Translating code in one programming language to another. 

○ TransMap by Wang et al. (2023) detects semantic mistakes in code translated by ChatGPT 
using tests from source and translated program.

● Code Summarization: Use code as input and generates high-level natural 
language summaries.
○ ESALE by Fang et al. (2024) uses multi-task learning (unidirectional language modeling, 

masked language modeling, action word prediction) to improve code summarization.
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Software Testing
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Fuzz4All

Fuzz4All: Universal Fuzzing with Large Language Models by Xia et al. (2024)

Motivation

● Discover bugs using fuzzing. 
● Traditional approach often target a specific language or features and can not 

easily applied to other languages or features.
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Fuzz4All

Approach

● Use LLMs for input generation and mutation engines.
● Since LLMs are trained on multiple programming languages, they are 

applicable to multiple languages. 
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Examples of LLM Applications

● Fault localization: Identify specific locations in a software system where 
faults or bugs are present.
○ TROBO by Zhu et al., (2021) performs cross-project knowledge transfer of bug report and code 

file.
● Vulnerability detection: Identify potential security bugs in software systems. 

○ VulLLM by Du et al., (2024) performs multi-task learning (vulnerability localization task, 
vulnerability interpretation) with LLMs to detect vulnerabilities.

● Unit test generation: Creating a set of test cases for testing the adequacy of 
software programs.
○ MuTAP by Dakhel et al., (2023) performs mutation testing to augment prompts to guide LLMs 

in generating test cases that can detect bugs.
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THE END


