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Introduction



Statistical Decision Problems

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

⇓
`(θ, u)

Definition (Statistical Models and Decisions Problems)

A statistical experiment (i.e., statistical model) is a triple
〈Θ,X , w〉, a statistical decision problem (i.e., statistical game) is
a triple 〈Θ,U , `〉.
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How Much Is an Experiment Worth?

• the experiment is given, i.e.,
it is the “resource”

• the decision instead can be
optimized

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

⇓
`(θ, u)

Definition (Expected Payoff)

The expected payoff of a statistical experiment w = 〈Θ,X , w〉
w.r.t. a decision problem 〈Θ,U , `〉 is given by

E〈Θ,U ,`〉[w] , max
d(u|x)

∑
u,x,θ

`(θ, u)d(u|x)w(x|θ)|Θ|−1 .
2/23



Comparing Experiments 1/2

experiment w = 〈Θ,X , w(x|θ)〉

Θ
experiment−→ X decision−→ U

   

θ −→
w(x|θ)

x −→
d(u|x)

u

⇓
`(θ, u)

experiment w′ = 〈Θ,Y , w′(y|θ)〉

Θ
experiment−→ Y decision−→ U

   

θ −→
w′(y|θ)

y −→
d′(u|y)

u

⇓
`(θ, u)

If E〈Θ,U ,`〉[w] ≥ E〈Θ,U ,`〉[w′], then experiment 〈Θ,X , w〉 is better
than experiment 〈Θ,Y , w′〉 for problem 〈Θ,U , `〉. 3/23



Comparing Experiments 2/2

Definition (Information Preorder)

If the experiment 〈Θ,X , w〉 is better than experiment 〈Θ,Y , w′〉
for all decision problems 〈Θ,U , `〉, then we say that 〈Θ,X , w〉 is
more informative than 〈Θ,Y , w′〉, and write

〈Θ,X , w〉 � 〈Θ,Y , w′〉 .

Problem. The information preorder is operational, but not really
“concrete”. Can we visualize this better?
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Blackwell’s Theorem (1948-1953)

Blackwell-Sherman-Stein Theorem

Given two experiments with the same
parameter space, 〈Θ,X , w〉 and 〈Θ,Y , w′〉,
the condition 〈Θ,X , w〉 � 〈Θ,Y , w′〉 holds iff
there exists a conditional probability ϕ(y|x)
such that w′(y|θ) =

∑
x ϕ(y|x)w(x|θ).

Θ −→ Y Θ −→ X noise−→ Y

  

=

   

θ −→
w′(y|θ)

y θ −→
w(x|θ)

x −→
ϕ(y|x)

y David H. Blackwell (1919-2010)
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An Important Special Case: Majorization



Lorenz Curves and Majorization Preorder

• two probability distributions, p and q, of
the same dimension n

• truncated sums P (k) =
∑k

i=1 p
↓
i and

Q(k) =
∑k

i=1 q
↓
i , for all k = 1, . . . , n

• p majorizes q, i.e., p � q, whenever
P (k) ≥ Q(k), for all k

• minimal element: uniform distribution
e = n−1(1, 1, · · · , 1)

• Hardy, Littlewood, and Pólya (1929):
p � q ⇐⇒ q = Mp, for some
bistochastic matrix M

Lorenz curve for probability
distribution p = (p1, · · · , pn):

(xk, yk) = (k/n, P (k)), 1 ≤ k ≤ n
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Dichotomies and Tests

• a dichotomy is a statistical experiment with a two-point parameter space:
〈{1, 2},X , (w1,w2)〉

• a testing problem (or “test”) is a decision problem with a two-point action
space U = {1, 2}

Definition (Testing Preorder)

Given two dichotomies 〈X , (w1,w2)〉 and 〈Y , (w′1,w′2)〉, we write

〈X , (w1,w2)〉 �2 〈Y , (w′1,w′2)〉 ,
whenever

E〈{1,2},{1,2},`〉[〈X , (w1,w2)〉] ≥ E〈{1,2},{1,2},`〉[〈Y , (w′1,w′2)〉]
for all testing problems. 7/23



Connection with Majorization Preorder

Blackwell’s Theorem for Dichotomies (1953)

Given two dichotomies 〈X , (w1,w2)〉 and 〈Y , (w′1,w′2)〉, the
relation 〈X , (w1,w2)〉 �2 〈Y , (w′1,w′2)〉 holds iff there exists a
stochastic matrix M such that Mwi = w′i.

• majorization: p � q ⇐⇒ 〈X , (p, e)〉 �2 〈X , (q, e)〉
• thermomajorization: as above, but replace uniform e with

thermal distribution γT

Hence, the information preorder is a multivariate version of the majorization

preorder, and Blackwell’s theorem is a powerful generalization of that by Hardy,

Littlewood, and Pólya. 8/23



Visualization: Relative Lorenz Curves

• two pairs of probability distributions, (p1,p2) and
(q1, q2), of dimension m and n, respectively

• relabel their entries such that the ratios pi1/p
i
2 and

qj1/q
j
2 are nonincreasing in i and j

• with such labeling, construct the truncated sums
P1,2(k) =

∑k
i=1 p

i
1,2 and Q1,2(k) =

∑k
j=1 q

i
1,2

• (p1,p2) �2 (q1, q2), if and only if the relative
Lorenz curve of the former is never below that of
the latter

Relative Lorenz curves:

(xk, yk) = (P2(k), P1(k))
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The Quantum Case



Quantum Decision Theory (Holevo, 1973)

classical case quantum case

• decision problems 〈Θ,U , `〉 • decision problems 〈Θ,U , `〉

• experiments w = 〈Θ,X , {w(x|θ)}〉 • quantum experiments E =
〈
Θ,HS , {ρθS}

〉
• decisions d(u|x) • POVMs {PuS : u ∈ U}

• pc(u, θ) =
∑
x d(u|x)w(x|θ)|Θ|−1 • pq(u, θ) = Tr

[
ρθS P

u
S

]
|Θ|−1

• E〈Θ,U,`〉[w] = max
d(u|x)

∑
`(θ, u)pc(u, θ) • E〈Θ,U,`〉[E ] = max

{Pu
S }

∑
`(θ, u)pq(u, θ)

Hence, it is possible, for example, to compare quantum experiments
with classical experiments, and introduce the information preorder
as done before.



Example: Semiquantum Blackwell Theorem

Theorem (FB, 2012)

Given a quantum experiment E =
〈
Θ,HS, {ρθS}

〉
and a classical

experiment w = 〈Θ,X , {w(x|θ)}〉, the condition E � w holds iff
there exists a POVM {P x

S} such that w(x|θ) = Tr
[
P x
S ρ

θ
S

]
.

Equivalent reformulation

Consider two quantum experiments E =
〈
Θ,HS, {ρθS}

〉
and

E ′ =
〈
Θ,HS′, {σθS′}

〉
, and assume that the σ’s all commute.

Then, E � E ′ holds iff there exists a quantum channel (CPTP
map) Φ : L(HS)→ L(HS′) such that Φ(ρθS) = σθS′, for all θ ∈ Θ.
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The Theory of Quantum Statistical Comparison

• fully quantum information preorder
• quantum relative majorization
• statistical comparison of quantum measurements

(compatibility preorder)
• statistical comparison of quantum channels

(input-degradability preorder, output-degradability preorder,
simulability preorder, etc)
• applications: quantum information theory, quantum

thermodynamics, open quantum systems dynamics, quantum
resource theories, quantum foundations, . . .
• approximate case
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Application to Quantum Foundations:
Distributed Decision Problems,

i.e.,
Nonlocal Games



Nonlocal Games

• nonlocal games (Bell tests) can be seen as
bipartite decision problems 〈X ,Y ;A,B; `〉 played
“in parallel” by non-communicating players

• with a classical source,
pc(a, b|x, y) =

∑
λ π(λ)dA(a|x, λ)dB(b|y, λ)

• with a quantum source,

pq(a, b|x, y) = Tr
[
ρAB (P

a|x
A ⊗Qb|y

B )
]

E〈X ,Y;A,B;`〉[∗] , max
∑
x,y,a,b

`(x, y; a, b)pc/q(a, b|x, y)|X |−1|Y|−1
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Semiquantum Nonlocal Games

• semiquantum nonlocal games replace classical
inputs with quantum inputs: 〈{τx}, {ωy};A,B; `〉

• with a classical source, pc(a, b|x, y) =∑
λ π(λ) Tr

[
(τxX ⊗ ω

y
Y ) (P

a|λ
X ⊗Qb|λ

Y )
]

• with a quantum source, pq(a, b|x, y) =
Tr
[
(τxX ⊗ ρAB ⊗ ω

y
Y ) (P a

XA ⊗Qb
BY )
]

E〈{τx},{ωy};A,B;`〉[∗] , max
∑
x,y,a,b

`(x, y; a, b)pc/q(a, b|x, y)|X |−1|Y|−1
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Blackwell Theorem for Bipartite States

Theorem (FB, 2012)

Given two bipartite states ρAB and σA′B′, the condition (i.e.,
“nonlocality preorder”)

E〈{τx},{ωy};A,B;`〉[ρAB] ≥ E〈{τx},{ωy};A,B;`〉[σA′B′]

holds for all semiquantum nonlocal games, iff there exist CPTP
maps Φλ

A→A′, Ψλ
B→B′, and distribution π(λ) such that

σA′B′ =
∑
λ

π(λ)(Φλ
A→A′ ⊗Ψλ

B→B′)(ρAB) .
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Corollaries

• For any separable state ρAB,

E〈{τx},{ωy};A,B;`〉[ρAB] = E〈{τx},{ωy};A,B;`〉[ρA ⊗ ρB]

= Esep
〈{τx},{ωy};A,B;`〉 ,

for all semiquantum nonlocal games.
• For any entangled state ρAB, there exists a semiquantum

nonlocal game 〈{τx}, {ωy};A,B; `〉 such that

E〈{τx},{ωy};A,B;`〉[ρAB] > Esep
〈{τx},{ωy};A,B;`〉 .
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Other Properties of Semiquantum Nonlocal Games

• can be considered as measurement
device-independent entanglement
witnesses (i.e., MDI-EW)

• can withstand losses in the detectors

• can withstand any amount of classical
communication exchanged between Alice
and Bob (not so conventional nonlocal
games!)
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Semiquantum Signaling Games



Semiquantum Nonlocality in Time

• turn dynamic communication into static
memory!

• with unlimited classical memory,
pc(a, b|x, y) =∑

λ π(λ) Tr
[
τxX P

a|λ
X

]
Tr
[
ωyY Q

b|a,λ
Y )

]
• if, moreover, a quantum memory
N : A→ B is available, which
correlations can be achieved?
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Admissible Quantum Strategies

• τxX is fed through an instrument {Φa|λ
X→A}, and

outcome a is recorded

• the quantum output of the instrument is fed
through the quantum memory N : A→ B

• the output of the memory, together with ωyY , are

fed into a final measurement {Ψb|a,λ
BY }, and output

b is recorded

pq(a, b|x, y) =
∑
λ

π(λ) Tr
[(
{(NA→B ◦ Φ

a|λ
X→A)(τxX)} ⊗ ωyY

)
Ψ
b|a,λ
BY

]



Classical vs Quantum Strategies

Classical:

pc(a, b|x, y) =
∑
λ

π(λ) Tr
[
τxX P

a|λ
X

]
Tr
[
ωyY Q

b|a,λ
Y )

]
Quantum:

pq(a, b|x, y) =
∑
λ

π(λ) Tr
[(
{(NA→B ◦ Φ

a|λ
X→A)(τxX)} ⊗ ωyY

)
Ψ
b|a,λ
BY

]
Classical vs Quantum

Classical strategies correspond to the case in which the channel
N has trivial output (completely depolarizing channel).
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Statistical Comparison of Quantum Channels

Theorem (Rosset, FB, Liang, 2018)

Given two channels N : A→ B and N ′ : A′ → B′, the condition
(i.e., “signaling preorder”)

E〈{τx},{ωy};A,B;`〉[N ] ≥ E〈{τx},{ωy};A,B;`〉[N ′]

holds for all semiquantum signaling games, iff there exist a
quantum instrument {Φa

A′→A} and CPTP maps Ψa
B→B′ such that

N ′A′→B′ =
∑
a

Ψa
B→B′ ◦ NA→B ◦ Φa

A′→A .



Consequences

• by asking quantum questions, it is possible to verify the
quantumness in Alice’s memory

• similar to Leggett-Garg inequalities, but without loopholes and
other conceptual difficulties

• i.e., one of the simplest, non-trivial, time-like Bell tests
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Conclusions



Conclusions

• generally speaking, the theory of statistical comparison studies
transformation of one “statistical structure” X into another
“statistical structure” Y
• equivalent conditions are given in terms of (finitely or infinitely

many) monotones, e.g., fi(X) ≥ fi(Y )
• such monotones shed light on the “resources” at stake in the

operational framework at hand
• statistical comparison is complementary to SDP, which instead

searches for efficiently computable functions like f(X, Y )
• however, SDP does not provide much insight into the

resources at stake
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