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POVMs and instruments

in this talk: all sets (X, Y etc.) are finite, all spaces (74, 7% etc.) are
finite-dimensional

: family P of positive semidefinite operators on 77 labeled by set X, i.e.,
P= {Px}xex

interpretation: expected probability of outcome z is p(x) = Tr[p P,]

. family {Z, : A — B},ex of completely positive linear maps from Z(74)
to B(75), such that YT, is trace-preserving

interpretation: expected probability of outcome z is p(x) = Tr[Z,(0)], and

corresponding post-measurement state is 1[ﬁlx(g)
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first problem:
definition of (in)compatibility for instruments
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incompatibility
In quantum theory,

This feature is what enables quantum algorithms, QKD protocols, violations of Bell's
inequalities, etc.

Various formalizations:
@ preparation uncertainty relations (e.g., Robertson)
@ measurement uncertainty relations (e.g., Ozawa)
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compatible POVMs 1/2

Definition
given a family {PW},o; = {ngi)}wexieﬂ of POVMs, all defined on the same system A,
we say that the family is compatible, whenever there exists

®a O = {Ou},cw On system A
@ a p(x|w, )
such that

PO — Z,u(a;\w,i)Ow :

w

for all x € X and all 7 € 1.
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compatible POVMs 2/2

[F.B., E. Chitambar, W. Zhou; PRL 2020]
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the first problem

While there is consensus on a single notion of compatibility for POVMs,
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classical compatibility 1/2

Definition (Heinosaari—-Miyadera—Reitzner, 2014)

given a family of instruments {I:ﬁi) : A — B}iexicr, We say that the family is classically
compatible, whenever there exist

@ a {Hw: A= B}, cw
@ 2 p(x|w, i)
such that

T = Zu(m|w,i)%w :

w

for all x € X and all 7 € 1.

we call this “classical” because it involves only , but it is also
called “traditional” [Mitra and Farkas; PRA 2022].
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classical compatibility 2/2

crucially:
o and communication is

@ communication goes only from I to II, i.e., the above is necessarily
, see [Ji and Chitambar; PRA 2021]
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parallel compatibility 1/2

@ without loss of generality (classical labels can be copied), compatible POVMs may

be assumed to be recovered by ,l.e.,
Px(z) = Z Oatl,:rg ..... Tn
xj:jAt
@ the notion of “ " for instruments lifts the above insight to the

quantum outputs
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parallel compatibility 2/2

Definition (Heinosaari-Miyadera—Ziman, 2015)

given a family of instruments {I;Ei) : A — B, }rexen, We say that the family is parallelly
compatible, whenever there exist

@ a {Hw A — ®i€]IBi}wEW
@ 2 p(x|w, i)
such that

T = Z,u(a;|w, )Trp, ., 0 Hal

for all x € X and all 7 € 1.
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parallel compatibility VS classical compatibility

@ parallel compatibility is able to go beyond no-signaling, hence,

@ parallel compatibility has nothing to do with the “no information without
disturbance” principle, because

@ hence
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bridging the two camps: g-compatibility

Definition

given a family of instruments {IS) : A — B, }rexien, We say that the family is
g-compatible, whenever there exist

@ a {Hy: A— Cloew

@23 p(z|w, 7)

@ a {D(x’w’i) O — Bi}xEX,wGW,iE]I
such that

70 =3 p(a|w, ) [DED o 1,

w

for all x € X and all 7 € 1.

classical compatibility: C' = B; and D% = id
parallel compatibility: C'= @), B; and D@ = Trg v,
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g-compatibility as a circuit

A—-» %’w C > D »BZ-

crucially:
@ no shared entanglement and communication is classical
@ only one interactive round I 111
@ both classical and parallel compatibilities are special cases of g-compatibility
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free operations for classical incompatibility

\d
\ 4
Y

@ all cassically compatible devices can be created for free

o if the initial device (the dark gray inner box) is classically compatible, the final
device is also classically compatible
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free operations for g-incompatibility

Y
LU 2 4

@ all g-compatible devices can be created for free

e if the initial device (the dark gray inner box) is g-compatible, the final device is also
g-compatible
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the incompatibility preorder

given two families of instruments {L@ : A — B;}rexer and {jy(j) : C'— Dj}tyev. jed
we say

whenever the former can be transformed into the latter by means of a free operation

~~ this is now an instance of statistical comparison: a Blackwell-like theorem can be
proved, and a complete family of monotones obtained

...continues on arXiv:2211.09226
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second problem:
measurement sharpness
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sharp POVMs: conventional definition

: a POVM P = {P,},ex is called sharp whenever all its elements are
projectors, i.e., PPy = 0, P, forall z,2" € X

: sharp POVMs are “sharp” because
@ orthogonal projectors are “pointed”

@ they can be measured in a repeatable, “clear-cut” way

. Paul Busch already considered sharpness measures in 2005;
most recent work is by Liu and Luo (2022), and by Mitra (2022)

: how can sharpness be “processed”?
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POVM processing

POVMs can be transformed using

@2 , 1.e., a CPTP linear map & such that
{Px}xEX = {Qx}xGX Wlth Qx - gT(Px)

@ 2 , i.e., a conditional distribution pu(y|z) such that

@2 with another fixed POVM T = {7}, }.ex, i.e.,
{P.}rex — {AP; + (1 = N T, }oex, with A € [0, 1]

@ a composition of the above
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the second problem

Which processings are sharpness-non-increasing?

@ quantum preprocessings: can turn non-sharp into sharp ~~ ILLEGAL

@ classical postprocessings: can turn non-sharp into sharp ~ ILLEGAL

@ convex mixtures: legal if T is “maximally dull”, but we need to characterize
maximally dull POVMs first
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new definition: sharp’ POVMs
: a POVM P = {P,},ex is sharp? whenever the set
range P := {p € REK' : Jo state, p, = Trlo P,] ,Vx}
coincides with the entire probability simplex (which is pointed!) on X
@ sharp’ <= all elements P, have {1} in their spectrum
@ sharp® = dim 7 > [X|
@ sharp? A dim .## = |X| <= nondegenerate observables

@ repeatably measurable <= sharp*
(whereas, repeatably measurable =& sharp)
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sharp’ and dull* POVMs

o . if a CPTP linear map & exists such that Q, = £7(P,), we say that P is
cleaner than Q, in formula, P > Q

) : clean POVMs are the maximal elements for >, i.e., POVMs P such
that, if Q = P, then also P >~ Q

° . preprocessing clean <= sharp®

o — - dull® POVMs are the minimal elements for >, i.e., POVMs P
such that, if P = Q, then also Q = P

o dulllf — P, x1forall z eX
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fuzzifying operations
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the sharpness® preorder

given two POVMs P = {P,},ex and Q = {Q, }.ex, we say that
whenever:

@ there exists a fuzzifying operation transforming P into Q

@ equivalently: there exists a CPTP linear map £ such that
Q € conv{&N(P), TO, T® TR

where T® = {T:Ei)}xex are the deterministic POVMs with Tq(f) = 0,1
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fuzzifying operations as LOSR preprocessings

~ formulated in this way, the sharpness preorder is again an instance of statistical
comparison: a Blackwell-like theorem can be proved, and a complete family of
monotones obtained

...continues on arXiv:2303.07737
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conclusion
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take home messages
@ no need to argue about the “correct” definition of compatibility:

° , either in
space (quantum channel) or in time (quantum memory)

o : complete family of sharpness-non-increasing operations

)
(more precisely, signaling dimension)

thank you
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