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About these ideas

Two papers:

• with V. Scarani. Fluctuation relations from Bayesian retrodiction. Phys.

Rev. E (2021). arXiv:2009.02849 [quant-ph]

• with C.C. Aw and V. Scarani. Fluctuation Theorems with Retrodiction

rather than Reverse Processes. arXiv:2106.08589 [cond-mat.stat-mech]
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New physics!!
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New “physics”??
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The dream of a “perpetuum mobile”
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Leonardo’s wheel

“ Oh ye seekers after perpetual

motion, how many vain chimeras

have you pursued? Go and take

your place with the alchemists.”

Leonardo da Vinci
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The Second Law is “special”

“The law that entropy always increases holds, I think,

the supreme position among the laws of Nature. [. . . ]

If your theory is found to be against the Second Law of

Thermodynamics I can give you no hope; there is nothing

for it to collapse in deepest humiliation.”

A.S. Eddington

“[. . . ] the only physical theory of universal content con-

cerning which I am convinced that, within the framework

of the applicability of its basic concepts, it will never be

overthrown.” A. Einstein

6/27

Have you read a work of Shakespeare’s?

“Once or twice I have been provoked and have

asked the company how many of them could

describe the Second Law of Thermodynamics.

The response was cold: it was also negative.

Yet I was asking something which is about the

equivalent of: Have you read a work of Shake-

speare’s?” C.P. Snow
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The “to be or not to be” of thermodynamics

The Second Axiom of Thermodynamics

A perpetuum mobile of the second kind is

impossible; in formula,

〈∆Stot〉 ≥ 0 .

Why does the above inequality “feel” so special among physical

laws?

That is the question.
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Is entropy the key?

Many “explanations” of the Second Law actually amount to

explanations of entropy (e.g., counting arguments).

Problem is...

“ No one understands entropy

very well...”

von Neumann (apocryphal)

“ ...and that’s only half of the

story, anyway.” Anon
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The Second Law “without entropy”

Clausius’ inequality (1865):

〈W 〉 ≥ ∆F

Jarzynski’s equality (1997):〈
e−βW

〉
= e−β∆F

Jarzynski =⇒ Clausius
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The Second Law and irreversibility

Crooks’ fluctation theorem (1999)

PF (W )

PR(−W )
= eβ(W−∆F )

Crooks =⇒ Jarzynski =⇒ Clausius
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Usual explanation

Crooks’ theorem, and hence Jarzynski’s relation, and hence the

Second Law, all rely on two assumptions satisfied at equilibrium:

1. thermal distribution: microstate probability is P(ξ) ∝ e−βε(ξ)

2. microscopic reversibility (cf. detailed balance): molecular

processes and their reverses occur at the same rate
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But, again: why does the Second Law

feel so special then?

Is that because of some kind of “special”

microscopic balancing mechanism?
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A hint from Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-

ample of the n-body equations of

motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)

First idea: reverse process as Bayesian retrodiction
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The Bayes-Laplace Rule

Inverse Probability Formula

P(H|D)︸ ︷︷ ︸
inv. prob.

∝ P(D|H)︸ ︷︷ ︸
likelihood/model

P(H)︸ ︷︷ ︸
prior

where H is a hypothesis, D is the result

of observation (i.e., data or evidence)

postmodern Bayesianism!
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Meanings of the inverse probability

• it is the main tool of Bayesian statistics for problems like:

◦ estimation (e.g.: how many red balls are in an urn?)

◦ decision (e.g.: is ACME’s stock a good investment? should I

buy some? how much?)

◦ inference and learning: predictive inference (e.g.: weather

forecasts) and retrodictive inference (e.g.: what kind of

stellar event possibly caused the Crab Nebula?)

• it measures the degree of belief that a rational agent should have

in one hypothesis, among other mutually exclusive ones, given the

data
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Inference with noisy data or uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

• suppose that a noisy observation suggests a probability

distribution Q(D) for the data (e.g., the license plate no.)

• how should we update our prior P(H) given uncertain

evidence in the from Q(D)? 16/27



Jeffrey’s rule of probability kinematics

Vanilla Bayes:

P(H|D) = P(D|H)P(H)/P(D)

Extended Bayes:

P(H|Q(D)) =?

Jeffrey’s conditioning∗ (1965)

P(H|Q(D)) =
∑
D

P(H|D)︸ ︷︷ ︸
inv. prob.

Q(D)

=
∑
D

P(D|H)P(H)∑
H P(D|H)P(H)

Q(D)

∗ Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl’s method of virtual evidence (1988) 17/27

Construction of the reverse process as retrodiction

• physical setup:

◦ a stochastic transition rule: ϕ(y|x)

◦ a steady (viz. invariant) state:
∑

x ϕ(y|x)s(x) = s(y)

• Bayesian inversion at the steady state:

s(y)ϕ̂(x|y) := s(x)ϕ(y|x) ⇐⇒ ϕ(y|x)

ϕ̂(x|y)
=
s(y)

s(x)

• two priors:

◦ predictor’s prior: p(x)

◦ retrodictor’s prior q(y)

• two processes:

◦ forward process (prediction): PF (x, y) = ϕ(y|x)p(x)

◦ reverse process (retrodiction): PR(x, y) = ϕ̂(x|y)q(y)
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A picture

• at the steady state: prediction = retrodiction

• otherwise: asymmetry (irreversibility, irretrodictability)
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Quantifying irretrodictability

Second idea: fluctuation relations as measures of divergence

between prediction and retrodiction

• relative entropy:

D(PF‖PR) :=
〈
− ln PR(x,y)

PF (x,y)

〉
F

=: 〈− ln r(x, y)〉F

 more generally, one can use Df (PR‖PF ) := 〈f(r(x, y))〉F

• introduce probability density functions

 Ω(x, y) := f(r(x, y)) (total stochastic f -entropy production)

 µF (ω) :=
∑
x,y δ[ω − Ω(x, y)] PF (x, y)

 µR(ω) :=
∑
x,y δ[ω − Ω(x, y)] PR(x, y)

=⇒ 〈ω〉F = Df (PR‖PF )
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From f-divergences to f-fluctuation theorems

for f : R+ → R invertible

f-Fluctuation Theorem

µR(ω) = f−1(ω)µF (ω) =⇒ 〈f−1(ω)〉F = 1

 for f(u) = − lnu, we have f−1(v) = e−v, that is

µF (ω)

µR(ω)
= eω =⇒

〈
e−ω
〉
F

= 1

further discussions in arXiv:2009.02849 and arXiv:2106.08589
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Examples of known results recovered by

retrodiction



Example: driven closed system evolution

• driving protocol: H(0)→ H(t)→ H(τ)

• H(0) = (εx)x, H(τ) = (ηy)y

• ϕ(y|x) = δy,y(x), i.e., one-to-one

• s(x) = d−1 =⇒ ϕ(y|x) = ϕ̂(x|y)

• p0(x) = eβ(F−εx), qτ (y) = eβ(F
′−ηy)

In this case, for the choice f(u) = − lnu,

Ω(x, y) = ln
PF (x, y)

PR(x, y)
= ln

s(y)p(x)

s(x)q(y)
= ln

p(x)

q(y)

= β(F − εx + F ′ + ηy) = β(W −∆F )

=⇒ µF (W )

µR(W )
= eβ(W−∆F ) =⇒ 〈W 〉 ≥ ∆F 22/27

Example: nonequilibrium steady states

• stochastic process ϕ(y|x) with non-thermal steady state s(x)

• thermal equilibrium priors: p(x) = q(x) ∝ e−βεx

• fluctuation variable:

ω = ln PF (x,y)
PR(x,y) = ln p(x)

q(y)
s(y)
s(x) = β(εy − εx) + (ln s(y)− ln s(x))

• nonequilibrium potential : V (x) := − 1
β ln s(x) (e.g., Manzano&al

2015)

• nonequilibrium potentials (usually introduced ad hoc) are

understood here as remnants of Bayesian inversion

• =⇒
〈
eβ(∆E−∆V )

〉
F

= 1 =⇒ D(p‖s)−D(ϕ[p]‖s) ≥ 0
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But why known relations are compatible

with Bayesian inversion?

Is that a necessity?
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Sketch argument

• D(PF‖PR) =
〈

ln PF (x,y)
PR(x,y)

〉
F

• let us impose that the fluctuation variable is local:

ln PF (x,y)
PR(x,y)

= Ω(x, y)
!

= G′(y)−G(x)

• =⇒ PF (y|x)
PR(x|y) = H′(y)

H(x)

• =⇒ H(x)PF (y|x) = H ′(y)PR(x|y)

• sum over x =⇒ H ′(y) =
∑

xH(x)PF (y|x)

• =⇒ PR(x|y) = 1∑
xH(x)PF (y|x)

H(x)PF (y|x)

Hence, a Bayesian inverse-like form for the reverse process is

inevitable if we want the fluctuating variable to have a local form!
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Finally, what about the quantum case?
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Quantum retrodiction and the Petz map

• assume ϕ(y|x) = Tr[Πy E(ρx)]

• let s(x) be invariant distribution

• according to the formalism of quantum

retrodiction:

◦ Σ :=
∑

x s(x)ρx

◦ ρ̂y := 1
s(y)

√
E(Σ)Πy

√
E(Σ)

◦ Π̂x := s(x) 1√
Σ
ρx

1√
Σ

◦ Ê(·) :=
√

Σ

{
E†
[

1√
E(Σ)

(·) 1√
E(Σ)

]}√
Σ

• Bayesian inversion works seamlessly

ϕ̂(x|y) = Tr[Π̂x Ê(ρ̂y)]
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Some remarks about quantum retrodiction

• the Petz recovery map reduces to Bayes–Laplace rule when

operators commute

• to a unique Bayes–Laplace rule there correspond infinite

possible Petz maps (“rotated” Petz maps)

• retrodiction (both classical and quantum) depends on the

choice of reference prior

• exceptions are unitary (i.e., “bilateral deterministic”)

channels, for which:

1. there is a unique Petz reverse (the retrodiction is independent

of the choice of prior, and all rotated Petz maps coincide)

2. retrodiction and (linear) inversion coincide
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Conclusion



Final messages

1. predictive and retrodictive inference provide the logical

foundations of fluctuation theorems

2. while fluctuation relations measure the divergence between

predictor and retrodictor, the Second Law states that they

won’t get further apart as a result of their inferences

3. so, the Second Law is special among the laws of physics,

because it is in fact a law about the logic of inference

4. a clear distinction between mechanical (ir)reversibility and

logical (ir)retrodictability avoids unnecessary paradoxes

5. quantum retrodiction and quantum fluctuation relations

follow seamlessly using Petz recovery map

thank you27/27


	Examples of known results recovered by retrodiction
	Conclusion

