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von Neumann’s entropy

For ϱ =
∑d

x=1 λx|φx⟩⟨φx| d-dimensional density matrix (λx ≥ 0,∑
x λx = 1),

S(ϱ) := −Tr[ϱ log ϱ] = −
d∑

x=1

λx log λx

with the convention 0 log 0 := 0.
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Unfortunately though:

“The expressions for entropy given by the author [previously] are
not applicable here in the way they were intended, as they were
computed from the perspective of an observer who can carry out
all measurements that are possible in principle—i.e., regardless
of whether they are macroscopic [or not].”

von Neumann, 1929; transl. available in arXiv:1003.2133
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in formula:

Theorem (least uncertainty)

For ϱ density matrix, onb = {|ϕi⟩}i orthonormal basis, and pi = ⟨ϕi|ϱ|ϕi⟩,

S(ϱ) = min
onb

[
−
∑
i

pi log pi

]
.

For a more general result, see [M. Dall’Arno and F.B., IEEE TIT, 65(4), 2018].
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“Although our entropy expression, as we saw, is completely anal-
ogous to the classical entropy, it is still surprising that it is invari-
ant in the normal [Hamiltonian] evolution in time of the system,
and only increases with measurements—in the classical theory
(where the measurements in general played no role) it increased
as a rule even with the ordinary mechanical evolution in time of
the system. It is therefore necessary to clear up this apparently
paradoxical situation.”

von Neumann, book (Math. Found. QM), 1932 (transl. 1955)
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the paradox: free expansion of an ideal gas

∆S(universe) = nR log 2 > 0

=⇒ net entropy increase in an isolated system’s evolution
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invariance of von Neumann entropy

Instead,

Theorem
For any unitary operator U ,

S(ϱ) = S(UϱU †) ,

for all density matrices ϱ.

=⇒ the entropy increasing during a free expansion (isolated evolution,
thus unitary) cannot be the von Neumann entropy
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von Neumann’s insight (inspired by Szilard’s)

“For a classical observer, who knows all coordinates and mo-
menta, the entropy is constant. [...]
The time variations of the entropy are then based on the fact
that the observer does not know everything—that he cannot find
out (measure) everything which is measurable in principle.”

von Neumann, 1932 (transl. 1955)

Thus, von Neumann recognizes that thermodynamic entropy should be a
quantity relative to the observer...
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von Neumann’s proposal: macroscopic entropy

For

ϱ density matrix,

P = {Πi}i orthogonal resolution of identity,

pi = Tr[ϱ Πi],

Ωi := Tr[Πi],

SP(ϱ) := −
∑
i

pi log
pi
Ωi
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modern generalization: observational entropy
For

ϱ density matrix,

P = {Pi}i POVM (i.e., Pi ≥ 0,
∑

i Pi = 1),

pi = Tr[ϱ Pi],

Vi := Tr[Pi],

SP(ϱ) := −
∑
i

pi log
pi
Vi

References:
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“observational” = “of the observer”

von Neumann defines a macro-observer as a collection of
simultaneously measurable quantities {Q1,Q2, . . . ,Qn, . . . }, where
Qn = {Qx|n}x are POVMs

=⇒ there exists one “mother” POVM P = {Pi}i and a stochastic
processing (i.e., cond. prob.) µ such that

Qx|n =
∑
i

µ(x|n, i)Pi , ∀x, n

hence, a “macro-observer” is just a POVM, i.e., the mother POVM
P, from which all macroscopic measurements (i.e., coarse-grainings)
can be simultaneously inferred by stochastic post-processing
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Our aim ultimately is to extend OE’s

definition and scope.

So we need to understand what OE is

and what it is all about.
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OE as “statistical deficiency”
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Umegaki’s relative entropy

Definition
For density matrices ϱ, γ,

D(ϱ∥γ) :=

{
Tr[ϱ(log ϱ− log γ)] , if supp ϱ ⊆ supp γ ,

+∞ , otherwise

Useful properties:

D(A∥B) ≥ 0

S(ϱ) = log d−D(ϱ∥u) where u := d−11

monotonicity: D(ϱ∥γ) ≥ D(N (ϱ)∥N (γ)) for all channels (i.e.,
CPTP linear maps) N and all states ϱ, γ
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first interpretation

Theorem
Given a POVM P = {Pi}i, define the CPTP linear map
P(•) :=

∑
i Tr[Pi •] |i⟩⟨i|. Then, for any state ϱ,

ΣP(ϱ) : = SP(ϱ)− S(ϱ)

= D(ϱ∥u)−D(P(ϱ)∥P(u))
≥ 0 ,

where u = d−11. If ΣP(ϱ) = 0, the state ϱ is said to be macroscopic for
observer P.

Hence, the larger is the difference ΣP(ϱ), the worse is P for distinguishing
signal ϱ from uniform u.
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a stronger bound

Theorem
For d-dimensional quantum system, density matrix ϱ, and POVM
P = {Pi}i, the difference ΣP(ϱ) = SP(ϱ)− S(ϱ) satisfies

T ln(d− 1) + h(T ) ≥ ΣP(ϱ) ≥ D(ϱ∥ϱ̃P) ,

where

ϱ̃P := (Ru
P ◦ P)(ϱ) =

∑
i Tr[ϱ Pi]

Pi

Vi

Ru
P(·) := 1

d
P†[P(u)−1/2(·)P(u)−1/2]

T := 1
2
∥ϱ− ϱ̃P∥1

h(x) := −x lnx− (1− x) ln(1− x)

Hence, a state ϱ is macroscopic for observer P if and only if ϱ = ϱ̃P.
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why OE resolves the paradox (and satisfies an

H-theorem)
start at t = t0 from a macrostate ϱt0 ∈M(P) := {macrostates of P}
the system evolves unitarily, i.e., ϱt0 7→ ϱt1 = Uϱt0U†; then,

SP(ϱ
t1) = −

∑
i

Tr
[
Pi (Uϱt0U†)

]
log

Tr
[
Pi (Uϱt0U†)

]
Tr[Pi]

= −
∑
i

Tr
[
(U†PiU) ϱt0

]
log

Tr
[
(U†PiU) ϱt0

]
Tr[U†PiU ]

= SU†PU (ϱ
t0)

≥ SP(ϱ
t0) = S(ϱt0) = S(ϱt1)

summarizing: in general, SP(ϱ
t1) ≥ SP(ϱ

t0), with equality if and only if
ϱt1 ∈M(P) too

in words: the observational entropy of an isolated macroscopic state remains
constant if and only if the state remains macroscopic, otherwise it will
(generically) increase
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If ϱ is the microscopic (i.e., “true”) state

of the system...

...what does the corresponding

macrostate ϱ̃P represent exactly?
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OE as “irretrodictability”
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what is retrodiction?

With prior π(H) and likelihood P (D|H), when the observation returns a
definite value D̄, Bayes’ update rule says that the posterior becomes
Rπ

P (H|D̄) ∝ π(H)P (D̄|H).

But what if the observation is noisy and returns some p.d. Q(D) instead?

Theorem (Jeffrey, 1965)

Starting from a given prior π(H) and a likelihood P (D|H), the result of
a noisy observation Q(D) is retrodicted to

Q̃(H) :=
∑
D

Rπ
P (H|D)Q(D) .

The conventional Bayes’ rule is recovered for Q(D) = δD,D̄.
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what is irretrodictability?
a channel P (D|H) is given (objective)
a predictor is given information about the hypothesis H in the form
of a p.d. O(H)
the predictor’s prediction (expectation) about the data distribution is
modeled by PF (H,D) := O(H)P (D|H)
a retrodictor is given information about the data D as Q(D)
the retrodictor chooses a prior π(H) and applies Jeffrey’s rule to
retrodict as P π

R(H,D) := Q(D)Rπ
P (H|D)

Definition
The model is retrodictable whenever

PF (H,D) = PF (D)Rπ
P (H|D) .

In particular, the above implies O(H) =
∑

D PF (D)Rπ
P (H|D).
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Jeffrey’s retrodiction versus Petz’s recovery

retrodictor’s prior π(H) −→ state γ

likelihood P (D|H) −→ channel N
Bayes’ inverse Rπ

P (H|D) −→ Petz recovery map Rγ
N

add all sorts of possible “rotations” when noncommuting

That is: all rotated Petz maps are “quantum Jeffrey retrodictions”.

Correspondingly, ϱ̃P =
∑

i
pi
Vi
Pi represents the state retrodicted from the

observed outcomes statistics pi = Tr[ϱ Pi], knowing the POVM {Pi} and
assuming the uniform prior u.

The connection with retrodiction can be made even more precise.
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second interpretation
Theorem
Given a d-dimensional system, a density matrix ϱ with diagonalization {λx, |φx⟩}dx=1,
a unitary operator U , and a POVM P = {Pi}i, let us define two joint probability
distributions:

PF (x, i) := λx Tr
[
U |φx⟩⟨φx|U† Pi

]︸ ︷︷ ︸
PF (i|x)

, Pu
R(x, i) := PF (i) Tr

[
|φx⟩⟨φx|

U†PiU

Vi

]
︸ ︷︷ ︸

Pu
R(x|i)

.

Then, SP(UϱU†)− S(ϱ) = D(PF ∥Pu
R).
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irretrodictability

Hence, for PF (x, i) = λxPF (i|x) and P u
R(x, i) = PF (i)P

u
R(x|i) given

above:

PF corresponds to the prediction λ→ •: the inference about i

P u
R corresponds to the retrodiction • ← p: the inference about x,

done from the uniform prior on x and the predicted distribution on i

Hence, the larger is the difference SP(UϱU †)− S(ϱ), the more
irretrodictable the forward process is.
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parenthesis: Watanabe’s contention

“The phenomenological oneway-
ness of temporal developments in
physics is due to irretrodictability,
and not due to irreversibility.”

Satosi Watanabe (1965)
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intermediate summary

The difference ΣP(ϱ) = SP(ϱ)− S(ϱ) admits two forms:

as deficiency, i.e., ΣP(ϱ) = D(ϱ∥u)−D(P(ϱ)∥P(u))
as irretrodictability, i.e., ΣP(ϱ) = D(PF∥P u

R)

In both, the uniform prior is assumed.

Can we generalize the discussion to an arbitrary prior?
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Generalizing the prior
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simple case: the retrodictor’s prior commutes with ϱ
Suppose that the retrodictor’s uniform prior u is replaced with another
state γ, but such that [ϱ, γ] = 0, i.e., predictor’s and retrodictor’s priors
commute.

Then, everything goes through: if we define

Sclax
P,γ (ϱ) := −Tr[ϱ log γ] +

∑
i

pi log
pi
qi

,

with pi := Tr[ϱ Pi] and qi := Tr[γ Pi], it is easy to check that

Sclax
P,γ (ϱ)− S(ϱ) = D(ϱ∥γ)−D(P(ϱ)∥P(γ)) = D(PF∥P γ

R) ,

with PF (x, i) = λx⟨φx|Pi|φx⟩ and P γ
R(x, i) = PF (i)

γx⟨φx|Pi|φx⟩
qi

.

But what if [ϱ, γ] ̸= 0?
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a first candidate

A generalized deficiency-like definition is easy.

Even if [ϱ, γ] ̸= 0, maintain Σ
(1)
P,γ = D(ϱ∥γ)−D(P(ϱ)∥P(γ)), that is,

define S
(1)
P,γ(ϱ) := −Tr[ϱ log γ]−D(P(ϱ)∥P(γ)).

Instead, if [ϱ, γ] ̸= 0, a generalized retrodiction-like definition is difficult,
since these is no straightforward generalization of the joint input-output
distribution for a quantum channel.
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Choi-like joint input-output representations

Arbitrarily fix o.n.b. {|i⟩}di=1 for input and {|k̃⟩}d′k=1 for output.

Forward process ϱin 7−→ P(ϱ)out:
Choi operator: CP :=

∑d
i,j=1P(|i⟩⟨j|)⊗ |i⟩⟨j| =

∑
k |k̃⟩⟨k̃| ⊗ P T

k

define QF := (1out ⊗
√

ϱT ) CP (1out ⊗
√

ϱT )

then Trout[QF ] = ϱT and Trin[QF ] = P(ϱ)

Reverse process σout 7−→ Rγ
P(σ)in:

Choi operator: CRγ
P
:=

∑d′

k,ℓ=1 |k̃⟩⟨ℓ̃| ⊗ R
γ
P(|k̃⟩⟨ℓ̃|)

it holds that CT
Rγ

P
= (P(γ)−1/2 ⊗

√
γT ) CP (P(γ)−1/2 ⊗

√
γT )

define Qγ
R := (

√
σ ⊗ 1in) C

T
Rγ

P
(
√
σ ⊗ 1in)

then Trout[Q
γ
R] = (Rγ

P(σ))
T and Trin[Q

γ
R] = σ
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a second candidate

Having the Choi-like representations QF and Qγ
R, we define

Σ
(2)
P,γ(ϱ) := D(QF∥Qγ

R) ,

where we put σ ≡ P(ϱ).

But we face a dilemma, because Σ
(1)
P,γ(ϱ) ̸= Σ

(2)
P,γ(ϱ), i.e.,

D(ϱ∥γ)−D(P(ϱ)∥P(γ)) ̸= D(QF∥Qγ
R) .

(Proof by explicit numerical counterexamples).

Can we save goat and cabbages?
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how to save goat and cabbages
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how to save goat and cabbages

instead of Umegaki’s, use Belavkin–Staszewski’s:
DBS(ϱ∥γ) := Tr[ϱ log ϱγ−1] (assume γ > 0)

instead of QF use tQF :=
√
CP (1out ⊗ ϱT )

√
CP

instead of Qγ
R use tQγ

R :=
√
CP (P(γ)−1/2P(ϱ)P(γ)−1/2⊗ γT )

√
CP

then:
DBS(ϱ∥γ)−D(P(ϱ)∥P(γ)) = DBS(

tQF∥tQγ
R)
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