2

Instructor Abir

Das and Jibest
Patra

Module 32: Programming in C4++

Type Casting & Cast Operators: Part 1

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, jibesh} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++
by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand casting in C and C++
e Understand const_cast operator

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module Outline

o Type Casting
@ Upcast & Downcast

e Cast Operators

@ const_cast

e Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

ﬁ@; Type Casting

e Why type casting?
fetrucier 2 o Type casts are used to convert the type of an object, expression, function argument, or
Pz return value to that of another type
o (Silent) Implicit conversions
o The standard C++ conversions and user-defined conversions
e Explicit conversions
o Often the type needed for an expression that cannot be obtained through an implicit
conversion. There may be more than one standard conversion that may create an
ambiguous situation or there may be disallowed conversion. We need explicit conversion in
such cases
e To perform a type cast, the compiler
o Allocates temporary storage

o Initializes temporary with value being cast
double f (int i,int j) { return (double) i / j; }

Type Casting

// compiler generates

double f (int i, int j) {
double temp_i = i; // Explicit conversion by (double) in temporary
double temp_j = j; // Implicit conversion in temporary to support mixed mode
return temp_i / temp_j;

€S20202: So}tware Engineering Instructors: Abir Das and Jibesh Patra 4

ﬁ@; Casting: C-Style: RECAP (Module 26)

e Various type castings are possible between built-in types
Instructor Abir
Das and Jibest
Patra int i = 3;
double d = 2.5;
Type Casting

double result = d / i; // i is cast to double and used

e Casting rules are defined between numerical types, between numercial types and pointers, and
between pointers to different numerical types and void

e Casting can be implicit or explicit

int i = 3;
double d = 2.5, *p = &d;

=i // implicit: int to double
i=d; // implicit: warning: ’=’ : conversion from ’double’ to ’int’: possible loss of data
d = (double)i; // explicit: int to double
i = (int)d; // explicit: double to int
i=p; // error: ’=’ : cannot convert from ’double *’ to ’int’
i = (int)p; // explicit: double * to int

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Type Casting

e (Implicit) Casting between unrelated classes is not permitted

class A { int i; };
class B { double d; };

A a;

B b;

A xp = &a;

B *xq = &b;

a =b; // error: binary ’=’ : no operator which takes a right-hand operand of type ’B’
a = (A)b; // error: ’type cast’ : cannot convert from ’B’ to ‘A’

b = a; // error: binary ’=’ : no operator which takes a right-hand operand of type ’A’
b = (B)a; // error: ’type cast’ : cannot convert from ’A’ to ’B’

P =q; // error: ’=’ : cannot convert from ’B *’ to ’A *’

q=7p; // error: ’=’ : cannot convert from ’A *’ to ’B x’

p = (AX)&b; // explicit on pointer: type cast is okay for the compiler

q = (B*)&a; // explicit on pointer: type cast is okay for the compiler

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Fen
i,

2

Type Casting

Casting: C-Style: RECAP (Module 26)

e Forced Casting between unrelated classes is dangerous

class A { public: int

i; }s

class B { public: double d; };

A a;

B b;

a.i =5;
b.d = 7.2;
A *p = &a;
B *q = &b;

cout << p->i << endl;
cout << g->d << endl;

(Ax)&b; // Forced
(Bx)&a; // Forced

P
q
cout << p->i << endl;
cout << gq->d << endl;

€S20202: Software Engineering

// prints 5
// prints 7.2

casting on pointer: Dangerous
casting on pointer: Dangerous

// prints -858993459: GARBAGE
// prints -9.26596e+061: GARBAGE

Instructors: Abir Das and Jibesh Patra

ﬁ‘% Casting on a Hierarchy: C-Style: RECAP (Module 26)

2\

e Casting on a hierarchy is permitted in a limited sense

class A { };
class B : public A { };

Upcast & Downcast

A xpa = 0;

B *pb = 0;

void *pv = 0;

pa = pb; // UPCAST: Okay

pb = pa; // DOWNCAST: error: ’=’ : cannot convert from ’A *’ to ’B *’

pv = pa; // Okay, but lose the type for A * to void *
pv = pb; // Okay, but lose the type for B * to void *

pa = pv; // error: ’=’ : cannot convert from ’void *’ to ’A *’
pb = pv; // error: ’=’ : cannot convert from ’void *’ to ’B %’

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

e Up-Casting is safe

class A { public: int dataA_; };
class B : public A { public: int dataB_; };

Upcast &

o o
55
o o
P
o =
[
o
o w

A xpa = &a;

B *pb = &b;

cout << pa->dataA_ << endl; // prints 2

cout << pb->dataA_ << " " << pb->dataB_ << endl; // prints 3 5

pa = &b;

cout << pa->dataA_ << endl; // prints 3

cout << pa->dataB_ << endl; // error: ’dataB_’ : is not a member of ’A’

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Cast Operators

Cast Operators

Cast Operators

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Casting in C and C++

® Casting in C

Instructor Abir
Das and Jibest

v o Implicit cast

Explicit C-Style cast

Loses type information in several contexts
Lacks clarity of semantics

O O O

Cast Operators

® Casting in C++

O Performs fresh inference of types without change of value
O Performs fresh inference of types with change of value
> Using implicit computation
> Using explicit (user-defined) computation
O Preserves type information in all contexts
O Provides clear semantics through cast operators:
> const_cast
> static_cast
D> reinterpret_cast
> dynamic_cast

o Cast operators can be grep-ed (searched by cast operator name) in source
0 C-Style cast must be avoided in C++

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

)i Cast Operators
L , P

Instructor Abir
Das and Jibest

‘ e A cast operator takes an expression of source type (implicit from the expression) and

converts it to an expression of target type (explicit in the operator) following the
semantics of the operator

Cast Operators

e Use of cast operators increases robustness by generating errors in static or dynamic time

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

e const_cast operator: const_cast<type> (expr)

o Explicitly overrides const and/or volatile in a cast
o Usually does not perform computation or change value
RIS e static_cast operator: static_cast<type>(expr)
o Performs a non-polymorphic cast
o Usually performs computation to change value — implicit or user-defined
e reinterpret_cast operator: reinterpret_cast<type> (expr)

o Casts between unrelated pointer types or pointer and integer
o Does not perform computation yet reinterprets value

e dynamic_cast operator: dynamic_cast<type> (expr)

o Performs a run-time cast that verifies the validity of the cast
o Performs pre-defined computation, sets null or throws exception

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

% ;2 const_cast Operator

Instructor Abir

Das and Jibes e const_cast converts between types with different cv-qualification

e Only const_cast may be used to cast away (remove) const-ness or volatility

e Usually does not perform computation or change value

const._cast

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

const_cast Operator

#include <iostream>
using namespace std;

class A { int i_;

public: A(int i) : i_(i) { }
int get() const { return i_; }
void set(int j) { i_ = j; }

+s

const.cast void print(char * str) { cout << str; }

int main() {
const char * c = "sample text";
// print(c); // error: ’void print(char *)’: cannot convert argument 1 from ’const char *’ to ’char *’

print (const_cast<char *>(c)); // Okay

const A a(1);
a.get();

// a.set(5); // error: ’void A::set(int)’: cannot convert ’this’ pointer from ’const A’ to ’A &’
const_cast<A&>(a).set(5); // Okay
// const_cast<A>(a).set(5); // error: ’const_cast’: cannot convert from ’const A’ to ‘A’

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 15

const_cast Operator vis-a-vis C-Style Cast

#include <iostream>
using namespace std;

class A { int i_;
public: A(int i) : i_(i) { }
int get() const { return i_; }
void set(int j) { i_ = j; }
e s
void print(char * str) { cout << str; }

int main() {
const char * c = "sample text";

// print(const_cast<char *>(c));
print ((char *)(c)); // C-Style Cast

const A a(1);

// const_cast<A&>(a).set(5);
((A%)a) .set(5); // C-Style Cast

// const_cast<A>(a).set(5); // error: ’const_cast’: cannot convert from ’const A’ to ‘A’
((A)a) .set(5); // C-Style Cast

}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

const._cast

#include <iostream>

struct type { type(: i(3) { }

void mi(int v) const {
//this->i = v; // error C3490: ’i’ cannot be modified -- accessed through a const object
const_cast<type*>(this)->i = v; // Okay as long as the type object isn’t const

}

int i;

main() { int i = 3; // i is not declared const
const int& cref_i = i; const_cast<int&>(cref_i) = 4; // Okay: modifies i
std::cout << "i = " << i << ’\n’;

Output:
type t; // note, if this is const type t;, then t.m1(4); may be undefined behavior i=4 .
t.m1(4); type::i
std::cout << "type::i = " << t.i << ’\n’; 34
const int j = 3; // j is declared const

int* pj = const_cast<int*>(&j); *pj = 4; // undefined behavior! Value of j and *pj may differ
std::cout << j << " " << *pj << std::endl;

void (type::*mfp) (int) const = &type::ml; // pointer to member function
//const_cast<void(type: :*) (int)>(mfp); // error C2440: ’const_cast’: cannot convert from
// ’void (__thiscall type::*)(int) const’ to

=4

// ’void (__thiscall type::*)(int)’ const_cast does not work

// on function pointers

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

17

u’k i Module Summary

Instructor Abir

Das and Jibest e Understood casting in C and C++

e Explained cast operators in C++ and discussed the evils of C-style casting

e Studied const_cast with examples

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 18

2

Instructor Abir

Das and Jibest
Patra

Module 33: Programming in C4++

Type Casting & Cast Operators: Part 2

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++
by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

Module Objectives

e Understand casting in C and C++

S e Understand static_cast, and reinterpret_cast operators
jectives
Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Module Outline

e © Cast Operators
@ static_cast
@ Built-in Types
@ Class Hierarchy
@ Hierarchy Pitfall
@ Unrelated Classes

@ reinterpret_cast

© Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

ﬁ@; Casting in C and C++: RECAP (Module 32)

2\

® Casting in C

‘Das ang Jesh o Implicit cast

Fae Explicit C-Style cast
Loses type information in several contexts
Lacks clarity of semantics

O O O

Cast O -
ast Operators ° Castlng in C++
O Performs fresh inference of types without change of value
O Performs fresh inference of types with change of value
> Using implicit computation
> Using explicit (user-defined) computation
O Preserves type information in all contexts
O Provides clear semantics through cast operators:
> const_cast
D> static_cast
> reinterpret_cast
> dynamic_cast

e}

Cast operators can be grep-ed (searched by cast operator name) in source
C-Style cast must be avoided in C++

o

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

static_cast Operator

e static_cast performs all conversions allowed implicitly (not only those with pointers
Das and Jbesh to classes), and also the opposite of these. It can:

o Convert from void* to any pointer type

o Convert integers, floating-point values to enum types

o Convert one enum type to another enum type

static.cast

e static_cast can perform conversions between pointers to related classes:
o Not only up-casts, but also down-casts
o No checks are performed during run-time to guarantee that the object being
converted is in fact a full object of the destination type
e Additionally, static_cast can also perform the following:

o Explicitly call a single-argument constructor or a conversion operator — The
User-Defined Cast

o Convert enum values into integers or floating-point values

o Convert any type to void, evaluating and discarding the value

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

Built-in Types

#inclu

using

int main() { // Built-in Types
int i = 2; long j; double d = 3.7; int *pi = &i; double *pd = &d; void *pv

in

pv =

pi
pi
pi

€S20202:

de <iostream>
namespace std;

=dq;
= static_cast<int>(d);
(int)d;

=i,

= static_cast<double>(i);

(double)i;

pi;
= pvi

= static_cast<int*>(pv);

= (int*)pv;

= pd;

(long)pd;

= (int)pd;

Software Engineering

static_cast<long>(pd) ;

/7
//
//

/7
//
//

//
/7
/7
//

//
//
//
//
/7

// Refer to Module 26 for details

implicit -- warning
static_cast -- okay
C-style -- okay

implicit -- okay
static_cast -- okay
C-style -- okay

implicit -- okay
implicit -- error
static_cast -- okay
C-style -- okay

implicit -- error
static_cast -- error
C-style —- okay: sizeof(long) = 8

RISKY: Should use reinterpret_cast

= 0;

sizeof (doublex)

C-style —- error: sizeof(int) = 4 != 8 = sizeof (doublex)

Instructors: Abir Das and Jibesh Patra

static_cast Operator: Class Hierarchy

#include <iostream>
using namespace std;

// Class Hierarchy
class A { };
class B: public A { };

int main() {

A a;
Class Hierarchy B b;
// UPCAST
A *p = 0;
p = &b; // implicit -- okay
p = static_cast<A*>(&b); // static_cast —- okay
p = (A%)&b; // C-style -- okay

// DOWNCAST

B *q = 0;

q = &a; // implicit -- error

q = static_cast<B*>(&a); // static_cast -- okay: RISKY: Should use dynamic_cast
q = (B¥)&a; // C-style -- okay

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

static_cast Operator: Pitfall

class Window { public:
virtual void onResize();

class SpecialWindow: public Window { // derived class
public:
virtual void onResize() { // derived onResize impl;
static_cast<Window>(*this) .onResize(); // cast *this to Window, then call its onResize;
// this doesn’t work!

. // do SpecialWindow-specific stuff
Hierarchy Pitfall }

+s
Slices the object, creates a temporary and calls the method!

class SpecialWindow: public Window { // derived class
public:
virtual void onResize() { // derived onResize impl;
Window: :onResize() ; // Direct call works

. // do SpecialWindow-specific stuff

I8

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

static_cast Operator: Unrelated Classes

#include <iostream> #include <iostream>
using namespace std; using namespace std;
// Un-related Types // Un-related Types
class B; class B;

class A { public: class A { public:

A(int i = 0) { cout << "A::A(i)\n"; }
A(const B&) { cout << "A::A(B&)\n"; }

class B { }; class B { };

Unrelated Classes int main() { int main() {
A a; B b; A a; B b;
int i = 5; int i = 5;
// B ==>A // B ==> A
a =b; // error a =b; // Uses A::A(B&)
a = static_cast<A>(b); // error a = static_cast<A>(b); // Uses A::A(B&)
a = (A)b; // error a = (A)b; // Uses A::A(B&)
// int ==> A // int ==> A
a=1i; // error a=1i; // Uses A::A(int)
a = static_cast<A>(i); // error a = static_cast<A>(i); // Uses A::A(int)
a = (A)i; // error a = (A)i; // Uses A::A(int)

}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

H‘. static_cast Operator: Unrelated Classes

#include <iostream> #include <iostream>
Instructors: Abir using namespace std; using namespace std;
Das and Jibest
e // Un-related Types // Un-related Types
class B; class B;
class A { int i_; public: class A { int i_; public:

A(int i = 0) : i_(i) { cout << "A::A(i)\n"; }

operator int() { cout << "A::operator int()\n"; return i_; }
}s s
class B { public: class B { public:

operator A() { cout << "B::operator A()\n"; return AQ; }

Unrelated Classes

int main() { A a; B b; int i = 5; int main() { A a; B b; int i = 5;
// B ==> A // B ==>A
a = b; // error a = b; // B::operator A()
a = static_cast<A>(b); // error a = static_cast<A>(b); // B::operator A()
a = (A)b; // error a = (A)b; // B::operator A()
// A ==> int // A ==> int
i=a; // error i=a; // A::operator int()
i = static_cast<int>(a); // error i = static_cast<int>(a); // A::operator int()
i = (int)a; // error i = (int)a; // A::operator int()

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

reinterpret_cast Operator

Instructors: Abir

2 2 i e reinterpret_cast converts any pointer type to any other pointer type, even of
unrelated classes
e The operation result is a simple binary copy of the value from one pointer to the other
e All pointer conversions are allowed: neither the content pointed nor the pointer type
itself is checked
e It can also cast pointers to or from integer types
e The format in which this integer value represents a pointer is platform-specific
AT R e The only guarantee is that a pointer cast to an integer type large enough to fully
contain it (such as intptr_t), is guaranteed to be able to be cast back to a valid
pointer (Refer to Module 26)

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

reinterpret _cast Operator

#include <iostream>
using namespace std;

class A { };
class B { };

int main() {

long i = 2;
double d = 3.7;
double *pd = &d;
!) i = pd; // implicit -- error
reinterpret._cas
i = reinterpret_cast<long>(pd); // reinterpret_cast —- okay
i = (long)pd; // C-style -- okay
cout << pd << " " << i << endl;
A *pA;
B *pB;
pA = pB; // implicit -- error
pA = reinterpret_cast<A*>(pB); // reinterpret_cast -- okay
pA = (A%)pB; // C-style -- okay

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module Summary

e Studied static_cast, and reinterpret_cast with examples

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

2

Instructor Abir

Das and Jibest
Patra

Module 34: Programming in C4++

Type Casting & Cast Operators: Part 3

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++
by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

L Module Objectives

e Understand casting in C and C++

o e Understand dynamic_cast and typeid operators
s
Outlines e Understand RTTI

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

Objectives &
Outlines

Module Outline

@ Cast Operators

@ dynamic_cast
@ Pointers
@ References

© typeid Operator
@ Polymorphic Hierarchy
@ Non-Polymorphic Hierarchy
@ bad_typeid

© Run-Time Type Information (RTTI)

© Module Summary

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra

dynamic_cast Operator

Instruct Abir

Das and Jibesh e dynamic_cast can only be used with pointers and references to classes (or with voidx)
o ® |ts purpose is to ensure that the result of the type conversion points to a valid complete object
of the destination pointer type
e This naturally includes pointer upcast (converting from pointer-to-derived to pointer-to-base),
dynamic_cast in the same way as allowed as an implicit conversion
e But dynamic_cast can also downcast (convert from pointer-to-base to pointer-to-derived)
polymorphic classes (those with virtual members) if-and-only-if the pointed object is a valid
complete object of the target type
e |f the pointed object is not a valid complete object of the target type, dynamic_cast returns a
null pointer
e If dynamic_cast is used to convert to a reference type and the conversion is not possible, an
exception of type bad_cast is thrown instead

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

ﬁ@; dynamic_cast Operator: Pointers

#i?clude <iostream> OOEFFCA8 casts to OOEFFCA8: Up-cast: Valid
Instructors: Abir [Ml st Std% OOEFFCA8 casts to OOEFFCA8: Down-cast: Valid
DERTRRIR class A { public: virtual "AO { } }; 00EFFCB4 casts to 00000000: Down-cast: Invalid
Fatra class B: public A { }; 00EFFCIC casts to 00000000: Unrelated-cast: Invalid
class C { public: virtual "CO { } }; 00000000 casts to 00000000: Unrelated: Valid for null
int mainO { A a; B b; C c; O0OEFFCBA4 casts to OOEFFCB4: Cast-to-void: Valid

B* pB = &b; A *pA = dynamic_cast<A*>(pB);
cout << pB << " casts to " << pA << ": Up-cast: Valid" << endl;

Pointers pA = &b; pB = dynamic_cast<B*>(pA);
cout << pA << " casts to " << pB << ": Down-cast: Valid" << endl;

pA = &a; pB = dynamic_cast<B*>(pA);
cout << pA << " casts to " << pB << ": Down-cast: Invalid" << endl;

pA = (Ax)&c; C *pC = dynamic_cast<Cx>(pA);
cout << pA << " casts to " << pC << ": Unrelated-cast: Invalid" << endl;

pA = 0; pC = dynamic_cast<C*>(pA);
cout << pA << " casts to " << pC << ": Unrelated-cast: Valid for null" << endl;

pA = &a; void *pV = dynamic_cast<void*>(pA);
cout << pA << " casts to " << pV << ": Cast-to-void: Valid" << endl;

// pA = dynamic_cast<A*>(pV); // error: ’void *’: invalid expression type for dynamic_cast

} cs20202: Software Engineering Instructors: Abir Das and Jibesh Patra 5

dynamic_cast Operator: References

#include <iostream> MSVC++
using namespace std;
Up-cast: Valid
class A { public: virtual "AQ { } }; Down-cast: Valid
class B: public A { }; Down-cast: Invalid: Bad dynamic_cast!
class C { public: virtual “C() { } }; Unrelated-cast: Invalid: Bad dynamic_cast!
int main() { A a; B b; C c; Onlinegdb
try { B &rBl = b; Up-cast: Valid
Ref s A &rA2 = dynamic_cast<A&>(rB1); Down-cast: Valid
cout << "Up-cast: Valid" << endl; Down-cast: Invalid: std::bad_cast
Unrelated-cast: Invalid: std::bad_cast

A &rA3 = b;
B &rB4 = dynamic_cast<B&>(rA3);
cout << "Down-cast: Valid" << endl;

try { A &rA5 = a;
B &rB6 = dynamic_cast<B&>(rA5);
} catch (bad_cast e) { cout << "Down-cast: Invalid: " << e.what() << endl; }

try { A &rA7 = (A&)c;
C &rC8 = dynamic_cast<C&>(rA7);
} catch (bad_cast e) { cout << "Unrelated-cast: Invalid: " << e.what() << endl; }
} catch (bad_cast e) { cout << "Bad-cast: " << e.what() << endl; }

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

L i typeid Operator

o e typeid operator is used where the dynamic type of a polymorphic object must be

Das and Jibesh

. known and for static type identification
e typeid operator can be applied on a type or an expression
e typeid operator returns const std::type_info. The major members are:

o operator==, operator!=: checks whether the objects refer to the same type
o name: implementation-defined name of the type

typeid Operator

e typeid operator works for polymorphic type only (as it uses RTTI — virtual function
table)

e If the polymorphic object is bad, the typeid throws bad_typeid exception

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 7

Using typeid Operator: Polymorphic Hierarchy

#include <iostream> MSVC++ Onlinegdb

#include <typeinfo>

using namespace std; class A: class A * 1A: P1A
class A *: class A P1A: 1A

// Polymorphic Hierarchy class B: class B * 1B: P1B

class A { public: virtual “AQ) { } }; class A *: class B P1A: 1B

class B : public A { }; class A: class B 1A: 1B

int main() {

A a;
cout << typeid(a).name() << ": " << typeid(&a).name() << endl; // Static
orphic A *p = &a;
& cout << typeid(p).name() << ": " << typeid(*p).name() << endl; // Dynamic
B b;
cout << typeid(b).name() << ": " << typeid(&b).name() << endl; // Static
p = &b;
cout << typeid(p).name() << ": " << typeid(*p).name() << endl; // Dynamic
A &r1l = a;
A &r2 = b;
cout << typeid(rl).name() << ": " << typeid(r2).name() << endl; // Dynamic

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Using typeid Operator: Polymorphic Hierarch

P2y Staff Salary Application

Instructors: Abir #include <iostream> MSVC++ Onlinegdb
Das and Jibest #include <string>

[Prid #include <typeinfo> class Engineer *: class Engineer P8Engineer: 8Engineer

using namespace std; class Engineer *: class Manager P8Engineer: 7Manager

class Engineer *: class Director P8Engineer: 8Director

class Engineer { protected: string name_;
public: Engineer(const string& name) : name_(name) { }

virtual void ProcessSalary() { cout << name_ << ": Process Salary for Engineer" << endl; }
}s

class Manager : public Engineer { Engineer *reports_[10];
public: Manager(const string& name) : Engineer(name) { }
TMK void ProcessSalary() { cout << name_ << ": Process Salary for Manager" << endl; }
chy ¥
class Director : public Manager { Manager *reports_[10];
public: Director(const string& name) : Manager(name) { }
void ProcessSalary() { cout << name_ << ": Process Salary for Director" << endl; }

int main() {
Engineer e("Rohit"); Manager m("Kamala"); Director d("Ranjana");
Engineer *staff[] = { &e, &m, &d };
for (int i = 0; i < sizeof(staff) / sizeof (Engineer*); ++i) {
cout << typeid(staff[i]).name() << ": " << typeid(*staff[i]).name() << endl;
}
}

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Non-Polymorphic
Hierarchy

#include <iostream>
#include <typeinfo>
using namespace std;

// Non-Polymorphic Hierarchy

class X { };

class Y : public X { };

int main() {

MSVC++

class
class
class
class
class

*:

*

class X *
class X
class Y *
class X
class X

Onlinegdb

1X: P1X
P1X: 1X
1Y: P1Y
P1X: 1X
1X: 1X

X x;

cout << typeid(x).name() << ": " << typeid(&x).name() << endl; // Static

X *q = &x;

cout << typeid(q).name() << ": " << typeid(*q).name() << endl; // Dynamic

Yy;

cout << typeid(y).name() << ": " << typeid(&y).name() << endl; // Static

q = &y;

cout << typeid(q).name() << ": " << typeid(*q).name() << endl; // Dynamic -- FAILS
X &rl = x; X &r2 = y;

cout << typeid(rl).name() << ": " << typeid(r2).name() << endl; // Dynamic

€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 10

H‘ Using typeid Operator: bad typeid Exception

#include <iostream> MSVC++
Instructors: Abir #include <typeinfo>
“‘;HX{WV} using namespace std; class A *
class A
class A { public: virtual “AQ) { } }; class A *
class B : public A { }; caught Access violation - no RTTI data!
class A *

int main() { A *pA = new A;
try {
cout << typeid(pA).name() << endl;

caught Attempted a typeid of NULL pointer!

Onlinegdb
cout << typeid(*pA).name() << endl;
} catch (const bad_typeid& e) P1A
{ cout << "caught " << e.what() << endl; } 1A
delete pA; P1A

try {
cout << typeid(pA).name() << endl;
cout << typeid(*pA).name() << endl;
} catch (const bad_typeid& e) { cout << "caught " << e.what() << endl; }
pA = 0;
try {
cout << typeid(pA).name() << endl;
cout << typeid(*pA).name() << endl;

bad_typeid

catch (const bad_typeid& e) { cout << "caught " << e.what() << endl; }

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

Run-Time Type Information (RTTI)

e Run-Time Type Information or Run-Time Type Identification (RTTI) exposes information

Das and Jibesh about an object’s data type at runtime

o RTTI is a specialization of a more general concept called Type Introspection

e Type Introspection helps to examine the type or properties of an object at runtime

® RTTI can be used to do safe typecasts, using the dynamic_cast<> operator, and to
manipulate type information at runtime, using the typeid operator and std: :type_info class

e RTTI is available only polymorphic classes, with at least one virtual method (destructor)

® Some compilers have flags to disable RT T/ to reduce the size of the application

e typeid keyword is used to determine the class of an object at run time. It returns a reference
to std: :type_info object, which exists until the end of the program

Run-Time Type
Information

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 12

Module Summary

e Understood casting at run-time
e Studied dynamic_cast with examples
e Understood RTTI and typeid operator

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

2

Instructor Abir

Das and Jibest
Patra

Module 35: Programming in C4++

Multiple Inheritence

Instructors: Abir Das and Jibesh Patra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

{abir, sourangshu} @cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in Modern C++
by Prof. Partha Pratim Das

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 1

L Module Objectives

e Understand Multiple Inheritance in C++

Objectives &
Outlines

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 2

L)i Module Outline

@ Multiple Inheritance in C4++
Objecives & @ Semantics
Outlines @ Data Members and Object Layout
@ Member Functions — Overrides and Overloads
@ Access Members of Base: protected Access
@ Constructor & Destructor
@ Object Lifetime

e Diamond Problem
@ Exercise

© Design Choice

@ Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 3

Multiple Inheritance in C4++: Hierarchy

Insiuctors: Abi e TA ISA Student; TA ISA Faculty

Student

AMEED \

Iani:eJ:ltance in TA
class Student; // Base Class = Student
class Faculty; // Base Class = Faculty

class TA: public Student, public Faculty; // Derived Class = TA

e TA inherits properties and operations of both Student as well as Faculty

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 4

2\

Instructors: Abir
Das and Jibesh
Patra

Multiple
Inheritance in
C++

Multiple Inheritance in C4++: Hierarchy

Manager ISA Employee, Director ISA Employee, ManagingDirector ISA Manager,

ManagingDirector ISA Director
mmqimu(edar

class Employee; // Base Class = Employee -- Root
class Manager: public Employee; // Derived Class = Manager
class Director: public Employee; // Derived Class = Director

class ManagingDirector: public Manager, public Director; // Derived Class = ManagingDirector
Manager inherits properties and operations of Employee

Director inherits properties and operations of Employee

ManagingDirector inherits properties and operations of both Manager as well as Director
ManagingDirector, by transitivity, inherits properties and operations of Employee
Multiple inheritance hierarchy usually has a common base class

This is known as the Diamond Hierarchy

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Multiple Inheritance in C++: Semantics

- e Derived ISA Basel, Derived ISA Base2

[sh
Pat
Basel
Derived
Semantics 7 Base2
L)
class Basel; // Base Class = Basel
class Base2; // Base Class = Base2

class Derived: public Basel, public Base2; // Derived Class = Derived

Use keyword public after class name to denote inheritance
Name of the Base class follow the keyword

There may be more than two base classes

public and private inheritance may be mixed

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 6

Multiple Inheritance in C++: Semantics

o Data Members
[etruciors Ao o Derived class inherits all data members of a// Base classes
o Derived class may add data members of its own

o Member Functions
o Derived class inherits all member functions of a// Base classes
o Derived class may override a member function of any Base class by redefining it with the

same signature
o Derived class may overload a member function of any Base class by redefining it with the
same name; but different signature

Semantics

e Access Specification
o Derived class cannot access private members of any Base class
o Derived class can access protected members of any Base class
e Construction-Destruction
o A constructor of the Derived class must first call all constructors of the Base classes to
construct the Base class instances of the Derived class — Base class constructors are called
in listing order
o The destructor of the Derived class must call the destructors of the Base classes to destruct

€520202: So tb\/ge gn?i%eeeriﬁ:glass instances of the Derived ?nls?écscors: Abir Das and Jibesh Patra 7

Multiple Inheritance in C++: Data Members and Object Layout

e e Data Members
o Derived class inherits all data members of a// Base classes
o Derived class may add data members of its own
e Object Layout

o Derived class /ayout contains instances of each Base class
Data Members o Further, Derived class layout will have data members of its own
o C++ does not guarantee the relative position of the Base class instances and
Derived class members

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 8

Multiple Inheritance in C++: Data Members and Object Layo

class Basel { protected:
int i_, data_;

public: // ...

class Base2 { protected:
int j_, data_;

public: // ...

class Derived: public Basel, public Base2 { // Multiple inheritance
int k_;

Data Members public: // ...

}s
Object Layout

Object Basel ~ Object Base2 Object Derived e Object Derived has two data_ members!

i- o Ambiguity to be resolved with base class
name: Basel::data_ & Base2::data-
[i | [3- |
| data_ | | data_ |

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 9

Multiple Inheritance in C++:

Member Functions — Overrides and Overloads

Derived ISA Basel, Base2

Member Functions
o Derived class inherits all member functions of a// Base classes
o Derived class may override a member function of any Base class by redefining it
with the same signature
o Derived class may overload a member function of any Base class by redefining it
with the same name; but different signature

o0

e Static Member Functions

o Derived class does not inherit the static member functions of any Base class
Friend Functions

o Derived class does not inherit the friend functions of any Base class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 10

Multiple Inheritance in C++:

H‘ Member Functions — Overrides and Overloads

‘ﬁ'”ﬁﬁ\m?f class Basel { protected: int i_, data_;

Patra public: Basel(int a, int b): i_(a), data_(b) { }
void f(int) { cout << "Basel::f(int) \n"; }
void g() { cout << "Basel::g() \n"; }

class Base2 { protected: int j_, data_;
public: Base2(int a, int b): j_(a), data_(b) { }
void h(int) { cout << "Base2::h(int) \n"; }

}s
s and class Derived: public Basel, public Base2 { int k_;
ik public: Derived(int x, int y, int u, int v, int z): Basel(x, y), Base2(u, v), k_(z) { }
void f(int) { cout << "Derived::f(int) \n"; } // -= Overridden Basel::f(int)
// == Inherited Basel::g()
void h(string) { cout << "Derived::h(string) \n"; } // -- Overloaded Base2:: h(int)
void e(char) { cout << "Derived::e(char) \n"; } // -- Added Derived::e(char)
}s
Derived c(1, 2, 3, 4, 5);
c.f(5); // Derived::f(int) -- Overridden Basel::f(int)
c.g0); // Basel::g() -- Inherited Basel::g()
c.h("ppd"); // Derived::h(string) -- Overloaded Base2:: h(int)
c.e(’a’); // Derived::e(char) —— Added Derived::e(char)

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 11

p22

Instructors
Das and J
Patra

Inheritance in C4+:

Member Functions — using for Name Resolution

Ambiguous Calls

Unambiguous Calls

class Basel { public:
Basel(int a, int b);
void f(int) { cout << "Basel::f(int) "; }
void g() { cout << "Basel::g() "; }

class Base2 { public:
Base2(int a, int b);
void f(int) { cout << "Base2::f(int) "; }
void g(int) { cout << "Base2::g(int) "; }

class Derived: public Basel, public Base2 {
public: Derived(int x, int y, int u, int v, int z);

}s

Derived c(1, 2, 3, 4, 5);

.£(5); // Basel::f(int) or Base2::f(int)?
.g(5); // Basel::g() or Base2::g(int)?
.£(3); // Basel::f(int) or Base2::f(int)?
.g(); // Basel::g() or Base2::g(int)?

oo oo

class Basel { public:
Basel(int a, int b);
void f(int) { cout << "Basel::f(int) "; }
void g() { cout << "Basel::g() "; }

class Base2 { public:
Base2(int a, int b);
void f(int) { cout << "Base2::f(int) "; }
void g(int) { cout << "Base2::g(int) "; }

class Derived: public Basel, public Base2 {

public: Derived(int x, int y, int u, int v, int z);
using Basel::f; // Hides Base2::f
using Base2::g; // Hides Basel::g

Derived c(1, 2, 3, 4, 5);

L£(5); // Basel::f(int)
.g(5); // Base2::g(int)
.Base2::£f(3); // Base2::f(int)

Cc
[
C
c.Basel::g(); // Basel::g()

e Overload resolution does not work between Basel::g() and Base2::g(int)
e using hides other candidates; Explicit use of base class name can resolve (weak solution)

(€S20202: Software Engineering

Instructors: Abir Das and Jibesh Patra 12

Multiple Inheritance in C++:

Access Members of Base: protected Access

e Access Specification

o Derived class cannot access private members of any Base class
o Derived class can access protected members of any Base class

protected Access

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 13

Multiple Inheritance in C++:

L : Constructor & Destructor

Instructor Abir

Das and Jibes! e Constructor-Destructor

o Derived class inherits all Constructors and Destructor of Base classes (but in a
different semantics)

o Derived class cannot overload a Constructor or cannot override the Destructor of
any Base class

e Construction-Destruction
o A constructor of the Derived class must first call all constructors of the Base classes
TE e to construct the Base class instances of the Derived class
; o Base class constructors are called in /isting order

o The destructor of the Derived class must call the destructors of the Base classes to

destruct the Base class instances of the Derived class

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 14

Lt

Instructor Abi

Das and Jibest
Patra

nstructor &
ctor

Multiple Inheritance in C++: Constructor & Destructor

class Basel { protected: int i_; int data_;
public: Basel(int a, int b): i_(a), data_(b) { cout << "Basel::Basel() "; }
“Basel() { cout << "Basel::"Basel() "; }

H

class Base2 { protected: int j_; int data_;
public: Base2(int a = 0, int b = 0): j_(a), data_(b) { cout << "Base2::Base2() "; }
“Base2() { cout << "Base2::"Base2() "; }

H

class Derived: public Basel, public Base2 { int k_;

public: Derived(int x, int y, int z): Obiject Layout
Basel(x, y), k_(z) { cout << "Derived::Derived() "; } y Y
// Basel::Basel explicit, Base2::Base2 default Object bl Object b2

“Derived() { cout << "Derived::~Derived() "; }

H

Basel b1(2, 3);
Base2 b2(3, 7);
Derived d(5, 3, 2);

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

Object d

15

Instructors
Das and J
Patra

Object Lifetime

Multiple Inheritance in C++: O

class Basel { protected: int i_; int data_;
public: Basel(int a, int b): i_(a), data_(b)
{ cout << "Basel::Basel() " << i_ << ’ ’ << data_ << endl; }
“Basel() { cout << "Basel::"Basel() " << i_ << ’ ’ << data_ << endl; }
class Base2 { protected: int j_; int data_;
public: Base2(int a = 0, int b = 0): j_(a), data_(b)
{ cout << "Base2::Base2() " << j_ << ’ ’ << data_ << endl; }
“Base2() { cout << "Base2::"Base2() " << j_ << ’ ’ << data_ << endl; }
class Derived: public Basel, public Base2 { int k_; public:
Derived(int x, int y, int z): Basel(x, y), k_(z)
{ cout << "Derived::Derived() " << k_ << endl; }
// Basel::Basel explicit, Base2::Base2 default
“Derived() { cout << "Derived::“Derived() " << k_ << endl; }

}s

Derived d(5, 3, 2);
Construction O/P Destruction O/P
Basel::Basel(): 5, 3 // Obj. d.Basel Derived::"Derived(): 2 // 0bj. d
Base2::Base2(): 0, 0 // Obj. d.Base2 Base2::"Base2(): 0, O // 0Obj. d.Base2
Derived::Derived(): 2 // Obj. d Basel::"Base1(): 5, 3 // Obj. d.Basel

e First construct base class objects, then derived class object
e First destruct derived class object, then base class objects
C520202: Software Engineering Instructors: Abir Das and Jibesh Patra 16

Multiple Inheritance in C4++: Diamond Problem

: e Student ISA Person
Das and Jibesh e Faculty ISA Person

Person

class Person;
Diamond class Student: public Person;
Hicen class Faculty: public Person;

e TA ISA Student; TA ISA Faculty

TA
<
Faculty
| ——
// Base Class = Person -- Root

// Base / Derived Class = Student
// Base / Derived Class = Faculty

class TA: public Student, public Faculty; // Derived Class = TA

Student inherits properties and operations of Person
Faculty inherits properties and operations of Person
TA inherits properties and operations of both Student as well as Faculty

o TA, by transitivity, inherits properties and operations of Person
CS20202: Software

Engineering

Instructors: Abir Das and Jibesh Patra 17

Multiple Inheritance in C++: Diamond Problem

#include<iostream>
using namespace std;

class Person { // data members of person
public: Person(int x) { cout << "Person::Person(int)" << endl; }

class Faculty: public Person { // data members of Faculty
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: public Person { // data members of Student
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }

int main() { TA ta(30);
Diamond
Problem
Person: :Person(int)
Faculty::Faculty(int)
Person: :Person(int)
Student: :Student (int)
TA::TA(int)

[e Two instances of base class object (Person) in a TA object! |

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 18

Multiple Inheritance in C++:

virtual Inheritance — virtual Base Class

#include<iostream>
using namespace std;
class Person { // data members of person
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; } // Default ctor for virtual inheritance
class Faculty: virtual public Person { // data members of Faculty
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: virtual public Person { // data members of Student
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }

int mainQ) { TA ta(30); }

Diamond
Problem Person: :Person()

Faculty::Faculty(int)
Student: :Student (int)
TA::TA(int)

e Introduce a default constructor for root base class Person
e Prefix every inheritance of Person with virtual
e Only one instance of base class object (Person) in a TA object!

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 19

Multiple Inheritance in C++:

virtual Inheritance with Parameterized Ct

#include<iostream>
using namespace std;

class Person {

public: Person(int x) { cout << "Person::Person(int)" << endl; }

Person() { cout << "Person::Person()" << endl; }
class Faculty: virtual public Person {

public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
s

class Student: virtual public Person {
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }

class TA: public Faculty, public Student {
public: TA(int x): Student(x), Faculty(x), Person(x) { cout << "TA::TA(int)" << endl; }

Diamond int main() { TA ta(30); }

Problem
Person: :Person(int)
Faculty: :Faculty(int)
Student: :Student (int)
TA::TA(int)

\ e Call parameterized constructor of root base class Person from constructor of TA class \

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 20

u,, Multiple Inheritance in C++: Ambiguity

#include<iostream>

lisfaneies (A0 using namespace std;

Das and Jibest
Patra
class Person {
public: Person(int x) { cout << "Person::Person(int)" << endl; }
Person() { cout << "Person::Person()" << endl; }
virtual “Person();
virtual void teach() = 0;
b
class Faculty: virtual public Person {
public: Faculty(int x): Person(x) { cout << "Faculty::Faculty(int)" << endl; }
virtual void teach();
}s
class Student: virtual public Person {
public: Student(int x): Person(x) { cout << "Student::Student(int)" << endl; }
virtual void teach();
Diamond };
Problem class TA: public Faculty, public Student {
public: TA(int x):Student(x), Faculty(x) { cout << "TA::TA(int)" << endl; }
virtual void teach();

I8

[e In the absence of TA::teach(), which of Student::teach() or Faculty::teach() should be inherited? |

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 21

Multiple Inheritance in C++: Exercise

class A {

public:
virtual “AQ) { cout << "A::"AQ" << endl; }
virtual void foo() { cout << "A::foo()" << endl; }

b

class B: public virtual A {

public:
virtual “B() { cout << "B::"B()" << endl; }
virtual void foo() { cout << "B::foo()" << endl; }

b

class C: public virtual A {

public:

virtual “C() { cout << "C::"CO)" << endl; }
virtual void foobar() { cout << "C::foobar()" << endl; }
class D: public B, public C {
public:
virtual “D() { cout << "D::"D()" << endl; }
virtual void foo() { cout << "D::foo()" << endl; }
virtual void foobar() { cout << "D::foobar()" << endl; }

I8

\ e Consider the effect of calling foo and foobar for various objects and various pointers

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 22

L 7 Design Choice: Inheritance or Composition

T A o Vehicle Hierarchy
Das and Jibest
Patra

® Wheeled Hierarchy and Engine Hierarchy interact
e Large number of cross links!

e Multiplicative options make modeling difficult
€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 23

Design Choice

u,; Design Choice: Inheritance or Composition

T A o Vehicle Hierarchy

Das and Jibest
Patra Vehicle

WheeledVehicle

ThreeWheeler TwoWheeler

FourWheeler
7 ALR

ElectricBus

ElectricScooter

AutoRickshaw TriCycle
Design Choice

Scooter ‘ ‘ BiCycle

® \Wheeled Hierarchy use Engine as Component
e Linear options to simplify models
® |s this dominant?

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra

24

Design Choice: Inheritance or Composition

T A o Vehicle Hierarchy

\bir
Das and Jibest
B Vehicle

EngineClass

PetrolFueled Manual
. . ElectricBus ElectricCar Toto ElectricScooter Moped Scooter Bus AutoRickshaw TriCycle BiCycle
Design Choice

e Engine Hierarchy use Wheeled as Component
e Linear options to simplify models
® |s this dominant?
CS20202: Software Engineering Instructors: Abir Das and Jibesh Patra 25

% ,. Module Summary

Instructor Abir

Das and Jibest e Introduced the Semantics of Multiple Inheritance in C++

e Discussed the Diamond Problem and solution approaches

e |llustrated the design choice between inheritance and composition

Module Summary

€S20202: Software Engineering Instructors: Abir Das and Jibesh Patra 26

