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The interplay between thermodynamics and information theory has a long history, but its quantitative
manifestations are still being explored. We import tools from expected utility theory from economics into
stochastic thermodynamics. We prove that, in a process obeying Crooks’s fluctuation relations, every α
Rényi divergence between the forward process and its reverse has the operational meaning of the “certainty
equivalent” of dissipated work (or, more generally, of entropy production) for a player with risk aversion
r ¼ α − 1. The two known cases α ¼ 1 and α ¼ ∞ are recovered and receive the new interpretation of
being associated with a risk-neutral and an extreme risk-averse player, respectively. Among the new results,
the condition for α ¼ 0 describes the behavior of a risk-seeking player willing to bet on the transient
violations of the second law. Our approach further leads to a generalized Jarzynski equality, and generalizes
to a broader class of statistical divergences.
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Introduction.—In the top-down approach of standard
thermodynamics, the second law dictates an intrinsic
irreversibility in nature. By contrast, dynamics are revers-
ible in the bottom-up approach of statistical mechanics.
Stochastic thermodynamics establishes a link between
these two approaches: transient violations of the second
law are allowed, while the law still holds on average [1–10].
Transient violations of the second law were first considered
in the works of Evans and Searles [11,12] in the
early 1990s. Major breakthroughs were obtained by look-
ing at systems evolving under a Hamiltonian while
coupled to a thermal bath at temperature T. For this
dynamics, the second law takes the form of the Clausius
inequality

hWdissi≡ hWi − ΔF ≥ 0; ð1Þ

stating that, to effect the transition between an initial
thermal state with free energy Fi and a final thermal state
with free energy Ff, one has to invest (on average) an
amount of work not smaller than ΔF ¼ Ff − Fi. The extra
work that must be provided in a nonquasistatic process is
called the dissipated work. In 1997, Jarzynski derived
a new fluctuation relation, which remarkably is an
equality [13]:

he−βWdissi ¼ 1; ð2Þ

with β ¼ 1=kBT the inverse temperature. Clausius’s
inequality (1) follows from Jarzynski’s equality (2), by
invoking Jensen’s inequality he−xi ≥ e−hxi. Jarzynski’s
equality implies that any stochastic violations of the second
law are exponentially suppressed.
Shortly after Jarzynski, Crooks provided an even more

refined fluctuation theorem [14]:

βWdiss ≡ w ¼ ln
PFðwÞ
PRð−wÞ

ð3Þ

where PFðwÞ is the probability density of dissipating an
amount of work w (in dimensionless units) in the so-called
“forward” (physical) process, and PRð−wÞ is the proba-
bility density of dissipating an equal and opposite amount
of work −w in the so-called “reverse” (or backward)
process [15]. The latter is defined by running the
Hamiltonian evolution of the system backwards, through
a backward trajectory following a time-reversed dynamics,
while interacting with the same thermal bath as in the
forward process. Crooks’s relation assumes local detailed
balance (microreversibility) and, in particular, can be used
to derive Jarzynski’s equality by rewriting e−βwPFðwÞ ¼
PRð−wÞ and integrating over w. Crooks’s relation more
directly shows that any stochastic violation of the second
law (w < 0) implies that the associated reverse process
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necessarily has non-negligible fluctuations that dissi-
pate work.
The above results in stochastic thermodynamics were

later connected to information-theoretic quantities. From
this perspective, the average dissipated work in the physical
process

βhWdissi ¼ hln½PFðwÞ=PRð−wÞ�iPF
;

¼
Z

dwPFðwÞ ln
PFðwÞ
PRð−wÞ

;

≡D½PFðwÞkPRð−wÞ�; ð4Þ

is immediately recognized as the Kullback-Leibler (KL)
divergence (relative entropy), as first noticed by Kawai
et al. [16]. In (4), and in what follows, when there is any
ambiguity, we will denote which probability distribution
the average is taken over by using a final subscript. More
recently, Yunger-Halpern et al. proved that, when (3) holds,
the worst-case dissipated work (largest fluctuation) is also
measured by a statistical divergence between the forward
and the backward statistics [17]:

βWworst
diss ¼ ln ðminfλ∶PFðwÞ ≤ λPRð−wÞ ∀ wgÞ;

≡D∞½PFðwÞkPRð−wÞ�; ð5Þ

which is also sometimes referred to as the max relative
entropy. Both of these divergences belong to the family of
Rényi divergences [18,19]

DαðPkQÞ ¼ 1

α − 1
ln

��
P
Q

�
α−1

�
P
; ð6Þ

that are proper divergences for α ≥ 0 (but can be math-
ematically defined for all values of α), the KL divergence
being the special case α ¼ 1, and D∞ðPkQÞ [as in (5)]
obtained by taking the limit α → ∞.
This raises an intriguing question: whether the Rényi

divergences have any operational significance beyond the
cases α ¼ 1 and α ¼ ∞ from above. In this Letter, we show
that this is indeed the case: every Rényi divergence
comparing the forward and reverse statistics of dissipated
work has an operational meaning. Our result reads

βWCE
diss;r ¼ D1þr½PFðwÞkPRð−wÞ�; ð7Þ

where CE stands for “certainty equivalent” and r is a
parameter that quantifies the risk aversion of an agent.
These are standard notions from expected utility theory
(EUT)—widely used in the economic sciences. Since most
physicists may not be familiar with this, we provide next a
brief introduction to these ideas, before presenting our
results in detail.
Basics of EUT.—The theory of expected utility is the

study of rational agents acquiring, trading, and hoarding

assets such as wealth, goods, and services. First formalized
by von Neumann and Morgenstern within the theory of
games and economic behavior back in 1944 [20], it
witnessed major developments during the 1950s and
1960s, so as to include decision-making rational agents
choosing between alternatives involving uncertainty, as
well as descriptions of behavioral tendencies such as
risk aversion [21–24], and connections to information
theory [25]. Recently, further connections between
expected utility theory, information theory, and quantum
resource theories have been put forward [26–28]. Since
dissipated work is a type of liability rather than an asset, a
good analogy is that of a tax game. A referee (tax collector)
gives the player (contributor) two options to choose
between: (i) the first alternative corresponds to tossing a
fair coin, with heads meaning the player pays $1000 in tax,
and tails meaning the player obtains a tax rebate of $100
(i.e., pays −$100 in tax); (ii) the second alternative
corresponds to the player paying a fixed amount of tax
(between −$100 and $1000, of course). The expected loss
of the first—stochastic—choice is $450, so a player who
would choose option 2 even when the fixed amount of tax is
larger than this average should naturally be considered a
risk-averse player; they are willing to pay out above the
average in order to avoid the possibility of the large tax bill.
On the other hand, a player offered to pay a fixed amount of
tax smaller than this average, and still choosing the first
option to gamble, should be considered a risk-seeking
player. The so-called certainty equivalent (CE) is the fixed
amount offered in option 2, for which the player considers
the two alternatives equivalent. The value of the certainty
equivalent tax can thus be seen to quantify the risk behavior
of the agent.
To make the analysis more concrete, a rational agent is

modeled by a utility function, which represents the level of
satisfaction they receive from some alternative t by uðtÞ. In
this work we consider decision problems where the rational
agent is asked to pay the referee in terms of energy, and so
the utility function must naturally be decreasing (the more
there is to be paid the less satisfied the agent is going to be).
Utility functions are assumed to be twice differentiable,
modeling the fact that smooth changes in the alternative
should intuitively produce smooth changes in the agent’s
satisfaction. A highly nontrivial conceptual breakthrough
developed by economists during the 1950s and 1960s
established that an agent’s aversion to risk is encoded in
the curvature of their utility function as [22–24,26]

Risk averse∶ u concave; i:e:; u00ðtÞ < 0

Risk neutral∶ u linear; i:e:; u00ðtÞ ¼ 0

Risk seeking∶ u convex; i:e:; u00ðtÞ > 0: ð8Þ

One of the basic measures of risk aversion is the absolute
risk aversion (ARA), given by [29]
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ARAuðtÞ ≔
u00ðtÞ
u0ðtÞ : ð9Þ

In view of the fact that below we will apply EUT to the case
of dissipated work w, which is a liability like tax, we will
focus on strictly decreasing utility functions [u0ðtÞ < 0].
Thus, we have ARA > 0 for risk-averse agents, ARA ¼ 0
for risk-neutral agents, and ARA < 0 for risk-seeking
agents. Finally, given a utility function, the certainty
equivalent tax TCE is defined implicitly via

uðTCEÞ ≔ huðtÞi; ð10Þ

i.e., the amount of tax that has the same utility as the
average utility, and is therefore equally preferable to the
stochastic situation.
For our purposes, we will focus on utility functions ur

with constant ARA (CARA), meaning that ARAurðtÞ ¼ r
for all t. This widely studied and particularly simple utility
function models agents whose risk tendency is constant,
independent of the size of their liability. By solving the
differential equation, one finds that this family of utility
functions is given by

urðtÞ ¼
� 1

r ð1 − ertÞ; if r ≠ 0

−t; if r ¼ 0:
ð11Þ

We note that utility functions have built in a type of gauge
invariance, whereby two utility functions which differ only
by scale and shift represent the same agent (risk tendency).
Here we have used this freedom to fix the function at zero
liability: urð0Þ ¼ 0 and u0rð0Þ ¼ −1.
EUT and dissipated work.—With the above basics of

EUT in place, we are now in a position to make the
connection with stochastic thermodynamics. The tax game
described above can be generalized and renarrated as a
work dissipation game (Fig. 1).
The player is in possession of a charged battery, which

they can use in order to carry out a physical process. The
referee gives the player two options to choose between:
(i) the player carries out a physical process which will
dissipate a stochastic amount of work βWdiss ≡ w accord-
ing to PFðwÞ, and obeying Crooks’s fluctuation relation (3)
with equilibrium free energy difference ΔF; (ii) the player
carries out an alternative physical process which dissipates
a deterministic amount of work Wdet

diss.
Which of the two options is more preferable to a player

will depend upon their utility function urðwÞ, and in
particular the certainty equivalent dissipated work WCE

diss;r

it defines: the player will choose the deterministic process if
the amount of work it deterministically dissipates is smaller
than the certainty equivalent, Wdet

diss < WCE
diss;r; on the other

hand, they will choose the stochastic process if Wdet
diss >

WCE
diss;r (and of course the two are equally preferable if the

certainty equivalent exactly coincides with Wdet
diss).

Applying (10) to our context, we have

ur
�
βWCE

diss;r

� ¼ hurðwÞiPF
: ð12Þ

Therefore

βWCE
diss;r ¼ u−1r ðhurðwÞiPF

Þ;

¼ u−1r

�
1

r

�
1 −

�
PFðwÞ
PRð−wÞ

�
r
�

PF

�
; ð13Þ

¼ u−1r

�
1

r

	
1 −

Z
dwPFðwÞ

�
PFðwÞ
PRð−wÞ

�
r

�

;

¼ 1

r
ln

	Z
dwPFðwÞ

�
PFðwÞ
PRð−wÞ

�
r


; ð14Þ

¼ D1þrðPFðwÞkPRð−wÞÞ; ð15Þ

which is the announced main result (7). To reach (13), we
inserted (3) and the definition (11) of ur, while for (14) we
used that the inverse of ur is

u−1r ðxÞ ¼
� 1

r ln ð1 − rxÞ; if r ≠ 0;

−x; if r ¼ 0:
ð16Þ

To analyze this result, we keep in mind that Dα ≤ Dβ for
α ≤ β, and that D0ðP1kP2Þ ¼ 0 (if P1 and P2 have the
same support; here, we routinely consider distributions
with full support). As desired,WCE

diss;r will be higher (lower)

FIG. 1. Representation of the work dissipation game. The
player, modeled by a CARA utility function ur (11), is asked
to use their battery to implement either (i) a deterministic process
(which will require a fixed amount of work Wdet), or (ii) a
stochastic process in which work follows Crooks’s fluctuation
relation (3) with free energy difference ΔF. Risk-averse players
(r > 0) will choose the deterministic process unless Wdet is too
large; risk-seeking players (r < 0) will choose the stochastic
process unless Wdet is sufficiently low. The certainty equivalent
determines the value at which the player switches: for
Wdet − ΔF≡Wdet

diss > WCE
diss;r, the player chooses the stochastic

process; if the inequality is in the opposite direction, they choose
the deterministic one.
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the more risk averse (risk seeking) the player is. Let us now
look at the different player behaviors.
Risk-neutral players will switch their choice by compar-

ingWdet
diss with the average dissipated work hWdissi, since in

this case the certainty equivalent WCE
diss;r¼0 ¼ hWdissi

[Eq. (4)]. This is as expected.
Risk-averse players by default like the deterministic

option, but will switch to the stochastic one if
Wdet

diss ≥ WCE
diss;r>0 > hWdissi. A case worth a special mention

is the limit r → ∞, where Eq. (5) is recovered [17]. We can
thus give a new meaning to this result: in this limit, players
are so risk averse that they would only switch to the
stochastic option if the deterministic process offered to
them would dissipate with certainty more work than any
fluctuation (including the worst case fluctuation) does.
Risk-seeking players by default would enjoy the sto-

chastic option, but will switch to the deterministic one if
Wdet

diss ≤ WCE
diss;r<0 < hWdissi. The zoology of risk seekers is

richer. Players with −1 < r < 0 change their choice for
positive, but less than average, dissipated work. Players
with r ¼ −1 switch choice precisely atWdet

diss ¼ 0: these are
the players willing to bet on the transient violations of the
second law. Finally, our derivation still holds formally even
for when r < −1: while the rhs of (7) can no longer be
interpreted as a divergence since α ¼ 1þ r < 0, one can
prove thatDα becomes more and more negative with α [18].
Again, this describes what we expect: players so extreme,
that they change their choice at negative dissipated work,
i.e., they bet on large transient violations of the second law.
In the limit, as r → −∞, we find a counterpart to Eq. (5):
the largest transient violation of the second lawWviol

diss can be
shown to be given by

βWviol
diss ¼ ln ðmaxfλ∶λPRð−wÞ ≤ PFðwÞ ∀ wgÞ;

≡D−∞½PFðwÞkPRð−wÞ�: ð17Þ

In our setting, we can also give an alternative meaning to
this result: in this limit, players are so risk seeking that they
would only switch to the deterministic option if it would,
with certainty, give them a violation of the second law
larger than any fluctuation of the stochastic process.
Generalized Jarzynski equality.—It is also possible to

use our results to rederive, and shed light on, a generalized
form of Jarzynski equality. From (11), after simple rear-
rangement it follows that herβWdissiPF

¼ ð1 − rhurðwÞiPF
Þ.

Combining this with (12) and (15), we obtain

herβWdissiPF
¼ erβW

CE
diss;r ; ð18Þ

¼ erD1þr½PFðwÞkPRð−wÞ�: ð19Þ

The second equality (19) recovers the main result of [30]
(although written in a slightly different form), which
we now see holds assuming only Crook’s fluctuation

relation (3). The first equality is novel, and shows that
we can give the rhs of this generalized Jarzynski equality an
operational interpretation, in terms of the certainty
equivalent dissipated work. The equality (4) is recovered
for r ¼ 0 (after Taylor expansion), while the original
Jarzynski equality (2) is recovered for r ¼ −1 because
WCE

diss;r¼−1 ¼ 0. The latter is also the only case, in which the
rhs is independent of the physical process: for any other
value of r, the rhs depends upon the process, solely through
the certainty equivalent dissipated work.
Generalization to entropy production.—So far we have

presented our results in the most well-studied scenario in
stochastic thermodynamics: that of a system evolving under
a Hamiltonian while coupled to a thermal bath, for which
the second law becomes Clausius’s inequality, and in which
the original theorems of Jarzynski [13] and Crooks [14]
were formulated. However, stochastic thermodynamics has
gone beyond that specific physical scenario. Consider a
stochastic two-time process, described by the probability
distribution PFðλi; λfÞ of starting in state λi and finishing in
state λf. For any such process, detailed entropy production
is defined as [1,3,4,6,10]

sðλi; λfÞ ¼ ln
PFðλi; λfÞ
PRðλf; λiÞ

; ð20Þ

where the reverse process PR can be defined through a
generic logical recipe of retrodiction [31,32]. As defined, s
is dimensionless; the thermodynamic entropy is S ¼ β−1s;
and indeed, for the scenario of Jarzynski and Crooks,
βWdiss ¼ S holds, so that (20) becomes (3). This generic
form of entropy production obeys the second law on
average since

hsi ¼ D½PFðλi; λfÞkPRðλf; λiÞ� ≥ 0; ð21Þ

but some transitions λi → λf are such that sðλi; λfÞ < 0. It
also obeys a generalized Jarzynski equality he−si ¼ 1.
Our approach based upon EUT carries over unmodified

to this very general setting. The generalization of (7) states
that the certainty equivalent entropy production of
any stochastic process satisfying detailed entropy produc-
tion (20) for an agent with constant absolute risk aversion r
satisfies

sCEr ¼ D1þr½PFðλi; λfÞkPRðλf; λiÞ�; ð22Þ

where sCEr ¼ u−1r ðhurðsÞiPF
Þ. The previous analysis also

carries over: so, for instance, players with r ¼ −1 are risk
seeking to the point of betting on the transient violations of
the second law. The fully generalized Jarzynski equality
similarly becomes

hersi ¼ ers
CE
r ¼ erD1þr½PFðλi;λfÞkPRðλf;λiÞ�; ð23Þ
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which again has the feature that only for r ¼ −1 does the
rhs become independent of the physical process taking
place.
Generalization to f divergences.—It is also possible to

extend the results above beyond Rényi divergences, to
more general f divergences [33]. We saw above that if we
model agents using the CARA utility function (11), then
the certainty equivalent dissipated work (or entropy pro-
duction) is given by a Rényi divergence. If instead we
consider a more general class of utility functions of the
form

vfðsÞ ¼ fðe−sÞ; ð24Þ

where f is convex and satisfies fð1Þ ¼ 0, then it follows
that

sCEf ¼ v−1f ðhvfðsÞiPF
Þ;

¼ v−1f

	Z
dsPFðλi; λfÞf

�
PRðλf; λiÞ
PFðλi; λfÞ

�

;

¼ v−1f

	Z
dsPRðλf; λiÞf̂

�
PFðλi; λfÞ
PRðλf; λiÞ

�

;

¼ v−1f
�
Df̂ðPFðλi; λfÞkPRðλf; λiÞÞ

�

¼ − ln
h
f−1

�
Df̂ðPFðλi; λfÞkPRðλf; λiÞ

�i
ð25Þ

where

DfðPkQÞ ≔
Z

dxQðxÞf
�
PðxÞ
QðxÞ

�
ð26Þ

is the f divergence and f̂ðxÞ ≔ xfðx−1Þ is the perspective
function of f, and is defined as such so that
DfðPkQÞ ¼ Df̂ðQkPÞ. Our main result (15) is then recov-
ered with fðxÞ ¼ ð1=rÞð1 − x−rÞ.
Conclusion.—In this Letter, we provided an operational

meaning for all the α-Rényi divergences between the
statistics of a stochastic thermodynamical process and
those of its reverse. Contrary to what one might have
expected from the basic relation (4), the Rényi divergences
do not arise as the expectation value of a suitable function
fα of the thermodynamical variable (dissipated work,
entropy production). Rather, it is the certainty equivalent
of that variable for an agent, whose behavior is captured by
a utility function with constant absolute risk aversion
r ¼ α − 1. This connection between information theory
and stochastic thermodynamics was made possible by
importing the theoretical machinery of the economic theory
of rational agents. The certainty equivalent is the quantity
that provides a resolution to decision problems, as it
determines the alternative that agents would choose when
facing decision problems involving uncertainty. In this
latter sense, the certainty equivalent acquires an operational

meaning which can be measured in experimental setups
involving decision-making agents. The relationship we
derived connects the fields of stochastic thermodynamics,
information theory, the theory of expected utility theory
and, as such, can naturally be integrated and further
exploited, for instance, within the field of information
thermodynamics [34]. Similarly, while we have considered
here a process between two points in phase space (as in a
single forward or backward process), one can also imagine
considering multistep processes, such as thermal cycles,
and similarly explore the applicability of these ideas for
such thermal machines.
Recently, some works have also addressed thermo-

dynamics using economic-theoretic language [35,36]. It
would be interesting to analyze whether these results can
collectively be analyzed within a single economic-theoretic
framework. Finally, it is also interesting to explore potential
applications of utility theory to areas like coding theory,
where information-theoretic quantities also emerge [37].
By walking into Wall Street, if not wealthier, Maxwell’s
Demon has become more aware of the rationale of its
behavior. It may soon invite its quantum alter ego to take
the tour.
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