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Bayes’ rule, which is routinely used to update beliefs based on new evidence, can be derived from a
principle of minimum change. This principle states that updated beliefs must be consistent with new data,
while deviating minimally from the prior belief. Here, we introduce a quantum analog of the minimum
change principle and use it to derive a quantum Bayes’ rule by minimizing the change between two
quantum input-output processes, not just their marginals. This is analogous to the classical case, where
Bayes’ rule is obtained by minimizing several distances between the joint input-output distributions. When
the change maximizes the fidelity, the quantum minimum change principle has a unique solution, and the
resulting quantum Bayes’ rule recovers the Petz transpose map in many cases.
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Introduction—Usually demonstrated by simple counting
arguments involving urns and balls, Bayes’ rule has
actually been argued to play a much deeper role in
probability theory and logic, as the only consistent system
for updating one’s beliefs in light of new evidence [1–6].
As an alternative to the above axiomatic approach, Bayes’
rule can also be derived from a variational argument: the
updated belief should be consistent with the new observa-
tions while deviating as little as possible from the initial
belief. This is known as the “minimum change principle”
[7–10]. It formalizes the intuition that the new information
should be incorporated into the agent’s knowledge in the
“least committal” way, e.g., without introducing biases
unwarranted by the data. Such fundamental insights can be
seen as at least a motivation, if not an explanation, for the
extraordinary effectiveness of Bayesian statistical inference
in virtually all areas of knowledge.
If one considers quantum theory as a noncommutative

extension of probability theory, one would expect that there
would also be a sound analog of Bayes’ rule. However, the
status of a “quantum Bayes’ rule” is still much debated,
with many alternatives, often inequivalent to each other,
having been proposed in the past decades [11–25]. Among
these proposals, the “Petz transpose map” [26,27] stands
out as the only quantum Bayes’ rule that satisfies a set of
axioms analogous to the classical Bayes’ rule [25].
Attempts have also been made to derive a quantum

Bayes’ rule from optimizations involving the “posterior”

state. For instance, Ref. [19] minimizes a loss function
related to the quantum relative entropy, while Refs. [22,28]
optimize an upper bound on a distance measure between
two estimators of the initial and final states. However, these
methods, while involving optimization, focus primarily on
the marginals of the process rather than on the entire
process. As a result, they do not fully reflect the minimality
of the change over the entire process, which is instead the
core argument from which Bayes’ rule and its generaliza-
tions, such as Jeffrey’s theory of probability kinematics,
emerge.
Thus, the current situation is that the analog of Bayes’

rule in quantum theory is not yet settled, despite the
importance that such a concept would have not only for
the foundations of the theory, but also for its applications.
In this work, we take a decisive step toward solving this

problem by presenting a new approach to the quantum
Bayes’ rule, based on a natural quantum analog of the
minimum change principle, which involves the entire
process, not just its marginals (see Fig. 1 for a schematic
representation). Specifically, when the change maximizes
the quantum fidelity [29,30], the resulting quantum Bayes’
rule can be derived analytically and corresponds to the Petz
transpose map in many cases. This connection further
strengthens the link between Bayes’ rule, the minimum
change principle, and the Petz transpose map, thus justify-
ing their broader applications in quantum information
theory and possibly beyond.
Classical Bayes’ rule from the minimum change

principle—Consider two random variables X and Y taking
values in two finite alphabets, X ¼ fxg and Y ¼ fyg,
respectively. Assume that the initial belief about X is
represented by a distribution γðxÞ, while the correlation
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between X and Y is given by a conditional probability
distribution φðyjxÞ. We can think of the latter as the
“forward process” from X to Y. Now, suppose we observe
a certain value Y ¼ y0 and want to update our belief about
X in light of this new information. Bayes’ rule provides the
formula for the posterior probability as

φ̂γðxjy0Þ ≔
φðy0jxÞγðxÞP

x0 ∈Xφðy0jx0Þγðx0Þ
: ð1Þ

But how should the above be generalized to the situation
where the new information does not come in the form of a
definite value y0 for Y, but as “soft evidence,” i.e., a
probability distribution τðyÞ ? As Jeffrey [31] argues, this is
in fact the rule rather than the exception, since it is very rare
that we can ascribe probability one to only one event
Y ¼ y0, ruling out all others with absolute certainty.
Jeffrey’s probability kinematics [31] and Pearl’s virtual
evidence method [32] agree [33] that the correct way to
proceed is to promote Bayes’ posterior to a full-fledged
“reverse process” φ̂γðxjyÞ that yields the probabilities of X
given Y, so that the updated belief given the new evidence
τðyÞ becomes

γ0ðxÞ ≔
X
y∈Y

φ̂γðxjyÞτðyÞ: ð2Þ

The conventional Bayes’ rule (1) is clearly recovered as a
special case of Eq. (2) in which τðyÞ is the delta func-
tion δy;y0 .
While Jeffrey’s and Pearl’s derivations of Eq. (2) rely on

certain natural assumptions about the logic model or
underlying Bayesian network, an alternative way to obtain
Eq. (2) is through the minimum change principle [7–10].
To use this principle, we consider the joint distribution of
X and Y in the forward process, denoted as

Pfwdðx; yÞ ≔ φðyjxÞγðxÞ, and try to update it based on a
subsequent observation of Y. The comparison will be done
not only on the marginal distribution on X, but on the whole
joint distribution Pfwdðx; yÞ. The minimum change princi-
ple then determines the updated belief about the joint
distribution, denoted as Prevðx; yÞ.
Concretely, the minimum change principle can be

described as the minimization of a divergence measure
between the prior belief Pfwd and the updated belief Prev
under the constraint that Prev is compatible with the new
observation τðyÞ. This can be expressed as the following
optimization problem:

min
Prev

DðPfwd; PrevÞ

subject to
X
x∈X

Prevðx; yÞ ¼ τðyÞ; ∀ y∈Y;

Prevðx; yÞ ≥ 0; ∀ x∈X ; y∈Y; ð3Þ

where DðPfwd; PrevÞ is a statistical divergence measure
between the prior and posterior joint distributions.
Common choices include the Kullback-Leiber divergence
[7,10], other f-divergences including Pearson divergence
and Hellinger distance [34], zero-one loss [35], or the
mean-square error of an estimation [36,37]. In all these
cases, the optimal value is achieved by

Prevðx; yÞ ¼
Pfwdðx; yÞP
x0Pfwdðx0; yÞ

τðyÞ ¼ φ̂γðxjyÞτðyÞ: ð4Þ

The above equation shows that the minimum change
principle applied to the joint distributions of X and Y leads
to the Bayes-Jeffrey rule in Eq. (1) and (2).
To pave the way for the quantum case to be presented in

what follows, we rephrase the optimization problem from
Eq. (3) into an equivalent form as

min
φ̂

D
�
φðyjxÞγðxÞ; φ̂ðxjyÞτðyÞ

�

subject to
X
x∈X

φ̂ðxjyÞ ¼ 1; ∀ y∈Y;

φ̂ðxjyÞ ≥ 0; ∀ x∈X ; y∈Y: ð5Þ
This form of optimization shifts our focus from Prev to φ̂,
explicitly constraining φ̂ to be a stochastic process. For the
divergences mentioned above, the optimal value is still
obtained with Bayes’ rule Eq. (1). Since we are now
interested in the reverse process φ̂, the distribution τ can
be seen in this context as a reference distribution of the
variable Y instead of the observation on Y. Interestingly, the
solution provided by Bayes’ rule is uniformly optimal
regardless of the choice of τ.
The goal of this work is to find a quantum analog of

Bayes’ rule, starting from an analog of the optimization
problem (3). To do this, we first need to clarify the quantum

FIG. 1. Visualization of the optimization performed in this
Letter. Given the forward channel (φ classical, E quantum) and
the initial states γ and τ of the forward and backward processes,
one searches for the backward map (φ̂ classical, R quantum) that
minimizes the change or, equivalently, maximizes the similarity
between the two processes. In the classical case, the processes are
represented by joint probability distributions, and φ̂ is known to
be given by Bayes’ rule for many quantitative definitions of
similarity. By exploiting a suitable representation of quantum
processes as bipartite quantum states, this Letter presents the first
result of this kind for quantum information, using the fidelity (14)
as the measure of similarity to maximize.
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equivalents of classical concepts such as stochastic proc-
esses, joint distributions, and statistical divergences.
Representation of a quantum process—Consider two

quantum systems A and B, associated with two finite
dimensional Hilbert spaces HA and HB, respectively. Let
LþðHÞ be the set of positive semidefinite operators on H
and SðHÞ ⊂ LþðHÞ be the subset of normalized states, i.e.,
density matrices or, equivalently, positive semidefinite
operators ρ ≥ 0 with unit trace. Note that strict positivity,
i.e., ρ > 0, implies that the state ρ is full-rank.
Stochastic processes in the quantum case correspond to

completely positive trace-preserving (CPTP) linear maps,
also known as quantum channels. Following the classical
Bayes’ rule, we start with a forward quantum process E,
i.e., a channel from system A to system B. The goal is to
determine a backward quantum processR, which is again a
channel, but going from B to A. Note that the adjoint map
E†, defined by trace duality as Tr½EðXÞY�≕Tr½XE†ðYÞ� for
all operators X and Y, is a completely positive linear map
from B to A, although it is generally not trace-preserving
and thus not a channel. As in the classical case, we assume
a prior belief about the input, but instead of a probability
distribution, the prior belief is now given as a quantum state
γ ∈SðHAÞ [38].
Next, we look for a quantum analog of the joint input-

output distribution of a stochastic process, such as the
classical Pfwdðx; yÞ ¼ φðyjxÞγðxÞ, which explicitly encodes
correlations between inputs and outputs. In the classical
case, the joint input-output distribution is defined directly
by conditional probabilities, whereas in the quantum case,
channels map input states to output states without provid-
ing a direct analog of a joint distribution.
To overcome this limitation and to represent the input-

output correlations of a quantum channel, we adopt a
purification-based construction. Specifically, we consider
the canonical purification of γ [41,42],

j ffiffiffi
γ

p
⟫ ≔

X
ij

hij ffiffiffi
γ

p jjijiiA1
jjiA2

; ð6Þ

where A1 and A2 are two copies of system A and fjiig is a
chosen orthonormal basis of HA. This pure state has the
following marginal states:

TrA2
½j ffiffiffi

γ
p

⟫⟪
ffiffiffi
γ

p j� ¼ γ; TrA1
½j ffiffiffi

γ
p

⟫⟪
ffiffiffi
γ

p j� ¼ γT; ð7Þ
where the superscript notation •T denotes the transposition
taken with respect to the orthonormal basis fjiig.
Now, since we have two (correlated) copies of the input

system, one could apply E to the first system and obtain
EðγÞ, while the second system remains in state γT .
Explicitly, this results in the state

Qfwd ≔ ðE ⊗ IÞðj ffiffiffi
γ

p
⟫⟪

ffiffiffi
γ

p jÞ
¼

�
1B ⊗

ffiffiffiffiffi
γT

p �
CE

�
1B ⊗

ffiffiffiffiffi
γT

p �
; ð8Þ

where I is the identity map on system A2, 1B is the identity
operator on system B, and CE ¼ P

i;j EðjiihjjÞ ⊗
jiihjj∈LþðHB ⊗ HAÞ is the Choi operator of the forward
process E [43]. Computing the marginal operators we
obtain

TrA½Qfwd� ¼ EðγÞ; TrB½Qfwd� ¼ γT: ð9Þ
Such a representation of a quantum process has appeared

in the literature in a context comparing quantumprocesses to
classical conditional probabilities [44,45]. A benefit of this
representation is thatQfwd is always in SðHB ⊗ HAÞ, i.e., it
is a bipartite state for all choices of channel E and prior state
γ, and many divergence functions are well-defined and
possess nice properties when evaluated on states.
Although the operator Qfwd is not a quantum state over

time (the marginal on the input is not the input but its
transpose; seeRefs. [24,46] for details), it is nonetheless very
close in spirit to a state over time. In the fully commuting
case, it reduces to the conventional joint input-output
probability distribution Pfwdðx; yÞ. For this reason, we will
borrow the notation from Ref. [20] and define E⋆ρ as

E⋆ρ ≔
�
1B ⊗

ffiffiffiffiffi
ρT

p �
CE

�
1B ⊗

ffiffiffiffiffi
ρT

p �
; ð10Þ

so that our forward process operator becomes

Qfwd ¼ E⋆γ: ð11Þ
For the reverse process, the representation is defined

similarly, but with respect to a reference state τ∈ SðHBÞ on
the output, and with an added transpose, in formula

Qrev ≔ ðR⋆τÞT ¼ ð ffiffiffi
τ

p
⊗ 1AÞCT

Rð
ffiffiffi
τ

p
⊗ 1AÞ: ð12Þ

Note that the ordering of systems A and B are swapped so
that CR ¼ P

k;ljkihlj ⊗ RðjkihljÞ∈LþðHB ⊗ HAÞ and
Qrev ∈SðHB ⊗ HAÞ, thus matching Eq. (11). The same
representation for the reverse processes has been used for a
definition of observational entropy with general priors [47].
In this way, the marginal states become

TrA½Qrev� ¼ τ; TrB½Qrev� ¼ RðτÞT: ð13Þ
The quantum minimum change principle—We are now

ready to formulate the quantum minimum change principle
in a rigorous way. Here, we choose to measure “change” in
terms of the (square-root) “fidelity,” defined as [29,30]

Fðρ; σÞ ≔ Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pq �
¼ Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

p
ρ

ffiffiffi
σ

pq �
: ð14Þ

Fidelity is one of the most natural measures of the closeness
between quantum states and has found countless applica-
tions in quantum information theory. Here, we use the
fidelity to measure the statistical similarity between the
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forward process, represented by the bipartite stateQfwd, and
the reverse process, represented by Qrev. Since both Qfwd
and Qrev are well-defined density matrices, the fidelity
between them FðQfwd; QrevÞ is also well-defined, regard-
less of how E, γ, R, and τ are chosen. In particular, it is
always bounded between 0 and 1, the latter being achieved
if and only if Qfwd ¼ Qrev.
The quantum minimum change principle, similar to

Eq. (5), minimizes the deviation between Qfwd ¼ E⋆γ
and Qrev ¼ ðR⋆τÞT , or equivalently, maximizes their
fidelity. The principle is formally expressed as follows:

max
R

FðE⋆γ; ðR⋆τÞTÞ
subject to R is CPTP: ð15Þ

Our central result is to show that, given that E⋆γ and τ are
both strictly positive [thus, so must be γ and EðγÞ as well],
the above program has a unique solution, for which we
provide a closed-form expression. Remarkably, we find that
whenever EðγÞ and τ commute, our solution coincides with
the Petz transpose map [26,27] computed for the forward
channel E with respect to the prior γ, independent of τ. This
independence means that the Petz transpose map is uni-
formly optimal over all choices of τ, similar to the behavior
of the classical Bayes’ rule mentioned earlier.
Theorem 1—Given a forward CPTP map E, a reference

input γ, and a reference output τ, assuming both E⋆γ > 0
and τ > 0, the following CPTP map

RðσÞ ≔ ffiffiffi
γ

p
E†ðDσD†Þ ffiffiffi

γ
p ð16Þ

D ≔
ffiffiffi
τ

p ð ffiffiffi
τ

p
EðγÞ ffiffiffi

τ
p Þ−1=2 ð17Þ

is the unique solution of the program Eq. (15).
Furthermore, if ½τ; EðγÞ� ¼ 0, the above solution coincides
with the Petz transpose map of E with respect to γ, i.e.,

RðσÞ ¼ ffiffiffi
γ

p
E†ðEðγÞ−1=2σEðγÞ−1=2Þ ffiffiffi

γ
p

: ð18Þ

An example comparing the Petz transpose map and the
optimal solution of Eq. (15) is shown in Fig. 2.
Before fleshing out the proof of the above theorem (the

full details can be found in Supplemental Material [49]), let
us first make some comments. First, it is easy to verify that
the map given in Eq. (16) is indeed completely positive and
trace-preserving. Complete positivity holds because R is
the composition of three completely positive maps, that is,
D •D†, E†ð•Þ, and ffiffiffi

γ
p

•
ffiffiffi
γ

p
. The trace-preservation con-

dition is Tr½RðσÞ� ¼ Tr½D†EðγÞDσ� ¼ Tr½σ� for any σ,
equivalent to the condition

ð ffiffiffi
τ

p
EðγÞ ffiffiffi

τ
p Þ−1=2 ffiffiffi

τ
p

EðγÞ ffiffiffi
τ

p ð ffiffiffi
τ

p
EðγÞ ffiffiffi

τ
p Þ−1=2 ¼ 1;

which holds because it is equivalent to A−1=2AA−1=2 ¼ 1,
for A > 0.

Second, similar to Eq. (5), the optimization contains τ as
a parameter, but the solution Eq. (18) is uniformly optimal
regardless of the choice of τ, as long as ½τ; EðγÞ� ¼ 0. The
condition ½τ; EðγÞ� ¼ 0, which also guarantees that our
solution coincides with the Petz transpose map, is satisfied
in some situations of physical interest, such as (1) when
τ ¼ EðγÞ, as is often assumed when considering quantum
error correction [55] or quantum fluctuation relations [56];
notice that this case leads to the optimal solution with
FðQfwd; QrevÞ ¼ 1, namely Qfwd ¼ Qref, indicating that, if
the new information fully agrees with what was expected
given the prior, we recover not only the initial state, but also
the entire process, making the forward and reverse proc-
esses identical, as it happens in the classical case; (2) when
τ ¼ 1B=dB, corresponding to “uninformative” new infor-
mation; (3) when EðγÞ ¼ 1B=dB, corresponding to the case
where the channel is maximally uninformative for the
chosen prior; and (4) when E is a quantum-classical
channel, e.g., a measurement channel, and the new infor-
mation represented by τ is classical information about the
measurement results.
The last condition makes Theorem 1 especially compel-

ling in the context of observational entropy and the
corresponding second law [47,57,58].

FIG. 2. Example comparing the Petz transpose map with the
optimal map obtained from the minimum change principle. The
forward map E models one step of a thermalizing quantum
machine where the system interacts with a thermal state
ξ [48]. Concretely, we consider qubit systems, and the map is
defined as EðρÞ ≔ TrA0 ½Vðρ ⊗ ξA0 ÞV†�, where V ≔ cosðπ=8Þ1þ
i sinðπ=8ÞUsw is the partial swap operator with angle ðπ=8Þ, Usw
is the SWAP gate, and ξ ¼ 0.95j0ih0j þ 0.05j1ih1j. The prior
belief is parametrized as γ ¼ ð1 − pÞj0ih0j þ pj1ih1j, and the
reference output state τ is chosen as τ ¼ HξH, where H is the
Hadamard gate. The figure plots the value of the objective
function of Eq. (15) over p∈ ½0.001; 0.999�, for R chosen to
be the Petz transpose map [Eq. (18), orange dashed line] or the
optimal map [Eq. (16), blue solid line]. In most cases
½τ; EðγÞ� ≠ 0, and the Petz transpose map is suboptimal;
while at p ¼ 1.85 − 0.9

ffiffiffi
2

p
≈ 0.577, where EðγÞ ¼ 1=2 and

½τ; EðγÞ� ¼ 0, the Petz map achieves optimality.
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Third, when the commutativity condition ½τ; EðγÞ� ¼ 0 is
satisfied and the retrodictive channel does not depend on τ,
our solution is in line with Jeffrey’s framework of
“probability kinematics” [31], where the update rule relies
solely on the prior γ and the forward map φ, independently
of the new information τ. However, when EðγÞ and τ do not
commute, the quantum case departs from Jeffrey’s frame-
work, and the role of τ becomes interpretationally signifi-
cant. If τ is taken as a subjective prior belief about what the
observer expected to observe before obtaining the actual
outcome, then its sole purpose is to “guide” the optimiza-
tion according to the principle of minimum change. In this
case, the update rule is given by Eq. (16) with σ represent-
ing the newly acquired information, and the rule remains
independent of τ. In contrast, if τ is identified with the
actual observed evidence—namely, if one sets σ ¼ τ in
Eq. (16)—then the quantum counterpart of Jeffrey’s
retrodicted distribution γ0ðxÞ from Eq. (2) becomes the
quantum state

γ0 ≔ RðτÞ ¼ ffiffiffi
γ

p
E†ðDτD†Þ ffiffiffi

γ
p

:

While the CPTP map R is always linear, the overall
dependence of γ0 on τ is not, in contrast to the classical case.
Again, it is the commutativity condition ½τ; EðγÞ� ¼ 0 that
restores the linear dependence of γ0 on τ, and thus in the
classical case the two interpretations make no difference.
The functional dependence of the retrodicted state on the
new information is an important aspect of the problem,
which we leave open for future research, especially in view
of the axiomatic approach proposed in [25], where linearity
of the retrodiction is assumed from the start.
Fourth, when ½τ; EðγÞ� ¼ 0, Theorem 1 can also deal with

a noninvertible τ: in this case, we can replace τ with
τϵ ≔ ð1 − ϵÞτ þ ϵu, where ϵ > 0 and u denotes the uniform
(i.e. maximally mixed) state; find the optimal reverse
channel, which does not depend on τϵ as the latter preserves
the commutation relation; and finally take the limit for
ϵ → 0. In this way, we see that Theorem 1 does indeed
contain the conventional Bayes’ rule (1), where the new
information is given as a delta function.
Our proof is based on the method of Lagrangian multi-

pliers. Here, we give only an outline and refer the interested
reader to Supplemental Material [49] for the complete
argument. First, write the program in terms of the Choi
operator CR of R. Recalling that the reverse process goes
from B back to A, the trace-preserving constraint becomes
TrA½CR� − 1B ¼ 0. Then, define the Lagrangian of the
problem as

L ≔ FðQfwd; QrevÞ þ Tr½ΛðTrA½CR� − 1BÞ�; ð19Þ

where Λ is the Lagrangian multiplier to enforce the trace-
preserving constraint. Note that the complete positivity
constraint is not explicitly invoked. The solution Eq. (16)

corresponds to the Choi operator

CR ¼ ðDT ⊗
ffiffiffi
γ

p ÞCT
E ðD� ⊗

ffiffiffi
γ

p Þ; ð20Þ

where D� is the complex conjugate of the operator D
defined in Eq. (17), computed with respect to the same
basis as the transpose. In Supplemental Material [49], we
show that Eq. (20) and the value of Λ given by

Λ ¼ −
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

p
EðγÞ ffiffiffi

τ
pq �

T
ð21Þ

satisfy the condition that the partial derivative of L is zero
in every direction. Therefore, CR is a local optimum of the
program. Finally, due to the strict concavity of fidelity
under the theorem’s hypotheses (proven as a separate
lemma in Supplemental Material [49]), we conclude that
CR is the unique global maximum.
Discussion—In this Letter, we have generalized the

minimum change principle to the quantum case, offering
a new formulation of the quantum Bayes’ rule. In particular,
when fidelity is used as a figure of merit, the Petz transpose
map, which is often only pretty good but suboptimal
[59,60], has naturally emerged as the unique optimal
solution in many relevant cases, confirming the central
role of the Petz transpose map as a quantum Bayes’ rule.
The consistency between the theory of statistical suffi-
ciency (in which the Petz transpose map plays a central
role) and the variational principle of minimum change
suggests a wide range of applicability for that principle in
all areas where the Petz transpose map has appeared to play
a role, such as quantum information theory, quantum
statistical mechanics, and many-body physics.
Besides fidelity, one may consider other divergences as

the figure of merit, such as the Hilbert-Schmidt distance
[61] or the Umegaki [62,63] or Belavkin–Staszewski
[64,65] quantum relative entropies, and wonder whether
they lead to the same quantum Bayes’ rule. In the special
case of τ ¼ EðγÞ, they always do, because the Petz trans-
pose map produces Qfwd ¼ Qref and any reasonable diver-
gence should reach optimum for two identical operators.
However, in the general case τ ≠ EðγÞ, even if
½τ; EðγÞ� ¼ 0, numerical optimization shows that the opti-
mum points may differ for different divergences. It is thus
interesting to explore whether different quantum Bayes’
rules will arise from those various choices.
Further, by imposing additional constraints to the pro-

gram Eq. (15), one could restrict the reverse process to a
desired subset. We have solved the program Eq. (15)
analytically, while for general cases, convex additional
constraints maintains the convexity of the optimization
program, for which efficient numerical algorithms can be
adopted [66,67]. With this approach, the minimum change
principle may be extended to quantum combs [68,69],
quantum supermaps [70,71], and quantum Bayesian
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networks [19,72–75], offering new belief update rules for
them. The tools introduced in this work may also pave the
way toward a fully quantum generalization of entropy
production and fluctuation theorems [76,77].
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I. PROOF OF THEOREM 1

We first give some lemmas useful for the proof.

Lemma S-1. For positive operator A and full-rank positive operator B, the equation of XBX = A has a unique

positive solution X = B−1/2
√√

BA
√
BB−1/2.

The equation a special case of the algebraic matrix Riccati equation, and the solution has been shown in [1, 2]. We
present a proof here for completeness.

Proof.

XBX = A (S-1)
√
BX

√
B
√
BX

√
B =

√
BA

√
B (S-2)

√
BX

√
B =

√√
BA

√
B (S-3)

X = B−1/2

√√
BA

√
BB−1/2 (S-4)

For positive operators A, X and full-rank positive operator B, every step above is sufficient and necessary. Therefore,
the solution of X exists and is unique.

A corollary of this lemma is that, for full-rank positive operators A and B, and for X in Lemma S-1, X−1 is a

positive solution for the equation X−1AX−1 = B. Then by Lemma S-1, X−1 = A−1/2
√√

AB
√
AA−1/2. Combining

this with Eq. (S-4), one gets

B−1/2

√√
BA

√
BB−1/2 =

√
A
(√

AB
√
A
)−1/2 √

A (S-5)

for full-rank positive operators A and B.
The lemma below computes the directional derivative, or Fréchet derivative of the quantum fidelity.

Lemma S-2. For full-rank positive operators ρ and σ, the total differential of their fidelity F (ρ, σ) := Tr
[√√

σρ
√
σ
]
,

with respect to directions ∂ρ and ∂σ, is

∂F (ρ, σ) =
1

2
Tr[∆∂σ] +

1

2
Tr

[
∆−1∂ρ

]
(S-6)

where ∆ := σ−1/2
√√

σρ
√
σσ−1/2.
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2

Proof. The operator ∆ satisfies

∆σ∆ = ρ, ∆−1ρ∆−1 = σ . (S-7)

Then one can rewrite the expression for fidelity as

F (ρ, σ) = Tr

[√√
σρ

√
σ

]
= Tr[σ∆] = Tr

[
ρ∆−1

]
(S-8)

=
1

2

(
Tr[σ∆] + Tr

[
ρ∆−1

])
. (S-9)

The total differential of the fidelity is

∂F (ρ, σ) =
1

2

(
∂ Tr[σ∆] + ∂ Tr

[
ρ∆−1

])
(S-10)

=
1

2

(
Tr[∆∂σ] + Tr[σ∂∆] + Tr

[
ρ∂∆−1

]
+Tr

[
∆−1∂ρ

])
(S-11)

=
1

2

(
Tr[∆∂σ] + Tr[σ∂∆]− Tr

[
ρ∆−1∂∆ ·∆−1

]
+Tr

[
∆−1∂ρ

])
(S-12)

=
1

2

(
Tr[∆∂σ] + Tr

[
(σ −∆−1ρ∆−1)∂∆

]
+Tr

[
∆−1∂ρ

])
(S-13)

=
1

2
Tr[∆∂σ] +

1

2
Tr

[
∆−1∂ρ

]
(S-14)

In Eq. (S-12), we have used the formula for the differential of the inverse of an matrix [3]:

∂∆−1 = −∆−1∂∆ ·∆−1 (S-15)

Proof of Theorem 1. We first prove the local optimality of the solution given by Eq. (16) by deriving it from the
Lagrangian multiplier method, and then use the strict concavity of fidelity (Lemma S-3) to show the global optimality
and uniqueness.

We use the definition of Qfwd and Qrev in Eqs. (11) and (12). Since we are first proving the existence of a local
optimal solution of Eq. (15) in the form Eq. (16), it suffices to restrict CR to be full-rank, and then Qrev is full-rank.
Recall that the variable we optimize over is R, or equivalently the transpose of its Choi operator CT

R.
Define the Lagrangian as

L := F (Qfwd, Qrev) + Tr[Λ(TrA[CR]− 1B)] (S-16)

where Λ is the Lagrangian multiplier for the trace-preserving condition TrA[CR] − 1B = 0. The complete positivity
constraint is not explicitly invoked. Defining

∆ := Q−1/2
rev

√√
QrevQfwd

√
QrevQ

−1/2
rev , (S-17)

then Qrev = ∆−1Qfwd∆
−1 and by Eq. (12), CR satisfies

CT
R = (τ−1/2 ⊗ 1A)Qrev(τ

−1/2 ⊗ 1A) = (τ−1/2 ⊗ 1A)∆
−1Qfwd∆

−1(τ−1/2 ⊗ 1A) . (S-18)

For Qfwd being a constant, by Lemma S-2, ∂F (Qfwd, Qrev) =
1
2 Tr[∆∂Qrev]. The total differential of L is

∂L =
1

2
Tr [∆∂Qrev] + Tr [(Λ⊗ 1A)∂CR] + Tr [(TrA[CR]− 1B)∂Λ] (S-19)

=
1

2
Tr

[
(
√
τ ⊗ 1A)∆(

√
τ ⊗ 1A)∂C

T
R
]
+Tr

[
(ΛT ⊗ 1A)∂C

T
R
]
+Tr [(TrA[CR]− 1B)∂Λ] . (S-20)

In the second equality we also used the fact that τ is considered a constant.
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The local optimum is attained when the differential of L is zero with respect to both CT
R and Λ. This gives

1

2
(
√
τ ⊗ 1A)∆(

√
τ ⊗ 1A) + ΛT ⊗ 1A = 0 (S-21)

TrA[CR]− 1B = 0 (S-22)

From Eq. (S-21), one gets

∆ = −2τ−1/2ΛT τ−1/2 ⊗ 1A =: ∆B ⊗ 1A (S-23)

where ∆B := −2τ−1/2ΛT τ−1/2. ∆B > 0 since ∆ > 0. By Eq. (S-22), one gets 1B = TrA[C
T
R]. Substituting Eqs. (S-18)

and (S-23) into this, one gets

1B = TrA[C
T
R] (S-24)

= TrA

[
(τ−1/2 ⊗ 1A)∆

−1Qfwd∆
−1(τ−1/2 ⊗ 1A)

]
(S-25)

= TrA

[
(τ−1/2∆−1

B ⊗ 1A)Qfwd(∆
−1
B τ−1/2 ⊗ 1A)

]
(S-26)

= τ−1/2∆−1
B TrA [Qfwd] ∆−1

B τ−1/2 (S-27)

= τ−1/2∆−1
B E(γ) ∆−1

B τ−1/2 , (S-28)

where the last equation comes from Eq. (9). This can be equivalently written as a equation for ∆B , namely

∆Bτ∆B = E(γ) , (S-29)

solving which with Lemma S-1 obtains

∆B = τ−1/2
√√

τE(γ)
√
ττ−1/2 . (S-30)

In turn, this gives the value of the Lagrangian multiplier by

ΛT = −1

2

√
τ∆B

√
τ = −1

2

√√
τE(γ)

√
τ . (S-31)

Substituting Eq. (S-30) into Eq. (S-23), one gets

∆−1 = ∆−1
B ⊗ 1A =

√
τ
(√

τE(γ)
√
τ
)−1/2 √

τ ⊗ 1A . (S-32)

Then, by Eq. (S-18),

CT
R = (τ−1/2 ⊗ 1A)∆

−1Qfwd∆
−1(τ−1/2 ⊗ 1A) (S-33)

=
((√

τE(γ)
√
τ
)−1/2 √

τ ⊗ 1A

)
Qfwd

(√
τ
(√

τE(γ)
√
τ
)−1/2 ⊗ 1A

)
(S-34)

=
((√

τE(γ)
√
τ
)−1/2 √

τ ⊗
√

γT
)
CE

(√
τ
(√

τE(γ)
√
τ
)−1/2 ⊗

√
γT

)
(S-35)

=
(
D† ⊗

√
γT

)
CE

(
D ⊗

√
γT

)
. (S-36)

where D :=
√
τ (

√
τE(γ)

√
τ)

−1/2
. The above Choi operator corresponds to the map in Eq. (16). To see this, assuming

the Kraus decomposition of E is E(ρ) =
∑

k KkρK
†
k, one computes CT

R from Eq. (16) by definition of the Choi operator

CR =
∑

ij |i⟩⟨j| ⊗ R(|i⟩⟨j|) of the map R(σ) :=
√
γ E†(DσD†)

√
γ as

CT
R =

∑
ij

|i⟩⟨j| ⊗ √
γ E† (D |i⟩⟨j|D†)√γ

T

(S-37)

=
∑
ijk

(
|i⟩⟨j| ⊗ √

γ K†
kD |i⟩⟨j|D†Kk

√
γ
)T

(S-38)

=
∑
k

(1B ⊗√
γ)

∑
ij

|i⟩⟨j| ⊗ K†
kD |i⟩⟨j|D†Kk

 (1B ⊗√
γ)

T

. (S-39)
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Using the identity
∑

ij |i⟩⟨j| ⊗X |i⟩⟨j|Y =
∑

ij X
T |i⟩⟨j|Y T ⊗ |i⟩⟨j| for operators X and Y on HB , one has

CT
R =

∑
k

(1B ⊗√
γ)

∑
ij

(K†
kD)T |i⟩⟨j| (D†Kk)

T ⊗ |i⟩⟨j|

 (1B ⊗√
γ)

T

(S-40)

=
∑
ijk

(
(K†

kD)T |i⟩⟨j| (D†Kk)
T ⊗√

γ |i⟩⟨j|√γ
)T

(S-41)

=
∑
ijk

D†Kk |j⟩⟨i|K†
kD ⊗

√
γT |j⟩⟨i|

√
γT (S-42)

=
∑
ij

D†E(|j⟩⟨i|)D ⊗
√
γT |j⟩⟨i|

√
γT (S-43)

=
(
D† ⊗

√
γT

)
CE

(
D ⊗

√
γT

)
, (S-44)

which is the same as Eq. (S-36).
Therefore, R in Eq. (16) satisfies ∂L = 0 and is a local optimum of Eq. (15).
Among full-rank positive operators CR, this solution is the unique global maximum since, as shown in Lemma S-3

below, the objective function F (Qfwd, Qrev) is strictly concave with respect to CR. More precisely, Lemma S-3 below
shows that F (Qfwd, Qrev) is strictly concave when Qfwd > 0 and Qrev > 0, and Qrev is a linear function of CR. Since
the solution Eq. (S-36) has CR > 0, due to the continuity of quantum fidelity, this solution is also the unique global
maximum among all positive operators including non-full-rank ones. That is because the set of positive operators is
the closure of full-rank positive operators.

Last, if [τ, E(γ)] = 0, one has D = E(γ)−1/2, and the above equation simplifies to

CT
R =

(
E(γ)−1/2 ⊗

√
γT

)
CE

(
E(γ)−1/2 ⊗

√
γT

)
. (S-45)

Eq. (S-45) exactly corresponds to the Petz map Eq. (18).

The next lemma shows the strict concavity of fidelity between two full-rank operators. We used it to show the
uniqueness of the optimal solution in Theorem 1. A stronger version of this lemma is shown in [4] but we present
here an independent proof for the sake of completeness.

Lemma S-3. When ρ > 0 and σ > 0, the fidelity F (ρ, σ) is strictly concave with respect to σ.

Proof. Considering F (ρ, σ) as a multivariate function of elements of σ, its strict concavity is equivalent to its second-
order derivative being strictly negative in every direction.

The domain of fidelity F consists of positive Hermitian operators, and thus a perturbation of σ should also be
Hermitian. Let us consider a perturbation of σ as σ + εH, where ε ∈ R and H ̸= 0 is a Hermitian operator.
Let f(ε) := F (ρ, σ + εH). The goal is to show that the second-order derivative of f at ε = 0 is negative in every

direction H ̸= 0.
We start with the gradient of F (ρ, σ) given by Lemma S-2:

∂F (ρ, σ) =
1

2
Tr[∆∂σ], (S-46)

where ∆ = σ−1/2
√√

σρ
√
σ σ−1/2. This gives the first-order derivative

df

dε

∣∣∣∣
ε=0

=
1

2
Tr[∆H] . (S-47)

Now, we compute the second-order derivative of f , which involves the differential of ∆. Let M :=
√√

ρ σ
√
ρ, its

differential is

∂M = ∂
√√

ρ σ
√
ρ =

∫ ∞

0

e−tM√
ρ ∂σ

√
ρe−tMdt , (S-48)
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where we have used [5]

∂
√
A =

∫ ∞

0

e−t
√
A ∂A e−t

√
Adt . (S-49)

Since ρ > 0 and σ > 0, one has M > 0.

By Eq. (S-5), ∆ =
√
ρ
(√

ρ σ
√
ρ
)−1/2 √

ρ =
√
ρM−1√ρ. Using Eqs. (S-15) and (S-48), its differential is

∂∆ =
√
ρ(∂M−1)

√
ρ (S-50)

= −√
ρM−1(∂M)M−1√ρ (S-51)

= −√
ρM−1

∫ ∞

0

e−tM√
ρ ∂σ

√
ρ e−tMdtM−1√ρ (S-52)

= −
∫ ∞

0

K(t) ∂σK(t)dt , (S-53)

where K(t) :=
√
ρM−1e−tM√

ρ =
√
ρ e−tMM−1√ρ. M > 0 implies M−1e−tM > 0, and since ρ > 0, one has K(t) > 0

for any t ≥ 0. We then write the derivative of ∆ with respect to ε as

d∆

dε

∣∣∣∣
ε=0

= −
∫ ∞

0

K(t)HK(t)dt . (S-54)

Combining this with Eq. (S-47), we get the second-order derivative of f

d2f

dε2

∣∣∣∣
ε=0

=
1

2
Tr

[
d∆

dε

∣∣∣∣
ε=0

H

]
= −1

2

∫ ∞

0

Tr[K(t)HK(t)H]dt . (S-55)

To show that Eq. (S-55) is negative, it suffices to show that Tr[K(t)HK(t)H] > 0 for any t ≥ 0. We prove this by
contradiction.

Assume that the following holds for some t

Tr[K(t)HK(t)H] ≤ 0 . (S-56)

Take X = HK(t)H = H†K(t)H, with the second equality due to H being Hermitian. X ≥ 0 because K(t) > 0.
Since K(t) > 0, if X ≥ 0 and X ̸= 0, one has Tr[K(t)X] > 0, contradicting the assumption. Therefore, X = 0.
Again, since K(t) > 0, X = H†K(t)H = 0 implies H = 0, in contradiction to H ̸= 0 given at the beginning of this

proof. Therefore, the assumption Eq. (S-56) is false and thus Tr[K(t)HK(t)H] > 0 for any t ≥ 0.

We have obtained that d2f
dε2

∣∣∣
ε=0

< 0 for any Hermitian operator H ̸= 0. This proves that F (ρ, σ) is strictly concave

with respect to σ.
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