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The quantum no-broadcasting theorem states that it is impossible to produce perfect copies of an
arbitrary quantum state, even if the copies are allowed to be correlated. Here we show that, although
quantum broadcasting cannot be achieved by any physical process, it can be achieved by a virtual process,
described by a Hermitian-preserving trace-preserving map. This virtual process is canonical: it is the only
map that broadcasts all quantum states, is covariant under unitary evolution, is invariant under permutations
of the copies, and reduces to the classical broadcasting map when subjected to decoherence. We show that
the optimal physical approximation to the canonical broadcasting map is the optimal universal quantum
cloning, and we also show that virtual broadcasting can be achieved by a virtual measure-and-prepare
protocol, where a virtual measurement is performed, and, depending on the outcomes, two copies of a
virtual quantum state are generated. Finally, we use canonical virtual broadcasting to prove a uniqueness
result for quantum states over time.
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Introduction.—In standard quantum theory, physical
processes are described by completely positive trace-
preserving (CPTP) linear maps [1]. The no-broadcasting
theorem says that no physical process can broadcast an
unknown quantum state to two parties so that each party
would obtain the same statistics, via local measurements, as
would be obtained from the original state [2–5]. In fact, the
theorem also applies to positive maps, without the require-
ment of complete positivity [6]. The situation changes,
however, if one lifts the positivity requirement.
In this Letter, we study broadcasting maps from the larger

set of Hermitian-preserving trace-preserving (HPTP) maps,
that is, linear maps that transform Hermitian operators into
Hermitian operators while preserving the trace. HPTPmaps
have applications in the context of two-point correlation
functions [7,8], error mitigation [9–11], simulating non-
Markovian dynamics [12], and quantum states over
time [13–15], while their Hilbert-Schmidt adjoints have
been studied in the context of retrodicting quantum observ-
ables [16–18]. Physically, HPTP maps can be simulated by
sampling over a set of quantum processes and then suitably
postprocessing the measurement statistics on the corre-
sponding output states [7,8,12].
The main result of this Letter is Theorem 1, which states

that a unique HPTP quantum broadcasting map is singled

out by three natural requirements: covariance under unitary
evolution, invariance under permutation of the output
systems, and consistency with the unique classical cloning
channel. We explicitly construct this canonical quantum
broadcasting map, and we also establish two distinct
physical interpretations for it.
First, Theorem 2 states that the optimal universal

symmetric cloning process in quantum theory can be
interpreted as the quantum channel that best approximates
the canonical broadcasting map. Second, Theorem 3 pro-
vides a realization of the canonical broadcasting map as a
probabilistic mixture of the completely depolarizing chan-
nel and a particular Hermitian operator-valued measure-
and-prepare protocol distributed over all pure quantum
states of a given system.
Finally, we show that our uniqueness result for HPTP

broadcasting yields a uniqueness result for quantum states
over time [13,19]. Quantum states over time provide a
nascent approach to quantum dynamics that is in close
analogywith spacetimephysics. Theyhave provided insights
to time-reversal symmetry [14], quantum Bayesian infe-
rence [5,14,20–23], and dynamical measures of quantum
information [24]. Such quantum states over time also
specialize to the pseudo-density matrices associated with
timelike-separated Pauli measurements on systems of
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qubits [19,25–27]. From the perspective of quantum states
over time, the output of a HPTP broadcasting map is a state
over time associated with a system that has evolved accord-
ing to trivial dynamics. As such, while the no-broadcasting
theorem states that quantum broadcasting cannot be realized
as a quantum state at a single time, our virtual broadcasting
theorem implies that quantum broadcasting may be dynami-
cally realized as a quantum state over time, and moreover,
that such a dynamical realization is unique.
Virtual broadcasting maps.—Let us start by introducing

some notation that will be used throughout the Letter. For
an arbitrary quantum system S, we denote by HS the
corresponding Hilbert space, and by LinðSÞ the algebra of
all linear operators on HS. The real vector subspace of
Hermitian operators will be denoted by HermðSÞ, while its
affine subspace of unit trace operators will be denoted by
Herm1ðSÞ. The convex subspace of all quantum states
(positive matrices with unit trace) of system S will be
denoted by StðSÞ. We denote the identity operator in LinðSÞ
by I and the identity transformation acting on LinðSÞ by I.
Let S, S1, and S2 be three quantum systems all with the

same underlying Hilbert space, whose dimension is denoted
by d. Let S1S2 be the composite systemmade of subsystems
S1 and S2, and letHS1S2 ¼ HS1 ⊗ HS2 be the corresponding
Hilbert space. For an operator O∈LinðS1S2Þ, the partial
trace over the Hilbert spacesHS1 andHS2 will be denoted by
TrS1 ½O� and TrS2 ½O�, respectively. A broadcasting map from
S to S1S2 is a linear map B∶ LinðSÞ → LinðS1S2Þ satisfying
the conditions

TrS1 ½BðρÞ� ¼ TrS2 ½BðρÞ� ¼ ρ ∀ ρ∈LinðSÞ: ð1Þ

We refer to Eq. (1) as the broadcasting condition. Note that
the broadcasting condition automatically implies that the
map B must be trace preserving.
A Hermitian-preserving map that satisfies the broad-

casting condition (1) will be referred to as a virtual broad-
castingmap. Examples of virtual broadcastingmaps abound
(see Appendix C of the Supplemental Material [28]), and
this nonuniqueness is in stark contrast with the properties of
broadcasting in classical probability theory, where the
assumption of positivity singles out a unique broadcasting
map that perfectly copies all pure states of a classical system.
A classical system with d distinct pure states can be

thought of as a d-dimensional quantum system that has
undergone a complete decoherence process with respect to
a fixed orthonormal basis fjiigdi¼1 representing the classical
pure states of the system. The decoherence map with
respect to such a basis is then given by the channel D
defined by sending ρ to DðρÞ ≔ P

d
i¼1hijρjiijiihij. Given

orthonormal bases fjiiingdini¼1 and fjjioutgdoutj¼1 for an input
system Sin and an output system Sout, respectively, a
classical map from Sin to Sout with respect to these
bases is a linear map C∶ LinðSinÞ → LinðSoutÞ satisfying
Dout∘ C∘ Din ¼ C, where Din and Dout are the decoherence

maps associated with the given bases for Sin and Sout,
respectively. In the broadcasting case, the output system
Sout ¼ S1S2 consists of two copies of system S, equipped
with the product basis fjii ⊗ jjigdi;j¼1. A linear map
B∶ LinðSÞ → LinðS1S2Þ is classical whenever it satisfies
B ¼ ðD ⊗ DÞ∘ B∘ D. A classical broadcasting map is
then a classical map Bcl satisfying the broadcasting con-
dition for the density matrices that are diagonal in the
classical basis, i.e.,

TrS1 ½BclðρÞ� ¼TrS2 ½BclðρÞ� ¼ ρ ∀ρ∈DiagðSÞ; ð2Þ

where DiagðSÞ ¼ fPi pijiihijjpi ≥ 0 ∀ i;
P

i pi ¼ 1g is
the set of diagonal density matrices. The classical broad-
casting condition (2) is satisfied by the map Bcl uniquely
determined by the condition

BclðjiihjjÞ ¼ δijjiihij⊗ jiihij ∀ i;j∈f1;…;dg; ð3Þ

which copies the diagonal pure states jiihij and their convex
combinations, in analogy with the classical copy map, and
decoheres off-diagonal elements.
With the notation in place, we can now state the main

result of this Letter, which is that a unique virtual broad-
casting map is singled out by three natural requirements.
The first requirement is covariance under unitary

evolution, which corresponds to the condition

BðUρU†Þ¼ ðU⊗UÞBðρÞðU⊗UÞ† ∀ρ; ∀U; ð4Þ

where U∈LinðSÞ is an arbitrary unitary operator and
ρ∈LinðSÞ is an arbitrary operator.
The second requirement is invariance under permutation

of the copies, which corresponds to the condition

SWAPBðρÞSWAP ¼ BðρÞ ∀ ρ∈LinðSÞ; ð5Þ

where SWAP∈LinðS1S2Þ is the unitary operator de-
fined by the relation SWAPðjϕi⊗ jψiÞ¼ jψi⊗ jϕi,
∀ jϕi, jψi∈Cd.
Finally, the third requirement is consistency with

classical broadcasting, which says that if the inputs and
outputs of a broadcasting map are subject to decoherence,
then the action of the map B should coincide with the action
of the classical broadcasting map, i.e.,

ðD ⊗ DÞ∘ B∘ D ¼ Bcl; ð6Þ

whereD is the decoherence map. It is worth stressing that a
covariant broadcasting map that satisfies the classical
consistency condition with respect to a single basis nec-
essarily satisfies classical consistency with respect to every
basis (see Appendix B of the Supplemental Material [28]
for a precise statement and proof).
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Theorem 1 (the virtual broadcasting theorem).—The
conditions of unitary covariance, invariance under permu-
tation of the copies, and consistency with classical broad-
casting single out a unique virtual broadcasting map B,
given by

BðρÞ¼ 1

2
fρ⊗ I;SWAPg ∀ρ∈LinðSÞ; ð7Þ

where fA;Bg ≔ ABþ BA denotes the anticommutator.
Note that Hermitian-preservation of B is a consequence,

rather than an explicit assumption, of Theorem 1 (whose
proof can be found in the Appendix below). In light of
Theorem 1, we henceforth refer to the virtual broadcasting
map B given by (7) as the canonical broadcasting map. In
the case of qubit systems, Ref. [19] showed that the
expression for BðρÞ coincides with the pseudo-density
matrix of Ref. [29], which captures the statistics of two-
time measurements assuming trivial evolution between
measurements. For arbitrary qudit systems, the output of
the canonical broadcasting map coincides with the real part
of the two-point correlator of Ref. [7,8]. The canonical
broadcasting map also appears in the construction of
quantum states over time [13–15], whose relation to
quantum dynamics is analogous to spacetime and its
relation to classical dynamics.
In what follows, we provide three further results regard-

ing the canonical broadcasting map. First, we show that the
universal quantum cloning process can be characterized as
the optimal physical approximation to the canonical broad-
casting map. Second, we show the canonical broadcasting
map may be realized as a convex combination of a virtual
measure-and-prepare protocol and the completely depola-
rizing channel. Finally, we show that the virtual broad-
casting theorem yields a uniqueness result for quantum
states over time.
Optimal physical approximation to virtual broadcasting.—

The universal symmetric optimal cloning process corre-
sponds to the quantum channel Bþ∶ LinðSÞ → LinðS1S2Þ
given by

BþðρÞ ¼ 2

dþ 1
ΠþðI ⊗ ρÞΠþ ∀ ρ∈LinðSÞ; ð8Þ

where Π� ¼ 1
2
ðI ⊗ I � SWAPÞ [30–33]. We refer to the

map Bþ as the universal cloner for short.
The main result of this section yields a characterization

of the universal cloner as the optimal physical approxima-
tion to the canonical virtual broadcasting map. For quanti-
fying this optimality we use the distance induced by the
diamond norm [34–36] (which is related to the completely
bounded trace norm [37,38]), which, for any Hermitian-
preserving map L∶LinðS1Þ → LinðS2Þ, is defined by

kLk⋄ ≔ max
ω

kðI3 ⊗ LÞðωÞk1; ð9Þ

where the maximum is taken over all bipartite density
matrices ω∈StðS3S1Þ, where S3 has underlying Hilbert
space equal to that of S1, and k · k1 is the trace norm.
Theorem 2.—The universal cloner is the unique quantum

channel that minimizes the diamond distance to the
canonical broadcasting map B; more precisely,

min
E∶ channel

kB − Ek⋄ ¼ d − 1; ð10Þ

and the unique minimum is attained at the quantum
channel E ¼ Bþ.
The proof of Theorem 2 appears in Appendix E of the

Supplemental Material [28]. It uses the spectral affine
decomposition of the canonical virtual broadcasting map
into two physical quantum channels given by

B ¼ dþ 1

2
Bþ −

d − 1

2
B−; ð11Þ

where B−ðρÞ≔ ½2=ðd−1Þ�Π−ðI⊗ ρÞΠ− for all ρ∈LinðSÞ.
The decomposition (11) was first proved in Ref. [7],
and the map B− may be viewed as the universal anti-
symmetrizer. Note that the decomposition (11) also yields a
direct physical interpretation and an experimental realiza-
tion of the canonical virtual broadcasting map B [7,8], as it
implies that B may be simulated by a suitable postprocess-
ing of the data obtained via measurements associated with
the physical processes B� [see Appendix D of the
Supplemental Material [28] for a proof of (11) and addi-
tional details, which includes Ref. [39] ].
Realization of the canonical broadcasting as a virtual

measure-and-prepare protocol.—As the canonical broad-
casting map is a virtual process, in this section we extend
the notion of a measure-and-prepare (M&P) protocol to
what we refer to as a virtual M&P protocol. We then show
that the canonical broadcasting map may be written as a
convex combination of a particular virtual M&P protocol
and a physical M&P protocol.
Let ðMjÞkj¼1 be a collection of Hermitian operators

satisfying the normalization condition
P

k
j¼1Mj ¼ I.

When all the operators Mj are positive semidefinite, the
above collection forms a positive operator-valued measure
(POVM) and represents a quantum measurement. In the
general case, we refer to the collection ðMjÞkj¼1 as a
Hermitian operator-valued measure (HOVM), and the appli-
cation of such an HOVM to a trace-one Hermitian element is
referred to as a virtual measurement. A trace-one Hermitian
element ρ∈Herm1ðSÞ is then referred to as a virtual state.
Applying a HOVM ðMjÞkj¼1 to a virtual state ρ∈Herm1ðSÞ
gives rise to a signedmeasureμρðjÞ ≔ Tr½Mjρ� satisfying the
normalization condition

P
j μρðjÞ ¼ 1.

Given a HOVM ðMjÞkj¼1 on an input system Sin and a
collection of virtual states ðρjÞkj¼1 on an output system Sout,
one can construct a virtual measure-and-prepare protocol,
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mathematically described by the HPTP map M defined by
sending ρ to MðρÞ ≔ P

j Tr½Mjρ�ρj. Note that the set of
all virtual M&P protocols from Sin to Sout is affine, and
hence, in particular, convex: for every two virtual M&P
protocols M and M0, and for every probability p∈ ½0; 1�,
their convex combination pMþ ð1 − pÞM0 is also a
virtual M&P protocol.
We now define two virtual M&P protocols M and M0

with a convex combination yielding the canonical broad-
casting map B. The first virtual M&P protocol M is
constructed by associating every pure quantum state ψ ≔
jψihψ j with a virtual state

ρψ ≔
1

2
½ðdþ 2Þψ − I� ð12Þ

and by defining aHOVMwith operatorsMψ ≔ dρψ , labeled
by a continuous set of outcomes ψ of rank-one projectors
(see Appendix F of the Supplemental Material [28]
for the precise definitions and details, which includes
Refs. [40–42]) and satisfying the normalization conditionR
Mψdψ ¼ I, where dψ is the normalized unitarily invariant

measure. The virtual M&P protocol then consists of apply-
ing the virtual measurement Mψdψ and preparing the two-
copy virtual state ρψ ⊗ ρψ conditioned on the outcome ψ .
The overall action of this process is given by the HPTP map

MðρÞ¼
Z

Tr½Mψρ�ρψ ⊗ ρψdψ ∀ρ∈LinðSÞ: ð13Þ

The second virtual M&P protocol is the completely
depolarizing channel defined by preparing two copies of
the maximally mixed state, regardless of the outcome of the
measurement on the input system. Namely, M0 is the
channel given by

M0ðρÞ ¼ Tr½ρ�
�
I
d
⊗

I
d

�
∀ ρ∈LinðSÞ: ð14Þ

The canonical broadcasting map B is a convex combi-
nation ofM andM0, as illustrated by the following theorem
(see Appendix G of the Supplemental Material [28] for a
proof, which includes Ref. [43]).
Theorem 3.—The canonical broadcasting map B can be

decomposed as

B¼pMþð1−pÞM0; p≔
4ðdþ1Þ
ðdþ2Þ2 ; ð15Þ

where M is the virtual M&P protocol given by (13) and
M0 is the completely depolarizing channel given by (14).
In light of Theorem 3, we can think of the canonical

broadcasting map B as realized by the following process:
First, toss a biased coin with probability p of getting heads.
If the outcome is heads, perform the HOVM fMψgψ and

prepare the virtual state ρψ ⊗ ρψ if the outcome of the
measurement is ψ [since the probability that the outcome is
exactly ψ is zero, and similarly for the preparation of two
copies of ρψ , the rigorous meaning here is captured by the
integral expression in Eq. (13)]. If the outcome is tails,
prepare two copies of the maximally mixed state. Note that,
since the set of virtual M&P protocols is convex, we can
think of the above randomization as a single M&P protocol.
Canonical states over time from virtual broadcasting.—

If B is a broadcasting map and E∶ LinðS1Þ → LinðS2Þ is a
quantum channel, then for every state ρ∈StðS1Þ the
element E⋆ρ∈LinðS1S2Þ given by

E⋆ρ ¼ ðI ⊗ EÞðBðρÞÞ ð16Þ

is an example of a quantum state over time associated with
the process of ρ evolving under the channel E. More
generally [13,14,19], a quantum state over time is an
element E⋆ρ∈LinðS1S2Þ such that

TrS2 ½E⋆ρ� ¼ ρ and TrS1 ½E⋆ρ� ¼ EðρÞ: ð17Þ

As E and ρ vary, the assignment ⋆∶ ðE; ρÞ ↦
E⋆ρ∈LinðS1S2Þ is then referred to as a state over time
function. A state over time function given by (16) for some
broadcasting map B is said to satisfy the broadcasting
condition. This condition can be derived as a consequence
of consistency with probabilistic mixtures of states and
consistency with postprocessing via arbitrary quantum
channels and measurements (see Appendix H of the
Supplemental Material [28] for details and an operational
derivation of the broadcasting condition).
A quantum state over time encodes spatiotemporal

correlations that result in the process of a state evolving
according to a quantum channel, and it serves as a quantum
analog of a joint probability distribution [13,19]. Unlike
quantum states at a fixed point in time, quantum states over
time are not positive in general, indicating a further analogy
with the Lorentzian signature of spacetime, as opposed
to the Riemannian signature of a spacelike hypersurface
[44,45].
An axiomatic study of state over time functions was

initiated in Ref. [19], and Ref. [13] used the canonical
broadcasting map in formula (16) to give the first example
of a state over time function satisfying the axioms put forth
in Ref. [19]. While Ref. [15] has recently proved that the
state over time function constructed in Ref. [13] is uniquely
characterized by a different list of axioms, we provide an
alternative characterization as a direct corollary of our
virtual broadcasting theorem. For this, we formulate three
conditions for state over time functions, which under the
assumption of the broadcasting condition (16), are in fact
equivalent to the conditions appearing in the virtual broad-
casting theorem.
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First, a state over time function ⋆ is said to be covariant
whenever

ðU ⊗ VÞðE⋆ρÞ ¼ E0⋆UðρÞ ∀ ρ∈StðS1Þ ð18Þ

for all pairs of quantum channels E; E0 satisfying V∘ E ¼
E0∘ U for some unitary channels U and V. Second, a state
over time function ⋆ is said to be permutation invariant
whenever

SWAPðI⋆ρÞSWAP ¼ I⋆ρ ∀ ρ∈StðS1Þ: ð19Þ

Finally, a state over time function ⋆ is said to be classically
consistent whenever

ðD ⊗ D0ÞðE⋆DðρÞÞ ¼ E⋆clρ; ð20Þ

where D and D0 are the decoherence maps on the
domain and codomain of E, respectively, E⋆clρ ≔
ðI ⊗ EÞðBclðρÞÞ, and E is a channel satisfying D0∘ E ¼
E∘ D (so that E commutes with the application of
decoherence maps on the input and outputs).
Here, the permutation invariance condition coincides

with the “time-reversal symmetry” axiom of Ref. [15],
while the covariance and classical consistency conditions
do not appear as axioms in Ref. [15]. Requiring these
conditions singles out a unique state over time function:
Theorem 4.—Let ⋆ be a state over time function

satisfying the broadcasting condition (16). If ⋆ is covariant,
permutation invariant, and classically consistent, then

E⋆ρ ¼ ðI ⊗ EÞ½BðρÞ� ∀ ðE; ρÞ; ð21Þ

where B is the canonical broadcasting map.
Proof of Theorem 4.—Since ⋆ satisfies the broadcasting

condition (16), the associated broadcasting map B is given
by BðρÞ ¼ I⋆ρ. Moreover, ⋆ is covariant, permutation
invariant, and classically consistent, so that B is as well.
Hence, Theorem 1 implies (21). ▪
Conclusions.—In this Letter, we have proved the virtual

broadcasting theorem, which states that a unique
Hermitian-preserving broadcasting map is singled out by
the natural conditions of covariance, permutation invari-
ance, and consistency with classical broadcasting. While
not a genuine physical process, the canonical virtual
broadcasting map is an affine combination of the physical
processes corresponding to the universal quantum cloner
and the universal quantum antisymmetrizer. Moreover, we
showed that the universal quantum cloner is the optimal
physical approximation to our canonical broadcasting map
with respect to the diamond norm. We also showed that the
canonical virtual broadcasting map is a convex combina-
tion of a virtual measure-and-prepare protocol and the
completely depolarizing channel. Finally, we extended the
conditions of the virtual broadcasting theorem to analogous

conditions for quantum states over time, thus yielding a
uniqueness result for state over time functions under
minimal assumptions.
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Appendix: Proof of Theorem 1.—Let B be a broad-
casting map that satisfies covariance under unitary evo-
lution, invariance under permutations of the copies, and
consistency with classical broadcasting. The classical
consistency condition implies that the broadcasting map
B acting on a diagonal pure state, after the action of
decoherence on its outputs, should coincide with the
unique classical broadcasting map Bcl, i.e.,

jiihij⊗ jiihij
¼ ðD⊗DÞBðjiihijÞ
¼
X
j;k

hjjhkjBðjiihijÞjjijkijjihjj⊗ jkihkj ∀ i∈ ½d�; ðA1Þ

where ½d� ≔ f1;…; dg. By linear independence of the
basis fjjihkj ⊗ jmihnjg, this implies

hjjhkjBðjiihijÞjjijki ¼ δijδik; ∀ i; j; k∈ ½d�: ðA2Þ

Since B is trace preserving by the broadcasting condition,
BðjiihijÞ is a trace-1 operator. Hence, the above equality
implies that BðjiihijÞ can be written as

BðjiihijÞ ¼ jiihij ⊗ jiihij þOi; ðA3Þ

where Oi is an operator satisfying

hjjhkjOijjijki ¼ 0 ∀ j; k∈ ½d�: ðA4Þ

PHYSICAL REVIEW LETTERS 132, 110203 (2024)

110203-5



The following Lemma determines the form of the
operator Oi.
Lemma 1.—The operator Oi defined in Eq. (A3), for a

covariant and classically consistent broadcasting map B, is
of the form

Oi ¼ λiSWAPðjiihij ⊗ P⊥Þ þ νiðjiihij ⊗ P⊥ÞSWAP;

ðA5Þ

where λi, νi are complex numbers and P⊥ ≔ I − jiihij ¼P
j≠i jjihjj.
Proof.—LetUi be the set of all unitary operatorsU of the

form U ¼ jiihij ⊕ V, with V an arbitrary unitary operator
acting on the subspace H⊥ ≔ P⊥H≡ SWAPfjji∶j ≠ ig,
where H is the underlying Hilbert space of the quantum
system. Since the operator U satisfies the condition
Ujii ¼ jii, we have

jiihij ⊗ jiihij þOi

¼ BðjiihijÞ
¼ BðUjiihijU†Þ
¼ ðU ⊗ UÞBðjiihijÞðU ⊗ UÞ†
¼ ðU ⊗ UÞðjiihij ⊗ jiihij þOiÞðU ⊗ UÞ†
¼ jiihij ⊗ jiihij þ ðU ⊗ UÞOiðU ⊗ UÞ†; ðA6Þ

where the third equality follows from the covariance of the
map B.
The above equality is equivalent to the fact that the

operator Oi satisfies the commutation relation

½Oi;U ⊗ U� ¼ 0 ∀U∈Ui: ðA7Þ

The implications of this commutation relation can be
worked out explicitly using the representation theory of
the unitary group. The operators

U ⊗ U ¼ ðjiihij ⊗ jiihijÞ ⊕ ðjiihij ⊗ VÞ
⊕ ðV ⊗ jiihijÞ ⊕ ðV ⊗ VÞ ðA8Þ

form a reducible unitary representation of the group
Uðd − 1Þ on H ⊗ H. This representation has five orthogo-
nal irreducible subspaces inside H ⊗ H, namely,

H1 ≔ Spanfjiijiig;
H2 ≔ Spanfjiijϕi∶ϕi∈H⊥g;
H3 ≔ Spanfjϕijii∶ϕi∈H⊥g;
H4 ≔ Spanfjϕijϕi∶ϕi∈H⊥g;
H5 ≔ SpanfΠ−jϕijψi∶ϕi∈H⊥; jψi∈H⊥g; ðA9Þ

where Π− ≔ 1
2
ðI ⊗ I − SWAPÞ is the projector onto the

antisymmetric subspace of H ⊗ H, which also restricts
to the projector onto the antisymmetric subspace of
H⊥ ⊗ H⊥ [the four invariant subspaces H1, H2, H3,
and H4 ⊕ H5 inside H ⊗ H correspond, respectively, to
the actions obtained from the ðjiihij⊗ jiihijÞ, ðjiihij ⊗ VÞ,
ðV ⊗ jiihijÞ, and ðV ⊗ VÞ direct sum components of
U ⊗ U]. By Schur’s lemma [46,47], the commutation
relation (A7) implies that Oi must be a linear combination
of the unitary equivalences Tlk∶ Hk → Hl, provided they
exist. Furthermore, for k ¼ l, the isomorphism Tkk is just
the identity, or equivalently the projector onto the subspace
Hk when viewed as an operator on H ⊗ H. Explicitly,
these projectors are given by

T11 ¼ jiihij ⊗ jiihij
T22 ¼ jiihij ⊗ P⊥
T33 ¼ P⊥ ⊗ jiihij

T44 þ T55 ¼ P⊥ ⊗ P⊥: ðA10Þ
For k ≠ l, the only values of fk; lg corresponding to
equivalent representations are f2; 3g. The two intertwiners
between the subspaces H2 and H3 are

T32 ¼
X
j≠i

jjihij ⊗ jiihjj ¼ SWAPðjiihij ⊗ P⊥Þ;

T23 ¼ T†
32 ¼ ðjiihij ⊗ P⊥ÞSWAP; ðA11Þ

since T32ðjiijϕiÞ ¼ jϕijii and T23ðjϕijiiÞ ¼ jiijϕi for all
jϕi∈H⊥. Hence, we must have

Oi ¼
X
k¼1

akkTkk þ a23T23 þ a32T32 ðA12Þ

for some set of complex coefficients faklg. Combining the
relations (A10) with Eq. (A4), we obtain

a11 ¼ hijhijOijiijii ¼ 0;

a22 ¼ hijhjjOijiijji ¼ 0 ∀ j ≠ i;

a33 ¼ hjjhijOijjijii ¼ 0 ∀ j ≠ i;

a44 ¼ hjjhjjOijjijji ¼ 0 ∀ j ≠ i;

a55 ¼ hjjhkjOijjijki ¼ 0 ∀ j; k ≠ i: ðA13Þ
Defining λi ≔ a32 and νi ≔ a23, and using Eq. (A11), we
then obtain Eq. (A5). ▪
We now proceed to proving Theorem 1. Using Lemma 1,

Eq. (A3), and assuming invariance under permutation of
the copies for B, we obtain

λiT32 þ νiT23 ¼ Oi

¼ SWAPOiSWAP

¼ λiT23 þ νiT32; ðA14Þ
where we used the notation from Eq. (A11). Hence, νi ¼ λi.
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Now, combining Lemma 1 with Eq. (A3), we then obtain

BðjiihijÞ ¼ jiihij ⊗ jiihij þ λiSWAPðjiihij ⊗ P⊥Þ
þ λiðjiihij ⊗ P⊥ÞSWAP

¼ ð1 − 2λiÞjiihij ⊗ jiihij þ λiSWAPðjiihij ⊗ IÞ
þ λiðjiihij ⊗ IÞSWAP: ðA15Þ

Now, let jψi∈H be an arbitrary unit vector, and letW be a
unitary operator such that Wjii ¼ jψi. The covariance of
B implies

Bðjψihψ jÞ ¼ BðWjiihijW†Þ
¼ ðW ⊗ WÞBðjiihijÞðW ⊗ WÞ†
¼ ð1 − 2λiÞjψihψ j ⊗ jψihψ j
þ λiSWAPðjψihψ j ⊗ IÞ
þ λiðjψihψ j ⊗ IÞSWAP ðA16Þ

because ½W ⊗ W;SWAP� ¼ 0 ¼ ½W† ⊗ W†;SWAP�.
Equivalently, the above equation reads

Bðjψihψ jÞ−λiSWAPðjψihψ j⊗ IÞ−λiðjψihψ j⊗ IÞSWAP

¼ð1−2λiÞjψihψ j⊗ jψihψ j: ðA17Þ

Recall that jψi is an arbitrary unit vector. For the above
equation to hold for every jψi, one must have 2λi ¼ 1 in
order for B to be a linear transformation. Therefore,
λi ¼ 1=2, and we obtain

Bðjψihψ jÞ¼1

2
SWAPðjψihψ j⊗ IÞþ1

2
ðjψihψ j⊗ IÞSWAP

¼1

2

n
SWAP; jψihψ j⊗ I

o
∀ jψi∈H: ðA18Þ

Since the map B is linear and the projectors jψihψ j form a
spanning set for LinðSÞ, this identity concludes the proof of
Theorem 1. ▪
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This supplementary material consists of additional appendices, which contain proofs of mathematical results related
to the theorems in the main text, along with justifications and operational interpretations for our definitions.

Appendix B: Basis independence of classical consistency

In this section we show that for any covariant broadcasting map B, the notion of consistency with classical broad-
casting is independent of the basis used to formulate the notion. The precise statement is the following:

Proposition 1 Let {|i〉}di=1 and {U |i〉}di=1 be two orthonormal bases for a quantum system S, where U is a unitary

operator, and let D and D′ be their corresponding decoherence maps. Then a covariant broadcasting map B satisfies

the classical consistency condition

(D ⊗D) ◦ B ◦ D = Bcl (B1)

if and only if it satisfies

(D′ ⊗D′) ◦ B ◦ D′ = B′
cl, (B2)

where B′
cl is the classical broadcasting map uniquely determined by

B′
cl(U |i〉〈j|U †) = δijU |i〉〈i|U † ⊗ U |i〉〈i|U † (B3)

for all i, j ∈ {1, . . . , d}.

Proof of Proposition 1 First, note that

Bcl = (D ⊗ I) ◦ µ∗ ◦ D = (I ⊗ D) ◦ µ∗ ◦ D = (D ⊗D) ◦ µ∗ ◦ D, (B4)

where µ∗ is the Hilbert–Schmidt adjoint of the multiplication map µ : Lin(S1)⊗ Lin(S2) → Lin(S), the latter of which
is uniquely determined by µ(A1 ⊗ A2) = A1A2 for all A1 ∈ Lin(S1), A2 ∈ Lin(S2). Indeed, temporarily writing
Ψ := (D ⊗ I) ◦ µ∗ ◦ D, one finds

Ψ(|i〉〈j|) = (D ⊗ I)
(

µ∗(δij |i〉〈i|)
)

= δij(D ⊗ I)

(

d
∑

k=1

|i〉〈k| ⊗ |k〉〈i|
)

= δij

d
∑

k=1

δik|i〉〈i| ⊗ |i〉〈i|

= δij |i〉〈i| ⊗ |i〉〈i| = Bcl(|i〉〈j|), (B5)
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2

where the second equality follows from [1, Lemma 3.39]. A similar calculation shows the other identities in (B4).
Second, note the relations

D′ = U ◦ D ◦ U−1 (B6)

and

U−1 ◦ µ ◦ (U ⊗ U) = µ, (B7)

where U is defined by U(A) = UAU † for all inputs A. The former is an immediate consequence of the definitions and
the latter follows from setting Φ := U−1 ◦ µ ◦ (U ⊗ U) and verifying by the computation

Φ(A1 ⊗A2) = U−1
(

µ(UA1U
† ⊗ UA2U

†)
)

= U−1(UA1A2U
†)

= A1A2 = µ(A1 ⊗A2). (B8)

Therefore, if B satisfies the classical consistency condition (B1), then

(D′ ⊗D′) ◦ B ◦ D′ = (U ⊗ U) ◦ (D ⊗D) ◦ (U−1 ⊗ U−1) ◦ B ◦ U ◦ D ◦ U−1

= (U ⊗ U) ◦ (D ⊗D) ◦ B ◦ D ◦ U−1

= (U ⊗ U) ◦ Bcl ◦ U−1

= B′
cl, (B9)

where the first equality follows from the interchange law of ⊗ and ◦, the second equality follows from covariance
of the broadcasting map B, the third equality follows from the assumption (B1), and the last equality follows
from (B6), (B7), and the definition of B′

cl. Thus, (B2) holds. A similar calculation shows the converse, namely if B
satisfies the condition (B2), then it satisfies the classical consistency condition (B1). �

Appendix C: A one-parameter family of virtual broadcasting maps

Given λ ∈ R, let Bλ : Lin(S) → Lin(S1S2) be the map given by

Bλ(ρ) :=
1

2
{ρ⊗ I, SWAP} + iλ [ρ⊗ I, SWAP] , (C1)

where i :=
√
−1 and [A,B] := AB −BA denotes the commutator.

Proposition 2 The map Bλ is a virtual broadcasting map that is covariant and classically consistent for all λ ∈ R.

Furthermore, Bλ is invariant under permutation of copies if and only if λ = 0.

We first prove two lemmas.

Lemma 1 Let U : Lin(S) → Lin(S) be the map given by U(A) = UAU † for a unitary U ∈ Lin(S), and let µ :
Lin(S1S2) → Lin(S) and µ̃ : Lin(S1S2) → Lin(S) be the maps corresponding to the unique linear extensions of the

assignments µ(A1 ⊗A2) = A1A2 and µ̃(A1 ⊗A2) = A2A1. Then

U ◦ µ ◦ (U−1 ⊗ U−1) = µ (C2)

and

U ◦ µ̃ ◦ (U−1 ⊗ U−1) = µ̃. (C3)

Proof of Lemma 1 Eq. (C2) is equivalent to Eq. (B7), which was proved in B8. The proof of (C3) is similar. �

Lemma 2 Let D be a decoherence map with respect to some orthonormal basis. Then D = D∗, where D∗ denotes the

Hilbert–Schmidt adjoint of D.



3

Proof of Lemma 2 The rank-one projectors {|i〉〈i|} form a set of Kraus operators for D, i.e., D(ρ) =
∑d

i=1 |i〉〈i|ρ|i〉〈i|
for all states ρ. Since the Kraus operators are self-adjoint, and because the Hilbert–Schmidt adjoint of a map is given
by the adjoint of the Kraus operators, D∗ = D. �

Proof of Proposition 2 We first show that Bλ is a virtual broadcasting map for all λ ∈ R. For this, let {|i〉}di=1 be
an orthomoral basis of S. Then

TrS1

[

(ρ⊗ I)SWAP
]

= TrS1





∑

i,j

ρ|i〉〈j| ⊗ |j〉〈i|



 =
∑

i,j

〈j|ρ|i〉|j〉〈i| =
∑

i,j

|j〉〈j|ρ|i〉〈i| = ρ (C4)

for all ρ ∈ Lin(S). A similar calculation yields TrS2

[

(ρ ⊗ I)SWAP
]

= ρ, from which it follows that Bλ satisfies the
broadcasting condition for all λ ∈ R. To show Bλ is Hermitian-preserving, we prove that Bλ is †-preserving, i.e.,
Bλ(A†) = Bλ(A)† for all A ∈ Lin(S), which is equivalent. For this, we first note that SWAP† = SWAP, which immediate
follows from the formula SWAP =

∑

i,j |i〉〈j| ⊗ |j〉〈i|. For all A ∈ Lin(S), we then have

1

2

{

(A† ⊗ I), SWAP
}

=
1

2

{

(A† ⊗ I), SWAP†
}

=
1

2
{(A⊗ I), SWAP}† , (C5)

and

λi
[

(A† ⊗ I), SWAP
]

= λi
[

(A† ⊗ I), SWAP†
]

= (−λi [SWAP, (A⊗ I)])
†

= (λi [(A⊗ I)SWAP])
†
, (C6)

from which it follows that Bλ(A†) = Bλ(A)†, as desired.
Now let U ∈ Lin(S) be unitary. To prove Bλ is covariant, note that Bλ is covariant if and only if

U ◦ B∗
λ ◦ (U−1 ⊗ U−1) = B∗

λ, (C7)

where B∗
λ is the Hilbert–Schmidt adjoint of Bλ. Moreover, since

B∗
λ =

1

2
(µ+ µ̃) + iλ(µ− µ̃), (C8)

where µ and µ̃ are as in Lemma 1, Eqs. (C2) and (C3) imply that (C7) indeed holds. Hence, Bλ is covariant.
To prove Bλ is classically consistent, let D be a decoherence map with respect to some orthonormal basis. By (B4),

Bλ is classically consistent if and only if

D ◦ B∗
λ ◦ (D ⊗D) = D ◦ µ ◦ (D ⊗D) (C9)

since D∗ = D by Lemma 2. Moreover, it follows from (C8) that

[A,B] = 0 =⇒ B∗
λ(A⊗B) = µ(A⊗B), (C10)

and since [D(A),D(B)] = 0 for all A and B, it follows that (C9) indeed holds.
Now we show Bλ is invariant under permutation of copies if and only if λ = 0. First, note that Bλ is invariant

under permutation of copies if and only if Bλ = γ ◦ Bλ, where γ is the lexicographic swap isomorphism given by

γ(ρ) = SWAPρ SWAP (C11)

for all ρ ∈ Lin(S). Now if λ = 0, then it follows from (C8) that B0 may be written as

B0 =
1

2
(µ∗ + γ ◦ µ∗), (C12)

which, together with the fact that γ ◦ γ = I, implies B0 = γ ◦ B0. Thus, B0 is invariant under permutation of copies.
For the converse, suppose Bλ is invariant under permutation of copies. Since Bλ may be written as

Bλ =
1

2
(µ∗ + γ ◦ µ∗) + iλ(µ∗ − γ ◦ µ∗), (C13)

the equation Bλ = γ ◦ Bλ implies

iλ(µ∗ − γ ◦ µ∗) = iλ(γ ◦ µ∗ − µ∗), (C14)

which is equivalent to the condition

λ[A,B] = λ[B,A] (C15)

for all A,B, which holds if and only if λ = 0 for a quantum system S of dimension d > 1. �
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Appendix D: Proof of Equation (11), the spectral affine decomposition of virtual broadcasting

The Choi operator [2] of the canonical broadcasting map

B(ρ) =
1

2
{ρ⊗ I, SWAP} ∀ρ ∈ Lin(S) (7)

is given by

C(B) := (B ⊗ I)(Ω) , (D1)

where Ω :=
∑

i,j |ii〉〈jj| ≡
∑

i,j |i〉〈j| ⊗ |i〉〈j|. This can be explicitly computed as

C(B) =
∑

i,j

1

2

{

|i〉〈j| ⊗ I, SWAP
}

⊗ |i〉〈j|

=
1

2

∑

i,j

(

(

(|i〉〈j| ⊗ I)SWAP
)

⊗ |i〉〈j| +
(

SWAP(|i〉〈j| ⊗ I)
)

⊗ |i〉〈j|
)

=
1

2

∑

i,j

(

(

SWAP(I ⊗ |i〉〈j|)
)

⊗ |i〉〈j| +
(

(I ⊗ |i〉〈j|)SWAP
)

⊗ |i〉〈j|
)

=
1

2

∑

i,j

(

(SWAP12 ⊗ I3)(I1 ⊗ |ii〉〈jj|) + (I1 ⊗ |ii〉〈jj|)(SWAP12 ⊗ I3)
)

=
1

2

{

SWAP12 ⊗ I3, I1 ⊗ Ω23

}

, (D2)

where the property (A ⊗B)SWAP = SWAP(B ⊗A) was used in the third equality. In the above equation, indices have
been included to identify the appropriate tensor factor for additional clarity; namely, spaces labeled “1” and “2”
represent the output of B, while “3” represents the input. It then follows that

C(B) = B̂+ − B̂−, (D3)

where

B̂± = (Π± ⊗ I3)(I1 ⊗ Ω23)(Π± ⊗ I3) (D4)

and Π± = 1
2 (I±SWAP). This already shows that C(B) is a difference of two positive operators, so that B is the difference

of two CP maps. However, these CP maps are not trace-preserving, so to obtain genuine quantum channels, we analyze
the operators B̂± in more detail. First, note that similar calculations yield the identities

B̂+B̂+ =
d+ 1

2
B̂+ B̂−B̂− =

d− 1

2
B̂− B̂+B̂− = 0 , (D5)

which implies B± := 2
d±1 B̂

± are both orthogonal projectors. It then follows that

C(B) =
d+ 1

2
B+ − d− 1

2
B− (D6)

is the spectral decomposition of C(B) into its positive and negative eigenspaces. Moreover,

TrS1S2
[B±] = I3 , (D7)

which, by the fact that a linear map E : Lin(Sin) → Lin(Sout) is trace-preserving if and only if TrSout
[C(E)] = Iin,

guarantees the B± are the Choi operators of quantum channels B±. Therefore, we set B± : Lin(S) → Lin(S1S2) to be
the quantum channels given by the inverse of the Choi isomorphism applied to B±, i.e.,

B±(ρ) := TrS3

[

B±(I12 ⊗ ρT )
]

=
2

d± 1
Π±(I ⊗ ρ)Π± ∀ρ ∈ Lin(S), (D8)

where ρT denotes the transpose of ρ in the standard basis. Thus, B+ is precisely the universal optimal quantum
cloner [3] and B− is the universal anti-symmetrizer. By a calculation similar to that of the above calculation for C(B),
we find

C(B±) =
2

d± 1
B̂±, (D9)
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which together with (D3) yields

C(B) =
d+ 1

2
C(B+) − d− 1

2
C(B−). (D10)

The injectivity of the Choi isomorphism then yields the equality

B =
d+ 1

2
B+ − d− 1

2
B−, (D11)

which is exactly Eq. (11). �

We remark that the decomposition in Eq. (11)/(D11) immediately suggests a possible strategy to physically estimate
the expectation value of any observable on any state, under the action of the map B, even though the latter is
unphysical. This is because, by linearity, any expectation value Tr[B(ρ) (O1 ⊗O2)] is equal to a linear combination of
the expectation values Tr[B+(ρ) (O1 ⊗O2)] and Tr[B−(ρ) (O1 ⊗O2)], each of which can be obtained via the action of
physical quantum channels, namely, the maps B±. This idea was proposed in Ref. [4], which also presented a simple
optical implementation for the case d = 2.

Appendix E: Proof of Theorem 2

Using the notation from Appendix D, we now compute the diamond norm ‖B‖⋄ of the canonical broadcasting map
B. First, we have

‖B‖⋄ ≥
1

d

∥

∥C(B)
∥

∥

1

=
1

d

(

d+ 1

2
Tr[B+] +

d− 1

2
Tr[B−]

)

=
1

d

(

d(d+ 1)

2
+
d(d− 1)

2

)

= d . (E1)

The first inequality follows from the definition of the diamond norm

‖L‖⋄ := max
ω

‖(I3 ⊗ L)(ω)‖1 (9)

for any Hermitian-preserving map L : Lin(S1) → Lin(S2) as a maximization over bipartite states, one of which is
1
d
Ω = 1

d

∑d

i,j=1 |i〉〈j| ⊗ |i〉〈j|. The first equality follows from the spectral decomposition (D6) into the mutually

perpendicular positive and negative operators d+1
2 B+ and − d−1

2 B− together with the fact that the trace norm equals
the sum of the singular values, which are the absolute values of the eigenvalues in this case. The second equality
follows from (D7).

On the other hand, Theorem 3 of Ref. [5] states that given a Hermitian-preserving linear map L proportional to a
HPTP map (i.e., L∗(I) ∝ I), its diamond norm can be computed as

‖L‖⋄ = min{λ+ + λ−} , (E2)

where the minimum is taken over all pairs of non-negative real numbers λ+, λ− ≥ 0 such that there exist two CPTP
maps E+ and E− satisfying L = λ+E+ − λ−E−. The decomposition (D11) together with (E2) then yields

‖B‖⋄ ≤ d+ 1

2
+
d− 1

2
= d . (E3)

Therefore, ‖B‖⋄ = d.
Now let E be an arbitrary CPTP linear map. By invoking the reverse triangle inequality, we have

‖B − E‖⋄ ≥
∣

∣

∣
‖B‖⋄ − ‖E‖⋄

∣

∣

∣
= d− 1 (E4)
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where the equality follows from the fact that the diamond norm of a CPTP map equals 1. Theorem 2 is then proved
once we show that the above lower bound ‖B − E‖⋄ ≥ d− 1 is achieved if and only if E = B+. Indeed,

‖B − B+‖⋄ =
d− 1

2
‖B+ − B−‖⋄ ≤ d− 1

2

(

‖B+‖⋄ + ‖B−‖⋄
)

= d− 1 (E5)

by the triangle inequality and since the diamond norm of a CPTP map is 1. This together with (E4) proves ‖B−B+‖⋄ =
d− 1, so that B+ achieves the lower bound given by (E4).

Conversely, suppose E is a CPTP map such that ‖B − E‖⋄ = d − 1, and let E± be the maps given by E±(ρ) =
Π±E(ρ)Π± for all ρ. Momentarily setting

Y ± = C

(

d± 1

2
B± ∓ E±

)

, (E6)

we then have

d− 1 = ‖B − E‖⋄
≥ ‖B − E+ − E−‖⋄

≥ 1

d

(

‖Y + − Y −‖1
)

=
1

d

(

‖Y +‖1 + ‖Y −‖1
)

=
1

d

(

‖Y +‖1 + Tr[Y −]
)

≥
∣

∣

∣

∣

d+ 1

2
− 1

d
Tr
[

E+(I)
]

∣

∣

∣

∣

+
d− 1

2
+

1

d
Tr
[

E−(I)
]

≥ d+ 1

2
− 1 +

d− 1

2
+ Tr

[

E−

(

I

d

)]

= d− 1 + Tr

[

E−

(

I

d

)]

≥ d− 1 . (E7)

The first inequality in (E7) in follows from the contractivity of the diamond norm under CPTP post-processing, i.e.,
‖L‖⋄ ≥ ‖Φ ◦ L‖⋄ for all HP L and all channels Φ, and taking in particular the pinching post-processing Φ(ρ) :=
Π+ρΠ+ + Π−ρΠ−, which satisfies Φ ◦ (B−E) = B−E+ −E−. The second equality follows from the fact that Y + and
Y − have mutually orthogonal supports. The third equality follows from the fact that Y − is a positive operator so that
the trace norm equals the trace. The third inequality follows from the reverse triangle inequality and since C(E+) is
positive. As for the last two inequalities, we used the fact that both E+ and E− are trace-non-increasing completely
positive linear maps. Hence, for any channel E saturating the lower bound (E4), it must be that Tr[E−(I/d)] = 0,
i.e., E− = 0, or equivalently, E(ρ) = E+(ρ) ≡ Π+E(ρ)Π+ for all ρ ∈ St(S).

Using this fact, it is possible to see that, for any E saturating the lower bound, we have

(B − E)(ρ) = Π+
(

I ⊗ ρ− E(ρ)
)

Π+ − d− 1

2
B−(ρ) , (E8)

for all ρ. Hence, the difference B − E separates into two orthogonal blocks, so that

‖B − E‖⋄ =

∥

∥

∥

∥

d+ 1

2
B+ − E

∥

∥

∥

∥

⋄

+
d− 1

2
, (E9)

since ‖B−‖⋄ = 1. Thus, any channel E saturating the bound ‖B − E‖⋄ = d− 1 must also satisfy

∥

∥

∥

∥

d+ 1

2
B+ − E

∥

∥

∥

∥

⋄

=
d− 1

2
. (E10)

Since ‖E‖⋄ = 1, as a consequence of the (conditions for saturation of the) reverse triangle inequality, we conclude
that E = B+. �
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Appendix F: Hermitian operator-valued measures

The definition of an HOVM provided in our Letter in the finite-outcome case can be generalized to arbitrary
measurable spaces as follows. Let S be a quantum system with underlying finite-dimensional Hilbert space H and let
(X, σ(X)) be a measurable space, where X denotes the underlying set of the measurable space and σ(X) is a σ-algebra of
measurable subsets of X. Mimicking the definition of a POVM as in Ref. [6] and that of a signed measure as in Ref. [7],
a finite Hermitian operator-valued measure (HOVM) on (X, σ(X)) for S is a function M : σ(X) → Herm(S) mapping
measurable subsets B ∈ σ(X) into Hermitian operators M(B) satisfying the normalization condition M(X) = I,
the finiteness condition ‖M(B)‖ < ∞ for all B ∈ σ(X), and the countable disjoint sum condition M (

⋃∞
n=1Bn) =

∑∞
n=1M(Bn) for any countable family {Bn} of pairwise disjoint Bn ∈ σ(X). Given such an HOVM M and a virtual

state ρ, the assignment sending B ∈ σ(X) to µM (B) := Tr
[

ρM(B)
]

defines a finite signed measure µM on (X, σ(X)).
One way to construct an HOVM is by specifying its density with respect to an ordinary probability measure as

follows. Let µ be a probability measure on (X, σ(X)) and let M : x ∈ X 7→ Mx ∈ Herm(S) be an integrable function
in the sense that the function sending x ∈ X to 〈v|Mx|w〉 is µ-integrable for all v, w ∈ H. Then for each B ∈ σ(X),
setting M(B) :=

∫

B
µ(dx)Mx defines an HOVM in the sense above (there is a slight abuse of notation here since M

is used as both the integrable function and the induced HOVM).
The preceding construction is precisely what is used in the first virtual M&P protocol in this Letter. Namely, the

measurable space (X, σ(X)) is the Borel space obtained from the topological space of orthogonal rank-one projections
in S (which can be thought of as the complex projective space CPd−1 [8]). We equip (X, σ(X)) with the probability
measure given by the pushforward of the Haar measure on the compact Lie group U of unitary operators on H (the
Haar measure on a compact Lie group is the unique normalized measure that is left invariant under the left action
of the group on itself by multiplication). More precisely, given any fixed unit length vector |v〉 ∈ H, let πv be the
(surjective) measurable function sending a unitary U ∈ U to the orthogonal rank-one projector πv(U) := U |v〉〈v|U †.
The pushforward measure on (X, σ(X)) is then given by µ(B) = µH(π−1

v (B)), where µH is the Haar measure on U. The
probability measure µ on (X, σ(X)) is itself invariant under the adjoint action of U in the sense that µ(UBU †) = µ(B)
for all B ∈ σ(X) and U ∈ U (it is the typical probability measure used to generate Haar random pure states [8]).

Meanwhile, the integrable function M : X → Herm(S) is given by sending a rank-one projector ψ to the Hermitian
operator Mψ = d

2

[

(d + 2)ψ − I
]

. The function M is indeed integrable because for every |v〉, |w〉 ∈ H, the function

sending ψ ∈ X to d
2

[

(d + 2)〈v|ψ|w〉 − 〈v|w〉
]

is a bounded and continuous function on a compact space. Therefore,

the assignment sending B ∈ σ(X) to M(B) :=
∫

B
µ(dψ)Mψ defines the HOVM used in the first M&P protocol of this

Letter, where dψ is used as a shorthand for µ(dψ).

Appendix G: Proof of Theorem 3

To prove Theorem 3, it is convenient to use the Jamio lkowski representation [9]. For a given linear map L :
Lin(Sin) → Lin(Sout), the Jamio lkowski operator of L is the operator J(L) ∈ Lin(SinSout) defined by

J(L) := (Iin ⊗ L)(SWAPin,in) , (G1)

where SWAPin,in is the swap operator on two identical copies of system Sin. For the canonical broadcasting map B, the
Jamio lkowski operator of B is given by

J(B) =
1

2

{

SWAP12 ⊗ I3 , I1 ⊗ SWAP23

}

, (G2)

where we have used number subscripts to denote the corresponding tensor factor.
Now let M be the virtual M&P protocol given by

M(ρ) =

∫

Tr[Mψ ρ] ρψ ⊗ ρψ dψ ∀ρ ∈ Lin(S). (G3)

Defining a := d+ 2, the Jamio lkowski operator of M is given by

J(M) =
d

8

(

a3J3 − a2J2 + aJ1 − J0
)

, (G4)

where

J3 =

∫

ψ ⊗ ψ ⊗ ψ dψ
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J2 =

∫

(I ⊗ ψ ⊗ ψ + ψ ⊗ I ⊗ ψ + ψ ⊗ ψ ⊗ I) dψ

J1 =

∫

(ψ ⊗ I ⊗ I + I ⊗ ψ ⊗ I + I ⊗ I ⊗ ψ) dψ

J0 = I ⊗ I ⊗ I. (G5)

To compute the various Ji, we recall the identity

(

d+M − 1

M

)
∫

ψ⊗M dψ =
1

M !

∑

π∈SM

U (M)
π , (G6)

which comes from combining Eq. (3) and the equation before Eq. (21) in Ref. [10]. Here, SM is the symmet-

ric/permutation group on the set {1, . . . ,M} and U
(M)
π is its unitary representation as acting on permuting the tensor

factors of H⊗ · · · ⊗ H by that same permutation. Setting γij := SWAPij as the single permutation swapping factors i
and j, and setting M to be 1, 2, 3, we obtain the relations

∫

ψ dψ =
I

d
, (G7)

∫

ψ ⊗ ψ dψ =
1

d(d+ 1)
(I1 ⊗ I2 + γ12) , (G8)

and
∫

ψ ⊗ ψ ⊗ ψ dψ =
1

d(d+ 1)(d+ 2)
(γodd + γeven), (G9)

where

γodd = γ12 ⊗ I3 + I1 ⊗ γ23 + γ13 ⊗ I2

γeven = (γ12 ⊗ I3) (γ12 ⊗ I3 + I1 ⊗ γ23 + γ13 ⊗ I2) (G10)

are the terms coming from the odd and even permutations of S3, respectively. Note that γ13 ⊗ I2 is short-hand
notation for the operator

γ13 ⊗ I2 := (γ12 ⊗ I3)(I1 ⊗ γ23)(γ12 ⊗ I3). (G11)

Inserting Eqs. (G7) and (G8) into Eq. (G5) yields

J2 = I1 ⊗
(
∫

ψ ⊗ ψ dψ

)

+ (γ12 ⊗ I3)

(

I1 ⊗
∫

ψ ⊗ ψ dψ

)

(γ12 ⊗ I3) +

(
∫

ψ ⊗ ψ dψ

)

⊗ I3

=
1

d(d + 1)

(

3 I1 ⊗ I2 ⊗ I3 + γodd
)

(G12)

by Eq. (G11) and

J1 =
3

d
I1 ⊗ I2 ⊗ I3. (G13)

Combining these with Eq. (G9) and plugging in the results into Eq. (G4) yields

J(M) =
d

8

(

a3

d(d+ 1)(d+ 2)
(γodd + γeven) − a2

d(d+ 1)

(

3I123 + γodd
)

+
3a

d
I123 − I123

)

=

[

a3

8(d+ 1)(d+ 2)

]

(γeven − I123) +

[

a3

8(d+ 1)(d+ 2)
− a2

8(d+ 1)

]

γodd

+

[

a3

8(d+ 1)(d+ 2)
− 3a2

8(d+ 1)
+

3a

8
− d

8

]

I123, (G14)
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where I123 := I1 ⊗ I2 ⊗ I3. Now, since Eq. (G11) gives

(I1 ⊗ γ23)(γ12 ⊗ I3) = (γ12 ⊗ I3)(γ13 ⊗ I2), (G15)

we have

{γ12 ⊗ I3, I1 ⊗ γ23} = γeven − I123. (G16)

Combining this with the relation a = d+ 2 and simplifying terms in Eq. (G14) yields

J(M) =
(d+ 2)2

8(d+ 1)
{γ12 ⊗ I3, I1 ⊗ γ23} −

[

1

4(d+ 1)

]

I123

=

[

(d+ 2)2

4(d+ 1)

] {γ12 ⊗ I3, I1 ⊗ γ23}
2

+

[

1 − (d+ 2)2

4(d+ 1)

]

I1 ⊗ I2 ⊗ I3
d2

. (G17)

Recalling that J(B) = {γ12 ⊗ I3 , I1 ⊗ γ23}/2 and noting that the virtual M&P protocal corresponding to the
completely depolarizing channel M′ given by

M′(ρ) = Tr[ρ]

(

I

d
⊗ I

d

)

∀ρ ∈ Lin(S). (G18)

has Jamio lkowski operator J(M′) = (I1 ⊗ I2 ⊗ I3)/d2, we then obtain the identity

J(M) =
(d+ 2)2

4(d+ 1)
J(B) +

[

1 − (d+ 2)2

4(d+ 1)

]

J(M′) . (G19)

Solving for J(B) then yields

J(B) =

J(M) +

[

(d+2)2

4(d+1) − 1

]

J(M′)

(d+2)2

4(d+1)

= pJ(M) + (1 − p)J(M′) = J
(

pM + (1 − p)M′
)

, p :=
4(d+ 1)

(d+ 2)2
, (G20)

where linearity of the Jamio lkowski isomorphism was used. The injectivity of the Jamio lkowski isomorphism then
yields the equality B = pM + (1 − p)M′, thus concluding the proof. �

Appendix H: The broadcasting condition for state over time functions

We recall that the broadcasting condition for a state over time function ⋆ is the assumption that for every (E , ρ),
there exists a broadcasting map B such that

E ⋆ ρ = (I ⊗ E)(B(ρ). (H1)

In this appendix, we show that the broadcasting condition for a quantum state over time can be derived as a
consequence of consistency with probabilistic mixtures of states and consistency with post-processing via arbitrary
quantum channels. We also give a more operational interpretation in terms of the Heisenberg picture.

First, a state over time function ⋆ is said to be convex-linear whenever

E ⋆
(

∑

i

piρi

)

=
∑

i

pi E ⋆ ρi, (H2)

for all convex combinations
∑

i pi ρi, where (ρi)i is a finite collection of states and (pi)i is a probability distribution.
Second, a state over time function ⋆ is said to be consistent with post-processing whenever

(F ◦ E) ⋆ ρ = (I ⊗ F)(E ⋆ ρ) (H3)

for all quantum channels E , F , and for all states ρ.
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Proposition 3 If a state over time function ⋆ is convex linear and consistent with post-processing, then it satisfies

the broadcasting condition.

Proof Setting F = E and E = I in the post-processing condition (H3) yields E ⋆ ρ = (I ⊗ E)(I ⋆ ρ). The statement
then follows once we show that the map B given by B(ρ) = I ⋆ ρ is a broadcasting map. Indeed, B is convex-linear
by (H2), and it also satisfies TrS1

◦ B = TrS2
◦ B = I by the marginal condition

TrS2
[E ⋆ ρ] = ρ and TrS1

[E ⋆ ρ] = E(ρ). (17)

for states over time. Hence, B is a broadcasting map. �

We now provide a more operational alternative to the post-processing axiom for states over time. Namely, a state
over time function ⋆ is said to be consistent with the Heisenberg picture whenever

TrS2

[

(

I ⊗F∗(Pi)
)

(E ⋆ ρ)
]

= TrS2

[

(I ⊗ Pi)
(

(F ◦ E) ⋆ ρ
)

]

(H4)

for all i, every state ρ, every POVM (Pi)i, and every pair of composable channels E followed by F . Here, F∗ is the
Hilbert–Schmidt adjoint of F .

Condition (H4) can be justified on physical terms by considering the following measurement scheme on the state
over time E ⋆ρ. For this, let the first and second factors associated with a state over time correspond to Alice and Bob,
respectively. First, Bob performs a quantum channel F on the virtual state E ⋆ρ, and then measures the output of this
channel with a POVM (Pi). Mathematically, the overall measurement of the channel F and POVM (Pi) is described
by the POVM (F∗(Pi))i. It then becomes natural to expect that the induced state on Alice’s system obtained upon
Bob performing such a measurement (F∗(Pi))i on the second system of the state over time E ⋆ ρ should be equivalent
to Bob performing the measurement (Pi) on the second system of the state over time (F ◦ E) ⋆ ρ. This condition is
mathematically captured by (H4).

Proposition 4 If a state over time function ⋆ is convex linear and consistent with the Heisenberg picture, then it

satisfies the broadcasting condition.

Proof By the arguments of Proposition 3, it suffices to prove the equivalence between (H3) and (H4).
Assume (H3) holds. Then

TrS2

[

(I ⊗F∗(Pi))(E ⋆ ρ)
]

= TrS2

[

(

(I ⊗ F∗)(I† ⊗ P †
i )
)†

(E ⋆ ρ)
]

= TrS2

[

(I ⊗ Pi)
†
(

(I ⊗ F)(E ⋆ ρ)
)

]

= TrS2

[

(I ⊗ Pi)
(

(F ◦ E) ⋆ ρ
)

]

, (H5)

where the first equality follows from the fact that I ⊗ F∗ is Hermitian-preserving, the second equality follows from
the definition of the Hilbert–Schmidt adjoint, and the last equality follows from (H3). This proves that (H3) implies
(H4).

Conversely, suppose (H4) holds. Let A1 ∈ Lin(S1) and A2 ∈ Lin(S2) be arbitrary positive operators. Then

Tr

[

(A1 ⊗A2)
(

(I ⊗ F)(E ⋆ ρ)
)

]

= TrS1

[

(A1 ⊗ I) TrS2

[

(I ⊗A2)
(

(I ⊗ F)(E ⋆ ρ)
)

]

= TrS1

[

(A1 ⊗ I) TrS2

[

(

I ⊗F∗(A2)
)

(E ⋆ ρ)
]

]

= TrS1

[

(A1 ⊗ I) TrS2

[

(I ⊗A2)
(

(F ◦ E) ⋆ ρ
)

]

]

= Tr
[

(A1 ⊗A2)
(

(F ◦ E) ⋆ ρ
)

]

, (H6)

where the first equality holds by properties of the partial trace, the second equality follows from the fact that A2 is
Hermitian and the definition of the Hilbert–Schmidt adjoint, the third equality follows from (H4) and linearity (by
rescaling A2 by its operator norm, one has A2

‖A2‖
≤ I so that it can always be viewed as part of a two-element POVM),
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and the fourth equality follows by the properties of the partial trace. Since (H6) holds for every positive A1, A2, and
because every operator is a linear combination of four positive elements, it follows that

Tr

[

(A1 ⊗A2)
(

(I ⊗ F)(E ⋆ ρ)
)

]

= Tr
[

(A1 ⊗A2)
(

(F ◦ E) ⋆ ρ
)

]

(H7)

for arbitrary A1 ∈ Lin(S1) and A2 ∈ Lin(S2). By the faithfulness of the trace, this is equivalent to (H3), thus
concluding the proof. �
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