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Conventions

� finite dimensions (operators ≡ matrices)

� states, viz., density matrices: ρ ≥ 0, Tr ρ = 1 (ρ, σ, . . . )

� pure states, e.g, |ψQ⟩ and |ψ⟩⟨ψ|Q = ψQ

� we denote suppρ := (kerρ)⊥

� completely positive trace-preserving linear maps, viz.

quantum channels, are denoted by E ,F , . . .
� trace-dual map E† is defined by Tr[E(X) Y ] = Tr[X E†(Y )]

for all X, Y

� fidelity (sometimes, squared fidelity) F (ρ, σ) := ∥√ρ
√
σ∥21
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Umegaki’s relative entropy

Definition (Relative entropy)

For A,B ≥ 0, A ̸= 0,

D(A∥B) :=

Tr[A(logA− logB)] , if suppA ⊆ suppB ,

+∞ , otherwise

Useful properties:

� Klein’s inequality: TrA ≥ TrB =⇒ D(A∥B) ≥ 0

� B ≤ B′ =⇒ D(A∥B) ≥ D(A∥B′)

� −D(ρ∥I) = S(ρ) (= −Tr ρ log ρ)

� monotonicity: D(ρ∥σ) ≥ D(E(ρ)∥E(σ)) for all channels E
and all states ρ, σ 2/27

Origin of the transpose map

Question. For which triples (ρ, σ, E), D(ρ∥σ) = D(E(ρ)∥E(σ))?
Petz (1986,1988)

If and only if Ẽσ(•) :=
√
σE†

[
1√
E(σ)

• 1√
E(σ)

]
√
σ satisfies

Ẽσ ◦ E(ρ) = ρ .

(The other equality Ẽσ ◦ E(σ) = σ is satisfied by construction.)

Remark. The map Ẽσ is already CPTP on supp[E(σ)], but it can
always be extended to a linear map CPTP everywhere.

Remark. Notice that Ẽσ in general is not the linear inverse of E!
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Re-discovered in quantum error correction

� state ρQ purified by |ψRQ⟩, that is, TrR[ψRQ] = ρQ

� given a state ρQ and a channel E : Q→ Q, the entanglement

fidelity is Fe(ρ, E) := ⟨ψRQ|(idR ⊗ EQ)(ψRQ)|ψRQ⟩

Barnum and Knill (2002)

Given a state ρQ and a channel E : Q→ Q′,[
max

R:Q′→Q
Fe(ρ,R ◦ E)

]2
≤ Fe(ρ, Ẽρ ◦ E) .

Petz’s transpose map can be used as decoder to achieve the quantum

capacity (Beigi–Datta–Leditzky 2017). Belavkin’s “pretty good measurement”

(1975) can also be rederived as a special case. 4/27

Re-discovered in quantum statistical mechanics

Crooks (PRA, 2008) rediscovers Petz’s transpose map on the basis

of physical reasoning:

� starts from equilibrium, that is, E(ω) = ω

� picks a Kraus representation E(•) =
∑

k Ek(•)E†
k

� defines a stochastic “trajectory” over the Kraus

representation index: p(α, β|ω) = Tr[Eβ (EαωE
†
α) E

†
β]

� assumes that the “reverse” process, with Kraus operators

{Ẽk}k, at equilibrium satisfies microscopic reversibility:

p̃(β, α|ω) := Tr[Ẽα (ẼβωẼ
†
β) Ẽ

†
α]

!
= p(α, β|ω)

� the above is satisfied if Ẽk = ω1/2E†
kω

−1/2, for all indices k

� =⇒ Crooks’ reverse process coincides with Ẽω
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Extension beyond equality: approximate reversibility

Junge–Renner–Sutter–Wilde–Winter (2018)

D(ρ∥σ)−D(E(ρ)∥E(σ)) ≥ −
∫ +∞

−∞
dt p(t) logF (ρ, Ẽ t/2

σ ◦ E(ρ))

≥ − logF (ρ,R ◦ E(ρ)) ,

where

� p(t) := π
2(cosh(πt)+1) is a probability density

� Ẽ t
σ(•) := σ−itẼσ[E(σ)it (•) E(σ)−it]σit are “rotated” Petz’s maps

� R :=
∫ +∞
−∞ dt p(t)Ẽ t/2

σ
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What is the Petz transpose map and

how to implement it?



The problems with “reversal”

� What is it? A (the?) time-reverse? Other symmetry reverse?

� How to achieve it?
7/27

The quest for a “physical implementation”

The underlying philosophy is that a channel represents a process that

“actually happens”.

Problem. Given a circuit implementation of a channel, algorithmically

construct a circuit implementing its Petz transpose.

Results. Having a realization of the forward process does not mean

that its reversal is also available: there is no simple “reversal button”!

See e.g.: Quintino et al. (2019) and Gilyén et al. (2020).

Remark. Any channel’s realization involves unobservable degrees of

freedom (the inside of the black-box). Should the reverse depend on

those?

However, some special cases are “easy”. (But beware building your

intuition based on them!)
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Hamiltonian (i.e., unitary or one-to-one) dynamics

The following are equivalent:

� the channel E is unitary (that is, E(•) = U • U †)

� the channel E is such that Ẽσ does not depend on the choice

of σ

� the channel E is such that its linear inverse E−1 coincides

with Ẽσ for some choice of σ

Moreover, for unitary channels all rotated Petz maps coincide.

Interpretation

The Petz transpose channel corresponds to “the movie shown

backwards” (intuitive notion of “time-reversal”) if and only if the

channel is unitary.
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Thermal operations (and a little more)

Alhambra–Wehner–Wilde–Woods (2018)

Consider a channel E : Q→ Q possessing a realization of the

form

E(•Q) = TrE[UQE (•Q ⊗ τE) U
†
QE] ,

such that

UQE (ωQ ⊗ τE) U
†
QE = ωQ ⊗ τ ′E ,

for some steady state ωQ > 0. Then

Ẽω(•Q) = TrE[U
†
QE (•Q ⊗ τ ′E) UQE] .

Remark. A thermal operation has ωQ and τE = τ ′E as Gibbs states of

the system’s and bath’s Hamiltonians, respectively. 10/27



In general, what is the relation between

a channel and its Petz transpose?
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Petz’s transpose map as Bayesian

retrodiction



The Bayes–Laplace Rule

Inverse Probability Formula

P(H|D)︸ ︷︷ ︸
inv. prob.

∝ P(D|H)︸ ︷︷ ︸
likelihood/model

P(H)︸ ︷︷ ︸
prior

where H is a hypothesis, D is the result

of observation (i.e., data or evidence)
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Meanings of the inverse probability

� it is the main tool of Bayesian statistics for problems like:

◦ estimation (e.g.: how many red balls are in an urn?)

◦ decision (e.g.: is ACME’s stock a good investment? should I

buy some? how much?)

◦ inference and learning: predictive inference (e.g.: weather

forecasts) and retrodictive inference (e.g.: what kind of

stellar event possibly caused the Crab Nebula?)

� it measures the degree of belief that a rational agent should have

in one hypothesis, among other mutually exclusive ones, given the

data
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Inference with noisy data or uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

� suppose that a noisy observation suggests a probability

distribution Q(D) for the data (e.g., the license plate no.)

� how should we update our prior P(H) given uncertain

evidence in the from Q(D)? 13/27

Jeffrey’s rule of probability kinematics

Vanilla Bayes:

P(H|D) = P(D|H)P(H)/P(D)

Extended Bayes:

P(H|Q(D)) =?

Jeffrey’s conditioning∗ (1965)

P(H|Q(D)) =
∑
D

P(H|D)︸ ︷︷ ︸
inv. prob.

Q(D)

=
∑
D

P(D|H)P(H)∑
H P(D|H)P(H)

Q(D)

∗ Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl’s method of virtual evidence (1988) 14/27



Jeffrey’s rule “promotes” Bayes’

posterior distribution to a fully fledged

channel.
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Petz transpose in the classical case

� state ρ ⇝ probability distribution p(x)

� channel E ⇝ discrete noisy channel φ(y|x)
� E(ρ) ⇝ [φ◦p](y) =

∑
x φ(y|x)p(x)

� Petz transpose Ẽρ ⇝ φ̃p(x|y) =
1

[φ◦p](y)
φ(y|x)p(x)

� hence, Petz’s transpose map coincides with Jeffrey’s rule!

� moreover, in the classical case there is only one Jeffrey–Petz

reverse (i.e., all rotated maps coincide)

15/27



Approximate reversibility in the classical case

Li–Winter (2018)

In the classical case,

D(p∥q)−D(φ[p]∥φ[q]) ≥ D(p∥[φ̃q◦φ]p) .

Remark. Notice that D(p∥q) ≥ − logF (p, q), so the above is

stronger than the best general quantum bounds we know.

Only for (sub-)unital CPTP maps E , we have a similar bound

(Buscemi–Das–Wilde 2016): S(E(ρ))− S(ρ) ≥ D(ρ∥(E† ◦ E)ρ).

Open question. What about a different relative entropy, like

Belavkin–Staszewski’s?
16/27

Case study: application in statistical

mechanics



Satosi Watanabe

“The phenomenological one-way-

ness of temporal developments in

physics is due to irretrodictabil-

ity, and not due to irreversibil-

ity.” S. Watanabe (1965)
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Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-

ample of the n-body equations of

motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)
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More concretely: to derive fluctuation

relations with the reverse process as

Bayesian retrodiction
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Construction of the reverse process as retrodiction

� physical setup:

◦ a stochastic transition rule: φ(y|x)
◦ a steady (viz. invariant) state:

∑
x φ(y|x)s(x) = s(y)

� Bayes–Jeffrey inversion at the steady state:

s(y)φ̃(x|y) := s(x)φ(y|x) ⇐⇒ φ(y|x)
φ̃(x|y)

=
s(y)

s(x)

� two priors:

◦ predictor’s prior: p(x)

◦ retrodictor’s prior q(y)

� two processes:

◦ forward process (prediction): PF (x, y) = φ(y|x)p(x)
◦ reverse process (retrodiction): PR(x, y) = φ̃(x|y)q(y)
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A picture

� at the steady state: prediction = retrodiction

� otherwise: asymmetry (irreversibility, irretrodictability)

20/27

Quantifying irretrodictability

Idea: fluctuation relations as measures of divergence between

prediction and retrodiction

• relative entropy:

D(PF∥PR) :=
〈
− ln PR(x,y)

PF (x,y)

〉
F
=: ⟨− ln r(x, y)⟩F

⇝ more generally, one can use Df (PR∥PF ) := ⟨f(r(x, y))⟩F

• introduce probability density functions

⇝ Ω(x, y) := f(r(x, y)) (total stochastic f -entropy production)

⇝ µF (ω) :=
∑

x,y δ[ω − Ω(x, y)] PF (x, y)

⇝ µR(ω) :=
∑

x,y δ[ω − Ω(x, y)] PR(x, y)

=⇒ ⟨ω⟩F = Df (PR∥PF )
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Examples of known results recovered by

retrodiction

Example: driven closed system evolution

� driving protocol: H(0) → H(t) → H(τ)

� H(0) = (ϵx)x, H(τ) = (ηy)y

� φ(y|x) = δy,y(x), i.e., one-to-one

� Hamiltonian =⇒ φ̃(x|y) ≡ φ(y|x)

� p0(x) = eβ(F−ϵx), qτ (y) = eβ(F
′−ηy)

In this case,

Ω(x, y) = ln
PF (x, y)

PR(x, y)
= ln

φ(y|x)p(x)
φ̃(x|y)q(y)

= ln
p(x)

q(y)

= β(F − ϵx + F ′ + ηy) = β(W −∆F )

=⇒ µF (W )

µR(W )
= eβ(W−∆F ) =⇒ ⟨W ⟩ ≥ ∆F

22/27



Example: nonequilibrium steady states

� stochastic process φ(y|x) with non-thermal steady state s(x)

� thermal equilibrium priors: p(x) = q(x) ∝ e−βϵx

� fluctuation variable:

ω = ln PF (x,y)
PR(x,y) = ln p(x)

q(y)
s(y)
s(x) = β(ϵy − ϵx) + (ln s(y)− ln s(x))

� nonequilibrium potential : V (x) := − 1
β ln s(x) (e.g., Manzano&al

2015)

� nonequilibrium potentials (usually introduced ad hoc) are

understood here as remnants of Bayesian inversion

� =⇒
〈
eβ(∆E−∆V )

〉
F
= 1 =⇒ D(p∥s)−D(φ[p]∥s) ≥ 0
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But why known relations are compatible

with Bayesian inversion?

Is that a necessity?
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Sketch argument

� D(PF∥PR) =
〈
ln PF (x,y)

PR(x,y)

〉
F

� let us impose that the fluctuation variable is local:

ln PF (x,y)
PR(x,y)

= Ω(x, y)
!
= g2(y)− g1(x)

� =⇒ PF (y|x)
PR(x|y) =

h2(y)
h1(x)

� =⇒ h1(x)PF (y|x) = h2(y)PR(x|y)
� sum over x =⇒ h2(y) =

∑
x h1(x)PF (y|x)

� =⇒ PR(x|y) = 1∑
x h1(x)PF (y|x)h1(x)PF (y|x)

Hence, a Bayesian inverse-like form for the reverse process is

inevitable if we want the fluctuating variable to have a local form!
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Finally, what about the quantum case?
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Quantum retrodiction and the Petz map

� assume φ(y|x) = Tr[Πy E(ρx)]
� let s(x) be invariant distribution

� according to the formalism of quantum

retrodiction:

◦ Σ :=
∑

x s(x)ρx

◦ ρ̃y := 1
s(y)

√
E(Σ)Πy

√
E(Σ)

◦ Π̃x := s(x) 1√
Σ
ρx

1√
Σ

◦ ẼΣ(•) :=
√
Σ

{
E†
[

1√
E(Σ)

(•) 1√
E(Σ)

]}√
Σ

� Bayesian inversion works seamlessly

φ̃(x|y) = Tr[Π̃x ẼΣ(ρ̃y)]

25/27

Conclusion



Conceptual take-home messages

1. the reversal in general depends on a choice of prior

(exceptions: Hamiltonian processes)

2. classically, Petz’s map coincides with Jeffrey’s retrodiction

3. in quantum theory, it agrees with previous proposals for

“quantum retrodiction”

4. however, we still lack of a thorough mathematical theory of

quantum inference (Petz map is not unique in general!)

5. reverse processes in statistical mechanics better seen as

“reverse inferences” rather than “time-reverses”

6. the inferential approach circumvents the problem of

“realization”

thank you
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About these ideas

Two papers:

� with V. Scarani. Fluctuation relations from Bayesian retrodiction. Phys.

Rev. E (2021). arXiv:2009.02849 [quant-ph]

� with C.C. Aw and V. Scarani. Fluctuation Theorems with Retrodiction

rather than Reverse Processes. AVS Quantum Science (to appear).

arXiv:2106.08589 [cond-mat.stat-mech]
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