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Catalysis refers to the possibility of enabling otherwise inaccessible quantum state transitions by
supplying an auxiliary system, provided that the auxiliary is returned to its initial state at the end of the
protocol. We show that previous studies on catalysis are largely impractical, because even small errors in
the system’s initial state can irreversibly degrade the catalyst. To overcome this limitation, we introduce
“robust catalytic transformations” and explore the fundamental extent of their capabilities. We demonstrate
that robust catalysis is closely tied to the property of resource broadcasting. In particular, in completely
resource nongenerating theories, robust catalysis is possible if and only if resource broadcasting is possible.
We develop a no-go theorem under a set of general axioms, demonstrating that robust catalysis is
unattainable for a broad class of quantum resource theories. However, surprisingly, we also identify
thermodynamical scenarios where maximal robust catalytic advantage can be achieved. Our approach
clarifies the practical prospects of catalytic advantage for a wide range of quantum resources, including
entanglement, coherence, thermodynamics, nonstabilizerness, and imaginarity.
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Introduction—The preparation of quantum states con-
stitutes a central task of quantum information processing.
To this end, the ability to couple a quantum system to
additional auxiliaries provides a way to activate fundamen-
tal performance advantages that are otherwise unattainable.
One obvious reason is that auxiliaries may inject extra
quantum resources, such as energy, entanglement, or
correlations. A particularly intriguing scenario is when
the advantages can be reaped even if the auxiliary system is
used catalytically, akin to those of chemical processes,
where the final state of the auxiliary system is identical to
its initial state [1]. This is interesting since it means that a
one-off investment in the preparation of such catalysts
provides a long-term, sustainable advantage.
Catalysis has proven to be surprisingly useful across

various fields [2,3]. Classical catalytic computation [4–6]
led to unexpected space-efficient algorithms and a space-
time trade-off [7–9], while quantum catalysis enables
efficient quantum circuit compilations [10–16], including
the seminal Cirac-Zoller gate [17,18]. Catalysts also
enhance quantum thermal machines [19–23], without
consuming additional resources.

Beyond their practical value, it is inherently interesting
and puzzling that the mere presence of a catalyst can yield
substantial advantages. To rigorously understand these
gains, one must first establish the fundamental limits of
what is achievable without catalysts. Quantum resource
theories [24] provide a powerful, unified framework for this
purpose, allowing systematic analysis of resources such as
entanglement [25], coherence [26], and nonstabilizerness
[27]. By defining a clear dichotomy between free and
infeasible operations, resource theories facilitate precise
comparisons between noncatalytic and catalytic capabil-
ities for a given task. Since the initial example of enhancing
entanglement manipulation [1], catalytic transformations
have been shown to convert the majorization relations into
trumping relations characterized by a set of inequalities
[28–31], relate one-shot to asymptotic transformations
[32–35], spontaneously break symmetry [36], and even
enable arbitrary amplification of resources related to
sensitivity in quantum metrology [37–41].
To this day, catalytic advantages have been demonstrated

almost exclusively under idealized, noise-free conditions.
Practical catalytic advantage, however, critically depends
on resilience to implementation errors. Progress has been
impeded by the fact that even the smallest deviations in
the catalyst output state can compromise the catalytic
paradigm. This vulnerability is most evident in
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embezzlement [42–44], where an arbitrarily small change
in the catalyst state can enable pathological behavior,
making any transformation catalytically possible.
There are three primary sources of errors in catalytic

protocols (see Fig. 1): (i) errors in the implementation of the
channel Λ, which can only be mitigated in a limited sense;
(ii) errors in preparing the system state ρ; and (iii) errors in
preparing the catalyst state τ. The third case is easily
managed, since catalyst preparation is a one-off occurrence:
the data-processing inequality ensures that the final catalyst
error remains bounded by the initial error. However, when
fresh errors occur in preparing system states ρϵ during
repeated use of a catalyst, those errors can accumulate,
causing the catalyst to degrade. In the worst case, the
accumulated error on the catalyst can grow linearly with the
number of repetitions. Thus, catalyst degradation due to
preparation errors in the system is the more serious issue
and will be the focus of this Letter.
A potential way to address system preparation errors

would be to consider catalysis not only on the level of
specific state transformations on the system, but catalytic
implementations of channels [45–48]. In fact, most exam-
ples in quantum computing [4–16,18] satisfy this notion as
they focus on compiling (unitary) channels rather than
merely state transformations. Such channels can also be
viewed as a special case of catalysis in dynamical resource
theories [49–55], but systematic investigation in this
direction remains largely unexplored [2,3]. However, cata-
lytic channels have insofar been perceived as an overly
conservative way of characterizing catalytic advantage: the
preservation of the catalyst regardless of input state means
that one cannot make any strategic choices of fine-tuning
the catalyst according to knowledge of the input.

Our first result identifies catalytic channels as the only
form of catalysis robust to state-preparation noise, even
when the noise is assumed to be arbitrarily small. In other
words, all other catalytic transformations are fragile in
realistic settings. Therefore, it becomes important to
reexamine catalytic advantages through the lens of catalytic
channels. We proceed to identify general axioms that
establish a fundamental no-go theorem for robust catalytic
advantage; this result encompasses prominent resource
theories such as athermality [56,57] and coherence [26].
Nevertheless, we also show that robust catalysis is not
entirely precluded. We formulate a theory in the context of
thermodynamics that maximally exhibits a robust catalytic
advantage. In this case, we demonstrate that catalytic state-
preparation channels are fully characterized by a single
resource measure, thereby enabling practical and signifi-
cant catalytic benefits.
We have developed two novel techniques to derive these

results. First, we establish the precise form of equivalence
between robust catalysis and resource broadcasting
[58–62], the latter being a generalization of quantum state
broadcasting [63–68]. Consequently, all our results (no-go
and constructive findings) also apply to resource broad-
casting. Furthermore, we introduce a framework to analyze
how different systems compose in resource theories and
identify the extreme cases. This compositional structure has
been almost never explicitly explored in prior work, yet
remarkably we find that the potential for catalytic channel
advantage is governed by it rather than by the specifics of
the resources themselves. We anticipate both techniques
will be of independent interest to the broader resource
theory community.
Definitions and basic properties—We denote quantum

systems by X, Y, the set of density matrices on X by DX,
and the set of quantum channels [trace-preserving com-
pletely positive (CPTP) linear maps] from X to Y by
CPTPX→Y . A “catalytic transformation” is a process where
a channel Λ∈CPTPSC→S0C is applied to the system and the
catalyst ρS ⊗ τC and preserves the catalyst state
TrS0 ½ΛðρS ⊗ τCÞ� ¼ τC. For generality, we consider corre-
lated catalysis [2,3], but most of our results apply to strict
catalyses where a stronger condition ΛðρS ⊗ τCÞ ¼ ρ̃S0 ⊗
τC must hold. We define a catalytic transformation to be
robust (against ϵ initial-state-preparation noise) if, for all
system states σS with kσS − ρSk1 ≤ ϵ, the catalyst is
recovered exactly, i.e. TrS0 ½ΛðσS ⊗ τCÞ� ¼ τC, for a param-
eter ϵ > 0. Note that this definition makes no assumptions
about the system’s state after the process and the robustness
parameter ϵ, capturing the degree of initial-state-prepara-
tion errors, can be arbitrarily small. Finally, we define
“catalytic channels” to be a channel Λ̃ð•SÞ ≔ TrC½Λð•S ⊗
τCÞ� such that the catalyst is preserved for any input state in
S, i.e., TrS0 ½ΛðσS ⊗ τCÞ� ¼ τC for any σS ∈DS. They are
typically studied when the dilation Λ is a unitary operation
[46–48], but here we allow Λ to be any channel. Note that

FIG. 1. Illustrations of noisy catalysis. The top-left quadrant
depicts the ideal scenario, where a catalyst τ facilitates a state
transformation from ρ into ρ0 and is returned exactly to its initial
state. The top-right quadrant represents robust catalysis, where
the catalyst state remains unaffected despite errors in the system
state preparation. The bottom quadrants show how other sources
of errors (catalyst state preparation and channel implementation)
impact the final states.
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catalytic channels are by definition robust for any param-
eter ϵ > 0 [69].
As previously mentioned, we define the robustness as the

exact recovery of the catalyst to prevent embezzlement and
the continual degradation of the catalyst after repeated
usages. In experiments, it would be hard to verify whether
the catalyst is truly identical to its initial state. However, our
definition provides a theoretical framework for catalytic
advantages that would be obtained with advancements in
experimental techniques (i.e., robust catalysis) as opposed
to the ones that are unattainable due to their inherent
fragility. In other words, robustness must be the guiding
principle of a practical catalytic advantage in experiment.
Only catalytic channels are robust catalysis—Let us start

with a central fact that even the minimalistic requirements
set for robust catalysis single out catalytic channels.
Central fact: For any initial state ρS and any ϵ > 0, a

catalytic transformation with a channel Λ∈CPTPSC→S0C
and the catalyst τC is robust against ϵ initial-state-
preparation noise if and only if the resulting channel
Λ̃ð•SÞ ≔ TrC½Λð•S ⊗ τCÞ� is a catalytic channel.
The proof idea is that the robustness condition restricts

the channel action on a full-dimensional subset of inputs
(full argument in EndMatter). This central fact clarifies that
all forms of catalysis, other than catalytic channels, are
inevitably fine-tuned to a very specific initial state of the
system and risk degrading the catalyst whenever the
system’s state is not prepared with strictly infinite preci-
sion. It also ties the robustness of catalysis in resource
theories of states to catalysis in resource theories of
channels, in which catalytic channels are included.
The central fact prompts us to examine whether catalytic

channels provide anymeaningful advantage. Apart from the
clever yet serendipitous findings in circuit compilation
[10–16,18], two universal mechanisms for catalytic channel
advantages are known. First, populations of the catalyst state
can always be accessed catalytically and used as a random-
ness source for implementing convex combinations of
operations [46–48]. Moreover, when the channel that resets
the catalyst state is available, any catalytic transformation
can be made robust by applying the reset channel at the end;
such channels are found to be useful in thermodynamic
resource theories [72–75]. Nevertheless, catalytic channels
extend beyond these two scenarios, and the true extent of the
robust catalytic advantage warrants further scrutiny.
Technical tools: Resource theories, compositions, and

resource broadcasting—For the systematic study of robust
catalytic advantages, we work in the framework of resource
theories. A resource theory is characterized by two ele-
ments: a set of free states S and free operations O. System
subscripts specify the system, e.g., SX for free states on X
and OX→Y for free operations. We assume free states are a
fixed property of each system; for instance, in the athe-
rmality theory, qubits with different Hamiltonians are in
distinct systems. To focus on advantages beyond those

already studied, we consider free operations that are already
convex and thus not trivially enhanced by catalysts. Hence,
we make the following basic assumptions about the set of
free states and operations: (A1) ρA ⊗ ρB ∈SAB whenever
ρA ∈SA and ρB ∈SB; (A2) if ρAB ∈SAB, then
TrB½ρAB�∈SA and TrA½ρAB�∈SB; (A3) SX is a convex
set for any system X; and (A4) there always exists a full-
rank state γ ∈S. The first three are often used as basic
assumptions, while (A4) is justified in Supplemental
Material, Sec. IV D [76]. Nevertheless, they cover a wide
range of quantum resource theories, including those of
entanglement, athermality, coherence, asymmetry, and
nonstabilizerness. Unless otherwise specified, we consider
completely resource nongenerating (CRNG) theories,
where the free operations include all channels Λ ∈
CPTPA→B, such that

ðidA0 ⊗ ΛÞðγA0AÞ∈SA0B; ð1Þ

for any system A0 and all γA0A ∈SA0A. Here, idA0 ∈
CPTPA0→A0 denotes the identity channel. CRNG operations
are the full set of channels that cannot generate any
resource from free states, even when acting on subsystems.
Allowing free operations beyond CRNG operations often
trivializes the theory by enabling arbitrary state trans-
formations. Well-known examples of CRNG operations
include separable operations for entanglement [85,86],
Gibbs-preserving operations for athermality [87], and
covariant operations for asymmetry [88,89].
For catalytic channels to provide advantage in CRNG

resource theories, a dilated channel Λ∈CPTPSC→S0C
that acts on the system and the catalyst must be free, while
the resulting catalytic channel Λ̃∈CPTPS→S0 must not.
Therefore, when considering CRNG free operations, it
suffices to find a free state γS such that Λ̃ðγSÞ ∉ SS0 .
Conversely, if all catalytic channels Λ̃ map SS to SS0 , then
no advantage can be gained robustly [90]. This property has
also been studied in terms of “resource broadcasting”
[58–62], where a free operation B∈OA→AB may “broad-
cast” some resource from A to another system B, i.e.,
TrA½BðρAÞ� ∉ SB, while leaving A fully intact, i.e.,
such that TrB½BðρAÞ� ¼ ρA. The outcome of a catalytic
channel applied to a free system state γS ∈SS is
therefore closely related to resource broadcasting, as one
wants Λ̃ðγSÞ ¼ TrC½ΛðγS ⊗ τCÞ� ∉ SS0 .
Theorem 1—For any CRNG resource theory that sat-

isfies Assumptions (A1)–(A3), the existence of a catalytic
channel Λ̃ ∉ OS→S0 is equivalent to the existence of
resource broadcasting.
Theorem 1 is proven in the End Matter; here we only

comment about a subtle difference between catalytic
channels and resource broadcasting. In real experimental
setups, implementing the broadcasting channel B∈OC→S0C
requires an auxiliary state γS0 ∈SS0 , which is assumed to be
fixed. Unlike catalytic channels, the broadcasting process
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may fail to preserve the original state τC when the auxiliary
state γS0 is somehow perturbed.
We now address the central question: exactly when do

catalytic channels offer a net advantage? It turns out that the
answer hinges on an additional degree of freedom that has
not been explicitly considered before: how the composite-
free state set SAB is related to SA and SB. In typical resource
theories, this composition is usually defined operationally,
depending on the particular resource at hand. However,
theoretically, we can freely choose any composition
rule as long as it is consistent with the rest of the theory.
Remarkably, we can show that any choice SAB satisfying
Assumptions (A1)–(A3) must lie between minimal
and maximal compositions, denoted SA ⊗min SB and
SA ⊗max SB, which, for given SA and SB, are explicitly
written as

SA ⊗min SB ≔ convfρA ⊗ ρBjρA ∈SA; ρB ∈SBg; ð2Þ
SA ⊗max SB ≔ fρABjTrB½ρAB�∈SA;TrA½ρAB�∈SBg: ð3Þ

Equations (2) and (3) evoke the tensor product of convex
cones (explained in End Matter) and encapsulate the limits
of allowed correlations in free states. For instance, the
resource theories of athermality [56,57], where the tensor
product of subsystem Gibbs states is a free state, and
coherence [26], where diagonal states are free, follow the
minimal composition rule. On the other hand, the maximal
composition of athermality includes the thermofield double
state (also known as the two-mode squeezed vacuum state)
[91]—a pure entangled state with Gibbs state marginals.
While SA ⊗max SB may appear contrived, it can be under-
stood as a theory concerned with local, rather than global,
resources. These extremal compositions streamline the
analysis by making the set of CRNG operations identical
to resource nongenerating (RNG) operations, eliminating
the need to consider resource generating effects on larger
Hilbert spaces as in Eq. (1) (see Lemma 4 in Supplemental
Material [76]). We note that Ref. [92] defines SA ⊗min SB
as their composition rule in the context of resource
censorship.
When robust catalytic advantage is impossible—With

this newfound categorization of compositions, we establish
a no-go theorem for robust catalytic advantages when the
composition restricts correlations between the partitions of
free states, i.e., when the free state set is minimal.
Theorem 2—If a convex CRNG resource theory has

minimal composition, it allows neither resource broad-
casting nor any robust catalytic advantage.
The proof boils down to deriving an inequality resem-

bling strong superadditivity, where a composite state’s
resource exceeds the sum of its marginal resources. This
rules out resource broadcasting; see Supplemental Material,
Sec. III [76] for full proof. While no broadcasting was
previously established specifically for theories of asym-
metry under connected Lie groups [59,60] and stabilizer

operations [62], our result is the first known sufficient
condition guaranteeing no broadcasting across generic
classes of resource theories. Furthermore, we demonstrate
many significant theories beyond the minimal composition
class also lack robust catalytic advantage and disallow
resource broadcasting (see End Matter for a list and
Supplemental Material [76] for proofs).
When robust catalytic advantages are possible—

Surprisingly, taking an alternative composition rule may
enable useful catalytic channels and resource broad-
casting. Consider the theory of local athermality, where
we identify all states that are locally thermal as free
states SSC ¼ fμSCjTrBμSC ¼ γC;TrCμSC ¼ γBg, where γX
denotes the thermal state of system X. Note that this is the
maximal composition SSC ¼ SS ⊗max SC of SS ¼ fγSg
and SC ¼ fγCg, and it may include entangled states, as
long as all the marginals of the state are locally thermal. We
can define an analog of free energy through the max-
relative entropy [93] FmaxðρSÞ ≔ DmaxðρSkγSÞ. Below, we
show that Fmax characterizes the catalytic state-preparation
channels that bring robust catalytic advantages.
Theorem 3—In the local athermality theory, catalytic

measure-and-prepare channels Λ̃ð•SÞ ¼ σSTr½•S� can be
implemented with some catalyst τC if and only if

sup
τC ∈DC

FmaxðτCÞ ≥ FmaxðσSÞ: ð4Þ

We use the properties of Fmax to prove the “only if”
direction, while for the “if” direction we explicitly con-
struct the catalytic channel Λ̃. The full proof of Theorem 3
along with its generalizations and limitations are provided
in Supplemental Material, Sec. V [76]. There, we also show
that the presence of free entangled states in the maximal
composition does not matter: Theorem 3 still holds if one
redefines the composition to exclude all entangled states
from the maximal composition. Here, we offer a few
remarks. First, the dilation Λ∈OSC→SC of the catalytic
channel Λ̃ can be used to construct a resource broadcasting
channel Bð•CÞ ¼ ΛðγS ⊗ •CÞ∈OC→SC with the free state
γS ∈SS. Hence, Theorem 3 also fully characterizes re-
source broadcasting in the local athermality theory.
Additionally, when the smallest eigenvalue of γS is greater
than that of γC, transformations between any states become
feasible as Eq. (4) becomes trivially true, effectively
trivializing the theory. Note that catalytic channels (that
are not measure-and-prepare channels) from ρS to σS may
still exist even when σS violates Eq. (4). Furthermore, we
note that powerful examples of catalytic channels in the
resource theory of imaginarity are found in Refs. [94,95];
see Supplemental Material for discussion [76].
Discussion—We show that catalytic channels are the only

way to achieve catalytic advantage in the presence of
unstructured noise. This result decisively establishes catalytic
channels as the primary focus for future developments
of catalysis, especially in the context of practical,
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noise-affected implementations. We rigorously identify fun-
damental limitations governing the (im)possibility of such
advantages under CRNG operations. In particular, our no-go
theorem shows that practical catalytic advantage cannot be
expected for many CRNG theories.
Our results suggest that the most promising, robust, and

practically significant instances of catalysis should emerge in
non-CRNG frameworks. Finding such catalytic examples in
commonly studied frameworks, e.g., local operations and
classical communication or stabilizer operations, would be
highly interesting and ripe for experimental demonstrations.
Nevertheless, any catalytic advantage within such operation-
ally defined theories is necessarily capped by the limitations
of their corresponding CRNG theories. Moreover, since no
broadcasting for CRNG operations implies no broadcasting
for its subsets, our findings establish a general upper boundon
resource broadcastability in anywell-defined resource theory.
Conversely, observing resource broadcasting within non-
CRNG free operations would indicate robust catalytic ad-
vantage. Another interesting question concerns other types of
advantages that catalytic channels canbring.Beyond resource
advantages such as the ability to implement a nonfree
operation, catalytic channels might provide dimensional
advantages [46], as quantum catalysts could outperform
classical randomness.
Robust catalysis also paves an alternative pathway for

investigating channel catalysis, where a free channel induces
a nonfree one through the assistance of another channel that
functions as a catalyst. Our Letter reveals that catalytic
channels are the result of specific channel catalyses, where
the channel acting as a catalyst is a fixed-outcome preparation
channel. Generic channel catalysis, on the other hand, is not
immediately precluded by our no-go theorems, as demon-
strated in Refs. [45,96] for the entanglement theory. These
examples do not fit our definition of robust catalysis as the
system-catalyst channel is not free; however, they also
represent robust catalytic advantage as the final channel is
attainable only when a catalyst is present, while this advan-
tage is robust under errors in initial state preparation. Hence,
channel catalysis hints at a new potential for robust catalytic
advantages in important theories such as entanglement,
coherence, and nonstabilizerness, despite our result ruling
out the existence of catalytic channels in those theories. We
leave this question for future investigations.
Finally, we identify a hierarchy of composition rules for

free states within resource theories, revealing a spectrum
from the impossibility to the possibility of robust catalysis.
This hierarchy effectively delineates the types of correla-
tions permitted under free operations. We anticipate that
this framework will foster new strategies for extending or
even hybridizing resource theories, offering novel
approaches to exploring complex resource interactions.
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End Matter

Appendix A: Robust catalysis in various resource theories— Table summarizing resource theories with and without
robust catalysis. MIO coherence in the table denotes the resource theory in which maximally incoherent operations are defined as free
operations. PPT entanglement in the table denotes the resource theory in which density matrices with positive partial transpose are
defined as free states.

Robust catalysis and resource broadcasting

Yes No

CRNG resource theories Athermality (T ¼ 0) [97] Athermality (T > 0) [Theorem 2] [98]
Imaginarity [94,95,99] MIO coherence [Theorem 2] [100]

Asymmetry (finite groups) [101] Entanglement [102,103]
Theorem 3 PPT entanglement [104]

Limited subspace theories
(Supplemental Material, Sec. IV D) [76]

nonstabilizerness [62]
Asymmetry (connected Lie groups) [59,60]

Optical nonclassicality [105]

Robust catalysis

Yes No

Non-CRNG resource theories Elementary thermal operations [74,75] Gibbs-preserving covariant operations (T > 0)
(Supplemental Material, Sec. IV B) [76]

Markovian thermal operations [72,73,75] Thermal operations (T > 0) [106]
Unitary operations [46–48]
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Entries in the no-broadcasting column have been shown
to either prohibit broadcasting directly or have a strongly
superadditive monotone in the corresponding references.
The references in the other column contain examples of
robust catalysis.

Generally, it is harder to show the nonexistence of robust
catalysis for non-CRNG operations. Hence, it remains
unknown whether notable theories such as entanglement
under local operations and classical communication or
nonstabilizerness under stabilizer operations exhibit robust
catalysis. However, from their CRNG counterparts, the
possibility of resource broadcasting is already ruled out
(see Fig. 2). It would also be interesting to extend no
broadcasting for theories that are not state based [107].

Appendix B: Strict catalysis and resource
broadcasting—So far, we have focused on catalysis
wherein the catalyst may retain correlations with the
system postoperation. Alternatively, we can define strict
catalysis, where the catalyst must be recovered
uncorrelated, i.e., ΛðρS ⊗ τCÞ ¼ ρ0S0 ⊗ τC. Strict catalysis
has an advantage in the reusability of the catalysts, as
they are recovered independent from the system, but its
catalytic advantage is usually much more limited
compared to the more general correlated catalysis [2,3].
Strict catalysis is defined to be robust against ϵ initial-
state-preparation noise if ΛðσS ⊗ τCÞ ¼ σ0S0 ⊗ τC for all
σS ∈DS such that kσS − ρSk1 ≤ ϵ, where σ0S0 is some
state that depends on σS. Similarly, a strict catalytic
channel is defined as a channel Λ̃ð•SÞ ≔ TrC½Λð•S ⊗ τCÞ�
such that ΛðσS ⊗ τCÞ ¼ Λ̃ðσSÞ ⊗ τC for any σS ∈DS,
and a strict resource broadcasting is defined as a process
where a free operation B∈OA→AB outputs BðρAÞ ¼
ρA ⊗ ρ0B, where ρ0B ∉ SB.
All our theorems apply to the case of strict catalysis and

resource broadcasting. For the central fact and Theorem 1,
we include the strict catalysis and resource broadcasting
cases in the respective proofs. Theorem 2 already forbids
strict robust catalysis and strict resource broadcasting, as
these are specific instances of their correlated counterparts.
Moreover, we show that it is impossible to generate nonfree
strict catalytic channels in any resource theory if the
catalyst state is full rank, even when there exist nonfree

catalytic channels; see Supplemental Material [76] for the
proof. Finally, Theorem 3 holds for strict catalytic channels
and resource broadcastings, as our construction already
recovers the catalyst without correlation.

Appendix C: Proof of the central fact—If a channel
Λ̃ð•SÞ ≔ TrC½Λð•S ⊗ τCÞ� is a catalytic channel, it
implements, in particular, a robust catalysis, for any state
ρS and any robustness parameter ϵ > 0. We thus need to
prove only the converse, and we do it by contradiction.
Suppose that Λ implements a ðρ; ϵÞ-robust catalysis, but
is not a catalytic channel. This means that there exists at
least one state, say ηS, such that

τC ¼ TrS0 ½ΛðρS ⊗ τCÞ� ≠ TrS0 ½ΛðηS ⊗ τCÞ�≕ τ0C: ðC1Þ

Let us then consider the state ρ̃S ≔ ½1 − ϵ=2Þ�
ρS þ ðϵ=2ÞηS. By construction, we have kρ̃S − ρSk1 ¼
kðϵ=2ÞηS − ðϵ=2ÞρSk1 ≤ ϵ. Nevertheless, by linearity,
TrS0 ½Λðρ̃S ⊗ τCÞ� ¼ ½1 − ðϵ=2Þ�τC þ ðϵ=2Þτ0C ≠ τC,
contradicting the assumption that Λ implements an
ϵ-robust catalysis for ρS. The same argument works for
the strict version of robust catalysis, by analyzing
ΛðρS ⊗ τCÞ instead of TrS0 ½ΛðρS ⊗ τCÞ�.
Appendix D: Proof of Theorem 1—Suppose that Λ̃ ∉

OS→S0 is a catalytic channel with a dilation Λ∈OSC→S0C
and a catalyst τC. Then there exists a state γS ∈SS such
that the output ρSC ¼ ΛðγS ⊗ τCÞ satisfies: (1) the
catalytic condition, TrS½ρSC� ¼ τC, and (2) the output on
the system is a nonfree state, TrC½ρSC� ∉ SS0 . Now,
define the channel B∈OC→S0C by Bð•CÞ ¼ ΛðγS ⊗ •CÞ.
This construction makes B a broadcasting channel that
maps τC into ρSC.
For the converse direction, suppose that there exists a

broadcastingmapB∈OC→S0C that broadcasts τC. Then define
the channel Λ ¼ B ∘TrS ∈OSC→S0C which is free by our
second basic assumption that partial traces are also free opera-
tions. Consequently, Λ̃ðρSÞ ¼ TrC½ΛðρS ⊗ τCÞ� becomes a
catalytic channel such that Λ̃ðγSÞ ¼ TrC½BðτCÞ� ∉ SS0 .
The same proof for both directions can be used for strict

catalytic channels and resource broadcasting.

Appendix E: Minimal and maximal composition and
tensor product of convex cones—We begin by reviewing
the minimal and maximal tensor products of convex
cones [108–110], often discussed in the context of
general probabilistic theories [111,112]. First, we define
convex cones and their duals following Refs. [113,114].
Let V be a vector space. A nonempty subset C ⊂ V is a
convex cone if it is convex and closed under positive
scalar multiplication. We also assume that C is closed and
C ∩ ð−CÞ ¼ f0g. Let V� be the set of linear functionals
on V with the duality h; i∶V� × V → R. The dual cone of
C is then given by C� ¼fx�∈V�jhx�;zi≥0 for all z∈Cg.
The minimal and maximal tensor products of two cones
CA and CB are defined as

FIG. 2. The logical relationship between the existence of robust
catalysis (RC) and resource broadcasting (RB). The two-way
relationship between RC and RB for CRNG theories is shown by
Theorem 1. For non-CRNG theories, broadcasting implies robust
catalysis, but not the other way around.
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CA ⊗min CB ≔ convfzA ⊗ zBjzA ∈ CA; zB ∈ CBg; ðE1Þ
CA ⊗max CB ≔ fzjhx� ⊗ y�; zi ≥ 0; x� ∈ C�A; y

� ∈ C�Bg:
ðE2Þ

Consider the case where cones are defined on the space
of linear Hermitian operators acting on Hilbert spaces, with
the duality h; i given by the Hilbert-Schmidt inner product.
We now observe that. for each free state set SA, the
associated cone can be defined as CðSAÞ ¼ ∪λ≥0 λSA.
Then, it follows that CðSAÞ ⊗min CðSBÞ ¼ CðSA ⊗min SBÞ,
i.e., the minimal tensor product is equivalent to the minimal
composition in Eq. (2).
For the maximal counterparts, we have

CðSAÞ ⊗max CðSBÞ ⊂ CðSA ⊗max SBÞ. To see this, note that

choosing x� ¼ TrA ∈ C�ðSAÞ in Eq. (E2) ensures the B
marginal of γAB ∈ CðSAÞ ⊗max CðSBÞ is always in CðSBÞ.
Choosing y� ¼ TrB ∈ C�ðSBÞ implies the same for the A
marginal. The converse of this inclusion does not hold,
in general, as one can check by constructing counter-
examples.
Equipped with minimal and maximal composition rules

for free states, it is tempting to construct minimal and
maximal free operations for given subsystem theories, using
CRNG operations. However, there is no natural inclusion
between CRNGðSA ⊗min SBÞ and CRNGðSA ⊗max SBÞ,
unlike the neat duality between minimal and maximal tensor
products and their dual cones. We leave the problem of
definingminimal andmaximal composite-free operations for
future studies.
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I. SOURCES OF CATALYTIC ERRORS

Any catalytic protocol has three ingredients: the system state 𝐿, the channel ω, and the catalyst 𝑀 (see Fig. 1). We briefly discuss
possible sources of errors in a catalytic protocol, which may cause a degradation in the catalyst. In particular, errors on the catalyst
that would accumulate and increase over time would be those of the most challenging nature, as these directly impact the reusability
of the catalyst.

1. Errors on the initial catalyst 𝑀: A simple computation shows that the catalyst does not degrade upon further iterations.
Intuitively, this can be understood as follows: besides the initial error in catalyst preparation, there are no additional sources
of errors during multiple rounds of catalysis, which use the same catalyst state. In the meantime, the catalytic protocol
stabilizes this catalyst state over time. To be more precise, if the catalyst is initially prepared in a state 𝑀𝐿 , which is 𝑁-away
from the ideal catalyst state 𝑀, then the final state of the catalyst 𝑀↑𝐿 remains at most 𝑁-away from 𝑀 via the data processing
inequality, !!

𝑀
↑

𝐿 ↓ 𝑀

!!
1 = ↔Tr𝑀 [ω(𝐿 ↗ 𝑀𝐿 )] ↓ Tr𝑀 [ω(𝐿 ↗ 𝑀)]↔1 ↘ ↔𝑀𝐿 ↓ 𝑀↔1 ↘ 𝑁 . (S1)

2. Errors on the initial state 𝐿 or the channel ω: These errors are introduced afresh in each iteration, raising the possibility of
error accumulation on the catalyst, despite the ideal protocol having a net-zero e!ect on the catalyst. We include a small
explicit example below for illustration. Conceptually, if one possesses a complete characterization of the errors, e.g. knowing
the exact perturbed input state 𝐿𝐿 , it may still be possible to fine-tune the channel ω𝐿 accordingly such that 𝐿𝐿 and ω𝐿

stabilize the catalyst. However, assuming full knowledge of such errors and the ability to adjust the channel accordingly is
highly impracticable.

Example 1 (Accumulating errors on the catalyst). It su”ces to demonstrate that catalyst continues to degrade after the first round
of catalysis. Consider a qutrit system and a qubit catalyst undergoing a joint unitary evolution. Denote the eigenvalues of the
system and catalyst to be:

𝑂𝑀 = (𝑂1, 𝑂2, 𝑂3), 𝑃𝑁 = (𝑃1, 𝑃2). (S2)

The unitary swaps the eigenstates corresponding to 𝑂1𝑃1 ≃ 𝑂2𝑃2 and 𝑂2𝑃1 ≃ 𝑂3𝑃2. This operation is catalytic whenever
(𝑂1 + 𝑂2)𝑃1 = (𝑂2 + 𝑂3)𝑃2. Such toy examples are useful for illustrations, and have been used, e.g. in Appendix B of [104].

Now, suppose that in the first round, we have a noisy system state 𝑂𝑂 = (𝑂1 ↓ 𝑄, 𝑂2, 𝑂3 + 𝑄) for some 𝑄 > 0. This leads to a final
degraded catalyst 𝑃↑ = (𝑃

↑

1, 𝑃
↑

2), such that

𝑃
↑

1 = 𝑂2𝑃2 + (𝑂3 + 𝑄)𝑃2 + (𝑂3 + 𝑄)𝑃1 = 𝑃1 + 𝑄. (S3)

From normalization, we also have that 𝑃↑2 = 𝑃2 ↓ 𝑄. In other words, the full amount of error 𝑄 has propagated into the catalyst.
Next, suppose that in a second round, we have another noisy system state 𝑂↓𝑂 = (𝑂1 + 𝑄, 𝑂2, 𝑂3 ↓ 𝑄). Under the action of the same
catalytic unitary, the catalyst further degrades into 𝑃𝑁 = (𝑃1, 𝑃2), where

𝑃1 = 𝑂2𝑃
↑

2 + (𝑂3 ↓ 𝑄)𝑃
↑

2 + (𝑂3 ↓ 𝑄)𝑃
↑

1 = 𝑃1 ↓ 𝑄(𝑂2 + 𝑂3 + 𝑃2 + 𝑃1 ↓ 𝑂3)

= 𝑃1 ↓ 𝑄(1 + 𝑂2). (S4)

In summary, the error accumulated almost linearly during two rounds of catalysis, as we anticipated.



Supplemental Materials – 2/8

II. FOR MINIMAL, MAXIMAL, AND SEPARABLE COMPOSITIONS, RESOURCE NON-GENERATING OPERATIONS (RNG)
IS COMPLETELY RESOURCE NON-GENERATING OPERATIONS(CRNG)

Lemma 4. If S𝑃𝑄 is either S𝑃↗minS𝑄, S𝑃↗sepS𝑄, or S𝑃↗maxS𝑄, then RNG = CRNG.

Proof. We first consider the case S𝑃𝑄 = S𝑃↗minS𝑄. For any system 𝑅, a free state 𝑆𝑃𝑅 ⇐ S𝑃𝑅 can be written as 𝑆𝑃𝑅 =∑
𝑆 𝑂𝑆 (𝑆

(𝑆)
𝑃 ↗ 𝑆

(𝑆)
𝑅 ), where 𝑆

(𝑆)
𝑅 are free states for 𝑅. Let ω ⇐ CPTP𝑃⇒𝑃↑ be an RNG channel. Then the extension

ω ↗ id𝑅 (𝑆𝑃𝑅) =
∑
𝑆

𝑂𝑆 (𝑆̃
(𝑆)
𝑃↑ ↗ 𝑆

(𝑆)
𝑅 ), (S5)

where each 𝑆̃
(𝑆)
𝑃↑ = ω(𝑆

(𝑆)
𝑃 ) ⇐ S𝑃↑ . This implies that ω ↗ id𝑅 is an RNG channel and thus ω is a CRNG channel.

Now we prove the case S𝑃𝑄 = S𝑃↗maxS𝑄. Again, let 𝑆𝑃𝑅 ⇐ S𝑃𝑅 be any free state. The extension 𝑆̃𝑃𝑅 = ω ↗ id𝑅 (𝑆𝑃𝑅) is also
free if and only if its reduced states are free. Since ω is an RNG channel, the 𝑇 reduced state Tr𝑅 [𝑆̃] = ω(Tr𝑅 [𝑆𝑃𝑅]) is free. The
𝑅 reduced state Tr𝑃[𝑆̃] = Tr𝑃[𝑆𝑃𝑅] is free because 𝑆𝑃𝑅 ⇐ S𝑃𝑅. Therefore, ω is a CRNG channel.

The proof is very similar for S𝑃𝑄 = S𝑃↗sepS𝑄. The free state 𝑆𝑃𝑅 =
∑

𝑆 𝑂𝑆 (𝑈
(𝑆)
𝑃 ↗ 𝑉

(𝑆)
𝑅 ) for 𝑈 (𝑆)𝑃 ⇐ D𝑃, 𝑉 (𝑆)𝑅 ⇐ D𝑅, 𝑂𝑆 ⇑ 0 for

all 𝑊 and
∑

𝑆 𝑂𝑆𝑈
(𝑆)
𝑃 ⇐ S𝑃,

∑
𝑆 𝑂𝑆𝑉

(𝑆)
𝑅 ⇐ S𝑅. The final state after the extended channel becomes

ω ↗ id𝑅 (𝑆𝑃𝑅) =
∑
𝑆

𝑂𝑆 (𝑈
(𝑆)
𝑃↑ ↗ 𝑉

(𝑆)
𝑅 ), (S6)

where 𝑈
(𝑆)
𝑃↑ ⇐ D𝑃↑ for all 𝑊. Furthermore, since ω is an RNG channel, we have that

∑
𝑆 𝑂𝑆𝑈

(𝑆)
𝑃↑ ⇐ S𝑃↑ . Hence, ω ↗ id𝑅 (𝑆𝑃𝑅) is

separable and its reduced states are free, making it a free state in S𝑃↑ ↗sepS𝑅. ↭

III. PIANI’S THEOREM AND THE PROOF OF THEOREM 2

The proof of Thm. 2 relies mainly on constructing a faithful and strongly super-additive monotone for theories with minimal
composition. To proceed, we introduce two specific monotones that are critical to the analysis. First, for any convex CRNG
resource theory, the relative entropy of resource, is defined as

𝑅(𝐿𝑇) ε inf
𝑈𝐿⇐S𝐿

𝑋(𝐿𝑇 ↔𝑌𝑇), 𝑋(𝐿↔𝑌) ε Tr(𝐿 log 𝐿 ↓ 𝐿 log𝑌), (S7)

is a monotone, i.e. 𝑅(ω(𝐿𝑇)) ↘ 𝑅(𝐿𝑇) for any 𝐿𝑇 and ω ⇐ O𝑇⇒𝑉 . It is a faithful measure yielding 𝑅(𝐿𝑇) ⇑ 0, with equality if
and only if 𝐿𝑇 ⇐ S𝑇.

Similarly, the relative entropy of resource under restricted measurements can be defined. Consider a quantum measurement
𝑍, described by positive operator-valued measures (POVMs) {𝑎𝑆}𝑆 that are positive and sum to identity. Let 𝑍 (𝐿) denote the
probability vector whose components are the probabilities Tr[𝐿𝑎𝑆] of obtaining an outcome 𝑊. The Kullback–Leibler divergence
𝑏KL (𝑍 (𝐿)↔𝑍 (𝑌)) between two outcome probabilities vanishes if and only if 𝑍 (𝐿) = 𝑍 (𝑌). To consider multiple measurements,
letM be a set of quantum measurements of interest. The relative entropy of resource underM is then defined as

𝑅M (𝐿𝑇) = inf
𝑈𝐿⇐S𝐿

sup
𝑊⇐M

𝑏KL (𝑍 (𝐿𝑇)↔𝑍 (𝑌𝑇)). (S8)

The following theorem establishes a relationship between the resource monotones of a composite state 𝐿𝑇𝑉 and its marginals.

Theorem 5 (Ref. [92], Thm. 1). Suppose that the free state set S𝑇 is convex for any system 𝑐 and that 𝐿𝑇𝑉 ⇐ S𝑇𝑉 implies
Tr𝑉 [𝐿𝑇𝑉 ] ⇐ S𝑇 for any subsystems 𝑐 and 𝑑 . LetM be a set of measurements on 𝑐 , and assume that for all 𝑍 ⇐ M with POVMs
{𝑎𝑆}𝑆 and for all 𝑆𝑇𝑉 ⇐ S𝑇𝑉 , the post-measurement 𝑑 marginal state Tr𝐿 [𝑋𝑀𝑌𝐿𝑁 ]

Tr[𝑋𝑀𝑌𝐿𝑁 ]
⇐ S𝑉 . Then, for any 𝐿𝑇𝑉 ⇐ D𝑇𝑉 ,

𝑅(𝐿𝑇𝑉 ) ⇑ 𝑅M (Tr𝑉 [𝐿𝑇𝑉 ]) + 𝑅(Tr𝑇 [𝐿𝑇𝑉 ]). (S9)

This theorem serves as a tool to prove Thm. 2.
First, note that 𝑅M possesses convenient properties: i) data processing implies that 𝑅M (𝐿𝑇) ↘ 𝑅(𝐿𝑇) for any 𝐿𝑇 and anyM.

Furthermore, it is known that ii) ifM includes informationally complete POVMs, 𝑅M is faithful [92], i.e. 𝑅M (𝐿𝑇) ⇑ 0 with the
equality if and only if 𝐿𝑇 ⇐ S𝑇, and iii) ifM encompasses all possible POVMs, the monotonicity 𝑅M (ω(𝐿𝑇)) ↘ 𝑅M (𝐿𝑇) for any
𝐿𝑇 and ω ⇐ O𝑇⇒𝑉 holds from data processing inequality.
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Now consider a catalyst 𝑀𝑁 and a dilation ω ⇐ O𝑀𝑁⇒𝑀↑𝑁 inducing a catalytic channel ω̃. For any free system state 𝑆𝑀 ⇐ S𝑀 ,
denote 𝑒𝑀↑𝑁 = ω(𝑆𝑀 ↗ 𝑌𝑁 ), where Tr𝑁 [𝑒𝑀↑𝑁 ] = ω̃(𝑆𝑀) and Tr𝑀↑ [𝑒𝑀↑𝑁 ] = 𝑀𝑁 . By monotonicity of 𝑅,

𝑅(𝑀𝑁 ) = 𝑅(𝑆𝑀 ↗ 𝑀𝑁 ) ⇑ 𝑅(𝑒𝑀↑𝑁 ), (S10)

where the first equality follows from both appending and discarding a free state 𝑆𝑀 being a free operation.
To apply Thm. 5, set S𝑀↑𝑁 = S𝑀↑ ↗minS𝑁 andM to be the set of all measurements.

• The first requirement, that S𝑇 is convex for any system 𝑐 and that 𝐿𝑇𝑉 ⇐ S𝑇𝑉 implies Tr𝑉 [𝐿𝑇𝑉 ] ⇐ S𝑇 for any subsystem 𝑐

and 𝑑 are already imposed as axioms for our framework.

• The second requirement can be shown using the structure of S𝑀↑ ↗minS𝑁 : note that any 𝑆𝑀↑𝑁 ⇐ S𝑀↑ ↗minS𝑁 can be written as

𝑆𝑀↑𝑁 =
∑
𝑆

𝑂𝑆 (𝑆
(𝑆)
𝑀↑ ↗ 𝑆̃

(𝑆)
𝑁 ). (S11)

Then for any POVM element 𝑎𝑀↑ that acts on system 𝑋
↑,

Tr𝑀↑ [𝑎𝑀↑𝑆𝑀↑𝑁 ]

Tr [𝑎𝑀↑𝑆𝑀↑𝑁 ]
=

∑
𝑆 𝑂𝑆 Tr

[
𝑎𝑀↑𝑆

(𝑆)
𝑀↑

]
𝑆̃
(𝑆)
𝑁∑

𝑆 𝑂𝑆 Tr
[
𝑎𝑀↑𝑆

(𝑆)
𝑀↑

] ϑ
∑
𝑆

𝑂𝑆 𝑆̃
(𝑆)
𝑁 , (S12)

where {𝑂𝑆}𝑆 are valid convex coe”cients. By convexity, the resulting state Tr𝑂↑ [𝑋𝑂↑ 𝑌𝑂↑𝑃 ]

Tr[𝑋𝑂↑ 𝑌𝑂↑𝑃 ]
remains in S𝑁 .

Using Thm. 5,

𝑅(𝑒𝑀↑𝑁 ) ⇑ 𝑅M (ω̃(𝐿𝑀)) + 𝑅(𝑀𝑁 ). (S13)

Combined with Eq. (S10), it follows that 𝑅(𝑀𝑁 ) ⇑ 𝑅M (ω̃(𝐿𝑀)) + 𝑅(𝑀𝑁 ), or equivalently,

0 ⇑ 𝑅M (ω̃(𝑆𝑀)), (S14)

whenever 𝑅(𝑀𝑁 ) < ⇓. The latter is guaranteed by the existence of a full rank free state in S𝑁 (criterion 4 of our basic assumptions
stated in the main text). By the faithfulness of 𝑅M, we conclude that ω̃(𝑆𝑀) ⇐ S𝑀↑ for any 𝑆𝑀 ⇐ S𝑀 . In other words, catalytic
channels for resource theories with minimal composition are always free operations.

Note that in Ref. [38] it has been shown that the super-additive monotone, if exists, also restricts marginal or correlated catalysis
that are not robust. Our result then implies that theories with the minimal composition cannot be trivialized via (non-robust)
marginal or correlated catalysis.

IV. MISCELLANEOUS RESOURCE THEORIES

A. A!ne compositions

Sometimes, free state sets have a stronger condition than being convex. There is a subclass of resource theories whose sets of
free states are a”ne, such as the resource theory of athermality, asymmetry, coherence, and imaginarity [105], i.e. the set of free
state S𝑀 satisfies

a!S𝑀 ⇔D𝑀 ε

{∑
𝑆

𝑂𝑆𝐿
(𝑆)
𝑀

''''↖𝑊, 𝐿 (𝑆)
𝑀 ⇐ S𝑀 , 𝑂𝑆 ⇐ R,

∑
𝑆

𝑂𝑆 = 1

}
⇔D𝑀 = S𝑀 . (S15)

However, if we impose the minimal composition, even when the free state sets are a”ne for each subsystem, the composite set
might not be a”ne. To accommodate such theories, we consider a”ne composition of free states: the composite free state set is
defined as

S𝑃↗a!S𝑄 = a! {𝐿𝑃 ↗ 𝐿𝑄 | 𝐿𝑃 ⇐ S𝑃, 𝐿𝑄 ⇐ S𝑄} ⇔D𝑃𝑄, (S16)

for the system 𝑇𝑓, given free state sets for 𝑇 and 𝑓. However, it is important to remark that S𝑃↗a!S𝑄 might not satisfy the four
basic assumptions in the main text, when S𝑃 or S𝑄 is not a”ne. Suppose that 𝑆𝑃𝑄 ⇐ S𝑃↗a!S𝑄, i.e. 𝑆𝑃𝑄 =

∑
𝑆 𝑂𝑆𝑆

(𝑆)
𝑃 ↗ 𝑆

(𝑆)
𝑄 , where

{𝑂𝑆}𝑆 is a set of a”ne coe”cients and 𝑆
(𝑆)
𝑇 are some free states for system 𝑐 = 𝑇, 𝑓. In general, Tr𝑄 [𝑆𝑃𝑄] =

∑
𝑆 𝑂𝑆𝑆

(𝑆)
𝑃 ϖ S𝑃 if S𝑃

is not a”ne, breaking the second assumption in the main text. Nevertheless, when the resource theory is a”ne, the set S𝑃↗a!S𝑄 is
a valid free state set satisfying all four assumptions, and we establish the result analogous to Thm. 2 in the main text.
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Theorem 6. If an a”ne CRNG resource theory has the a”ne composition, then it does not allow non-free catalytic channels and
resource broadcasting.

Proof. The proof is identical to that of Thm. 2, except for replacing convex coe”cients {𝑂𝑆}𝑆 and {𝑂𝑆}𝑆 by a”ne coe”cients. This
replacement does not change the conclusion, since the a”ne combination of free states are assumed to be free. ↭

B. Intersection of multiple completely resource non-generating operations

In some resource theories of interest, the free operation set is not the set of CRNG operations, but given as the intersection of
multiple CRNG operation sets for di!erent resources. In such cases, if each CRNG operation does not allow broadcasting of a
resource, the intersection of them also has no-broadcasting property. A prominent example is the Gibbs-preserving covariant
operations [106, 107], which is an intersection of Gibbs-preserving operations (athermality) and covariant operations (asymmetry).
Therefore, Gibbs-preserving covariant operations cannot benefit from robust catalysis.

C. Resource theory of imaginarity

Resource theory of imaginarity is defined by the set of free state

S𝑇 = {𝐿𝑇 | 𝐿𝑇 ⇐ D𝑇, ↙𝑊 |𝑇 𝐿𝑇 | 𝑔∝𝑇 ⇐ R, ↖𝑊, 𝑔} , (S17)

where {|𝑊∝𝑇}𝑆 is a fixed basis for system 𝑐 prescribed by some restrictions. When 𝑋 and 𝑕 are qubit systems, CRNG operation
O𝑀𝑁⇒𝑀𝑁 includes CNOT gate, which maps |0𝑊∝𝑀𝑁 ′⇒ |𝑊𝑊∝𝑀𝑁 for 𝑊 = 0, 1.

Suppose that the maximally imaginary state |+̂∝𝑁 = 1
∞

2
( |0∝𝑁 + 𝑊 |1∝𝑁 ) is given as a catalyst. Then the strict robust catalysis

ω( |0∝↙0|𝑀 ↗ |+̂∝↙+̂|𝑁 ) = |+̂∝↙+̂|𝑀 ↗ |+̂∝↙+̂|𝑁 (S18)

is implementable using a combination of CNOT and H gates ω [83]. The broadcasting version of this channel, B(|+̂∝↙+̂|) = |+̂∝↙+̂|
↗2

is a special case of resource broadcasting, which is dubbed catalytic replication in Ref. [86]. To develop more intuition, we invoke
Proposition 1 of Ref. [88] stating that any pure state |𝑖∝ can be transformed to an e!ectively qubit pure state |𝑗∝ = 𝑘 |0∝ + 𝑊𝑙 |1∝
with 𝑘, 𝑙 ⇐ R, via some real unitary operation. Since the operation is unitary, the inverse of such operation is also a real operation,
i.e. any pure state |𝑖∝ is equivalent to some qubit pure state |𝑗∝ in terms of the imaginarity. It also means that any pure state cannot
have a resource exceeding that of the maximally imaginary pure qubit state |+̂∝, even if the former state consists of multiple copies
of the latter state.

On the other hand, this non-extensiveness does not indicate that the catalytic replication 𝐿 ⇒ 𝐿
↗2 is always possible via real

operations. In Ref. [84], it is shown that the maximally imaginary state is the only state that admits catalytic replication among
qubit states or pure states.

D. Limited subspace theories

It is easy to construct a theory that admits robust catalysis if we break the fourth assumption in the main text, that is, if all free
states are non-full rank. Suppose that there exists a catalyst state 𝑀𝑁 that is not in the support of any free state in S𝑁 . Then a
catalytic channel can be constructed by the following steps. First, the catalyst part is measured to distinguish whether it is in the
support of some free state. If it is in the support, prepare a system-catalyst free state. If it is not, which is the case for 𝑀𝑁 we
assumed, prepare 𝑌𝑀 ↗ 𝑀𝑁 , where 𝑌𝑀 is any system state and 𝑀𝑁 is the catalyst reduced state of the initial state.

The simplest example is the resource theory of athermality at temperature 𝑚 = 0, where the only free state is the ground state
𝑆𝑇 = |0∝↙0|𝑇 for any system 𝑐 . If a catalyst 𝑀𝑁 = |1∝↙1|𝑁 , the channel

ω(𝐿𝑀𝑁 ) = |00∝↙00|𝑀𝑁 Tr[𝐿𝑀𝑁 (1𝑀 ↗ 𝑆𝑁 )] + 𝑌𝑀 ↗ |1∝↙1|𝑁 Tr[𝐿𝑀𝑁 (1𝑀 ↗ [1𝑁 ↓ 𝑆𝑁 ])] (S19)

transforms ω(|00∝↙00|𝑀𝑁 ) = |00∝↙00|𝑀𝑁 and ω(𝐿𝑀 ↗ 𝑀𝑁 ) = 𝑌𝑀 ↗ 𝑀𝑁 , regardless of the choices for 𝐿𝑀 ,𝑌𝑀 ⇐ D𝑀 . Hence, any state
transformation becomes possible with a (strict) robust catalysis. A very similar construction was used in Ref. [86].
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V. GENERALIZATIONS AND LIMITATIONS OF THEOREM 3

A. Proof of Theorem 3

We prove Thm. 3 by proving a slightly more general theorem. Before that, we first define another class of composite free state set

S𝑃↗sepS𝑄 ε (S𝑃↗maxS𝑄) ⇔ SEP, (S20)

where SEP represents all separable states across the 𝑇|𝑓 partition. This set explicitly excludes entanglement between subsystems
as a free resource. We prove that catalytic channels are advantageous even with Eq. (S20), thereby demonstrating that the robust
catalytic advantage is not merely an artifact of free entanglement.

Theorem 7. Suppose the free state set of system 𝑕 is a singleton S𝑁 = {𝑆𝑁 } and the composite free state set S𝑀𝑁 is either
S𝑀↗maxS𝑁 or S𝑀↗sepS𝑁 . Then there exists a free operation ω ⇐ O𝑀𝑁⇒𝑀𝑁 and a catalyst 𝑀𝑁 ⇐ D𝑁 such that

𝑀𝑁 = Tr𝑀 [ω(𝐿𝑀 ↗ 𝑀𝑁 )], (S21)
𝑌𝑀 = Tr𝑁 [ω(𝐿𝑀 ↗ 𝑀𝑁 )], (S22)

for all 𝐿𝑀 ⇐ D𝑀 , if and only if

sup
𝑍𝑃 ⇐D𝑃

𝑏max (𝑀𝑁 ↔S𝑁 ) ⇑ 𝑏max (𝑌𝑀 ↔S𝑀). (S23)

The existence of such ω implies the existence of a catalytic measure-and-prepare channel ω̃(•𝑀) = Tr𝑁 [ω(•𝑀 ↗ 𝑀𝑁 )] preparing the
state 𝑌𝑀 and a broadcasting channel B(•𝑁 ) = ω(𝑆𝑀 ↗ •𝑁 ) ⇐ O𝑁⇒𝑀𝑁 with some 𝑆𝑀 ⇐ S𝑀 .

Proof. We first show the necessity of Eq. (S23). Suppose that a broadcasting channel B(•𝑁 ) = ω(𝑆𝑀 ↗•𝑁 ) yields Tr𝑀 [B(𝑀𝑁 )] = 𝑀𝑁

and Tr𝑁 [B(𝑀𝑁 )] = 𝑌𝑀 . Since 𝑏max is a resource monotone, it never increases after a free operation, i.e.

𝑏max (𝑀𝑁 ↔S𝑁 ) ⇑ 𝑏max (B(𝑀𝑁 )↔S𝑀𝑁 ) ⇑ 𝑏max (𝑌𝑀 ↔S𝑀). (S24)

Hence, for any 𝑀𝑁 , Eq. (S23) is satisfied.
To prove su”ciency, note that max𝑍𝑃 ⇐D𝑃 𝑏max (𝑀𝑁 ↔S𝑁 ) = ↓ log(𝑛1) is attained for 𝑖𝑁 = |𝑖∝↙𝑖 |𝑁 corresponding to the smallest

eigenvalue of the catalyst free state 𝑛1. Consider the measure-and-prepare channel

ω(𝑜𝑀𝑁 ) ε Tr[(1𝑀 ↗ 𝑖𝑁 )𝑜𝑀𝑁 ] (𝑌𝑀 ↗ 𝑖𝑁 ) + Tr[(1𝑀𝑁 ↓ 1𝑀 ↗ 𝑖𝑁 )𝑜𝑀𝑁 ] (𝑝𝑀 ↗ 𝑉𝑁 ), (S25)

which maps 𝐿𝑀 ↗ 𝑖𝑁 ⇒ 𝑌𝑀 ↗ 𝑖𝑁 . To complete the proof, it remains to verify ω ⇐ O𝑀𝑁⇒𝑀𝑁 . Using Lemma 4 in Supplemental
Materials, it is su”cient to show that ω is RNG. Any free state 𝑆𝑀𝑁 ⇐ S𝑀𝑁 has the marginal state 𝑆𝑁 , which implies

ω(𝑆𝑀𝑁 ) = 𝑛1 (𝑌𝑀 ↗ 𝑖𝑁 ) + (1 ↓ 𝑛1) (𝑝𝑀 ↗ 𝑉𝑁 ). (S26)

The 𝑕 reduced state Tr𝑀 [ω(𝑆𝑀𝑁 )] can always be made free by choosing (1 ↓ 𝑛1)𝑉𝑁 = 𝑆𝑁 ↓ 𝑛1𝑖𝑁 , while the 𝑋 reduced state
Tr𝑁 [ω(𝑆𝑀𝑁 )] is free if 𝑛1𝑌𝑀 + (1 ↓ 𝑛1)𝑝𝑀 ⇐ S𝑀 . The latter is equivalent to the fact that there exists 𝑆𝑀 ⇐ S𝑀 , such that
𝑆𝑀 ↓ 𝑛1𝑌𝑀 ⇑ 0, i.e. 𝑏max (𝑌𝑀 ↔S𝑀) ↘ ↓ log(𝑛1) = 𝑏max (𝑖𝑁 ↔S𝑎). If that is the case, ω ⇐ O𝑀𝑁⇒𝑀𝑁 when O𝑀𝑁⇒𝑀𝑁 is defined by
the maximal composition O𝑀𝑁⇒𝑀𝑁 = CRNG(S𝑀↗maxS𝑁 ). Furthermore, ω(𝑆𝑁 ) is a separable operation. Hence, when O𝑀𝑁⇒𝑀𝑁

is defined by the separable composition O𝑀𝑁⇒𝑀𝑁 = CRNG(S𝑀↗sepS𝑁 ), ω is also free. ↭

B. Resource broadcasting for commuting sets

We establish a theorem analogous to Theorem 7 for another class of free states S𝑁 . In particular, the necessary and su”cient
condition Eq. (S27) is identical to that of Theorem 7.

Theorem 8. Suppose that the maximally mixed state 1𝑃
𝑏𝑃

⇐ S𝑁 , where 𝑞𝑁 = dim(1𝑁 ), and all states in S𝑁 commute with each
other. Additionally assume that S𝑀𝑁 = S𝑀↗maxS𝑁 or S𝑀↗sepS𝑁 . Then there exists a state 𝑀𝑁 ⇐ D𝑁 and a broadcasting channel
B ⇐ O𝑁⇒𝑀𝑁 , such that 𝑌𝑀 = Tr𝑁 [B(𝑀𝑁 )] can be prepared in 𝑋, if and only if

sup
𝑍𝑃 ⇐D𝑃

𝑏max (𝑀𝑁 ↔S𝑁 ) ⇑ 𝑏max (𝑌𝑀 ↔S𝑀). (S27)
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Proof. We can show that the condition is necessary by following the proof in Theorem 3. Now, let us show the condition is
su”cient. Since 𝑏max (𝑀𝑁 ↔S𝑁 ) is a convex function of 𝑀𝑁 , we note that sup𝑍𝑃 ⇐D𝑃

𝑏max (𝑀𝑁 ↔S𝑁 ) = 𝑏max (𝑖𝑁 ↔S𝑁 ), for some
pure state 𝑖𝑁 = |𝑖∝↙𝑖 |𝑁 . Furthermore, since all S𝑁 states are commuting by assumption, there exists an orthonormal basis {|𝑊∝𝑁 }𝑆 ,
in which all states in S𝑁 are diagonal. We will show that the optimal pure state is |𝑖∝𝑁 =

∑
𝑆

1
∞
𝑏𝑃

|𝑊∝𝑁 . Any state 𝑆𝑁 ⇐ S𝑁 can be
written as 𝑆𝑁 =

∑
𝑆 𝑂𝑆 |𝑊∝↙𝑊 |𝑁 and thus

↙𝑖 |𝑁 𝑆𝑁 |𝑖∝𝑁 =
1
𝑞𝑁

. (S28)

This means that 𝑟𝑆𝑁 ↓ |𝑖∝↙𝑖 |𝑁 ⇑ 0 only when 𝑟 ⇑ 𝑞𝑁 , i.e. 𝑏max (𝑖𝑁 ↔S𝑁 ) = log 𝑞𝑁 . On the other hand, 𝑞𝑁 1𝑃
𝑏𝑃

↓ 𝑀𝑁 ⇑ 0 for any
state 𝑀𝑁 ⇐ D𝑁 . Which indicates that 𝑏max (𝑀𝑁 ↔S𝑁 ) ↘ log 𝑞𝑁 for any 𝑀𝑁 ⇐ D𝑁 . Therefore, the maximum for the LHS in Eq. (S27)
is obtained when 𝑀𝑁 = |𝑖∝↙𝑖 |𝑁 .

Now we show that |𝑖∝↙𝑖 |𝑁 can broadcast any 𝑌𝑀 , such that log 𝑞𝑁 ⇑ 𝑏max (𝑌𝑀 ↔S𝑀). Consider the same map used in Appendix
E in End Matters:

B(𝐿𝑁 ) ε Tr[𝑖𝑁 𝐿𝑁 ] (𝑌𝑀 ↗ 𝑖𝑁 ) + Tr[(1𝑁 ↓ 𝑖𝑁 )𝐿𝑁 ] (𝑝𝑀 ↗ 𝑉𝑁 ), (S29)

which broadcasts 𝑖𝑁 ⇒ 𝑌𝑀 ↗ 𝑖𝑁 . Note that this is also a strict broadcasting. We would like to show that B is RNG.
By definition of 𝑏max, there exists a free state 𝑆̃𝑀 ⇐ S𝑀 and a state 𝑝𝑀 ⇐ D𝑀 , such that (𝑞𝑁 𝑆̃𝑀 ↓ 𝑌𝑀) ∈ 𝑝𝑀 . From the

normalization of quantum states, we have

𝑆̃𝑀 =
1
𝑞𝑁

𝑌𝑀 + (1 ↓
1
𝑞𝑁

)𝑝𝑀 . (S30)

Because of Eq. (S28), we have Tr[𝑖𝑁𝑆𝑁 ] = 1
𝑏𝑃

and Tr[(1𝑁 ↓ 𝑖𝑁 )𝑆𝑁 ] = 1 ↓
1
𝑏𝑃

for any 𝑆𝑁 ⇐ S𝑁 . By setting 𝑉𝑁 = 1𝑃↓𝑐𝑃
𝑏𝑃↓1 and

𝑝𝑀 from Eq. (S30), we have

B(𝑆𝑁 ) =
1
𝑞𝑁

(𝑌𝑀 ↗ 𝑖𝑁 ) + (1 ↓
1
𝑞𝑁

) (𝑝𝑀 ↗ 𝑉𝑁 ), (S31)

such that Tr𝑁 [B(𝑆𝑁 )] = 𝑆̃𝑀 ⇐ S𝑀 and Tr𝑀 [B(𝑆𝑁 )] = 1𝑃
𝑏𝑃

⇐ S𝑁 , which proves that B(𝑆𝑁 ) ⇐ S𝑀 ↗max S𝑁 and B(𝑆𝑁 ) ⇐

S𝑀↗sepS𝑁 . ↭

One extreme example is the resource theory of local coherences, where all states that are diagonal in a basis {|𝑊∝𝑁 }𝑆 are considered
free. For qubit subsystems, the local free state sets are given as incoherent states S𝑀 (𝑁 ) = {𝑂 |0∝↙0| + (1 ↓ 𝑂) |1∝↙1| |0 ↘ 𝑂 ↘ 1}.
We choose the composite free state set S𝑀𝑁 to be S𝑀↗maxS𝑁 . This setting of local coherence has been studied in [108].

We illustrate how Thm. 8 works in this setup. This means that any 𝑌𝑀 ⇐ D𝑀 is attainable, since S𝑀 and S𝑁 are the same. First
note that sup𝑍𝑃 ⇐D𝑃

𝑏max (𝑀𝑁 ↔S𝑁 ) = 𝑏max ( |+∝↙+|𝑁 ↔S𝑁 ) = log 2, where |+∝ = 1
∞

2
(|0∝ + |1∝).

The channel B corresponding to Eq. (S29) is

B(𝐿𝑁 ) = ↙+|𝑁 𝐿𝑁 |+∝𝑁 (𝑌𝑀 ↗ |+∝↙+|𝑁 ) + ↙↓|𝑁 𝐿𝑁 |↓∝𝑁 (𝑝𝑀 ↗ |↓∝↙↓|𝑁 ). (S32)

For this case, catalytic replication [86] is also possible, i.e. B(|+∝↙+|𝑁 ) = |+∝↙+|𝑁 ↗ |+∝↙+|𝑁 with B ⇐ O𝑁⇒𝑀𝑁 .

C. Local resource theories

We can extend Theorem 8 to other settings that is concerned with local resources such as local magic and local entanglement.
As an example, let us focus on local magic. Here, the local system is a qubit, with the local free state set given by the convex hull of
stabilizer states S𝑇, and the composite free states are either S𝑀𝑁 = S𝑀↗maxS𝑁 or S𝑀↗sepS𝑁 . Then, any state preparation channel
can be implemented as a catalytic channel.

Theorem 9. For any state 𝑌𝑀 , there exists a state 𝑀𝑁 ⇐ D𝑁 and a broadcasting channel B ⇐ O𝑁⇒𝑀𝑁 , such that 𝑌𝑀 = Tr𝑁 [B(𝑀𝑁 )].

Proof. Let us pick a fixed but arbitrary 𝑌. Let |𝑚∝ = 1/
∞

2( |0∝ + exp (𝑊𝑠/4) |1∝), and let
''
𝑚

〉
= 1/

∞
2( |0∝ ↓ exp (𝑊𝑠/4) |1∝), 𝑌̃ be

the state opposite to |𝑚∝ ,𝑌 on the Bloch sphere. Let

B(𝐿𝑁 ) ε ↙𝑚 |𝑁 𝐿𝑁 |𝑚∝𝑁 (𝑌𝑀 ↗ |𝑚∝↙𝑚 |𝑁 ) +
〈
𝑚

''
𝑁 𝐿𝑁

''
𝑚

〉
𝑁 (𝑌̃𝑀 ↗

''
𝑚

〉〈
𝑚

''
𝑁 ). (S33)

Observe that if sin2
(𝑠/8) ↘ 𝑂 ↘ cos2

(𝑠/8), then (1↓ 𝑂)𝐿 + 𝑂𝐿̃ is always a stabilizer state for any state 𝐿. Now, if 𝑌 is a stabilizer
state, then we have sin2

(𝑠/8) ↘ ↙𝑚 | 𝑌 |𝑚∝ ↘ cos2
(𝑠/8) and therefore B(𝑌) is in S𝑀𝑁 . Furthermore, B(|𝑚∝↙𝑚 |𝑁 ) = 𝑌𝑀 ↗ |𝑚∝↙𝑚 |𝑁 ,

proving the claim. ↭
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D. No broadcasting under any composition

In this section, we show that Theorem 3 cannot be generalized to all theories, even under maximal/separable compositions. We
formulate this in terms of a no-broadcasting theorem.

Theorem 10. Consider free state sets S𝑀 ,S𝑁 such that:

1. The a”ne hull of S𝑁 contains D𝑁 , in other words, any 𝑀𝑁 ⇐ D𝑁 can be written as an a”ne combination of elements in S𝑁 .
2. S𝑀 is a”ne.

Then broadcasting is impossible under any composition rule, as long as the resource theory satisfies the basic assumption (A2) in
main text.

Before starting the proof, let us give examples of the above two conditions in the theorem. An example of S𝑁 satisfying condition
1 would be the set of separable states. Meanwhile, an example of S𝑀 satisfying condition 2 would be a singleton set, S𝑀 = {

1𝑂
𝑏𝑂

}.
The proof strategy is to show that for any state 𝑀𝑁 and any free channel B ⇐ O𝑁⇒𝑀𝑁 , the state Tr𝑁 [B(𝑀𝑁 )] is always free. This

means that there are states 𝑌𝑀 that satisfy

sup
𝑍𝑃 ⇐D𝑃

𝑏max (𝑀𝑁 ↔S𝑁 ) ⇑ 𝑏max (𝑌𝑀 ↔S𝑀), (S34)

and yet 𝑌𝑀 ϱ Tr𝑁 B(𝑀𝑁 ) for any 𝑀𝑁 and any free B.

Proof. Firstly, note that for any free map B ⇐ O𝑁⇒𝑀𝑁 and any free state 𝑆𝑁 , assumption (A2) in the main text implies that we must
have Tr𝑁 [B(𝑆𝑁 )] ⇐ S𝑀 . However, by condition 1, any density matrix on 𝑕 can be written as an a”ne combination 𝑀𝑁 =

∑
𝑆 𝑘𝑆𝑆𝑆

with real coe”cients 𝑘𝑆 and free states 𝑆𝑆 ⇐ S𝑁 . Next, linearity of B gives Tr𝑁 [B(𝑀𝑁 )] =
∑

𝑆 𝑘𝑆 Tr𝑁 B(𝑆𝑆). Since S𝑀 is an a”ne
set by condition 2, Tr𝑁 [B(𝑀𝑁 )] ⇐ S𝑀 . ↭

Note that in the above reasoning, the composition rule is left unspecified; as long as Tr𝑁 ∋B(S𝑁 ) △ S𝑀 , the claim holds. We end
this section with a final complementary remark: while 𝑕 ⇒ 𝑋𝑕 broadcasting is not allowed in this theorem, 𝑋 ⇒ 𝑋𝑕 broadcasting
may still be possible, e.g. if the condition in Theorem 3 or Theorem 8 is fulfilled.

VI. STRICT ROBUST CATALYSIS

We show that strict robust catalysis cannot be advantageous when using a full rank catalyst state. We begin by defining the
reversed relative entropy of resource, first used in Ref. [109] in the context of entanglement theory,

R(𝐿𝑀) ε inf
𝑌𝑂 ⇐S𝑂

𝑏 (𝑆𝑀 ↔𝐿𝑀). (S35)

It is easy to verify that this is a faithful measure, i.e. R(𝐿𝑀) ⇑ 0 with equality if and only if 𝐿𝑀 ⇐ S𝑀 and that R(𝐿𝑀) < ⇓ when 𝐿𝑀

is full rank.

Lemma 11. The reversed relative entropy of resource is additive, i.e.

R(𝐿𝑀 ↗ 𝑝𝑀↑ ) = R(𝐿𝑀) + R(𝑝𝑀↑ ). (S36)

Proof. Recall the following property of the quantum relative entropy: 𝑏 (𝑆𝑀𝑀↑ ↔𝐿𝑀↗𝑝𝑀↑ ) ⇑ 𝑏 (Tr𝑀↑ [𝑆𝑀𝑀↑ ]↔𝐿𝑀)+𝑏 (Tr𝑀 [𝑆𝑀𝑀↑ ]↔𝑝𝑀↑ ),
with the equality if and only if 𝑆𝑀𝑀↑ is an uncorrelated state. Since for any 𝑆𝑀𝑀↑ ⇐ S𝑀𝑀↑ , the uncorrelated state Tr𝑀↑ [𝑆𝑀𝑀↑ ]↗Tr𝑀 [𝑆𝑀𝑀↑ ] ⇐

S𝑀𝑀↑ , the infimum of 𝑏 (𝑆𝑀𝑀↑ ↔𝐿𝑀 ↗ 𝑝𝑀↑ ) over 𝑆𝑀𝑀↑ ⇐ S𝑀𝑀↑ is always obtained when 𝑆𝑀𝑀↑ is uncorrelated, and we obtain the
claim. ↭

Now, suppose a free state 𝑆𝑀 ⇐ S𝑀 can be transformed into another state 𝑌𝑀↑ via strict robust catalysis with a full rank catalyst
𝑀𝑁 . Then there exists a channel ω ⇐ O𝑀𝑁⇒𝑀↑𝑁 , such that

ω(𝑆𝑀 ↗ 𝑀𝑁 ) = 𝑌𝑀↑ ↗ 𝑀𝑁 . (S37)

From the additivity and the monotonicity,

R(𝑀𝑁 ) = R(𝑆𝑀 ↗ 𝑀𝑁 ) ⇑ R(𝑌𝑀↑ ↗ 𝑀𝑁 ) = R(𝑌𝑀↑ ) + R(𝑀𝑁 ). (S38)

By assumption, 𝑀𝑁 is full-rank, so R(𝑀𝑁 ) is finite, which implies that 0 ⇑ R(𝑌𝑀↑ ), or equivalently 𝑌𝑀↑ ⇐ S𝑀↑ from the faithfulness.
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VII. ROBUST BATTERY-ASSISTED TRANSFORMATION

Let us investigate the robustness of battery-assisted transformations, introduced in [110, 111]. In this framework, there is a
distinguished measure of resource 𝑅. A transformation from 𝐿𝑀 to 𝑌𝑀↑ is said to be possible with a battery if there exists a battery
state 𝑀𝑁 and a channel ω ⇐ O𝑀𝑁⇒𝑀↑𝑁↑ such that ω(𝐿𝑀 ↗ 𝑀𝑁 ) = 𝑌𝑀↑ ↗ 𝑀

↑

𝑁↑ with 𝑅(𝑀
↑

𝑁↑ ) ⇑ 𝑅(𝑀𝑁 ). Let us define a robust analogue as
follows: a (𝐿, 𝑁)-robust transformation is possible if ω(𝐿𝑀 ↗ 𝑀𝑁 ) = 𝑌𝑀↑ ↗ 𝑀

↑

𝑁↑ with 𝑅(𝑀
↑

𝑁↑ ) ⇑ 𝑅(𝑀𝑁 ), and for all states 𝐿↑𝑀 , such that
↔𝐿

↑

𝑀 ↓ 𝐿𝑀 ↔1 ↘ 𝑁 , we have

𝑅

(
Tr𝑀

[
ω(𝐿

↑

𝑀 ↗ 𝑀𝑁 )
] )

⇑ 𝑅(𝑀𝑁 ) (S39)

In addition, we can allow arbitrarily small error in the target state as long as the resource in the battery is uniformly bounded.
Ref. [110] showed that if 𝑅 is a finite and additive monotone, then 𝐿𝑀 can be transformed into 𝑌𝑀↑ with a battery if and only if

𝑅(𝐿𝑀) ⇑ 𝑅(𝑌𝑀↑ ). We now demonstrate that such transformations are robust when 𝑅 is convex and continuous. If 𝑅(𝐿𝑀) > 𝑅(𝑌𝑀↑ ),
then by continuity, there exists an 𝑁 > 0 such that for all 𝐿↑𝑀 satisfying ↔𝐿

↑

𝑀 ↓ 𝐿𝑀 ↔1 ↘ 𝑁 , we have 𝑅(𝐿
↑

𝑀) ⇑ 𝑅(𝑌𝑀↑ ). Following
the proof in Ref. [110], we can show that the transformation is robust. If 𝑅(𝐿𝑀) = 𝑅(𝑌𝑀↑ ), convexity ensures that for any 𝑡 > 0,
there exists a state 𝑌

𝑑
𝑀↑ , such that ↔𝑌 𝑑

𝑀↑ ↓ 𝑌𝑀↑ ↔1 ↘ 𝑡 and 𝑅(𝑌
𝑑
𝑀↑ ) ↘ (1 ↓ 𝑡)𝑅(𝑌𝑀↑ ) = (1 ↓ 𝑡)𝑅(𝐿𝑀) < 𝑅(𝐿𝑀). Consequently, for

any sequence {𝑡𝑒} ⇒ 0, there exists a robust battery-assisted transformation from 𝐿𝑀 to 𝑌
𝑑𝑄
𝑀↑ , and 𝑌

𝑑𝑄
𝑀↑ ⇒ 𝑌𝑀↑ . Furthermore, the

resource stored in the battery can be assumed to be uniformly bounded by 𝑅(𝑌𝑀↑ ). Therefore, we conclude that there exists a robust
battery-assisted transformation from 𝐿𝑀 to 𝑌𝑀↑ .
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