resource-theoretic approach to two problems in the theory of quantum measurements

Francesco Buscemi, Nagoya University

54th Symposium on Mathematical Physics Toruń, 10 June 2023

1 /20

references

- F.B., K. Kobayashi, S. Minagawa, P. Perinotti, A. Tosini: Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication.

 Quantum 7, 1035 (2023).
- F.B., K. Kobayashi, S. Minagawa:

 A complete and operational resource theory of measurement sharpness.

 Arxiv:2303.07737

POVMs and instruments

in this talk: all sets (X, Y etc.) are finite, all spaces $(\mathcal{H}_A, \mathcal{H}_B \text{ etc.})$ are finite-dimensional

POVM: family **P** of positive semidefinite operators on \mathcal{H} labeled by set \mathbb{X} , i.e., $\mathbf{P} = \{P_x\}_{x \in \mathbb{X}}$

interpretation: expected probability of outcome x is $p(x) = \text{Tr}[\varrho \ P_x]$

instrument: family $\{\mathcal{I}_x : A \to B\}_{x \in \mathbb{X}}$ of completely positive linear maps from $\mathscr{B}(\mathscr{H}_A)$ to $\mathscr{B}(\mathscr{H}_B)$, such that $\sum_x \mathcal{I}_x$ is trace-preserving

interpretation: expected probability of outcome x is $p(x) = \text{Tr}[\mathcal{I}_x(\varrho)]$, and corresponding post-measurement state is $\frac{1}{p(x)}\mathcal{I}_x(\varrho)$

3/20

first problem: definition of (in)compatibility for instruments

incompatibility

In quantum theory, some measurements necessarily exclude others.

This feature is what enables quantum algorithms, QKD protocols, violations of Bell's inequalities, etc.

Various formalizations:

- preparation uncertainty relations (e.g., Robertson)
- measurement uncertainty relations (e.g., Ozawa)
- incompatibility

5/29

compatible POVMs 1/2

Definition

given a family $\{\mathbf{P}^{(i)}\}_{i\in\mathbb{I}} \equiv \{P_x^{(i)}\}_{x\in\mathbb{X},i\in\mathbb{I}}$ of POVMs, all defined on the same system A, we say that the family is *compatible*, whenever there exists

- a "mother" POVM $\mathbf{O} = \{O_w\}_{w \in \mathbb{W}}$ on system A
- ullet a conditional probability distribution $\mu(x|w,i)$

such that

$$P_x^{(i)} = \sum_{w} \mu(x|w, i) O_w ,$$

for all $x \in \mathbb{X}$ and all $i \in \mathbb{I}$.

compatible POVMs 2/2

[F.B., E. Chitambar, W. Zhou; PRL 2020]

7/20

the first problem

While there is consensus on a single notion of compatibility for POVMs, the situation is less clear for instruments...

classical compatibility 1/2

Definition (Heinosaari-Miyadera-Reitzner, 2014)

given a family of instruments $\{\mathcal{I}_x^{(i)}:A\to B\}_{x\in\mathbb{X},i\in\mathbb{I}}$, we say that the family is *classically compatible*, whenever there exist

- a mother instrument $\{\mathcal{H}_w : A \to B\}_{w \in \mathbb{W}}$
- a conditional probability distribution $\mu(x|w,i)$

such that

$$\mathcal{I}_x^{(i)} = \sum_{w} \mu(x|w,i)\mathcal{H}_w ,$$

for all $x \in \mathbb{X}$ and all $i \in \mathbb{I}$.

we call this "classical" because it involves only classical post-processings, but it is also called "traditional" [Mitra and Farkas; PRA 2022].

0/20

classical compatibility 2/2

crucially:

- no shared entanglement and communication is classical
- communication goes only from I to II, i.e., the above is necessarily $II \rightarrow I$ non-signaling, see [Ji and Chitambar; PRA 2021]

parallel compatibility 1/2

 without loss of generality (classical labels can be copied), compatible POVMs may be assumed to be recovered by marginalization, i.e.,

$$P_x^{(i)} = \sum_{x_j: j \neq i} O_{x_1, x_2, \dots, x_n}$$

• the notion of "parallel compatibility" for instruments lifts the above insight to the quantum outputs

11/29

parallel compatibility 2/2

Definition (Heinosaari-Miyadera-Ziman, 2015)

given a family of instruments $\{\mathcal{I}_x^{(i)}:A\to B_i\}_{x\in\mathbb{X},i\in\mathbb{I}}$, we say that the family is *parallelly compatible*, whenever there exist

- a mother instrument $\{\mathcal{H}_w : A \to \otimes_{i \in \mathbb{I}} B_i\}_{w \in \mathbb{W}}$
- a conditional probability distribution $\mu(x|w,i)$

such that

$$\mathcal{I}_{x}^{(i)} = \sum_{w} \mu(x|w,i) [\operatorname{Tr}_{B_{i':i'\neq i}} \circ \mathcal{H}_{w}] ,$$

for all $x \in \mathbb{X}$ and all $i \in \mathbb{I}$.

parallel compatibility VS classical compatibility

- parallel compatibility is able to go beyond no-signaling, hence, parallel compatibility
 classical compatibility
- parallel compatibility has nothing to do with the "no information without disturbance" principle, because non-disturbing instruments are never parallelly compatible
- hence classical compatibility \implies parallel compatibility

13/29

bridging the two camps: q-compatibility

Definition

given a family of instruments $\{\mathcal{I}_x^{(i)}:A\to B_i\}_{x\in\mathbb{X},i\in\mathbb{I}}$, we say that the family is *q-compatible*, whenever there exist

- a mother instrument $\{\mathcal{H}_w : A \to C\}_{w \in \mathbb{W}}$
- a conditional probability distribution $\mu(x|w,i)$
- ullet a family of postprocessing channels $\{\mathcal{D}^{(x,w,i)}:C o B_i\}_{x\in\mathbb{X},w\in\mathbb{W},i\in\mathbb{I}}$

such that

$$\mathcal{I}_x^{(i)} = \sum_{w} \mu(x|w,i) [\mathcal{D}^{(x,w,i)} \circ \mathcal{H}_w] ,$$

for all $x \in \mathbb{X}$ and all $i \in \mathbb{I}$.

classical compatibility: $C \equiv B_i$ and $\mathcal{D}^{(x,w,i)} = \text{id}$ parallel compatibility: $C \equiv \bigotimes_i B_i$ and $\mathcal{D}^{(x,w,i)} = \text{Tr}_{B_{i'}:i'\neq i}$

q-compatibility as a circuit

crucially:

- no shared entanglement and communication is classical
- \bullet only one interactive round $I \rightarrow II \rightarrow I$
- both classical and parallel compatibilities are special cases of q-compatibility

15/29

free operations for classical incompatibility

- all cassically compatible devices can be created for free
- if the initial device (the dark gray inner box) is classically compatible, the final device is also classically compatible

16/29

free operations for q-incompatibility

- all q-compatible devices can be created for free
- if the initial device (the dark gray inner box) is q-compatible, the final device is also q-compatible

17/29

the incompatibility preorder

given two families of instruments $\{\mathcal{I}_x^{(i)}:A\to B_i\}_{x\in\mathbb{X},i\in\mathbb{I}}$ and $\{\mathcal{J}_y^{(j)}:C\to D_j\}_{y\in\mathbb{Y},j\in\mathbb{J}}$, we say

"
$$\{\mathcal{I}_x^{(i)}:A\to B_i\}$$
 is more q-incompatible than $\{\mathcal{J}_y^{(j)}:C\to D_j\}$ "

whenever the former can be transformed into the latter by means of a free operation

→ this is now an instance of statistical comparison: a Blackwell–like theorem can be proved, and a complete family of monotones obtained

...continues on arXiv:2211.09226

second problem: measurement sharpness

19/29

sharp POVMs: conventional definition

definition: a POVM $\mathbf{P} = \{P_x\}_{x \in \mathbb{X}}$ is called sharp whenever all its elements are projectors, i.e., $P_x P_{x'} = \delta_{x,x'} P_x$ for all $x, x' \in \mathbb{X}$

intuition: sharp POVMs are "sharp" because

- orthogonal projectors are "pointed"
- they can be measured in a repeatable, "clear-cut" way

sharpness as a resource: Paul Busch already considered sharpness measures in 2005; most recent work is by Liu and Luo (2022), and by Mitra (2022)

question: how can sharpness be "processed"?

POVM processing

POVMs can be transformed using

- a quantum preprocessing, i.e., a CPTP linear map \mathcal{E} such that $\{P_x\}_{x\in\mathbb{X}}\mapsto \{Q_x\}_{x\in\mathbb{X}}$ with $Q_x=\mathcal{E}^\dagger(P_x)$
- a classical postprocessing, i.e., a conditional distribution $\mu(y|x)$ such that $\{P_x\}_{x\in\mathbb{X}}\mapsto \{Q_y\}_{y\in\mathbb{Y}}$ with $Q_y=\sum_x \mu(y|x)P_x$
- a convex mixture with another fixed POVM $\mathbf{T} = \{T_x\}_{x \in \mathbb{X}}$, i.e., $\{P_x\}_{x \in \mathbb{X}} \mapsto \{\lambda P_x + (1-\lambda)T_x\}_{x \in \mathbb{X}}$, with $\lambda \in [0,1]$
- a composition of the above

21/29

the second problem

Which processings are sharpness-non-increasing?

- quantum preprocessings: can turn non-sharp into sharp → ILLEGAL
- classical postprocessings: can turn non-sharp into sharp → ILLEGAL
- convex mixtures: legal if T is "maximally dull", but we need to characterize maximally dull POVMs first

new definition: sharp POVMs

definition: a POVM $\mathbf{P} = \{P_x\}_{x \in \mathbb{X}}$ is sharp whenever the set

$$\operatorname{range}\mathbf{P}:=\left\{\mathbf{p}\in\mathbb{R}_{+}^{|\mathbb{X}|}:\exists\varrho\;\mathsf{state},p_{x}=\operatorname{Tr}[\varrho\;P_{x}]\,,\forall x\right\}$$

coincides with the entire probability simplex (which is pointed!) on $\mathbb X$

- ullet sharp \Longleftrightarrow all elements P_x have $\{1\}$ in their spectrum
- $\operatorname{sharp}^{\sharp} \implies \dim \mathcal{H} \geqslant |\mathbb{X}|$
- $\operatorname{sharp}^{\sharp} \wedge \dim \mathscr{H} = |\mathbb{X}| \iff \operatorname{nondegenerate observables}$
- repeatably measurable \iff sharp^{\sharp} (whereas, repeatably measurable \implies sharp)

23/29

sharp[‡] and dull[‡] POVMs

- definition: if a CPTP linear map \mathcal{E} exists such that $Q_x = \mathcal{E}^{\dagger}(P_x)$, we say that \mathbf{P} is cleaner than \mathbf{Q} , in formula, $\mathbf{P} \succ \mathbf{Q}$
- **definition**: clean POVMs are the *maximal elements* for \succ , i.e., POVMs **P** such that, if $\mathbf{Q} \succ \mathbf{P}$, then also $\mathbf{P} \succ \mathbf{Q}$
- theorem: preprocessing clean ←⇒ sharp[‡]
- \Longrightarrow definition: dull POVMs are the minimal elements for \succ , i.e., POVMs P such that, if $\mathbf{P} \succ \mathbf{Q}$, then also $\mathbf{Q} \succ \mathbf{P}$
- $\operatorname{dull}^\sharp\iff P_x\propto\mathbb{1}$ for all $x\in\mathbb{X}$

fuzzifying operations

$$P_x \longmapsto \lambda \mathcal{E}^{\dagger}(P_x) + (1 - \lambda)p(x)\mathbb{1} , \quad \forall x \in \mathbb{X}$$

25/29

the sharpness[‡] preorder

given two POVMs $\mathbf{P} = \{P_x\}_{x \in \mathbb{X}}$ and $\mathbf{Q} = \{Q_x\}_{x \in \mathbb{X}}$, we say that "P is sharper" than \mathbf{Q} " whenever:

- there exists a fuzzifying operation transforming P into Q
- \bullet equivalently: there exists a CPTP linear map ${\cal E}$ such that

$$\mathbf{Q} \in \operatorname{conv}\{\mathcal{E}^{\dagger}(\mathbf{P}), \mathbf{T}^{(1)}, \mathbf{T}^{(2)} \dots, \mathbf{T}^{|\mathbb{X}|}\}\ ,$$

where $\mathbf{T}^{(i)}=\{T_x^{(i)}\}_{x\in\mathbb{X}}$ are the deterministic POVMs with $T_x^{(i)}=\delta_{i,x}\mathbb{1}$

fuzzifying operations as LOSR preprocessings

→ formulated in this way, the sharpness preorder is again an instance of statistical comparison: a Blackwell–like theorem can be proved, and a complete family of monotones obtained

...continues on arXiv:2303.07737

27/20

conclusion

take nome messages	take	home	messages
--------------------	------	------	----------

- no need to argue about the "correct" definition of compatibility: q-compatibility provides an overarching framework
- incompatibility is essentially quantum information transmission, either in space (quantum channel) or in time (quantum memory)
- fuzzifying operations: complete family of sharpness-non-increasing operations
- sharpness is essentially a measure of classical communication capacity (more precisely, signaling dimension)

thank you

29/29