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The Birth in Mathematical Statistics



Statistical Decision Problems

experiment decision
— X — U

S)

‘, i i i

0 — r  —
w(x|0) d(u|z)

tatistial model decsion

payoff is £(0,u) € R

Definition (Statistical Models and Decisions Problems)

A statistical experiment (i.e., statistical model) is a triple
(0, X, w), a statistical decision problem (i.e., statistical
game) is a triple (O,U, ().
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How Much Is an Experiment Worth?

. . . 0 explin';ent X U
e the experiment is given,
i.e., it is the “resource”
o $ $ $
e the decision instead can
be optimized 0 N T U

Definition (Expected Payoff)

The expected payoff of a statistical experiment
w = (O, X, w) w.r.t. a decision problem (©,U,¢) is given by
E 0.0 W] “ max 00, u)d(u|z)w(z|0)|0] " .

d(ulz)

u,x,
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Comparing Experiments 1/2

First experiment:
w = (0, X, w(z|9))

experiment decision
G} — X —

w(x|0) d(ulz)

U

S)

Second experiment:

w = <@7 Y, w/(y|9>>

experiment
—

y decision U

If Eou,e[W] > Eou.0[W'], then experiment (0, X', w) is
better than experiment (©, Y, w’) for problem (©,U, ().
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Comparing Experiments 2/2

Definition (Information Preorder)

If the experiment (O, X', w) is better than experiment
(0,),u') , then we say
that (©, X', w) is more informative than (©,),w’), and write

(O, X, w) = (0,Y,w') .

Problem. The information preorder is operational, but not
really “concrete”. Can we visualize this better?
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Blackwell’s Theorem (1948-1953)

Blackwell-Sherman-Stein Theorem

Given two experiments with the same
parameter space, (0, X, w) and

(0, Y,w'), the condition

(0, X, w) = (6,),w') holds iff there
exists a conditional probability ¢ (y|z)

such that w'(y|0) = >, o(y|z)w(x|0).

o — Y o — x "%y
ﬁ ﬁ = i i i David H. Blackwell
(1919-2010)
06 — g — =z Y
w’(y|0) Y w(w|0) w(ylz)
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The Precursor: Majorization



Lorenz Curves and Majorization

e two probability distributions, p and
q, of the same dimension n Lorenz curve for probability

distribution p = (p1,- -+ ,pn):
e truncated sums P(k) = X:i?:lpi

and Q(k) = % ¢F, for all
k=1,....n

e p majorizes q, i.e., p = q,
whenever P(k) > Q(k), for all k

!
| ! |

H

e minimal element: uniform I ;|/4 2/4 3/4r 4/4ﬁ
distribution e = n=1(1,1,--- ,1)
(xk,yk) = (k/n, P(k)), 1<k<n
Hardy, Littlewood, and Pdlya
p>=q < q= Mp, for some

bistochastic matrix M.
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Generalization: Relative Lorenz Curves

e two pairs of probability distributions,
(p1,p9) and (g, q,), of dimension m
and n, respectively

e relabel entries such that ratios p}/p} and
q]/qj, are nonincreasing

e construct the truncated sums
Pia(k) =S5 1 pi 5 and Q1a2(k)

e (p;,ps) = (qy,qs) iff the relative Lorenz :
curve of the former is never below that of
the latter Relative Lorenz curves:

(k> yx) = (P2(K), P1(k))

Blackwell (Theorem for Dichotomies)

(p1,p2) = (q1,93) <= q; = Mp;, for
some stochastic matrix M. 7/28



Extension to the Quantum Case



Quantum Decision Theory

A.S. Holevo, Statistical Decision Theory for Quantum Systems, 1973.

classical case quantum case

e decision problems (©,U, ¢) e decision problems (©,U, ¢)

e experiments w = (0, X, {w(z|0)}) e quantum experiments £ = <®,HS, {p%}>
e decisions d(u|z) e POVMs {P¥ :u e U}

® pe(u,0) = 3, d(ulz)w(z|0)[O] ! ® pq(u,0) = Tr[p§ PY] O]}

o Eig 0w = RO 200, w)pe(u,0) | @ Eg 0 [E] = {fglﬁﬁ 200, u)pq(u, 0)

Hence, it is possible, for example, to compare quantum
experiments with classical experiments, and introduce the
information preorder as done before.



Example: Semiquantum Blackwell Theorem

Consider two quantum experiments £ = <@,H5, {pg}> and
& =(0,Hg,{0%}), and

Then, £ = &£ holds iff there exists a quantum channel
(CPTP map) ® : L(Hs) — L(Hg) such that ®(pf) = o4,
for all 6 € ©.
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Developments

e fully quantum information preorder
e quantum relative majorization

e statistical comparison of quantum measurements
(compatibility preorder)

e statistical comparison of quantum channels
(input-degradability preorder, output-degradability
preorder, coding preorder, etc)

e applications: quantum information theory, quantum
thermodynamics, open quantum systems dynamics,
quantum resource theories, quantum foundations, ...
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The Viewpoint of Communication
Theory



Statistics vs Information Theory

Statistical theory: Nature does not bother with coding

experiment decision
© — X — U

0 — T U

w(z|6) d(ulz)

Communication theory: a sender, instead, does code

encoding channel decoding
M — e — X S U
m — 0 — T — U
d(ulx) 11/28

e(fdlm) w(x|9)



From Decision Problems to Decoding Problems

Definition (Decoding Problems)

Given a channel (X, Y, w(y|z)), a is
defined by an encoding (M, X e(q:|m)> and the payoff
function is the optimum guessing probability:

E(p, 2 e(alm)) [(Xs Vs w(y|z))] & Jnax > d(mly)w(y|z)e(alm)| M|

mJ Y
— 9~ Hun(M[Y)

channel

X — )



Comparison of Classical Noisy Channels

X dmel y X dﬂ)el z
$ $ $ $ $ $
xz — Yy x — z

w(ylz) w’(z|z)

Theorem (FB, 2016)

The following are equivalent:

1. there exists p(z|y): w’(:v|'z) = >, ¢(zly)w(y|r)

( ),
2. for all codes (M, X e(x|m)), Hpin(M|Y) < Hyin(M|2)
( )

The above strictly imply H(M|Y') < H(M|Z) (
).



Decoding Quantum Codes

Definition (Quantum Decoding Problems)

Given a quantum channel N/ : A — B, a
is defined by a bipartite state wr4 and the payoff
function is the optimum singlet fraction:

E,[NV] & mgx((bjgﬂ(idR ® Dp_g © NassB)(Wra)| P z)



Comparison of Quantum Noisy Channels

Theorem

Given two quantum channels N': A — B and N' : A — B’, the
following are equivalent:

1. there exists CPTP map C: N/ =Co N (.
),.
2. for any bipartite state wra, E,[N] > E,[N] (

),.

3. for any bipartite state wra,
Huin (R|B) (den) (@) < Hmin(R|B’) (den) (w)-

~ by adding symmetry constraints, we have applications in
quantum thermodynamics
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Application to Open Quantum
Systems Dynamics



Discrete-Time Stochastic Processes

e lLet x;, fori =0,1,..., index the
state of a system at time t = t¢;

e if the system can be initialized at
time ¢ = g, the process is fully
described by the conditional
distribution p(xy, ..., z1|zg)

e if the system evolving is quantum,
we only have a quantum dynamical

mapping {Ngg%ﬁ}i:l N

5o00g

e the process is divisible if there exist
channels D such that
NG+ — D@ o AV for all 4




Divisibility as “Entanglement Flow”

Theorem (2016-2018)

Given an initial open quantum system )y, a quantum
dynamical mapping {Ngg%Qi } - is divisibile if and only if,
for any initial state wro,, =

Hmin(R|Ql) S Hmln(R|Q2) S o S Hmm(R|QN) .

17/28



Application to Quantum Foundations:
Probing Quantum Correlations in
Space-Time



Part One: Quantum Space-Like Correlations

e nonlocal games (Bell tests) can be seen
as bipartite decision problems x A w PR
(X,Y; A, B; ) played “in parallel” by
non-communicating players

e with a classical source, p.(a,blz,y) =
doam(N)dalalz, Ndp(bly, A)

e with a quantum source,
b
Pa(a,blz,y) = Tt [pan (P§" © Q)]

’3”‘ %OL ‘?L

Exyam00 = max Y £(z,y;a,b)pesq(a, blz, y)| XY
z,y,a,b
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Semiquantum Nonlocal Games

e semiquantum nonlocal games replace 2
classical inputs with quantum inputs: T Aﬂc& A
({7}, {w¥}; A, B; £)

e with a classical source, p.(a,b|z,y) =
SarN) T [(7% @) (P @ Q)
oisfBol )b

e with a quantum source, pq(a,blz,y) =
Tt (7% ® pan @ w¥) (P}, ® Q%y)]

E (o} quv}ia g 4] = max Y £z, y;a,b)pesq(a, bla, )| XY
z,y,a,b
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A Blackwell Theorem for Bipartite States

Theorem (FB, 2012)

Given two bipartite states pap and o4/, the condition (i.e.,
“nonlocality preorder”)

E(trey vy 4,80 048] = Erey (wv)a80 04 p]

holds , iff there exist
CPTP maps ®)_, ,,, U%_, /. and distribution m()\) such that

owp =Y 7(N)(Phu ® Uy, p)(pan) -
A
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Corollaries

e For any separable state pap,
Erey fuwvya 86 [paB] = Efre} {wr},4,50(04 © pB]
__ psep
= B ey oy

for all semiquantum nonlocal games.

e For any entangled state p4p, there exists a
semiquantum nonlocal game ({7}, {wY}; A, B; {) such
that

E((rey quvyiagiolpasl > By oy a0 -
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Other Properties of Semiquantum Nonlocal Games

e can be considered as measurement N
device-independent entanglement T Aﬂu A
witnesses (i.e., MDI-EW)

e can withstand losses in the detectors

e can withstand any amount of classical
communication exchanged between . L
Alice and Bob (not so conventional wh= Bob )=
nonlocal games!)
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Part Two:
Quantum Time-Like Correlations



Semiquantum Nonlocality “in Time”

o Alice-Bob becomes ‘Alice now'—"Alice )~
later’ Zz‘{ﬁa' 3
~ 4 rJ
e with unlimited classical memory, b ) m
_ ¥ el 2
pc<a7 b|l’, ?J) _ ‘:% F 24
z pal bla,\ % |\ )
doym(A) Tr [TX PX‘ } Tr [w%”, Yl )] §!/)b
. Wy——> =
e if, moreover, a quantum memory IR

N : A — B is available?
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Admissible Quantum Strategies

o 7% is fed through an instrument
alA

{®¢", 4}, and outcome a is recorded <z
e the quantum output of the instrument is

fed through the quantum memory
N:A— B

e the output of the memory, together with 0\"76’

wy, are fed into a final measurement

{W%%9" and output b is recorded

pa(a,bla,y) = > ) e[ ({Waom 0 2 ()} @t ) W

A



Classical vs Quantum Strategies

Classical:
pc(a,b\x,y) = Z'/r(/\) Tr |:T§( P;'A:| Tr |:w§// l;/\a,)\):|
A
Quantum:

palable.u) = 3w ) Tr [ ({(Waom 0 9520750} @) W]
A

Classical strategies correspond to the case in which the
channel NV is (i.e., “measure and

prepare” form): N () = >, p; Tr[- P .
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Statistical Comparison of Quantum Channels

Theorem (Rosset, FB, Liang, 2018)

Given two channels N : A — B and N' : A’ — B’, the
condition (i.e., "signaling preorder”)

E(frey {wv};48:0 N > Egrey fwvya,80 V]

holds . Iff there exist a
quantum instrument {®%, ., ,} and CPTP maps V%, ., 5, such
that

’ a a
A'—B = E Ve, p oNapo DU a
a

O T G




e formulation of a resource theory where all and only
measure-and-prepare channels are “free”

e any non entanglement-breaking channel can be witnessed

e perfect analogy between separable states and
entanglement-breaking channels

e relation with Leggett-Garg inequalities: the “clumsiness
loophole” (time-like analogue of communication loophole)
can be closed with semiquantum games

e semiquantum games can treat space-like and time-like
correlations on an equal footing
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Conclusions



Conclusions

the theory of statistical comparison studies
transformations of one “statistical structure” X into
another “statistical structure” Y

equivalent conditions are given in terms of (finitely or
infinitely many) monotones, e.g., f;(X) > fi(Y)

such monotones shed light on the “resources” at stake in
the operational framework at hand

in a sense, statistical comparison is complementary to
SDP, which instead searches for efficiently computable
functions like f(X,Y)

however, SDP does not provide much insight into the

resources at stake (and not all statistical comparisons are
equivalent to SDP!)

Thank you
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