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Port-based telecloning of an unknown quantum state
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Telecloning is a protocol introduced by Murao et al. [Phys. Rev. A 59, 156 (1999)] to distribute copies of an
unknown quantum state to many receivers in a way that beats the trivial “clone-and-teleport” protocol. In the last
decade, a new type of teleportation called port-based teleportation, in which the receiver can recover the state
simply by looking at the correct port without having to actively perform correction operations, has been widely
studied. In this paper, we consider the analog of telecloning, in which conventional teleportation is replaced by
the port-based variant. To achieve this, we generalize the optimal measurement used in port-based teleportation
and develop a new one that achieves port-based telecloning. Numerical results show that, in certain cases, the
proposed protocol is strictly better than the trivial clone-and-teleport approach.
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I. INTRODUCTION

Quantum teleportation [1] is one of the basic protocols
in quantum communication, allowing the transmission of
quantum information from one location to another without
physically moving the particles carrying the quantum state
and instead using only local operations and classical com-
munications with preshared quantum entanglement. Quantum
teleportation is used in quantum repeaters [2] and is essential
for the realization of long-distance quantum communication.
The standard version of teleportation (ST) requires the re-
ceiver to actively perform a unitary correction on its system,
depending on the classical information received from the
sender.

Port-based teleportation (PBT) is an alternative type of
quantum teleportation proposed by Ishizaka and Hiroshima
[3,4] that uses a multipartite entangled state whose subsys-
tems are called ports. Unlike ST, PBT does not require the
receiver to actively perform a unitary transformation; instead,
the teleportation process is completed simply by selecting one
of the multiple ports depending on the sender’s measurement
result and discarding the others. This feature enables PBT
to be applied to universal programmable quantum processors
[3]. However, the no-programming theorem [5] shows that
faithful and deterministic universal programmable quantum
processors cannot be realized in a finite-dimensional system.
Therefore, PBT succeeds only approximately or probabilis-
tically. Despite these limitations, PBT has also been applied
in areas such as instantaneous nonlocal quantum computation
[6] and communication complexity and Bell nonlocality [7].
There has been extensive research on the performance [8–12]
and algorithms [13–16] of PBT.
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Telecloning, proposed by Murao et al. [17,18], is a protocol
that generalizes teleportation with the goal of distributing a
single unknown input state to many distant receivers. Since
perfect copying of an unknown quantum state is forbidden by
the no-cloning theorem [19–21], telecloning aims to transfer
optimal clones instead [22,23].

Existing telecloning protocols are based on ST and thus
require receivers to actively perform unitary transformations
to complete the protocol. In this paper, we introduce port-
based telecloning (PBTC), which combines telecloning with
(multi-)PBT and allows the transmission of copies of an un-
known quantum state without requiring active corrections by
the receivers. To this end, we generalize the measurement
used in PBT and propose a new one that, when used on
maximally entangled resource states, asymptotically achieves
the fidelity of the optimal universal cloning protocol [23].
Interestingly, numerical results show that when the number
of ports is small, PBTC achieves a transmission fidelity that
is strictly higher than that achievable by the naive method
of simply performing optimal cloning and PBT sequentially.
Throughout the study, we consider deterministic protocols us-
ing maximally entangled resource states. Room to investigate
optimal resource states and a probabilistic variant of PBTC
remains. See Sec. II A for details.

The structure of this paper is as follows. In Sec. II, we
summarize the necessary concepts of PBT and telecloning.
In Sec. III, we introduce PBTC and explain its protocol. After
discussing the generalization of the positive operator-valued
measure (POVM) and its asymptotic optimality, we compare
the performance with the trivial protocol. In Sec. IV, we
provide a summary and discuss open questions.

II. PRELIMINARIES

A. Port-based teleportation

For a finite-dimensional Hilbert space H, L(H) denotes the
space of linear operators on H. In PBT, Alice (the sender)
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and Bob (the receiver) share an entangled state �AN BN ∈
L(H⊗N ⊗ H⊗N ) on 2N qudits, and Alice has the input
pure state σX ∈ L(HX ). Here, system AN ≡ A1 · · · AN (BN ≡
B1 · · · BN ) is on Alice’s (Bob’s) side. Each system A is asso-
ciated with a finite-dimensional Hilbert space HA

∼= Cd . The
shared entangled state �AN BN is called a resource state, and
each of systems A1, . . . , AN and B1, . . . , BN is referred to as a
port.

PBT is mainly classified into deterministic PBT (dPBT)
and probabilistic PBT (pPBT). Although dPBT always suc-
ceeds, faithful transfer can be achieved only asymptotically.
On the other hand, pPBT always achieves faithful transmis-
sion, but the unit success probability of the protocol is only
asymptotically achieved. In this work, we focus on only the
deterministic version, so we refer to dPBT simply as PBT.
The protocol of PBT is as follows:

(1) Alice jointly measures the input system X and all her
ports AN with a POVM {Ei

XAN }N
i=1.

(2) Alice relays the outcome i ∈ {1, . . . , N} to Bob via
classical communication.

(3) Bob selects the port Bi and discards all other ports BN \
Bi.

This completes the protocol, and the state is transferred
to the remaining port Bi. The PBT channel EN : L(HX ) →
L(HB) is then expressed as follows:

EN (σX ) =
N∑

i=1

TrXAN Bc
i

[
Ei

XAN (σX ⊗ �AN BN )
]
, (1)

where Bc
i ≡ BN \ Bi = B1 · · · Bi−1Bi+1 · · · BN and the remain-

ing system Bi is relabeled as output system B. The left side of
Fig. 1 represents PBT [3].

The performance of PBT is evaluated by entanglement
fidelity. The entanglement fidelity F of a quantum channel
N : L(H) → L(H) is defined as follows:

F (N ) := 〈�+|(N ⊗ id)(�+)|�+〉, (2)

where �+ = |�+〉 〈�+| is the maximally entangled state,
defined by |�+〉 = 1√

d

∑d
i=1 |i〉 |i〉 for the orthonormal basis

{|i〉}d
i=1, and id is the identity channel. Entanglement fidelity

is related to average output fidelity f , which is defined as
follows:

f (N ) :=
∫

dφ〈φ|N (φ)|φ〉, (3)

where the integral is performed with respect to the uniform
distribution dφ over all input pure state. These two quantities
are connected by the following relationship [24]:

f (N ) = F (N )d + 1

d + 1
. (4)

An important class of POVMs in PBT is the pretty
good measurement (PGM; also known as a square-root mea-
surement) [25,26]. The PGM {Ei}i for the state ensemble
{(pi, σ

i )}i∈I is given by

Ei = σ̄− 1
2 piσ

iσ̄− 1
2 , (5)

where σ̄ = ∑
i∈I piσ

i and σ̄−1 is defined on the support of σ̄ ,
which can always be assumed to be invertible, without loss

FIG. 1. (a) The setting of port-based teleportation (PBT). Alice
and Bob share entangled states in ports A1, . . . , AN and B1, . . . , BN ,
with Alice also holding the input state in the system X . In the proto-
col, Alice first measures systems XA1 · · · AN and sends the outcome
i ∈ {1, . . . , N} to Bob, who then selects port Bi. This completes the
protocol. (b) The setting of port-based telecloning (PBTC). PBTC
is best thought of as having N receivers, where the ith receiver has
port Bi (i = 1, . . . , N ), and the goal of the protocol is to have M
receivers get approximate copies of the state of system X . In the
protocol, Alice performs a measurement with a multi-index outcome,
i.e., a subset {i1, . . . , iM} ⊂ {1, . . . , N}, and sends the outcome to
all receivers. Each receiver keeps their port if their port number is
contained in Alice’s outcome. This completes the protocol, and an
approximate copy of the input state of X is transferred to M receivers.

of generality. Note that the sum of Ei defined by (5) is the
projection onto the support of σ̄ , which generally does not
coincide with the identity operator. One way to make them
POVMs in the full Hilbert space is to add

� = 1

|I|

(
1 −

∑
i∈I

Ei

)
(6)

to each Ei. This does not change the argument in PBT since
Tr[�σ i] = 0.

References [4,12] showed that the POVM that maximizes
the fidelity of PBT is the PGM constructed from the ensemble
{(1/N, ρ i

XAN )}N
i=1, where

ρ i
XAN := �+

XAi
⊗ 1

dN−1
1Ac

i
. (7)

A PBT protocol that uses N pairs of maximally entangled
states as ports and the PGM for {(1/N, ρ i

XAN )}N
i=1 as a mea-

surement is called standard PBT. The entanglement fidelity of
the standard PBT channel E std

N is computed as follows [11]:

F
(
E std

N

) = 1 − d2 − 1

4N
+ O(N− 3

2 +δ ), (8)

where δ > 0. In addition, we can consider using any resource
state and are not limited to maximally entangled states. Even
in this case, it is known that the PGM that is the same as
the POVM used in standard PBT is optimal (i.e., maximizing
entanglement fidelity) [12]. If we denote a PBT channel using
the PGM and optimal resource states as Eopt

N , the performance
of such a channel can be expressed as follows [11]:

F
(
Eopt

N

) = 1 − �(N−2). (9)
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B. Telecloning

Telecloning [17,18] is a generalization of ST to the case of
many receivers. The objective of telecloning is to distribute
one input state to many distant receivers. However, the no-
cloning theorem [20] prohibits making multiple perfect copies
of a single unknown state. The best a sender can do is to
transfer an optimal clone that is the closest to the original
state allowed by quantum mechanics. In the following, we will
focus on symmetric cloning, i.e., the situation where there is
no difference between the copies that each recipient receives.

The K → M optimal cloning map C : L(H⊗K ) →
L(H⊗M ) given by Werner [23] is obtained by projecting
K input copies and M − K completely mixed states onto a
symmetric subspace:

C(|φ〉 〈φ|⊗K ) = d[K]

d[M]
	M (|φ〉 〈φ|⊗K ⊗ 1⊗M−K )	M, (10)

where d[K] = (d+K−1
K

)
and 	M is the projection onto the

totally symmetric subspace of H⊗M . The state in (10) also
optimizes the fidelity of each clone [27], which is written as
follows:

R ◦ C(|φ〉 〈φ|⊗K ) = γK,M |φ〉 〈φ| + (1 − γK,M )
1

d
1, (11)

where γK,M = K
M

M+d
K+d and R represents the trace over all sub-

systems except the first one (due to exchange symmetry all
clones are equal). Furthermore, since C is universal (i.e., the
fidelity does not depend on the input pure states), the fidelity
for K = 1 is given as follows:

f (R ◦ C) = γ1,M + (1 − γ1,M )
1

d

= d + 2M − 1

M(d + 1)
. (12)

There is a straightforward protocol to transfer optimal
clones to many receivers. That is, Alice applies the optimal
cloning map locally and transfers its output to each receiver
by ST. If the number of clones is M, this protocol requires
M log2 d ebits. Unlike this “clone-and-teleport” protocol, the
protocol introduced in [17,18] performs cloning and telepor-
tation simultaneously. An advantage of this protocol is that it
requires only (log2 d)-ebit entanglement between the sender
and the receivers. This is achieved by using the 2M-qudit
entangled state, called a telecloning state, which is shared
between Alice and the 2M − 1 receivers (each participant has
one qudit). The protocol is as follows:

(1) Alice performs a complete d-dimensional Bell mea-
surement on the input state and her entangled state.

(2) Alice relays the outcome to all receivers via classical
communication.

(3) Each receiver applies an appropriate unitary transfor-
mation based on Alice’s measurement outcome.

This completes the protocol, and M receivers obtain the
optimal clone of the input state. This is possible because the
universal cloning is covariant under the action of the unitary
group.

III. PORT-BASED TELECLONING

A. The protocol

In this section, we introduce PBTC, which performs tele-
cloning using PBT. The goal of PBTC is to distribute M copies
of the state of the input system across N ports in one go. In
particular, we consider a symmetric cloning scenario, i.e., all
copies should look the same locally.

In PBTC, we use a POVM whose outcomes specify a sub-
set of all ports available: The ports contained in such a subset
will receive a copy of the input state, whereas the remaining
ports will be discarded. The set of measurement outcomes is
defined as follows.

Definition 1. For fixed N and M (N � M ), we define the
set

IM
N := {{i1, . . . , iM} | ik ∈ {1, . . . , N} for k ∈ {1, . . . , M},

and i1 < · · · < iM}. (13)

Here, |IM
N | = (N

M

)
. For I = {i1, . . . , iM} ∈ IM

N , we write the
composite system AI ≡ Ai1 · · · AiM and Ac

I ≡ AN \ AI .
The right side of Fig. 1 represents PBTC. In PBTC, Alice

and N receivers share a resource state �AN BN . We consider
Alice to have ports A1, . . . , AN , and the ith receiver has port
Bi (i = 1, . . . , N ). Additionally, Alice holds the input state
σX . The protocol of PBTC is as follows:

(1) Alice measures the input system X and all her ports AN

with a POVM {EI
XAN }I∈IM

N
.

(2) Alice relays the outcome I ∈ IM
N to all receivers via

classical communication.
(3) The ith receiver discards their port Bi if i /∈ I and does

nothing if i ∈ I (i = 1, . . . , N ).
This completes the protocol, and the clones are transferred

to the M receivers. The PBTC channel DN,M : L(HX ) →
L(H⊗M ) is expressed as follows:

DN,M (σX ) =
∑
I∈IM

N

TrXAN Bc
I

[
EI

XAN (σX ⊗ �AN BN )
]
, (14)

and the remaining system Bik (k = 1, . . . , M ) is relabeled as
output system Bk .

Clone-and-teleport protocol

In Sec. II B, we described a trivial “clone-and-teleport”
protocol for telecloning, and we can consider a similar pro-
tocol for PBTC. The protocol is that Alice creates an optimal
M clone locally and transfers it by multiport-based teleporta-
tion (MPBT) [28]. For simplicity, we consider only 1 → M
cloning.

MPBT is the protocol that transfers M qudit states to
M ports in one go. The POVM for MPBT using N pairs
of maximally entangled states is given by the PGM for
{(|J M

N |−1, ρJ
X M AN )}J∈J M

N
, where

J M
N := {( j1, . . . , jM ) | jk ∈ {1, . . . , N} for k ∈ {1, . . . , M},

and jk �= jl for k �= l} (15)
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is the ordered version of IM
N , and for J = ( j1, . . . , jM ) ∈ J M

N ,

ρJ
X M AN :=

M⊗
k=1

�+
XkAjk

⊗ 1

dN−M
1Ac

J
. (16)

We refer to the protocol that performs optimal cloning and
MPBT successively as the clone-and-MPBT protocol. The
clone-and-MPBT protocol can be considered in the frame-
work of PBTC. The clone-and-MPBT protocol is equivalent
to PBTC using the POVM{

(C†
X M→X ⊗ idAN )

(
EJ

X M AN

)}
J∈J M

N
, (17)

where C†
X M→X : L(H⊗M

X M ) → L(HX ) is the adjoint of the op-
timal cloning map given by (10) and {EJ

X M AN }J∈J M
N

is the
PGM for {(|J M

N |−1, ρJ
X M AN )}J∈J M

N
. The set of measurement

outcomes in (17) is not IM
N , but that poses no issue because

it can be made equivalent to IM
N by summing the POVM

elements for outcomes that are identical when reordered. Note
that since the figure of merit for (17) differs from the original
PGM, it is essential to make (17) a proper POVM in the full
Hilbert space. Thus, we take into account �, given by (6), in
the clone-and-MPBT protocol.

The clone-and-MPBT protocol can transfer optimal clones
in the limit of the number of ports N → ∞. However, opti-
mality for finite N is not guaranteed. In fact, the POVM we
introduce in the next section achieves higher fidelity than the
clone-and-MPBT protocol when N is small.

B. Generalization of POVM

As we have noted, in this work, we consider only sym-
metric cloning. We first introduce an ensemble for a PGM
by partially symmetrizing the state ρ i

XAN that constitutes the
optimal POVM of PBT.

Definition 2. For I = {i1, . . . , iM} ∈ IM
N , let

ηI
XAN := dM

d[M]
	AI ρ

i1
XAN 	AI , (18)

where ρ
i1
XAN is the state given by (7) and 	AI is the projection

onto the symmetric subspace of H⊗M
AI

.
In Eq. (18), although we formally use i1 as the index of

ρ
i1
XAN , note that ηI

XAN remains in the same state regardless of
whether i1 is replaced by any element of I = {i1, . . . , iM}.

We refer to PBTC that uses N pairs of maximally entan-
gled states and the PGM for {(|IM

N |−1, ηI
XAN )}I∈IM

N
as standard

PBTC. Since standard PBTC is symmetric cloning, we evalu-
ate its performance using an average fidelity of a single clone
for all input pure states.

The asymptotic fidelity of standard PBTC is given by the
following theorem.

Theorem 1. Let us consider the standard PBTC channel
Dstd

N,M and the channel R that represents the trace over all
subsystems except the first one. In the limit of the number
of ports N → ∞, the following equality holds:

lim
N→∞

f
(
R ◦ Dstd

N,M

) = d + 2M − 1

M(d + 1)
, (19)

where d is the dimension of the local Hilbert space and M is
the number of clones to be transferred.

FIG. 2. The fidelity of the PBTC protocol proposed here (circles)
and the trivial clone-and-MPBT protocol (triangles). The plotted
values were obtained by numerical calculation for d = 2 and M = 2.
Fidelity is the average over the input pure state and is calculated for
a single clone.

The proof is given in Sec. III C. The value of (19) coin-
cides with the fidelity of 1 → M optimal cloning given by
(12). Therefore, standard PBTC can transfer optimal clones
asymptotically.

Finally, we numerically compare the performance of stan-
dard PBTC with the clone-and-MPBT protocol described in
the previous section. Figure 2 shows the fidelity of each pro-
tocol obtained by numerical calculation. Fidelity is calculated
for a single clone. Namely, it represents f (R ◦ Dstd

N,M ) and
f (R ◦ TN,M ), where Dstd

N,M is the standard PBTC channel and
TN,M is the quantum channel corresponding to the clone-
and-MPBT protocol. Figure 2 shows that standard PBTC
achieves higher fidelity than the clone-and-MPBT protocol
when d = 2, M = 2, and 2 � N � 6. Due to the increasing
complexity of the calculation we were not able to go to higher
values of M and N , but we conjecture that a finite gap exists
for all finite values. This problem could potentially be gotten
rid of by exploiting the proper representation theory approach
given in [14,28].

C. Proof of Theorem 1

In this section, we prove Theorem 1. Within this section,
we use the same notation for operators in systems AN B as we
did for operators in systems XAN in the previous sections via
the isomorphism X ∼= B. For example, for ρ i

XAN = �+
XAi

⊗
1

dN−1 1Ac
i

defined in (7), we have ρ i
AN B = �+

AiB
⊗ 1

dN−1 1Ac
i
.

We start by showing the properties related to the symmetric
group.

Definition 3. Let SN be the symmetric group in {1, . . . , N},
and for I ∈ IM

N , let SI be the subgroup of SN consisting of all
permutations of I = {i1, . . . , iM}. For σ ∈ SN , the action of the
unitary representation Vσ ∈ L(H⊗N ) is defined follows:

Vσ |k1 · · · kN 〉 := |kσ−1(1) · · · kσ−1(N )〉 . (20)
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In addition, for I ∈ IM
N , let 	AI be the projection onto the

symmetric subspace of H⊗M
AI

as follows:

	AI
:= 1

M!

∑
σ∈SI

Vσ . (21)

Note that although 	AI defined in (21) is an operator on
H⊗N

AN , it acts nontrivially only on H⊗M
AI

.
Lemma 1. For any σ ∈ SN and I ∈ IM

N , σSIσ
−1 = Sσ (I ).

Proof. First, if τ ∈ σSIσ
−1, a π ∈ SI such that τ =

σπσ−1 exists. Since σπσ−1 is a bijection on σ (I ), τ is a
permutation of σ (I ). Thus, σSIσ

−1 ⊂ Sσ (I ). Next, suppose
τ ∈ Sσ (I ). In this case, σ−1τσ is a bijection on I . Therefore,
a π ∈ SI such that σ−1τσ = π exists. Since τ = σπσ−1 and
σπσ−1 ∈ σSIσ

−1, we have τ ∈ σSIσ
−1. Therefore, Sσ (I ) ⊂

σSIσ
−1. �

Corollary 1. For any σ ∈ SN and I ∈ IM
N , Vσ	AIV

†
σ =

	Aσ (I ) .
Proof. From Lemma 1, we have

∑
τ∈SI

Vστσ−1 =
∑

π∈Sσ (I )

Vπ . (22)

Since Vσπ = VσVπ and Vσ−1 = V †
σ for any σ, π ∈ SN , the

lemma holds. �
Proposition 1. Let {EI

AN B}I∈IM
N

be the PGM for
{(|IM

N |−1, ηI
AN B)}I∈IM

N
. For any I = {i1, . . . , iM} ∈ IM

N , it
holds that 	AI E

I
AN B	AI = EI

AN B.
Proof. Let us denote

η̄AN B =
(

N

M

)−1 ∑
I∈IM

N

ηI
AN B. (23)

For any σ ∈ SN , we have

Vσ η̄AN B =
(

N

M

)−1 dM

d[M]

∑
I∈IM

N

Vσ	AI ρ
i1
AN B	AI

=
(

N

M

)−1 dM

d[M]

∑
I∈IM

N

Vσ	AIV
†
σ Vσ ρ

i1
AN BV †

σ Vσ	AIV
†
σ Vσ

=
(

N

M

)−1 dM

d[M]

∑
I∈IM

N

	Aσ (I )ρ
σ (i1 )
AN B 	Aσ (I )Vσ

= η̄AN BVσ . (24)

The second equality uses V −1
σ = V †

σ , and the third equality
uses Vσ ρ

i1
AN BV †

σ = ρ
σ (i1 )
AN B and Corollary 1. Note that from the

symmetry
(N

M

)−1 dM

d[M]

∑
I∈IM

N
	Aσ (I )ρ

σ (i1 )
AN B 	Aσ (I ) = η̄AN B holds.

By summing both sides with respect to σ ∈ SI and dividing
by M!, we obtain

	AI η̄AN B = η̄AN B	AI . (25)

Since η̄−1
AN B is defined on the support of η̄AN B, [	AI , η̄

− 1
2

AN B] = 0

also holds. Therefore,

	AI E
I
AN B	AI = 	AI η̄

− 1
2

AN B

(
dM

d[M]
	AI ρ

i1
AN B	AI

)
η̄

− 1
2

AN B	AI

= η̄
− 1

2

AN B

(
dM

d[M]
	AI ρ

i1
AN B	AI

)
η̄

− 1
2

AN B

= EI
AN B. (26)

�
We then calculate the entanglement fidelity. The following

lemma connects the entanglement fidelity of PBT with the
state-discrimination problem.

Lemma 2. Let us fix the resource state to be N pairs of
maximally entangled states [4,6]. The entanglement fidelity
of the PBT channel EN using the POVM {Ei

XAN }N
i=1 is given by

F (EN ) = 1

d2

N∑
i=1

Tr
[
Ei

AN Bρ i
AN B

]
. (27)

By applying this lemma for standard PBTC, we obtain the
following corollary.

Corollary 2. Let us consider the standard PBTC channel
Dstd

N,M and quantum channel R that traces over all subsystems
except the first one. The entanglement fidelity of the quantum
channel R ◦ Dstd

N,M is given by

F
(
R ◦ Dstd

N,M

) = 1

d2

∑
I∈IM

N

Tr
[
EI

AN Bρ
i1
AN B

]
, (28)

where i1 is the smallest number of I and {EI
XAN }I∈IM

N
is the

PGM for {(|IM
N |−1, ηI

AN B)}I∈IM
N

.
The following lemma provides the lower bound of the suc-

cess probability for the state-discrimination problem of PGM.
It is proportional to the entanglement fidelity, as expressed by
Lemma 2.

Lemma 3. [6] Let {Ei}N
i=1 be the PGM for any state en-

semble {(1/N, σ i )}N
i=1. Then, the success probability for the

state-discrimination problem

psucc = 1

N

N∑
i=1

Tr[Eiσ i] (29)

satisfies the following inequality:

psucc �
1

Nr̄Trσ̄ 2
, (30)

where

r̄ = 1

N

N∑
i=1

rankσ i , σ̄ = 1

N

N∑
i=1

σ i. (31)

To utilize Lemma 3, we calculate the values of (31) for
the state ensemble {(|IM

N |−1, ηI
XAN )}I∈IM

N
. The average rank is

given by the following proposition.

Proposition 2.
(N

M

)−1 ∑
I∈IM

N
rankηI

AN B = d[M − 1]dN−M .

Proof. For any I = {i1, . . . , iM} ∈ IM
N , we have

ηI
AN B = dM−N+1

d[M]
	AI (�

+
Ai1 B ⊗ 1AI \Ai1

)	AI ⊗ 1Ac
I
. (32)
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The set W of eigenvectors corresponding to the nonzero eigen-
values of 	AI (�

+
Ai1 B ⊗ 1AI \Ai1

)	AI is

W = {	AI |�+〉Ai1 B |k1 · · · kM−1〉AI \Ai1
}d

k1,...,kM−1=1, (33)

where {|k〉}d
k=1 is the orthonormal basis of H. Since rank1Ac

I
=

dN−M , it is sufficient to show |W | = d[M − 1]. Here,

	AI |�+〉Ai1 B |k1 · · · kM−1〉AI \Ai1

= 1√
d

d∑
i=1

	AI |i k1 · · · kM−1〉AI
|i〉B . (34)

Thus,

	AI |�+〉Ai1 B |k1 · · · kM−1〉AI \Ai1

= 	AI |�+〉Ai1 B |l1 · · · lM−1〉AI \Ai1
(35)

holds for k1, . . . , kM−1, l1, . . . , lM−1 ∈ {1, . . . d} if and only if

	AI |i k1 · · · kM−1〉AI
= 	AI |i l1 · · · lM−1〉AI

(36)

holds for each i ∈ {1, . . . , d}. Equation (36) holds if and
only if k1, . . . , kM−1 and l1, . . . , lM−1 match after permutation.
Thus, |W | equals the number of combinations with repetition
of selecting M − 1 elements from {1, . . . , d}. Hence, |W | =
d[M − 1]. �

Next, we estimate Trη̄2
AN B.

Lemma 4. Let I, J, K, L ∈ IM
N . If |I ∩ J| = |K ∩ L|, then

Tr[ηI
AN BηJ

AN B] = Tr[ηK
AN BηL

AN B].
Proof. For any σ ∈ SN and I = {i1, . . . , iM} ∈ IM

N , we
have

ηI
AN B = dM

d[M]
	AI ρ

i1
AN B	AI

= dM

d[M]
V †

σ Vσ	AIV
†
σ Vσ ρ

i1
AN BV †

σ Vσ	AIV
†
σ Vσ

= dM

d[M]
V †

σ 	Aσ (I )ρ
σ (i1 )
AN B 	Aσ (I )Vσ

= V †
σ η

σ (I )
AN BVσ . (37)

The second equality uses V −1
σ = V †

σ , and the third equality
uses Vσ ρ

i1
AN BV †

σ = ρ
σ (i1 )
AN B and Corollary 1. Therefore, for any

σ ∈ SN and I, J ∈ IM
N , we obtain

Tr
[
ηI

AN BηJ
AN B

] = Tr
[(

V †
σ η

σ (I )
AN BVσ

)(
V †

σ η
σ (J )
AN BVσ

)]
= Tr

[
η

σ (I )
AN Bη

σ (J )
AN B

]
. (38)

Note that |I ∩ J| = |σ (I ) ∩ σ (J )|. Moreover, for any K, L ∈
IM

N satisfying |I ∩ J| = |K ∩ L|, a σ ∈ SN such that σ (I ) = K
and σ (J ) = L exists. Thus, the proposition is proved. �

Lemma 5. For any I, J ∈ IM
N , it holds that Tr[ηI

AN BηJ
AN B] �

Tr[(ηI
AN B)2].

Proof. Applying the Cauchy-Schwarz inequality to the
Hilbert-Schmidt inner product, we have∣∣Tr[A†B]

∣∣ � √
Tr[A†A]

√
Tr[B†B] (39)

for any A, B ∈ L(H⊗N+1). By setting A = ηI
AN B and B =

Vσ ηI
AN BV †

σ = η
σ (I )
AN B for σ ∈ SN , the left-hand side can be writ-

ten as ∣∣Tr
[
ηI

AN Bη
σ (I )
AN B

]∣∣ = Tr
[
ηI

AN Bη
σ (I )
AN B

]
, (40)

while the right-hand side becomes√
Tr
[
ηI

AN BηI
AN B

]√
Tr
[(

Vσ ηI
AN BV †

σ

)(
Vσ ηI

AN BV †
σ

)]
= Tr

[(
ηI

AN B

)2
]
. (41)

Since σ ∈ SN is arbitrary, J = σ (I ) is arbitrary. �
Lemma 6. For any I ∈ IM

N , the following inequality holds:

Tr
[(

ηI
AN B

)2
]
� dM−N+2

d[M]

M!(M − 1)!

d + M − 1
. (42)

Proof. From the arguments made in the proof of Proposi-
tion 2, ηI

AN B has d[M − 1]dN−M nonzero eigenvalues, and its
eigenvectors are given in the form

	AI |�+〉Ai1 B |k1 · · · kM−1〉AI \Ai1
|kM · · · kN−1〉Ac

I
, (43)

where k1, . . . , kN−1 ∈ {1, . . . , d} and {|k〉}d
k=1 is the orthonor-

mal basis of H. If there are n different permutations
to rearrange k1, . . . , kM−1 without distinguishing the same
numbers, the eigenvalue corresponding to (43) is n dM−N+1

d[M] .
Since n � (M − 1)! always holds, all d[M − 1]dN−M nonzero
eigenvalues are less than or equal to (M − 1)! dM−N+1

d[M] . Hence,

Tr
[(

ηI
AN B

)2
]
� d[M − 1]dN−M

(
(M − 1)!

dM−N+1

d[M]

)2

= dM−N+2

d[M]

M!(M − 1)!

d + M − 1
. (44)

�
Lemma 7. Let I, J ∈ IM

N . If I ∩ J = ∅, then
Tr[ηI

AN BηJ
AN B] = 1/dN+1.

Proof. Suppose I = {i1, . . . , iM} and J = { j1, . . . , jM}.
When I ∩ J = ∅, we have

[	AI ,	AJ ] = [
	AI , ρ

j1
AN B

] = [
	AJ , ρ

i1
AN B

] = 0. (45)

Thus,

Tr
[
ηI

AN BηJ
AN B

] = d2M

(d[M])2
Tr
[
	AI ρ

i1
AN B	AJ ρ

j1
AN B

]
. (46)

Therefore, with some calculations we obtain

Tr
[
ηI

AN BηJ
AN B

] = 1

(d[M]M!)2dN

∑
σ∈SI

∑
τ∈SJ

d∑
ki1 ,...,kiM =1

d∑
l j1 ,...,l jM =1

× δl j1 ,k
σ−1 (i1 )

δki1 ,l
τ−1 ( j1 )

M∏
p=2

δkip ,k
σ−1 (ip )

δl jp ,l
τ−1 ( jp )

.

(47)

For a detailed derivation of (47), see the Appendix. To cal-
culate (47), we decompose σ and τ into cycles. Suppose
σ ∈ SI can be decomposed into σ = Cσ

1 Cσ
2 · · ·Cσ

l (σ ) (including
cycles with a single element), and let cσ

m represent the length
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of the cycle Cσ
m (with similar notation for τ ∈ SJ ). Then, by

definition,
l (σ )∑
m=1

cσ
m =

l (τ )∑
m=1

cτ
m = M. (48)

Furthermore, we denote the elements of the cycle as Cσ
m =

(im
1 · · · im

cσ
i
) and Cτ

m = ( jm
1 · · · jm

cτ
j
). Without loss of gener-

ality, let i1 = i1
1 and j1 = j1

1 . When cσ
1 �= 1 and cτ

1 �= 1, each
summand in (47) can be expressed as follows:

δl j1 ,k
σ−1(i1 )

δki1 ,l
τ−1 ( j1 )

M∏
p=2

δkip ,k
σ−1 (ip )

δl jp , j
τ−1 ( jp )

=
⎛
⎝δl j11

,k
σ−1(i11 )

δki11
,l

τ−1( j11 )

cσ
1∏

p=2

δki1p
,k

σ−1(i1p)

cτ
1∏

q=2

δl j1q
,l

τ−1( j1q )

⎞
⎠

×
⎛
⎝ l (σ )∏

m=2

cσ
m∏

n=1

δkimn
,k

σ−1 (imn )

⎞
⎠
⎛
⎝l (τ )∏

s=2

cτ
s∏

t=1

δl jst
,l

τ−1 ( jst )

⎞
⎠. (49)

When cσ
1 = 1 or cτ

1 = 1,
∏cσ

1
p=2 δki1p

,k
σ−1 (i1p )

or
∏cτ

1
q=2 δl j1q

,l
τ−1 ( j1q )

in (49) is disregarded, respectively. The right-hand side of
(49) corresponds to cycles Cσ

1 and Cτ
1 in the first parentheses,

Cσ
2 , . . . ,Cσ

l (σ ) in the second parentheses, and Cτ
2 , . . . ,Cτ

l (τ ) in
the third parentheses. When we sum (49) over ki1 , . . . , kiM
and l j1 , . . . , l jM , the first parentheses eliminate cσ

1 + cτ
1 − 1

indices. The second parentheses eliminate cσ
m − 1 indices for

fixed m ∈ {2, . . . , l (σ )}, for a total of
∑l (σ )

m=2(cσ
m − 1) indices.

Similarly, the third parentheses eliminate
∑l (τ )

s=2(cτ
s − 1) in-

dices. Consequently, the total number of eliminated indices
for fixed σ ∈ SI , τ ∈ SJ is

(
cσ

1 + cτ
1 − 1

)+
l (σ )∑
m=2

(
cσ

m − 1
)+

l (τ )∑
s=2

(
cτ

s − 1
)

=
l (σ )∑
k=1

cσ
k +

l (τ )∑
k=1

cτ
k − 1 − [l (σ ) − 1] − [l (τ ) − 1]

= 2M + 1 − l (σ ) − l (τ ). (50)

Since there were 2M indices of ki1 , . . . , kiM and l j1 , . . . , l jM at
the beginning, the remaining indices are

2M − [2M + 1 − l (σ ) − l (τ )] = l (σ ) + l (τ ) − 1. (51)

Hence,
d∑

ki1 ,...,kiM =1

d∑
l j1 ,...,l jM =1

δl j1 ,k
σ−1 (i1 )

δki1 ,l
τ−1 ( j1 )

×
M∏

p=2

δkip ,k
σ−1(ip )

δl jp ,l
τ−1 ( jp )

= dl (σ )+l (τ )−1. (52)

Here, the number of σ ∈ SM satisfying l (σ ) = k is given by
the first kind of Stirling number

[M
k

]
(see Remark 1 for details).

Therefore,

∑
σ∈SI

∑
τ∈SJ

dl (σ )+l (τ )−1 =
⎛
⎝∑

σ∈SI

dl (σ )

⎞
⎠
⎛
⎝∑

τ∈SJ

dl (τ )

⎞
⎠d−1

=
(

M∑
k=1

[
M

k

]
dk

)2

d−1

= 1

d

(
(M + d − 1)!

(d − 1)!

)2

. (53)

Thus,

Tr
[
ηI

AN BηJ
AN B

] = 1

(d[M]M!)2dN

1

d

(
(M + d − 1)!

(d − 1)!

)2

= 1

dN+1
. (54)

�
Remark 1. The first kind of Stirling number

[n
k

]
is defined

as the coefficient of xk in the expansion of the rising factorial

xn̄ := x(x + 1) · · · (x + n − 1) (55)

as a power series in x:

xn̄ =
n∑

k=0

[
n

k

]
xk. (56)

It is known that
[n

k

]
gives the number of ways to decompose

a set of n elements into k cycles. The following relationship
was used in (53):

M∑
k=0

[
M

k

]
dk = dM̄ = d (d + 1) · · · (d + M − 1)

= (M + d − 1)!

(d − 1)!
. (57)

Proposition 3. For η̄AN B = (N
M

)−1 ∑
I∈IM

N
ηI

AN B, the follow-
ing holds:

lim
N→∞

dN+1Tr
[
η̄2

AN B

] = 1. (58)

Proof. Let m(k) (0 � k � M ) be the number of
pairs (I, J ) (I, J ∈ IM

N ) that satisfy |I ∩ J| = k, and let
f (k) = Tr[ηI

AN BηJ
AN B] when |I ∩ J| = k. Note from Lemma 4

that f (k) depends only on k. Then,

dN+1Tr
[
η̄2

AN B

]
= dN+1

(
N

M

)−2 ∑
I,J∈IM

N

Tr
[
ηI

AN BηJ
AN B

]

= dN+1

(
N

M

)−2 M∑
k=0

m(k) f (k)

� dN+1

(
N

M

)−2
[

m(0) f (0) +
(

M∑
k=1

m(k)

)
f (M )

]

= dN+1

{(
N − M

M

)(
N

M

)−1

f (0)

+
[

1 −
(

N − M

M

)(
N

M

)−1
]

f (M )

}
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� dN+1

{(
N − M

M

)(
N

M

)−1 1

dN+1

+
[

1 −
(

N − M

M

)(
N

M

)−1
]

dM−N+2

d[M]

M!(M − 1)!

d + M − 1

}

=
(

N − M

M

)(
N

M

)−1

+
[

1 −
(

N − M

M

)(
N

M

)−1
]

× dM+3

d[M]

M!(M − 1)!

d + M − 1
. (59)

The first inequality uses Lemma 5, and the second inequality
uses Lemmas 6 and 7. Since

lim
N→∞

(
N − M

M

)(
N

M

)−1

= 1 (60)

holds for finite M, we obtain

lim
N→∞

∣∣dN+1Tr
[
η̄2

AN B

]− 1
∣∣ = 0. (61)

�
Finally, we prove Theorem 1.
Proof of Theorem 1. Let {EI

XAN }I∈IM
N

be the PGM for
{(|IM

N |−1, ηI
AN B)}I∈IM

N
. From Proposition 1, the following

holds:

psucc :=
(

N

M

)−1 ∑
I∈IM

N

Tr
[
EI

AN BηI
AN B

]

=
(

N

M

)−1 dM

d[M]

∑
I∈IM

N

Tr
[
EI

AN Bρ
i1
AN B

]
. (62)

Thus, we obtain∑
I∈IM

N

Tr
[
EI

AN Bρ
i1
AN B

] = d[M]

dM

(
N

M

)
psucc. (63)

Therefore,

F
(
R ◦ Dstd

N,M

) = 1

d2

∑
I∈IM

N

Tr
[
EI

AN Bρ
i1
AN B

]

= 1

d2

d[M]

dM

(
N

M

)
psucc

�d[M]

dM+2

(
N

M

)(
N

M

)−1 1

d[M−1]dN−M

1

Tr
[
η̄2

AN B

]
=d + M − 1

dM

1

dN+1Tr
[
η̄2

AN B

] . (64)

The first equality uses Corollary 2, and the first inequality uses
Lemma 3 and Proposition 2. From Proposition 3,

lim
N→∞

F
(
R ◦ Dstd

N,M

)
� d + M − 1

dM
. (65)

Thus, from (4),

lim
N→∞

f
(
R ◦ Dstd

N,M

)
� d + 2M − 1

M(d + 1)
. (66)

On the other hand, since the fidelity of symmetric cloning is
upper bounded by (12), the equality holds. �

IV. CONCLUSION

In this paper, we introduced port-based telecloning, a vari-
ant of telecloning that uses PBT instead of conventional
teleportation. To achieve this, we constructed a new POVM
by partially symmetrizing the state that constitutes the opti-
mal POVM for PBT. We then demonstrated that the PBTC
protocol we constructed can asymptotically distribute optimal
clones to many receivers. Furthermore, numerical calculations
showed that, at least in the case of few ports, PBTC outper-
forms the naive clone-and-teleport protocol.

There are several open questions about PBTC. The first
is finding an optimal POVM for PBTC with finite N . We
showed that the POVM we introduced achieves an optimal
value in the limit N → ∞, but its optimality for finite N has
not been clarified. In previous research [9,10,12], the optimal
POVM in PBT was derived using semidefinite programming
and representation theory. Since PBTC additionally requires
the condition to be a symmetric cloning, the proof done in
PBT cannot be directly applied to PBTC, but it is expected
that a similar method can be used. In addition, since the
results of this study were obtained for the maximally entan-
gled resource states, the optimization of a resource state can
also be considered. It could increase the efficiency of PBTC
since in the optimized PBT we have a square improvement
of fidelity in N . Also, we considered only the deterministic
PBTC, but the study of a probabilistic version presents an
additional challenge. Regarding the numerical study, it would
be interesting to verify whether the performance gap between
our PBTC and the naive version persists for larger numbers of
ports.
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APPENDIX: DETAILED DERIVATION OF EQUATION (47)

In this Appendix, we give a detailed derivation of Eq. (47). At first, for I ∈ IM
N = {i1, . . . , iM},

	AI ρ
i1
AN B = 1

M!dN

∑
σ∈SI

d∑
ki1 ,...,kiM ,k′

i1
=1

Vσ |ki1 ki2 · · · kiM 〉 〈k′
i1 ki2 · · · kiM |

AI
⊗ |ki1〉 〈k′

i1 |B ⊗ 1AN \AI

= 1

M!dN

∑
σ∈SI

d∑
ki1 ,...,kiM ,k′

i1
=1

|kσ−1(i1 )kσ−1(i2 ) · · · kσ−1(iM )〉 〈k′
i1 ki2 · · · kiM |

AI
⊗ |ki1〉 〈k′

i1 |B ⊗ 1AN \AI
. (A1)

Likewise, for J = { j1, . . . , jM} ∈ IM
N ,

	AJ ρ
j1
AN B = 1

M!dN

∑
τ∈SJ

d∑
l j1 ,...,l jM ,l ′j1 =1

|lτ−1( j1 )lτ−1( j2 ) · · · lτ−1( jM )〉 〈l ′
j1 l j2 · · · l jM |

AJ
⊗ |l j1〉 〈l ′

j1 |B ⊗ 1AN \AJ
. (A2)

Hence, when I ∩ J = ∅,

Tr
[
	AI ρ

i1
AN B	AJ ρ

j1
AN B

] = 1

(M!)2d2N

∑
σ∈SI

∑
τ∈SJ

d∑
ki1 ,...,kiM ,k′

i1
=1

d∑
l j1 ,...,l jM ,l ′j1 =1

Tr[|kσ−1(i1 )kσ−1(i2 ) · · · kσ−1(iM )〉 〈k′
i1 ki2 · · · kiM |

AI

⊗ |lτ−1( j1 )lτ−1( j2 ) · · · lτ−1( jM )〉 〈l ′
j1 l j2 · · · l jM |

AJ
⊗ |ki1〉 〈k′

i1 |l j1〉 〈l ′
j1 |B ⊗ 1AN \AI AJ

]

= 1

(M!)2dN+2M

∑
σ∈SI

∑
τ∈SJ

d∑
ki1 ,...,kiM ,k′

i1
=1

d∑
l j1 ,...,l jM ,l ′j1 =1

× δk′
i1

,k
σ−1 (i1 )

δki2 ,k
σ−1 (i2 )

· · · δkiM ,k
σ−1(iM )

δl ′j1 ,l
τ−1 ( j1 )

δl j2 ,l
τ−1 ( j2 )

· · · δl jM ,l
τ−1 ( jM )

δki1 ,l ′j1
δk′

i1
,l j1

= 1

(M!)2dN+2M

∑
σ∈SI

∑
τ∈SJ

d∑
ki1 ,...,kiM =1

d∑
l j1 ,...,l jM =1

δl j1 ,k
σ−1(i1 )

δki1 ,l
τ−1 ( j1 )

M∏
p=2

δkip ,k
σ−1 (ip )

δl jp ,l
τ−1 ( jp )

. (A3)

Therefore, from (46), we obtain (47).
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