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About these ideas

Two papers:

• with V. Scarani. Fluctuation relations from Bayesian retrodiction. Phys.

Rev. E (2021). arXiv:2009.02849 [quant-ph]

• with C.C. Aw and V. Scarani. Fluctuation Theorems with Retrodiction

rather than Reverse Processes. AVS Quantum Science (to appear).

arXiv:2106.08589 [cond-mat.stat-mech]

1/24



New physics!!
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New physics??
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The Second Law is “special”

“The law that entropy always increases holds, I think,

the supreme position among the laws of Nature. [. . . ]

If your theory is found to be against the Second Law of

Thermodynamics I can give you no hope; there is nothing

for it to collapse in deepest humiliation.”

A.S. Eddington

“[. . . ] the only physical theory of universal content con-

cerning which I am convinced that, within the framework

of the applicability of its basic concepts, it will never be

overthrown.” A. Einstein
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Very special!

“Once or twice I have been provoked and

have asked the company how many of them

could describe the Second Law of Thermo-

dynamics. The response was cold: it was

also negative. Yet I was asking something

which is about the equivalent of: Have you

read a work of Shakespeare’s?”

C.P. Snow (1959)
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To be or not to be (cit.)

The Second Axiom of Thermodynamics

A perpetuum mobile of the second kind∗ is

impossible. In formula,

〈∆Stot〉 ≥ 0 .

∗ A machine that extracts work from a single heat bath.

Why does the above feel so special among physical laws?
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Is entropy the key?

Many “explanations” of the Second Law actually amount to

explanations of the meaning of entropy (e.g., counting arguments).

Problem is...

“ No one understands entropy

very well...”

von Neumann (apocryphal)

“ ...and that’s only half of the

story, anyway.” Anon
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Reverse processes and irreversibility

Crooks’ fluctuation theorem (1999)

PF (W )

PR(−W )
= eβ(W−∆F )

Crooks =⇒ Clausius (i.e., the Second Law)
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Usual explanation

Crooks’ theorem, and hence Jarzynski’s relation, and hence the

Second Law, all rely on two assumptions satisfied at equilibrium:

1. thermal distribution: microstate probability is P(ξ) ∝ e−βε(ξ)

2. microscopic reversibility (cf. detailed balance): molecular

processes and their reverses occur at the same rate
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Is the Second Law “special” because of

some kind of “special” microscopic

balancing mechanism then?

And in which sense two processes are

one the “reverse” of the other?
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A hint from Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-

ample of the n-body equations of

motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)
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A hint from Satosi Watanabe

“The phenomenological oneway-

ness of temporal developments in

physics is due to irretrodictabil-

ity, and not due to irreversibil-

ity.” S. Watanabe (1965)

11/24

Reverse process as Bayesian retrodiction



The Bayes-Laplace Rule

Inverse Probability Formula

P(H|D)︸ ︷︷ ︸
inv. prob.

∝ P(D|H)︸ ︷︷ ︸
likelihood/model

P(H)︸ ︷︷ ︸
prior

where H is a hypothesis, D is the result

of observation (i.e., data or evidence)

postmodern Bayesianism!
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Meanings of inverse probability

It is the main tool of Bayesian statistics for problems like:

• estimation (e.g.: how many red balls are in an urn?)

• decision (e.g.: is ACME’s stock a good investment? should I buy

some? how much?)

• inference and learning:

◦ predictive inference (e.g.: weather forecasts)

◦ retrodictive inference (e.g.: what kind of stellar event

possibly caused the Crab Nebula?)
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Inference with noisy data or uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

• suppose that a noisy observation suggests a probability

distribution Q(D) for the data (e.g., the license plate no.)

• how should we update our prior P(H) given uncertain

evidence in the from Q(D)? 14/24

Jeffrey’s rule of probability kinematics

Vanilla Bayes:

P(H|D) = P(D|H)P(H)/P(D)

Extended Bayes:

P(H|Q(D)) =?

Jeffrey’s conditioning∗ (1965)

P(H|Q(D)) =
∑
D

P(H|D)︸ ︷︷ ︸
inv. prob.

Q(D)

=
∑
D

P(D|H)P(H)

P(D)
Q(D)

∗ Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl’s method of virtual evidence (1988) 15/24



Jeffrey’s rule promotes Bayes inverse

probability to a fully fledged “reverse”

channel
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Construction of the reverse process as retrodiction

• physical setup:

◦ a stochastic transition rule: ϕ(y|x)

◦ a steady (viz. invariant) state:
∑

x ϕ(y|x)s(x) = s(y)

• Bayesian inversion at the steady state:

s(y)ϕ̂s(x|y) := s(x)ϕ(y|x) ⇐⇒ ϕ(y|x)
ϕ̂s(x|y)

= s(y)
s(x)

• two priors:

◦ predictor’s prior: p(x)

◦ retrodictor’s prior q(y)

• two processes:

◦ forward process (prediction): PF (x, y) = ϕ(y|x)p(x)

◦ reverse process (retrodiction): PR(x, y) = ϕ̂s(x|y)q(y)
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In a picture

• at the inversion state s(x): prediction = retrodiction

• otherwise: asymmetry (irreversibility, irretrodictability)
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Fluctuation relations quantify how much

predictor and retrodictor disagree
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Revisiting (and extending) Crook’s example

• stochastic process ϕ(y|x) with non-thermal steady state s(x)

• thermal equilibrium priors: p(x) ∝ e−βεx , q(y) ∝ e−βηy

• measure of divergence: D(PF ‖PR) :=
〈
− ln PR(x,y)

PF (x,y)

〉
F

• fluctuation variable:

ω = ln PF (x,y)
PR(x,y) = ln p(x)

q(y)
s(y)
s(x) = β(ηy − εx) + (ln s(y)− ln s(x))

• nonequilibrium potential : V (x) := − 1
β ln s(x) (e.g., Manzano&al

2015)

• nonequilibrium potentials (usually introduced ad hoc) are

understood here as remnants of Bayesian inversion

• =⇒
〈
eβ(∆E−∆V )

〉
F

= 1 =⇒ D(p‖s)−D(ϕ[p]‖s) ≥ 0
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Quantum stochastic processes

• assume ϕ(y|x) = Tr[Πy E(ρx)]

• let s(x) be invariant distribution

• perform quantum retrodiction:

◦ Σ :=
∑

x s(x)ρx

◦ ρ̂y := 1
s(y)

√
E(Σ)Πy

√
E(Σ)

◦ Π̂x := s(x) 1√
Σ
ρx

1√
Σ

◦ Ê(·) :=
√

Σ

{
E†
[

1√
E(Σ)

(·) 1√
E(Σ)

]}√
Σ

• Bayes–Jeffrey inversion works seamlessly

ϕ̂(x|y) = Tr[Π̂x Ê(ρ̂y)]
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But why are known relations compatible

with Bayesian retrodiction?

That is the question (cit.)
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Locality ⇐⇒ Bayes’ rule

• D(PF ‖PR) =
〈

ln PF (x,y)
PR(x,y)

〉
F

• let us impose that the fluctuation variable is local:

ln
PF (x, y)

PR(x, y)

!
= G′(y)−G(x)

• this implies that
PF (y|x)

PR(x|y)
=
H ′(y)

H(x)

• rearranging and summing over x:

H ′(y) =
∑
x

H(x)PF (y|x)

• =⇒ PR(x|y) =
H(x)PF (y|x)∑
xH(x)PF (y|x)

, i.e., Bayes rule!
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Agent’s belief and the second law

The problem with the notion of “time reversal”

What sort of transformation is it? Is it always well-defined? How is

it implemented?
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“Physical transformation” or “belief propagation”?

Not “objective”. In stat-mech, the construction of the reverse process

depends on a choice of system-bath interaction and reference prior.

Not “constructive”. Even if a physical realization (e.g., a circuit

implementation) of the forward process is available, that does not

mean that its reverse is also physically available.

=⇒ the reverse process does not depend only on the forward process,

but also on the agent’s belief!

=⇒ prediction and retrodiction are fundamentally different: origin of

a logical/inferential arrow.
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Special case: Hamiltonian processes

The following are equivalent (both in classical and quantum theory):

• a given process is Hamiltonian

• its reverse does not depend on the choice of prior

• it is bilaterally deterministic

Interpretation

The reverse process can be considered agent-independent if and only

if the process is Hamiltonian.

In particular, a reversal always exists; however, it is agent-independent

only for Hamiltonian processes
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Conclusions

Final messages

Conceptual insights:

1. one-way-ness: not irreversibility, but irretrodictability

2. entropy increase: not “time arrow”, but “inferential arrow”

3. reversal: not physical transformation, but Bayesian inversion

4. hence, the Second Law is special among physical laws because

it is not so much a law of physics, as it is a law of logic

Applications:

1. fluct. relations without “ad hockeries” e.g. non-eq. potentials

2. fluct. relations and Second Law beyond thermo and physics

thank you
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