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Conventions

e finite dimensions (operators = matrices)

e states, viz., density matrices: p >0, Trp=1 (p,0,...)
o pure states, e, [tig) and [11) (] = g

e we denote suppp := (kerp)t

e completely positive trace-preserving linear maps, viz.
quantum channels, are denoted by &, F, ...

e trace-dual map &' is defined by Tr[€(X) Y] = Tr[X ET(Y)]
forall X,Y

o fidelity (sometimes, squared fidelity) F(p, o) = ||\/pvo |}
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Umegaki’s relative entropy

Definition (Relative entropy)
For A,B >0, A#0,

Tr[A(log A — log B)] , if suppA C suppB ,
D(A|B) := {

400, otherwise

Useful properties:
e Klein's inequality: TrA>TrB = D(A||B) >0
e B< B — D(A|B)> D(A|B)

o —D(p|l)=5(p) (=—Trplogp)
e monotonicity: for all channels £

and all states p, o 2/27

Origin of the transpose map

Question. For which triples (p,0,&), D(p|lo) = D(E(p)||E(0))?

If and only if £,(e) := /o&T [\/;(U) o \/51(0)] /o satisfies

Es0E(p)=p.

(The other equality &, o () = o is satisfied by construction.)

Remark. The map &, is already CPTP on supp[£(o)], but it can
always be extended to a linear map CPTP everywhere.

Remark. Notice that &, in general is not the linear inverse of &!
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Re-discovered in quantum error correction

e state pg purified by |¢rg), that is, Trr[vrg] = po
e given a state pg and a channel £ : Q — @, the entanglement

fidelity is Fe(p, &) == (Yrol(idr ® £Q)(VYRQ)|¥RQ)

Barnum and Knill (2002)
Given a state pg and a channel £ : Q — (),

2

< : .
R%?_}EQFAP?RO&) = Fe(pvgpog)

Petz's transpose map can be used as decoder to achieve the quantum

capacity (Beigi—-Datta—Leditzky 2017). Belavkin's “pretty good measurement”

(1975) can also be rederived as a special case. 4/27

Re-discovered in quantum statistical mechanics

Crooks (PRA, 2008) rediscovers Petz's transpose map on the basis
of physical reasoning:

starts from equilibrium, that is, £(w) = w

picks a Kraus representation £(e) = 3, Ey(e)E]

defines a stochastic “trajectory” over the Kraus
representation index: p(a, 8lw) = Tr[Es (E,wE}) Eg]
assumes that the “reverse’ process, with Kraus operators
{E.}, at equilibrium satisfies microscopic reversibility:
P(B, alw) i= T (BgwE}) El] = ple Blu)

the above is satisfied if /), = w!/? w2, for all indices k
— Crooks’ reverse process coincides with &,
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Extension beyond equality: approximate reversibility

D(pllo) - DEPIE@) > - [ " dt p(t) log Flp, 842 0 £(p))

— o0

> —log F'(p,Ro&(p)) ,

p(t) = Q(Cosh?m)ﬂ) is a probability density
EL(e) := o E,E(0)* (o) E(0) "] are
R = [T dt p(t)EY>

6/27

What is the Petz transpose map and
how to implement it?



The problems with “reversal”

g
ForwARN  PRocesSS { Reverse f’lwcess.?
T
S)E —| % — =z b ?‘5

e What is it? A (the?) time-reverse? Other symmetry reverse?

e How to achieve it? 7/27

The quest for a “physical implementation”

The underlying philosophy is that a channel represents a process that

“actually happens”.

Problem. Given a circuit implementation of a channel, algorithmically
construct a circuit implementing its Petz transpose.

Results. Having a realization of the forward process does not mean
that its reversal is also available: there is no simple “reversal button”!
See e.g.: Quintino et al. (2019) and Gilyén et al. (2020).

Remark. Any channel's realization involves unobservable degrees of
freedom (the inside of the black-box). Should the reverse depend on
those?

However, some special cases are “easy”. (But beware building your

N 8/27
intuition based on them!) /



Hamiltonian (i.e., unitary or one-to-one) dynamics

The following are equivalent:

e the channel £ is (that is, £(e) = U e UT)
e the channel £ is such that

e the channel £ is such that

Moreover, for unitary channels

The Petz transpose channel corresponds to “the movie shown
backwards” (intuitive notion of “time-reversal”) if and only if the

channel is unitary. 0/27

Thermal operations (and a little more)

Consider a channel £ : () — () possessing a realization of the
form

E(eq) = Tre[Ugr (o ® 75) Ubg] ,
such that
Uqr (wo ® ) Uhp = wo ® g
for some steady state wg > 0. Then

~

Eu(0q) = Trp[Uby (e ® 75) Ugs] -

Remark. A has wg and 75 = 7 as Gibbs states of

the system’s and bath’s Hamiltonians, respectively. 10/27



In general, what is the relation between

a channel and its Petz transpose?

Petz’s transpose map as Bayesian
retrodiction



The Bayes—Laplace Rule

Inverse Probability Formula

P(H|D)x PD|H) P(H)
— —— ——

inv. prob. likelihood/model prior

where H is a hypothesis, D is the result

of observation (i.e., data or evidence)
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Meanings of the inverse probability

e it is the main tool of Bayesian statistics for problems like:

o estimation (e.g.: how many red balls are in an urn?)

o decision (e.g.: is ACME's stock a good investment? should |
buy some? how much?)

o inference and learning: predictive inference (e.g.: weather
forecasts) and retrodictive inference (e.g.: what kind of
stellar event possibly caused the Crab Nebula?)

e it measures the degree of belief that a rational agent should have
in one hypothesis, among other mutually exclusive ones, given the
data
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Inference with noisy data or uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior
in the face of uncertain data...

e suppose that a noisy observation suggests a probability
distribution Q( ) for the data (e.g., the license plate no.)

e how should we update our prior P(H) given uncertain
evidence in the from Q(D)? 13 /27

Jeffrey’s rule of probability kinematics

Vanilla Bayes: Extended Bayes:

P(H|D) =P(D|H)P(H)/P(D) P(H|Q(D)) =7
Jeffrey’s conditioning® (1965)

P(H|Q(D ZP (D)

inv. prob

(D|HYP(IT)
ZZH oiapm 2P

* Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl's method of virtual evidence (1988) 14/27



Jeffrey’s rule “promotes” Bayes’

posterior distribution to a fully fledged

channel.

Petz transpose in the classical case

e state p ~~ probability distribution p(x)

e channel £ ~~ discrete noisy channel ¢(y|x)
o E(p) ~ lwopl(y) = 2, w(ylx)p(z)

. 1
e Petz transpose £, ~ 7, (x]y) — e(ul)p(o)

[pop](y
e hence, Petz's transpose map coincides with Jeffrey's rule!

e moreover, in the classical case there is only one Jeffrey—Petz
reverse (i.e., all rotated maps coincide)
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Approximate reversibility in the classical case

Li-Winter (2018)

In the classical case,

D(pllg) — D(¢lpllielal) = D(pll[qoelp) -

Remark. Notice that D(pl|q) > —log F'(p, q), so the above is
stronger than the best general quantum bounds we know.

Only for (sub-)unital CPTP maps &£, we have a similar bound
(Buscemi-Das—Wilde 2016): S(E(p)) — S(p) > D(p||(ET 0 E)p).

Open question. What about a different relative entropy, like

Belavkin—Staszewski's?
16,27

Case study: application in statistical
mechanics



Satosi Watanabe

“The phenomenological one-way-
ness of temporal developments in
physics is due to irretrodictabil-
ity, and not due to irreversibil-
ity.” S. Watanabe (1965)

17/27

“To understand and like thermo
we need to see it, not as an ex-
ample of the n-body equations of
motion, but as an example of the

logic of scientific inference.”
E.T. Jaynes (1984)
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More concretely: to derive fluctuation

relations with the reverse process as
Bayesian retrodiction

Construction of the reverse process as retrodiction

e physical setup:

o a stochastic transition rule: o(y|x)

o a steady (viz. invariant) state: Y o(y|z)s(x) = s(y)
e Bayes—Jeffrey inversion at the steady state:

s()@(x]y) = s(@)plylz) —= elyle) _ sy)

o(xly)  s(x)

e two priors:
o predictor’s prior: p(x)
o retrodictor’s prior q(y)
e two processes:
o forward process (prediction): Pr(z,y) = p(y|z)p(z)

o reverse process (retrodiction): Pr(x,y) = &(x|y)q(y) 1027



“’[ @l -~ = ﬁl%}“

L 5

?ﬁl‘f(al*)—a 4 f]%}“ﬂ

e at the steady state: prediction = retrodiction

e otherwise: asymmetry (irreversibility, irretrodictability)

20/27

Quantifying irretrodictability

|dea: fluctuation relations as measures of divergence between

prediction and retrodiction

e relative entropy:
D(Pr|[Pr) = (~mFEES) = (~Inr(e.));

~ more generally, one can use D¢(Pr||Pr) = (f(r(z,y)))r
e introduce probability density functions

~ Uz, y) = f(r(x,y)) (total stochastic f-entropy production)
w =z, y)] Pr(z,y)
[w - Q(x7 y)] ,PR(:C7y)

Dy(Prl|Pr) e



Examples of known results recovered by
retrodiction

Example: driven closed system evolution

driving protocol: H(0) — H(t) — H(7)

)
P “\ o H(0) = (ex)a, H(1) = (my)y
’Pt(‘éf)

@(y|z) = 0y (), i-€., ONe-to-one

9 (4)
qo@M/f’“ ) e Hamiltonian — @(g;‘y) — Sp(y‘x)
° po(x) — eﬁ(F—em)' qT(y) — BEF =)
In this case,
Pr(z,y) ., ele)pl) . p)
Q ) =1 = In = — ln —2
=i Przy)  o@lyaly)  a)

pr(W) 22/27



Example: nonequilibrium steady states

e stochastic process p(y|x) with non-thermal steady state s(x)
e thermal equilibrium priors: p(z) = g(z) ox e =P

e fluctuation variable:

w=Inz—5=In %zgg = B(ey — €z) + (Ins(y) — Ins(x))

e nonequilibrium potential: V (x) := —% Ins(z) (e.g., Manzano&al
2015)

e nonequilibrium potentials (usually introduced ad hoc) are
understood here as remnants of Bayesian inversion

— (PAETAV)) =1 = D(plls) — D(¢lpllls) >0

23/27

But why known relations are compatible

with Bayesian inversion?

Is that a necessity?




Sketch argument

Pr(x,
) D(PF’|'PR) <11’l ’PZEx,Z% >F
e let us impose that the fluctuation variable is local:

) !
In 2rE9) — O (2, 4) = ga(y) — g1 (2)

’PR('I:7y)
Pr(ylx) _ ha(y)
¢ = Paly) — h@)

e — hi(z)Pr(ylz) = ha(y)Pr(zly)
e sumoverz = ha(y) = >, hi(z)Pr(y|z)

° — ’PR(x|y) S h1(:c) y|$)h1( )’Pp(y‘flf)

Hence, a Bayesian inverse-like form for the reverse process is
inevitable if we want the fluctuating variable to have a local form!
24/27

Finally, what about the quantum case?




Quantum retrodiction

and the Petz map

—)—>

% & T °

assume @(y|x) = Tr[IL, £(p.)]
let s(x) be invariant distribution

according to the formalism of quantum
retrodiction:

o ¥:=) s(x)ps
> 7y = oy EDIL, /(D

o Il := s(w)%pm%
S O pp— 1 (¢)_L
° Exle): @{g [mz)( )\/6@)”‘5
Bayesian inversion works seamlessly
p(xly) = Trllly Ex(py)]
25/27

Conclusion



Conceptual take-home messages

1. the reversal in general depends on a choice of prior
(exceptions: Hamiltonian processes)

2. classically, Petz's map coincides with Jeffrey’s retrodiction

3. in quantum theory, it agrees with previous proposals for
“quantum retrodiction”

4. however, we still lack of a thorough mathematical theory of
quantum inference (Petz map is not unique in general!)

5. reverse processes in statistical mechanics better seen as
“reverse inferences’ rather than “time-reverses”

6. the inferential approach circumvents the problem of
“realization”

thank you
26,27

About these ideas

Two papers:

e with V. Scarani. Fluctuation relations from Bayesian retrodiction. Phys.
Rev. E (2021). arXiv:2009.02849 [quant-ph]

e with C.C. Aw and V. Scarani. Fluctuation Theorems with Retrodiction

rather than Reverse Processes. AVS Quantum Science (to appear).
arXiv:2106.08589 [cond-mat.stat-mech]
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