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the Second Law is “special”

“The law that entropy always increases holds, I think, the supreme position
among the laws of Nature. [. . . ] If your theory is found to be against the
Second Law of Thermodynamics I can give you no hope; there is nothing for it
to collapse in deepest humiliation.” A.S. Eddington

“ [. . . ] the only physical theory of universal content concerning which I am
convinced that, within the framework of the applicability of its basic concepts,
it will never be overthrown.” A. Einstein
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a journey into thermo: my Grand Tour

Companions on the journey: Clive Aw, Ge Bai, Kohtaro Kato, Shintaro Minagawa,
Hamed Mohammady, Arthur Parzygnat, Dominik Šafránek, Kenta Sakai, Valerio
Scarani, Joseph Schindler
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my worry

if the Second Law is “special” and “cannot be overthrown”, the argument of Maxwell’s
Demon must contain a fallacy

but where’s the catch exactly? why do we expect that a fallacy must be there, in any
demon-like argument?

traditional exorcisms assume particular models (trapdoors, pistons, ratchets, etc.)

I’m not satisfied with these: I want to see the Second Law and its “speciality” emerging
from principles as a logical necessity
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a contemporary example of a “quantum exorcism”

a line of research, initiated by Sagawa and Ueda in 2008 and still going strong within
the stat-mech community, proposes a quantum exorcism called the Second Law of
Information Thermodynamics:

• nonequilibrium free energy: FA
β (ϱ

A;HA) := FA
eq,β(H

A) + β−1D(ϱA∥γA
β )

• for β-isothermal processes, the Second Law reads WA
ext ⩽ −∆FA

β

• in the presence of measurement and feedback (i.e., the Demon), the Second Law
can be violated: WA

ext ⩽ −∆FA
β +∆

• however, the work needed to do the measurement and erase it satisfies Wmeas
inj ⩾ ∆

• therefore the net work still obeys the Second Law: WA
ext −Wmeas

inj ⩽ −∆FA
β
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the hope...

taken at face value, this approach is able to “prove” the Second Law as a consequence
of the formalism of quantum measurement theory
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...and the reality

in arXiv:2308.15558 we look closely into these claims

• also in this case we found the “model fallacy”: to prove the Second Law many
(operationally unjustified and mutually inconsistent) assumptions are necessary—in
particular, a restriction to von Neumann–Lüders-type measurements

• we removed as many assumptions as possible...

• in the end, we were able to remove them all, obtaining a universally valid Second
Law of Information Thermodynamics, which is nice...

• ...but also found that it is logically equivalent to the conventional Second Law
Thermo!
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it seems that explanations of the Second Law “from
within” are sound (i.e., tautologically true),

but cannot be profound
(cfr. Earman and Norton)
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and so we’re back to square one:
I’m still worried
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another exorcism: fluctuation relations

in the late 1990s, Jarzynski and Crooks discovered that the Second Law can be
“proved” using two, strictly more powerful relations:

⟨Winj⟩ ⩾ ∆F ⇐=
〈
e−βWinj

〉
F
= e−β∆F ⇐=

PF (Winj)

PR(−Winj)
= eβ(Winj−∆F )

since these relations can prove the Second Law, then maybe they are the answer...
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Crooks’ proof

• stochastic thermodynamics: state, work, and energy are all random variables

• forward process: PF (x, y) = γ
(0)
β (x)φF (y|x) (γ(0)

β : thermal for piston out)

• reverse process: PR(y, x) = γ
(1)
β (y)φR(x|y) (γ(1)

β : thermal for piston in)

• microscopic reversibility: φF (y|x) = φR(x|y)

• =⇒ ln PF (x,y)
PR(y,x)

= ln
γ
(0)
β (x)

γ
(1)
β (y)

= β(F
(0)
β − η

(0)
x − F

(1)
β + η

(1)
y ) = β(Winj −∆Fβ)

again an assumption (microscopic reversibility) about the model is necessary
to say what the reverse process is
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the inferential approach, or:
how I learned to stop worrying
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a hint from Ed Jaynes

“To understand and like thermo we need
to see it, not as an example of the n-body
equations of motion, but as an example of
the logic of scientific inference.”

E.T. Jaynes (1984)
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sufficiency of Bayesian retrodiction

• start from a forward process (statistical model) φF (y|x)
• fix a prior α(x) and compute the Bayes inverse φα

R(x|y) ∝ φF (y|x)α(x)
• in particular, for a Hamiltonian process φF (y|x) = δy,f(x), the choice of α is
immaterial: φR(x|y) = δx,f−1(y) does not depend on α

• let p(x) and q(y), resp., be the initial states for the forward and the reverse
processes

• =⇒ ln PF (x,y)
Pα
R(y,x)

≡ ln p(x)φF (y|x)
q(y)φα

R(x|y) = ln p(x)
q(y)

− ln α(x)
α′(y)

• choosing p(x) = γ
(0)
β (x) and q(y) = γ

(1)
β (y)

=⇒ ln
PF (x, y)

Pα
R(y, x)

= β(∆E −∆Fβ)− ln
α(x)

α′(y)

• we get nonequilibrium potentials for free!
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necessity of Bayesian retrodiction

• the log-ratio ln PF (x,y)
PR(y,x)

plays a crucial role in stochastic thermodynamics (entropy

production)

• it is itself a random variable, function of X and Y : L ≡ ℓ(X, Y ) = ln PF (X,Y )
PR(Y,X)

• assume a form of “locality”: ℓ(X, Y ) = g(Y )− f(X) (note however that f and g
can depend on the process φ, which is not a random variable)

• =⇒ PR(y, x) = PR(y)φ
α
R(x|y), for some prior α(x)

if the reverse process is not a Bayesian retrodiction,
the entropy production is “nonlocal”

15/35

so: the Second Law is special
because it is a law of logic, not physics

16/35



but now I’m worried about probabilities:
where do they come from?
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a hint from John von Neumann (inspired by Szilard)

“For a classical observer, who knows all coordinates
and momenta, the entropy is constant. [...] The
time variations of the entropy are then based on the
fact that the observer does not know everything—
that he cannot find out (measure) everything which
is measurable in principle.”

von Neumann, 1932 (transl. 1955)

Thus, von Neumann links the Second Law to an incomplete observation of the system
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observational entropy

For

• ϱ density matrix,

• P = {Pi}i POVM (i.e., Pi ⩾ 0,
∑

i Pi = 1),

• pi = Tr[ϱ Pi],

• Vi := Tr[Pi],

The macroscopic or observational entropy of ϱ with respect to observer P is given by

SP(ϱ) := −
∑
i

pi log
pi
Vi

19/35

first interpretation

Theorem

Given a POVM P = {Pi}i, define the CPTP linear map P(•) :=
∑

i Tr[Pi •] |i⟩⟨i|.
Then, for any state ϱ,

ΣP(ϱ) : = SP(ϱ)− S(ϱ)

= D(ϱ∥u)−D(P(ϱ)∥P(u))

⩾ D(ϱ∥ϱ̃cg) ,

where u = d−11 and ϱ̃cg :=
∑

i piPi/Vi is the coarse-graining of ϱ through P. If
ϱ = ϱ̃cg, the state ϱ is said to be macroscopic for observer P.

Hence, the closer is SP(ϱ) to the “true” S(ϱ), the closer is ϱ̃cg to the “true” ϱ.
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second interpretation
Theorem

Given a d-dimensional system, a density matrix ϱ with diagonalization {λx, |φx⟩}dx=1, a unitary
operator U , and a POVM P = {Pi}i, let us define two joint probability distributions:

PF (x, i) := λx Tr
[
U |φx⟩⟨φx|U† Pi

]︸ ︷︷ ︸
PF (i|x)

, Pu
R(x, i) := PF (i) Tr

[
|φx⟩⟨φx|

U†PiU

Vi

]
︸ ︷︷ ︸

Pu
R(x|i)

.

Then, SP(UϱU†)− S(ϱ) = D(PF ∥Pu
R). Hence, the coarse-grained state is, in fact, the retrodicted

state.
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parenthesis: Watanabe’s contention

“The phenomenological onewayness of temporal
developments in physics is due to irretrodictabil-
ity, and not due to irreversibility.”

Satosi Watanabe (1965)
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generalization to non-uniform priors

Suppose that the retrodictor’s uniform prior u is replaced with another state γ, but such
that [ϱ, γ] = 0, i.e., predictor’s and retrodictor’s priors commute.

Then, everything goes through:

• define
Sclax
P,γ (ϱ) := −Tr[ϱ log γ] +

∑
i

pi log
pi
qi

,

with pi := Tr[ϱ Pi] and qi := Tr[γ Pi]

• then

Sclax
P,γ (ϱ)− S(ϱ) = D(ϱ∥γ)−D(P(ϱ)∥P(γ)) = D(PF∥P γ

R) ,

with PF (x, i) = λx⟨φx|Pi|φx⟩ and P γ
R(x, i) = PF (i)

γx⟨φx|Pi|φx⟩
qi
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so: probabilities come from the interaction of a
macro-observer with a micro-system
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but now: is entropy “physical” or “bettabilitarian”?
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thermodynamics: physics or beliefs?

• if the Second Law needs probabilities, and if probabilities need an observer, is
thermodynamics about “physics” or “beliefs”?

• a more modest question: is there a “bettabilitarian” interpretation of the Second
Law?

26/35



the setting

• an agent is forced to make a choice (Ginsberg’s theorem): either activate a
stochastic piston (like in Crooks’ process) and pay the random value Winj

• or walk away and pay a fixed amount of energy W

• what is the “correct” price? it depends on the agent’s risk-aversion

• in Expected Utility Theory, agents are characterized by their “utility function”
u : R → R measuring the agent’s “happiness” u(w) associated with amount w

• risk-aversion is measured by the curvature of u

• in applications, often one resorts to utility functions having constant absolute risk
aversion (CARA):

ur(w) :=
1

r
(1− erw)
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example: risk-averse agent (r = 5)

u(w) =
1

5
(1− e5w)
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example: risk-seeking agent (r = −5)

u(w) =
1

5
(e−5w − 1)
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example: almost risk-neutral agent (r = 0.001)

u(w) = 1000(1− ew/1000)
r→0−−→ −w
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entropy as “certainty-equivalent work”
• consider a stochastic piston: β(Winj −∆F ) ≡ w = ln PF (w)

PR(−w)

• the agent must either compress the piston and pay whatever value w occurs, or
walk away and pay a fixed amount w

• the “certainty-equivalent work” for agent ur(w) is given implicitly by

ur(w
(r)
CE) = ⟨ur(w)⟩F ⇐⇒ w

(r)
CE = u−1

r [⟨ur(w)⟩F ]

• if w < w
(r)
CE, a player will pay and quit; otherwise they will gamble (if equality

holds, the two options are equally preferable)

Theorem

For any r ∈ [−∞,+∞],

w
(r)
CE = D1+r(PF (w)∥PR(−w)) ,

where D1+r(p∥q) := 1
r
ln ⟨(p/q)r⟩p. (For r ∈ [−1,+∞] these are Rényi divergences.)
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special cases

• bears fear that the worst possible outcome may occur (Yunger-Halpern et al.)

w
(+∞)
CE = D∞(PF (w)∥PR(−w))

• bulls count on the fact that the best possible outcome may occur

w
(−∞)
CE = D−∞(PF (w)∥PR(−w))

• for r = −1, we get w
(−1)
CE = D0(PF (w)∥PR(−w)) = ln

∑
w:PF (w)>0 PR(−w) = 0:

an agent so lazy that prefers to gamble as soon as w > 0

• again, the Second Law corresponds to the case of a perfectly logical agent

w
(0)
CE = DKL(PF (w)∥PR(−w)) = β(⟨Winj⟩ −∆F )
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corollary: a generalized Jarzynski relation

Theorem

For any r ∈ [−∞,+∞], 〈
erβ(Winj−∆F )

〉
F
= erw

(r)
CE .

The conventional case is recovered for r = −1, for which w
(−1)
CE = 0a.

aAssuming a normalized reverse process; otherwise this is the so-called log-efficacy.
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conclusion
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take home messages

• physics alone cannot explain the “special role” of the Second Law

• the Second Law is a statement about the agent’s stochastic inference and its
logical consistence

• the inference in general is probabilistic, because the macro-observer cannot have a
complete observation of the micro-system (not only in practice, but also in
principle!)

• thus, there’s a notion of “agency” hiding in the Second Law and indeed one can
“bet” on it

thank you for your attention
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