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Introduction



Statistical Decision Problems

rotistical moede decasiow

Definition (Statistical Models and Decisions Problems)

A statistical experiment (i.e., statistical model) is a triple
(©, X, %)) a statistical decision problem (i.e., ptatistical gamg{) is
a triple @,L{,@.
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How Much Is an Experiment Worth?

X U
e the experiment is given, i.e., 3 3 3
it is the “resource 0 s o — U
e the decision instead can be w(z|0) d(u|z)
optimized Y
200, u

Definition (Expected Payoff)
The expected payoff of a stati I expenmen@
w.r.t. a decision probleri (©,U, () )s given by
E (o) W] éZM <0 j
u@,0
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Comparing Experiments 1/2

experiment w = (O, X', w(z|f)) | experiment w = (O, Y, w'(y|d))

o) xplim>ent .)C' dﬂ)n @ 0 xplin;ent@d(isic;n { U ;
¢ § ¢ ¢
0 — r — u 0 — y — u
w(x|0) d(ulx)
Y Y

—_——

w'(y]0) d'(uly)
S\

0(0,u) 0(0,u)

If(E 01,0 W] > Eg /0 [W'][ then experiment (©, X', w) is better
than experiment (©, Y;w") for problem (©,U. (). 3/23




Comparing Experiments 2/2
Definition (Informatio@
If experiment (O, X, w) is better than experiment
O, X, w) is

, then we say that ( '

more informative than (©,),w’), and write

-

Problem. The information preorder is operational, but not really
“concrete”. Can we visualize this better?
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Blackwell’s Theorem (1948-1953)

Blackwell-Sherman-Stein Theorem

Given two experiments with the same

parameter space, (O, X, w 0,),w'),
the condition(©. X, w) = (O, Y, w’) holds iff
there exists a conditional probability ¢(y|z)

o6 — /x =%y

David H. Blackwell (1919-2010)
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An Important Special Case: Majorization



Lorenz Curves and Majorization Preorder

e two probability distributions, p and q, of Lorenz curve for probability
the same dimension n P distribution p = (p1,- -+ ,pn):

e truncated sums P(k) = Y.  p and
Q) =S ¢f forallk=1,....n
—

° rizes q, i.e., p = q, whenever
ZP(E) > Q(k:?,jfor all k&

® mini niform distribution
e=n"1(1,1,---,1)

o[ Hardy, Littlewood, and Pélya (1929):
p>=q < q= Mp, for some
bistochastic matrix M

@%)Z@@, 1<k<n
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Oichotomies and Tests

e a dichotomy_is a statistical experiment with a two-point parameter space:
(11,2}, X (wn, w2y

e a testing proble (or “test”) is a decision problem with a two-point action
space U = {1,2}
—~——

Definition (Testing Preorder)

Given two dichotomies (w1, wy)) and (w', wh)), we write

(X, (w1, w)=2)V, (wh, wh)) |
whenever
E<{1,2}7{1,2},e>m)>\] > E2),00.20.0 (Y (wi, wh)

for all testing problems. 7/23
L




Connection with Majorization Preorder

Blackwell’s Theorem for Dichotomies (1953)

Given two dichotomies (X, (wq, w5)) and (Y, (w}, w))), the
relation/ (X, (w1, ws)) =5 (Y, (w], wh))/holds iff there exists a
t .

stochastic matrix M such

e majorization: p - q < <X =2 (X{(q,e)
¢ (thermomajorization:/as above, but replace uniform e with

thermal distribution

Hence, the information preorder is a multivariate version of the majorization

preorder, and Blackwell's theorem is a powerful generalization of that by Hardy,

Littlewood, and Pdlya. 8/23



Visualization: Relative Lorenz Curves

e two pairs of probability distributions (p;, p,))and .
y of dimension m and n, respectively

e relabel their entries such that the ratioand

Are nonincreasing in ¢ and j

e with such labeling, construct the truncated sums
k i k i 1
Pia(k) =22, pi and Qi2(k) = Zj:l di 2

Relative Lorenz curves:

of (p1,p5) =2 (q1,q5), if and only if the relative
Lorenz curve of the former is never below that of
the latter

(x, yr) = (P2(k), P1(k))
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The Quantum Case



Quantum Decision Theory (Holevo, 1973)

classical case

A
v

quantum case

[/
[
e decision problems (O

—————

e experiments w = (©

decisions d(u|z)

7u7£>

e decision problems (©,, ¢) me.oo

e quantum experiments & :
o/ POVMs {Pg : u e U}

Tr[pg POl

* pq(u,0)

o Eounlé] fw,u)pq(u 0)

Hence, it is possible, for example, to compare quantum experiments
with classical experiments, and introduce the information preorder

as done before.



Example: Semiquantum Blackwell Theorem

Given a quantum experiment & = (0, Hg, {p%}) and a classical
experiment w = (O, X', {w(z|0)}), the condition £ > w holds iff
there exists a POVM {P¢} such that w(z|0) = Tr|P§ pf].

/ Consider two quaiium experiments £ = @ 7—[5.> and

= <@ 7‘[5/ > and
F Then,(£ = £ holds iff there exists a q@m channel CPTP
(Fs)

map) ¢ : L(Hs) — L(Hs/) such that for aII g € O.
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The Theory of Quantum Statistical Comparison

e fully quantum information preorder —

e quantum relative majorization —

e statistical comparison of quantum measurements/
(compatibility preorder) ya

e statistical comparison of quantum channels
(input-degradability preorder, output-degradability preorder,
simulability preorder, etc)

e applications: quantum information theory, quantum
thermodynamics, open quantum systems dynamics, quantum
resource theories, quam

e approximate case
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Application to Quantum Foundations:
Distributed Decision Problems,
I.e.,

Nonlocal Games



Nonlocal Games

e nonlocal games (Bell tests) can be seen as
bipartite decision problems (X', V; A, B; () played
“in parallel” by non-communicating players

e [with a classical source,
C(CL;b’xay) = )\7T(>‘ A(CL|.CL',)\ B(b‘y7)\
e /with 2 quantum source,
pq(a,b|x,y) =Tr pAB P,Z‘I ® Q%y)
—
[ mnssate 2o 3 e BT
z,y,a,b 13/23




Semiquantum Nonlocal Games

e semiquantum nonlocal games replace classical
inputs with quantum inputs: @ A, B; ()

e with a classical source, p.(a,b|z,y)

() Te[(7% @ wf) (P PP o]

e with a quantum source, p,(a,b|z,y) =
Tr[(r) (P ® Qhy)]

E((ry govya s (] 2 max Y £z, y;a,b)pesg(a, bz, y)| X[V

z,Y,a,b
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Blackwell Theorem for Bipartite States

Theorem (FB, 2012)

Given two bipartite state@ and(o a4 ) the condition (i.e.,
“nonlocality preorder”)

E<{TI}>{W‘1}};~A>B§€> > E({T“C},{wy};A,B;f@
holds , iff there exist CPTP
maps ®%_. XV .\ and distribution w()\) such that
A—A B—B AN

G- SN
A
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Corollaries

e For any separable state p4p,

o
I E((roy fwrya B0 (048] = E(rey ()48 (04 @ pB]

= clas;;c‘,V(pfw. ({7} {wv 5 ABsE)

for all semiquantum nonlocal games.

e For any entangled statelpp Jthere exists a semiquantum
nonlocal game ({77}, {w’}; A, B; {) such that

@ {T"E t,{ wY t;A,B;ﬁ) [pAB]

sep
By oA B0 -
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Other Properties of Semiquantum Nonlocal Games

e /can be considered as measurement

device-independent entanglement
witnesses (i.e., MDI-EW)

e can withstand losses in the detectors

e can withstand any amount of classical

communication exchanged between Alice
and Bob (not so conventional nonlocal Rolb ‘—:PID

games!)
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Semiquantum Signaling Games



Semiquantum Nonlocality in Time

e turn dynamic communication into static
memory!

e with unlimited classical memory,

@Tm

‘. ) bl
Tr wY Qy")
° ‘|f, moreover, a quantum memory

[N :A— B{is available, which

correlations can be achieved?

/ }4%? s N

anNi_L
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Admissible Quantum Strategies

e 72 is fed through an instrument {®% ,}, and
outcome a is recorded

e the quantum output of the instrument is fed
through the quantum memory N : A — B

e the output of the memory, together with wy., are

fed into a final measurement {\I/Ig';’\} and o
b is recorded ZN' (P“
o

pq(a7 b|l’, y) —




Classical vs Quantum Strategies

Classical:

pe(a,blx,y) = Zﬂ'(/\) Tr [T)I( PalA} Tr {wi’/ ;’,a”\)}

A

Quantum:

pyla,blz,y) = Z?T Tr @‘DX_)AW bla)\
A

Classical vs Quantum

Classical strategies correspond to the case in which the channel
N has trivial output (completely depolarizing channel).
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Statistical Comparison of Quantum Channels

Theorem (Rosset, FB, Liang, 2018

Given two channels(N : A — Ban
(i.e., "signaling preorde

@}{wy}/xw f\ﬁ > Bi(roy {wv}A,8:0) [/\D

holds . Iff there exist a
quantum instrument {®%, , ,} and CPTP maps V%, . 5, such that
T —

/ § :
A'—sB' — \IJB—>B’ @ (I)il’—ml 0

) the condition




Consequences

e by asking quantum questions, it is possible to verify the
quantumness in Alice’'s memory

o’similar to Leggett-Garg inequalities, but without loopholes and

ot onceptual difficulties
e i.e., one of the simplest, non-trivial, time-like BeIIte@
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Conclusions



Conclusions

generally speaking, the theory of statistical comparison studies
transformation of one “statistical structure” X into another
“statistical structure” Y
equivalent conditions arg G@ FerRS—Q
many) monotones, e.g @>@
such monotones shed fight e—Tesources’ at stake in the
operational framework at hand

statistical comparison is complementary to SDP, wh
searches for efficiently computable functions like
however, SDP does not provide much insight into
resources at stake

—

finitely or infinitely

ich instead
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