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Abstract
To understand the emergence of macroscopic irreversibility from microscopic reversible
dynamics, the idea of coarse-graining plays a fundamental role. In this work, we develop a
unified inferential framework for macroscopic states, that is, coarse descriptions of microscopic
quantum systems that can be inferred from macroscopic measurements. Building on quantum
statistical sufficiency and Bayesian retrodiction, we characterize macroscopic states through
equivalent abstract (algebraic) and explicit (constructive) formulations. Central to our approach
is the notion of observational deficit, which quantifies the degree of irretrodictability of a state
relative to a prior and a measurement. This leads to a general definition of macroscopic entropy
as an inferentially grounded measure of asymmetry under Bayesian inversion. We formalize this
structure in terms of inferential reference frames, defined by the pair consisting of a prior and a
measurement, which encapsulate the observer’s informational perspective. We then formulate a
resource theory of microscopicity, treating macroscopic states as free states and introducing a
hierarchy of macroscopicity-non-generating operations. This theory unifies and extends
existing resource theories of coherence, athermality, and asymmetry. Finally, we apply the
framework to study quantum correlations under observational constraints, introducing the
notion of observational discord and deriving necessary and sufficient conditions for their
vanishing in terms of information recoverability. This work is dedicated to Professor Ryszard
Horodecki on the occasion of his 80th birthday, in deep admiration and gratitude for his
pioneering contributions to quantum information theory.
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1. Introduction

Since von Neumann’s introduction of quantum entropy [1],
significant efforts have been made to extend classical ther-
modynamic principles to quantum systems. One draw-
back of the original von Neumann entropy is that it does
not naturally connect to macroscopic phenomena, such
as the second law of thermodynamics. To fill the gap
between macroscopic phenomena and microscopic theory,
von Neumann proposed another type of entropy called
macroscopic entropy [1, 2]. This concept, long forgotten,
has recently been rediscovered and mathematically gen-
eralized into what is known as observational entropy [3–
6], finding applications spanning quantum information,
quantum thermodynamics, quantum inference, and resource
theories [7–22].

The key idea is that we ultimately always observe quantum
systems through the lens of a macroscopic measurement,
which von Neumann defines as the list of all physical quantit-
ies that can be simultaneously measured by the observer. The
latter, from a mathematical point of view, is simply represen-
ted by a positive operator-valuedmeasure (POVM), which cor-
responds to the finest possible measurement. However, such a
finest measurement is still not sufficient to extract all informa-
tion for all microscopic states at once: i.e. there are situations
in which information about the microscopic state is irretriev-
ably lost. This is the reason why observational entropy can
increase under unitary time evolution, while von Neumann
microscopic entropy remains invariant [1, 2, 22]. In this sense,
the use of observational entropy has been advocated to explain
the emergence of irreversible processes from an underly-
ing reversible theory, including, for example, the increase in
entropy observed in closed systems [22]. Beyond its founda-
tional implications for entropy and irreversibility, the frame-
work of observational entropy may also offer a novel perspect-
ive on quantum correlations.

Closely related to the above discussion is the mathemat-
ical fact that observational entropy is never less than the von
Neumann entropy. A state whose observational entropy is
equal to its von Neumann entropy is called macroscopic [6,
22]. Operationally, macroscopic states are those that are fully
known to the macroscopic observer, i.e. states that can be fully
recovered from the macroscopically accessible data alone [7].
From such a Bayesian statistical perspective, the macroscopic
state corresponding to a given microscopic state is nothing
but the Bayesian inverse retrodicted from the measurement
outcomes distribution [23–25] by means of the Petz recovery
map [24, 25]. In this sense, the observational entropy precisely
becomes a measure of ‘how irretrodictable’ a state is from the
outcomes of a given measurement [7, 22].

The aim of this paper is to develop a mathematical frame-
work for macroscopic states by extending the notion of
observational entropy to a more general, retrodictive set-
ting that incorporates arbitrary POVMs and quantum pri-
ors. Central to this extension is the introduction of observa-
tional deficit, a measure of a state’s irretrodictability relat-
ive to a given prior. Macroscopic states are then defined as
those with zero observational deficit. Equivalently, they are

the fixed points of a coarse-graining map, i.e. the composi-
tion of a quantum-to-classical channel representing a POVM
measurement and its associated Petz recovery map, construc-
ted with respect to the chosen prior. As shown in [25],
this composition yields the optimal Bayesian inference that
can be drawn from the measurement outcomes, ground-
ing the notion of macroscopicity in a principled inferential
framework.

Leveraging the theory of quantum statistical suffi-
ciency [26–30], we derive several complete and equivalent
characterizations of the set of macroscopic states. A central
result is the following: for any POVM and any quantum prior,
there exists a unique projection-valued measure (PVM), that
is at the same time compatible with the given POVM and
that can be measured without disturbing the prior (the rigor-
ous definition is given below in definition 4.1). We refer to
this PVM as the maximal projective post-processing (MPPP)
of the POVM with respect to the prior. Its existence and
uniqueness are established by introducing a partial order on
POVMs under classical post-processing. This structure may
be of independent interest, as PVMs derived in this way can be
interpreted as analogous to reference frames, but for inference
rather than symmetry: they encode the minimal yet sufficient
information required to perform optimal retrodiction, and are
used to quantify the inferential asymmetry, or ‘irretrodictab-
ility’ [31], of a given process. For this reason, we refer to the
pair comprising the maximal PVM and the prior as the inferen-
tial reference frame corresponding to a specific macroscopic
observer.

Next, we investigate macroscopic states from a resource-
theoretic perspective, aiming to characterize macroscopic irre-
versibility, such as that captured by the second law of ther-
modynamics, as a form of statistical irreversibility arising
from information loss in macroscopic measurements [31, 32].
We define a resource theory of microscopicity, by specify-
ing the corresponding resource-destroying map [33] and intro-
ducing the relative entropy of microscopicity as a quantit-
ative measure of irretrodictability: i.e. the extent to which
microscopic details are irrecoverable frommacroscopic obser-
vations. Within this framework, we characterize a hierarchy
of free operations, which we name macroscopic opera-
tions. Moreover, we show that this resource theory unifies
and generalizes several prominent resource theories, includ-
ing those of coherence [34–36], athermality [37–40], and
asymmetry [41–43].

Building on this foundation, we introduce and investigate
observational discord, a measure designed to quantify correl-
ations from an observer’s perspective. We then establish the
necessary and sufficient conditions for this correlation to van-
ish, framing them in terms of information recoverability. A key
insight from our findings is that quantum correlations, such as
entanglement [44, 45], deficit [46–49], and discord [50–52],
should not be viewed as absolute properties that are merely
present or absent. Instead, we show they are context-dependent
resources whose very visibility and utility are determined by
the observer’s (quantum) reference frame [41, 42, 53]. This
observer-dependent perspective opens new avenues for invest-
igating quantum information processing in realistic scenarios,
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which are often characterized by limited control and imperfect
access to quantum systems.

This paper is organized as follows. In section 2, we intro-
duce the basic notation and concepts used throughout the
work. Section 3 presents the key definitions of observa-
tional deficit, coarse-graining maps, and macroscopic states.
In section 4, we define projective post-processings (PPPs)
and prove the existence and uniqueness of the MPPP for any
POVM and prior. We then analyze the algebraic structure of
the set of macroscopic states with general quantum priors and
characterize them in terms of these projective measurements.
In section 5, we develop the resource theory of microscopicity,
treating macroscopic states as free and introducing a hierarchy
of macroscopic operations and resource measures quantifying
retrodictive irreversibility. Finally, in section 6, we introduce
the concept of observational discord and derive the necessary
and sufficient conditions under which it vanishes.

2. Notations

In this paper, we consider a quantum system with a finite d-
dimensional Hilbert space H. The set of linear operators on a
Hilbert space H is denoted by L(H). We also denote the set
of quantum states on H by S(H). The maximally mixed (or
uniform) state is denoted by u := 1/d. Furthermore, for a com-
pletely positive trace-preserving (CPTP) map (or channel) E ,
we write as E∗ its adjoint with respect to the Hilbert–Schmidt
inner product. Any observation on the quantum system can be
represented by a POVM P= {Px}x∈X , i.e. a family of positive
semidefinite operators Px ⩾ 0 such that

∑
xPx = 1. When all

elements of a POVM are projections, i.e. PxPx′ = δx,x ′Px, the
former is called a PVM. In addition, POVMs can be put in a
one-to-one correspondence with quantum–classical channels
of the form

MP (•) :=
∑
x∈X

Tr[Px •] |x〉〈x| , (1)

where |x〉 are a set of orthonormal unit vectors in a suit-
able Hilbert space representing the classical outcomes. The
Umegaki quantum relative entropy [54, 55] is defined as

D(ρ‖σ) := Tr[ρ(logρ− logσ)] , (2)

where σ (which we assume invertible for simplicity) is a ref-
erence (or prior) operator. Then, the von Neumann (micro-
scopic) entropy is defined by

S(ρ) :=−D(ρ‖1) =−Tr[ρ logρ] . (3)

The logarithm is taken in base 2.
Let us now consider an arbitrary quantum channel E and a

state γ, which in the following is either assumed to be invert-
ible, otherwise the whole discussion can be restricted to its
support. Then, the corresponding Petz map is defined as

RE,γ (•) := γ
1
2 E∗

[
E (γ)−

1
2 (•)E (γ)−

1
2

]
γ

1
2 . (4)

A central result in quantum mathematical statistics is the fol-
lowing statement about sufficient statistics, which was char-
acterized by Petz already in the 1980s [26–28, 56]: for any
quantum state ρ, the condition

D(ρ‖γ) = D(E (ρ)‖E (γ)) (5)

is equivalent to

RE,γ ◦ E (ρ) = ρ . (6)

The above theorem gives the equality condition for the univer-
sally valid quantum data processing inequality (DPI):

D(ρ‖γ)⩾ D(E (ρ)‖E (γ)) . (7)

Given two POVMs P= {Px}x∈X and Q= {Qy}y∈Y , we
write

Q� P , (8)

whenever there exists a conditional probability distribution
p(y|x) such that

Qy =
∑
x

p(y|x)Px (9)

for all y ∈ Y . In this case, we say that Q is a classical post-
processing of P [57, 58]. We will often refer to the following
lemma.

Lemma 2.1. ([22, 59]). Suppose that Q= {Qy}y is such that,
for each y ∈ Y , there exists a unit vector |ϕy〉 with Qy|ϕy〉=
|ϕy〉. Suppose also that there exists another POVM P= {Px}x
such that Q� P. Then, the post-processing transforming P
into Q is deterministic, i.e.

p(y|x) ∈ {0,1} (10)

for all x and y.

3. Macroscopic states

Inspired by the terminology introduced in [49], we begin with
the following definition [7].

Definition 3.1 (observational deficit). For any POVM P=
{Px}x∈X and any pair of quantum states ρ and γ > 0, the obser-
vational deficit of Pwith respect to the pair (dichotomy) (ρ,γ)
is defined as

δP (ρ‖γ) := D(ρ‖γ)−D(MP (ρ)‖MP (γ))⩾ 0 . (11)

The observational deficit defined here does not merely
quantify information loss in a statistical sense: it also impli-
citly reflects the degradation of observable correlations under
macroscopic measurements. This view, which directly con-
nects with the notion of quantum deficit developed by
Horodecki and collaborators [46–49], will be explored in
section 6.
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The observational deficit is zero if and only if the quantum–
classical channelMP is sufficient with respect to the quantum
dichotomy (ρ,γ), i.e. the corresponding Petz mapRMP,γ sat-
isfies both [RMP,γ ◦MP](ρ) = ρ and [RMP,γ ◦MP](γ) = γ,
the latter by construction [26–30].

Since the channel to be recovered, i.e.MP, is a quantum-to-
classical measurement channel, its corresponding Petz trans-
pose map is the unique solution to the minimum change prin-
ciple [25]. It thus has a compelling operational interpretation
as the quantum analog of Bayes’ rule even when δP(ρ‖γ)> 0.
This observationmotivates us to define1 coarse-graining maps
as follows.

Definition 3.2 (Coarse-graining maps). Let P be a POVM
and let γ be a quantum state. Then, the coarse-graining map
with respect to P and γ is defined as

CP,γ (•) := [RMP,γ ◦MP] (•) (12)

=
∑
x

Tr[Px (•)]
γ

1
2Pxγ

1
2

Tr[Pxγ]
. (13)

It is immediate to verify that all coarse-grainings are chan-
nels of the measure-and-prepare kind and, as such, destroy
entanglement when applied locally [60]. This observation will
play an important role in section 6.

Definition 3.3 (coarse-grained state and macroscopic
state). Let ρ be a quantum state. Then, CP,γ(ρ) is called the
coarse-grained state corresponding to ρ. Furthermore, when

CP,γ (ρ) = ρ , (14)

ρ is said to be macroscopic with respect to the POVM P and
the quantum prior γ.

As explained below, given an observation P and a prior
γ, CP,γ corresponds to the coarse-graining channel acting on
quantum states, while C∗

P,γ corresponds to the coarse-graining
post-processing acting on POVMs outcomes.

Remark 3.4 (coarse-graining and POVM post-processing).
Let Q= {Qy}y be a POVM. Then,

C∗
P,γ (Qy) =

∑
x

Tr

[
Qy

γ
1
2Pxγ

1
2

Tr[Pxγ]

]
Px (15)

=
∑
x

q(y|x)Px , (16)

where q(y|x) := Tr
[
Qy

(
γ

1
2Pxγ

1
2 /Tr[Pxγ]

)]
. By definition,

this means that for any Q

C∗
P,γ (Q)� P . (17)

Thus, the adjoint of the coarse-graining map for quantum
states corresponds to POVMs post-processing. The interpret-
ation is very natural: if we perform a further observation (the

1 Note that the definition we give here of ‘coarse-graining’ differs from that
used in [6].

POVMQ) on a quantum state already coarse-grained under P,
it is as if we were observing a classical post-processing of P
on the original state (before the coarse-graining). That is, after
the state has been coarse-grained with respect to a POVM P, it
only contains information that can be perfectly inferred from
P, and nothing more.

3.1. Observational entropy

Definition 3.5 (Observational entropy). Let P= {Px}x∈X be
a POVM. Then for arbitrary ρ ∈ S(H),

SP (ρ) := S(ρ)+ δP (ρ‖u) (18)

is called the observational entropy of ρ with respect to P.
(Notice the uniform prior.)

Notice that while von Neumann originally defined macro-
scopic entropy only for PVMs [1, 2], the observational entropy
extends the definition for arbitrary POVMs [3–6].

In the case of observational entropy, as conventionally
defined, the prior state is assumed to be the uniform state
u, but more generally, we can consider arbitrary prior distri-
butions [7, 61]. For example, the prior distribution γ can be
viewed as a generalization of the equilibrium state.

Von Neumann entropy is an entropy derived from thermo-
statistical discussions based on the assumption that the second
law of thermodynamics is universally valid [1]. On the other
hand, macroscopic entropy is an entropy calculated under the
additional assumption that states that cannot be distinguished
by a macroscopic observer (PVM) are considered to be the
same state.

In order to formalize this, let us assume that a macroscopic
observer corresponding to a PVM Π= {Πy}my=1 cannot dis-
tinguish between ρ and ρ ′. This means that all PVM elements,
Π1,Π2, . . . ,Πm, have the same expectation value:

Tr[ρ Πy] = Tr[ρ ′ Πy] , ∀y . (19)

Now we have, for any ρ ∈ S(H),

Tr[ρ Πy] = Tr

[(
m∑
n=1

Tr[ρΠn]
Πn

Tr[Πn]

)
Πy

]
, ∀y . (20)

Thus, ρ and ρΠ,u :=
∑m

n=1Tr[ρΠn]Πn/Tr[Πn] are indistin-
guishable for macroscopic observer Π and have the same
macroscopic entropy. Here, the macroscopic entropy of the
quantum state ρ is given by the von Neumann entropy of the
corresponding macroscopic state ρΠ,u [1]:

S(ρΠ,u) =−Tr[ρΠ,u logρΠ,u] (21)

=−
m∑
n=1

Tr[Πnρ] log
Tr[Πnρ]

Tr[Πn]
(22)

= SΠ (ρ) (23)

= SΠ (ρΠ,u) . (24)

If we consider such amacroscopic state ρΠ,u as the initial state,
we can then show that observational entropy will generally
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increase with unitary time-evolution [22, 62]. On the contrary,
in themicroscopic case, vonNeumann entropy cannot increase
(in fact, it remains constant) under unitary time evolution.

4. Equivalent characterizations of macroscopic
states and inferential reference frames

To systematically understand which features of a quantum
state, including correlations, survive macroscopic coarse-
graining, we now establish equivalent characterizations of
macroscopicity. These will allow us to later identify the cor-
relation content of macroscopic versus microscopic states.

The theorem proved in this section, which generalizes the
known case of rank-1 PVM [63, 64], is one of the main results
of this paper. It provides four, from purely algebraic to expli-
citly constructive, equivalent characterizations of macroscopic
states for arbitrary POVMs and priors. Crucial for our discus-
sion is the concept of MPPP, which plays a central role in our
framework as an ‘inferential symmetry reference frame’, i.e. a
PVM that captures the information recoverable under both a
measurement and a prior. The following definition uses the
post-processing preorder defined in equation (8).

Definition 4.1 (MPPP). A PVM Π is called a γ-commuting
PPP of P if Π� P and all its elements commute with γ. A
γ-commuting PPP Π of P is said to be maximal if Π ′ �Π
for any γ-commuting PPP Π ′ of P.

The proof that a γ-commuting MPPP always exists unique
for any pair (P,γ) is postponed to section 4.1. In what follows,
we assume that the prior γ is invertible and that the POVM P
has no zero-elements, which implies that alsoMP(γ) is invert-
ible. We are now ready to state the theorem.

Theorem 4.2 (macroscopic states with general quantum
prior). Let P= {Px}x∈X be a POVM, γ be an invertible
quantum state, andΠP,γ ≡Π= {Πy}y∈Y be the correspond-
ing MPPP, see definition 4.1. Then, for any quantum state ρ,
the following conditions are equivalent:

(i) δP(ρ‖γ) = 0;
(ii) CP,γ(ρ) = ρ;
(iii) ∆P,γ(ρ) = ρ, where ∆P,γ is an idempotent CPTP map

defined by

∆P,γ (•) :=
∑
y∈Y

Tr[Πy (•)]
Πyγ

Tr[Πyγ]
; (25)

(iv) there exist coefficients cy ⩾ 0 such that ρ=
∑

y∈Y cyΠyγ.

By the equality condition of DPI, equations (5) and (6), we
have (i)⇐⇒ (ii). We have (iii)⇐⇒ (iv) by the definition of
∆P,γ and the fact that Π is a PVM whose elements commute
with γ. The proof of the remaining equivalence, i.e. (ii)⇐⇒
(iii) is given below, as theorem 4.14.

Remark 4.3. In [28, lemma 4.1] it is stated that if

δP (ρ‖γ) = 0 , (26)

then

[Px,γ] = 0 (27)

for all x ∈ X . However, the above does not hold in general.
Indeed, regardless of how we choose the POVM P= {Px}x∈X
and the prior γ, the latter is always a macroscopic state (by
construction), even if we choose it so that [Px,γ] 6= 0. Only in
the particular case when γ = u, then, all macroscopic states
must commute with the initial POVM [22].

Remark 4.4. In hindsight, knowing that δPγ
(ρ‖γ) = 0 implies

[ρ,γ] = 0, it is possible to characterize macroscopic states
using, instead of P, its pinched version Pγ—pinched with
respect to an eigenbasis of γ. Our approach has the advantage
of showing, in an explicitly constructive way, that the condi-
tion δPγ

(ρ‖γ) = 0 implies [ρ,γ] = 0.

4.1. MPPP

In what follows, we prove the existence and uniqueness of the
γ-commuting MPPP defined in definition 4.1. The statement
appears as corollary 4.12, and its proof is broken into a few
preceding Lemmas and a proposition.

We fix an arbitrary prior γ and an arbitrary POVM P=
{Px}x∈X , and define X+ := {x ∈ X |Px 6= 0}. We begin with
the following lemma:

Lemma 4.5. LetΠ= {Πy}y∈Y be a set of projectors. Then,Π
is a PVM satisfyingΠ� P if and only if there exists a disjoint
partition of X+ into {Xy}y∈Y such thatΠy =

∑
x∈Xy

Px for all
y ∈ Y .

Proof. The ‘if’ part follows because

Πy =
∑
x∈Xy

Px (28)

=
∑
x∈X

p(y|x)Px , (29)

where

p(y|x) =

{
1 (x ∈ Xy)

0 (x /∈ Xy)
(30)

and ∑
y∈Y

Πy =
∑
y∈Y

∑
x∈Xy

Px (31)

=
∑
x∈X

Px (32)

= 1. (33)

The ‘only if’ part follows from lemma 2.1. Indeed, if Π is a
PVM satisfying Π� P, which clearly has a unit eigenvector
with eigenvalue 1, there exists a conditional probability distri-
bution {p(y|x)} such that Πy =

∑
x∈X p(y|x)Px and p(y|x) ∈

{0,1} for all x and y. Letting Xy := {x ∈ X |p(y|x) = 1}, we
complete the proof.

5
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Definition 4.6. A partition {Xy}y∈Y of X+ is said to be γ-
disconnected if, for any y 6= y ′, any x ∈ Xy, and any x ′ ∈ Xy′ ,
it holds that PxPx′ = PxγPx′ = 0. It is said to be γ-connected
otherwise.

Lemma 4.7. Given a partition {Xy}y∈Y of X+, let Q=
{Qy}y∈Y be a POVM such that Qy =

∑
x∈Xy

Px. Then, Q is a
γ-commuting PPP of P if and only if the partition {Xy}y∈Y is
γ-disconnected.

Proof. To prove the ‘if’ part, let {Xy}y∈Y be a γ-disconnected
partition of X+ and define Qy =

∑
x∈Xy

Px. For y 6= y ′, we
have

QyQy′ =
∑
x∈Xy

∑
x′∈Xy′

PxPx′ = 0, (34)

QyγQy′ =
∑
x∈Xy

∑
x′∈Xy′

PxγPx′ = 0. (35)

Noting that
∑

y∈Y Qy = I, we have, from (34),

Tr [Qy] =
∑
y′∈Y

Tr [QyQy′ ] = Tr
[
Q2
y

]
. (36)

Since 0⩽ Qy ⩽ I, it follows that Qy are projectors, which are
orthogonal due to (34). Equation (35) implies that γ has no
off-diagonal term with respect to {Qy}y∈Y , which implies
[Qy,γ] = 0.

To prove the ‘only if’ part, let {Xy}y∈Y be a given partition
of X+, let Qy =

∑
x∈Xy

Px, and suppose that Q= {Qy}y∈Y is
a γ-commuting PPP of P. Due to the orthogonality of the pro-
jectors, for y 6= y ′, we have

0= Tr [QyQy′ ] =
∑
x∈Xy

∑
x′∈Xy′

Tr [PxPx′ ] . (37)

Noting that Px ⩾ 0, this implies Tr[PxPx′ ] = 0 and thus
PxPx′ = 0 for any x ∈ Xy and x ′ ∈ Xy′ . Additionally, the com-
mutativity of Qy with γ implies

PxγPx′ = Px

∑
y∈Y

QyγQy

Px′ =
∑
y∈Y

(PxQy)γ (QyPx′) .

(38)

Since PxQy = 0 for any x /∈ Xy due to the orthogonality of
{Qy}y∈Y , the above is equal to zero for any pair of x and x′

that belong to different subsets Xy and Xy′ . This implies that
{Xy}y∈Y is γ-disconnected.

Definition 4.8. A γ-disconnected partition {Xy}y∈Y of X+ is
said to be irreducible if any of its strict refinements (in the
sense of partition) is γ-connected. It is said to be reducible
otherwise.

Lemma 4.9. There exists an irreducible γ-disconnected parti-
tion ofX+ that is finer than any other γ-disconnected partition
of X+.

Proof. Let {Xy}y∈Y be any γ-disconnected partition of X+

and let {X ∗
z }z∈Z be any irreducible one. It suffices to prove

that, for any z ∈ Z , there exists y ∈ Y such that X ∗
z ⊆

Xy. We prove this by contradiction. Suppose that there
exist z ∈ Z and y ∈ Y such that X ∗

z,0 := X ∗
z ∩Xy 6= ∅ and

X ∗
z,1 := X ∗

z ∩ (
⋃
y′ ̸=yXy′) 6= ∅. Since Xy and

⋃
y′ ̸=yXy′ are γ-

disconnected by assumption,X ∗
z,0 andX ∗

z,1 are γ-disconnected.
Thus, {X ∗

z,0,X ∗
z,1}∪ {X ∗

z }z′∈Z\{z} is a γ-disconnected parti-
tion of X+, which contradicts the assumption that {X ∗

z }z∈Z is
irreducible.

Lemma 4.10. The irreducible γ-disconnected partition of X+

is unique up to relabeling of the subsets.

Proof. Let {X ∗
z }z∈Z and {X ∗

θ }θ∈Θ be irreducible γ-
disconnected partitions of X+. Due to lemma 4.9, for any
z ∈ Z , there exist θ ∈Θ and z ′ ∈ Z such thatX ∗

z ⊆X ∗
θ ⊆X ∗

z′ .
This relation holds only if z= z ′ andX ∗

z = X ∗
θ , thus {X ∗

z }z∈Z
and {X ∗

θ }θ∈Θ are equal up to relabeling.

Proposition 4.11. Let {Xz}z∈Z be a γ-disconnected parti-
tion of X+, and let Π= {Πz}z∈Z be a POVM such that
Πz =

∑
x∈Xz

Px for each z ∈ Z . Due to lemma 4.7, Π is a
γ-commuting PPP of P . Then, Π is maximal if and only if
{Xz}z∈Z is irreducible.

Proof. To prove the ‘if’ part, suppose that {Xz}z∈Z is irredu-
cible. LetΠ ′ = {Π ′

y}y∈Y be any γ-commuting PPP of P. Due
to lemmas 4.5 and 4.7, there exists a γ-disconnected partition
{X ′

y }y∈Y of X+ such thatΠ ′
y =

∑
x∈X ′

y
Px. Due to lemma 4.9,

{Xz}z∈Z is finer than {X ′
y }y∈Y , which implies that there exists

a partition {Zy}y∈Y of Z such that X ′
y = ∪z∈ZyXz. Hence, we

have Π ′
y =

∑
z∈Zy

Πz, which implies Π ′ �Π.
To prove the ‘only if’ part, suppose, on the contrary, that

{Xz}z∈Z is reducible. Let {X ∗
θ }θ∈Θ be the irreducible γ-

disconnected partition ofX+. Reducibility of {Xz}z∈Z implies
that there exist θ1 ∈Θ and z1 ∈ Z such that X ∗

θ1
⊊ Xz1 . Let

Π∗ = {Π∗
θ}θ∈Θ be a γ-commuting PPP of P such that Π∗

θ =∑
x∈X∗

θ
Px, which is maximal due to the first half of this proof.

It suffices to prove that no classical post-processing transforms
Π to Π∗. Indeed, if such a classical post-processing exists,
due to lemma 4.5, it is represented by a partition {Zθ}θ∈Θ of
Z such that Π∗

θ =
∑

z∈Zθ
Πz for any θ ∈Θ. This implies that

X ∗
θ = ∪z∈Zθ

Xz, so there exists z2 ∈ Z that satisfiesXz2 ⊆X ∗
θ1
.

Hence, we have Xz2 ⊊ Xz1 , which is a contradiction.

Corollary 4.12. For any POVM P, the maximal γ-commuting
PPPΠP,γ of P exists and is unique up to invertible relabeling
of the measurement outcomes.

4.2. Fixed points of the coarse-graining map

In this subsection, we focus on the algebraic structure of
coarse-graining maps and their adjoints. We prove that the
fixed-point set of the adjoint map of a coarse-graining is com-
pletely characterized by the MPPP:

Theorem 4.13. Let ΠP,γ = {Πy}y∈Y be the MPPP with
respect to POVM P= {Px}x∈X and prior γ. Moreover, let

FC∗
P,γ

:=
{
A ∈ L(H) | C∗

P,γ (A) = A
}

(39)
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be the set of fixed points of C∗
P,γ . Then, we have

FC∗
P,γ

= span{Πy}y∈Y . (40)

(The proof of the above theorem will be given after the
proof of lemma 4.15 below.) Therefore, in particular, we can
interpret ΠP,γ as a sort of inferential reference frame for
the macroscopic observer represented by the pair (P,γ): spe-
cifically, the fixed-point algebra of the channel C∗

P,γ , which
describes the observer’s constraints, is spanned precisely by
the projections inΠP,γ , and it is this algebra that encapsulates
all information recoverable under those constraints.

Moreover, using theorem 4.13, we explicitly determine the
conditional expectation [55], [56, 9.2 conditional expecta-
tions] that characterizes the set of fixed points of the coarse-
graining map.

Theorem 4.14. Let ΠP,γ = {Πy}y∈Y be the MPPP with
respect to POVM P= {Px}x∈X and prior γ. Then,

∆P,γ (•) = lim
n→∞

1
n

n∑
k=1

CkP,γ (•) . (41)

Furthermore, for any quantum state ρ,

∆P,γ (ρ) = ρ (42)

If and only if

CP,γ (ρ) = ρ . (43)

The proofs in this subsection rely on foundational results
in quantum information theory and operator algebras regard-
ing quantum statistical sufficiency and conditional expect-
ations, especially the theorems of Petz and Takesaki [27,
65]. To apply these results to our context, we explicitly state
our primary assumptions. First, we work within a finite-
dimensional Hilbert space. Second, the prior state γ is invert-
ible, or faithful. Finally, we assume that MP(γ) is invertible
(i.e. faithful). These assumptions, particularly the condition
that γ and MP(γ) are invertible, are necessary for applying
lemma 4.15 below.

The proof of theorem 4.13 relies on the following result,
which specializes [27, theorem 2] and [66, lemma 6.12] to the
present situation.

Lemma 4.15. Let P= {Px}x∈X be a POVM and γ be an
invertible quantum state such that MP(γ) is invertible. Let
B ∈ span{|x〉〈x|}x∈X . The following are then equivalent:

(i) (R∗
MP,γ

◦M∗
P)(B) = B .

(ii) M∗
P(B

†B) =M∗
P(B)

†M∗
P(B) and M∗

P(B)γ = γM∗
P(B) .

Furthermore, we get

EC∗
P,γ

: =
{
B ∈ span{|x〉〈x|}x∈X |

(
R∗

MP,γ ◦M
∗
P

)
(B) = B

}
' FC∗

P,γ
, (44)

where M∗
P is a ∗-isomorphism from EC∗

P,γ
to FC∗

P,γ
, whose

inverse isR∗
MP,γ

.

Proof. By applying results in [27, theorem 2], [66, lemma
6.12], in our setting, it follows that(

R∗
MP,γ ◦M

∗
P

)
(B) = B (45)

If and only if M∗
P(B

†B) =M∗
P(B)

†M∗
P(B) and

M∗
P

(
MP (γ)

itBMP (γ)
−it
)
= γitM∗

P (B)γ
−it , (46)

for all t ∈ R. In our case, using the fact that the image of
MP (the domain of M∗

P) is inside of span{|x〉〈x|}x∈X , we
obtain MP(γ)

itBMP(γ)
−it = B. Therefore, condition (46) is

equivalent to

M∗
P (B) = γitM∗

P (B)γ
−it , ∀t ∈ R . (47)

This means that [M∗
P(B),γ

−it] = 0 for t 6= 0. Since γ is
Hermitian and γ = (γit)1/it, [M∗

P(B),γ] = 0. Thus, condi-
tion (46) is equivalent to M∗

P(B)γ = γM∗
P(B). The converse

implication is trivial.
Furthermore, as shown in [27, theorem 2], [66, lemma

6.12], M∗
P restricted onto EC∗

P,γ
is a ∗-isomorphism to FC∗

P,γ

whose inverse is R∗
MP,γ

.

We are now ready to prove theorems 4.13 and 4.14.

Proof of theorem 4.13. It is straightforward by calculation
from (13) and the definition of MPPP (definition 4.1) that
FC∗

P,γ
⊇ span{Πy}y∈Y . In the following, we prove the oppos-

ite relation FC∗
P,γ

⊆ span{Πy}y∈Y . By lemma 4.15, M∗
P is an

isomorphism from EC∗
P,γ

to FC∗
P,γ

, where

EC∗
P,γ

=
{
B ∈ span{|x〉〈x|}x∈X | M∗

P

(
B†B

)
=M∗

P (B)
†M∗

P (B) , M∗
P (B)γ = γM∗

P (B)
}
. (48)

Our strategy will be to prove that

EC∗
P,γ

⊆ span

∑
x∈Xy

|x〉〈x|


y∈Y

, (49)

where {Xy}y∈Y is the irreducible γ-disconnected parti-
tion of X (see definition 4.8). Then, the statement fol-
lows. This is because, noting that M∗

P(|x〉〈x|) = Px and
M∗

P(
∑

x∈Xy
|x〉〈x|) = Πy, we have

FC∗
P,γ

=M∗
P

(
EC∗

P,γ

)
⊆ span{Πy}y∈Y . (50)

In order to prove (49), it suffices to show that∑
x∈X αx|x〉〈x| ∈ EC∗

P,γ
only if αx = αx′ for any x,x ′ ∈ Xy

and any y ∈ Y . We start with

∑
x∈X

α∗
xαxPx =M∗

P

[∑
x∈X

α∗
xαx|x〉〈x|

]

=M∗
P

(∑
x∈X

αx|x〉〈x|

)†(∑
x′∈X

αx′ |x ′〉〈x ′|

)
(51)
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and(∑
x∈X

α∗
xPx

)(∑
x′∈X

αx′Px′

)
=M∗

P

(∑
x∈X

αx|x〉〈x|

)†

×M∗
P

(∑
x′∈X

αx′ |x ′〉〈x ′|

)
.

(52)

From the first condition in (48), the above two are equal.
Therefore, for ξ ∈ {1,γ}, it holds that∑

x,x ′∈X
α∗
xαxPxξPx′ =

∑
x∈X

α∗
xαxPxξ

=

(∑
x∈X

α∗
xPx

)(∑
x′∈X

αx′Px′

)
ξ, (53)

where we made use of the normalization condition∑
x′∈X Px′ = 1. Due to the second condition in (48), the last

one in the above equality is equal to(∑
x∈X

α∗
xPx

)
ξ

(∑
x′∈X

αx′Px′

)
=
∑

x,x ′∈X
α∗
xαx′PxξPx′ . (54)

Hence, we have∑
x,x ′∈X

α∗
x (αx−αx′)PxξPx′ = 0 . (55)

The above, taking its trace on ξ, in turn yields∑
x,x ′∈X

α∗
x (αx−αx′)Tr

[(
ξ

1
2Pxξ

1
2

)(
ξ

1
2Px′ξ

1
2

)]
= 0. (56)

Obviously, this relation holds when the roles of x and x′ are
exchanged. Summing up these two, we arrive at∑

x,x ′∈X
|αx−αx′ |2Tr

[(
ξ

1
2Pxξ

1
2

)(
ξ

1
2Px′ξ

1
2

)]
= 0. (57)

Note that ξ
1
2Pxξ

1
2 ⩾ 0 and thus Tr[(ξ

1
2Pxξ

1
2 )(ξ

1
2Px′ξ

1
2 )]⩾ 0,

with the equality if and only if (ξ
1
2Pxξ

1
2 )(ξ

1
2Px′ξ

1
2 ) = 0.

Because of the invertibility of ξ, this condition is equivalent
to PxξPx′ = 0. Hence, (57) holds only if αx = αx′ for any x
and x′ such that PxξPx′ 6= 0. This argument applies for both of
ξ = 1,γ. Thus, it must hold that αx = αx′ whenever PxPx′ 6= 0
or PxγPx′ 6= 0, which implies that αx must be constant in Xy.

Proof of theorem 4.14. We start by noticing that the map
defined as

∆∗
P,γ (•) =

∑
y∈Y

Tr

[
(•)

Πyγ

Tr[Πyγ]

]
Πy (58)

is a conditional expectation [55], [56, 9.2 conditional expect-
ations] onto span{Πy}y∈Y , whereas

E∗ (•) = lim
n→∞

1
n

n∑
k=1

(
C∗
P,γ

)k
(•) (59)

is a conditional expectation on FC∗
P,γ

= {A ∈ L(H) | C∗
P,γ

(A) = A} [67, lemma 11].
Let φγ be defined as

φγ : A 7→ Tr[γA] . (60)

Then, we get φγ ◦∆∗
P,γ = φγ and φγ ◦ E∗ = φγ . Thus, from

theorem 4.13 and the uniqueness of φγ-preserving conditional
expectation (or Takesaki theorem) [65], [66, theorem A.10],

∆∗
P,γ (•) = lim

n→∞

1
n

n∑
k=1

(
C∗
P,γ

)k
(•) , (61)

i.e.

∆P,γ (•) = lim
n→∞

1
n

n∑
k=1

CkP,γ (•) . (62)

Furthermore, for any quantum state ρ, we have [68, Proof of
theorem 5], [56, example 9.4.]

lim
n→∞

1
n

n∑
k=1

CkP,γ (ρ) = ρ (63)

If and only if

CP,γ (ρ) = ρ . (64)

5. Resource theory of microscopicity

Having established the structure of macroscopic states, we
now ask: What makes a state ‘more or less macroscopic/mi-
croscopic’ than another? More crucially, how does this micro-
scopicity relate to the visibility of quantum correlations under
restricted observations? To answer this, we develop a resource
theory of microscopicity, which captures observer-dependent
irreversibility and correlation loss.

As briefly mentioned after theorem 4.13, the MPPP asso-
ciated to a measurement P and a prior state γ encapsu-
lates the information-preserving structure induced by both the
measurement and the prior: all macroscopic states are block-
diagonal with respect to it. The MPPP thus plays the role of
an inferential reference frame generalizing the ‘choice of a
preferred basis’ in the resource theory of coherence, where
incoherent states are diagonal in a fixed basis. The differ-
ence is that, here, the inferential structure is shaped not only
by the measurement but also by the prior γ. To make this
notion precise, we construct a resource theory of microscop-
icity, in which macroscopic states are treated as free states,
and introduce the relative entropy of microscopicity as a

8
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measure of irretrodictability, i.e. the extent to which micro-
scopic details are lost and unrecoverable from macroscopic
observations [6, 22].

5.1. Free states and operations

In the framework of resource theories [69–71], a resource the-
ory can be constructed either from the set of free states (i.e. the
so-called ‘geometric approach’ [72]) or from the set of free
operations (the ‘operational approach’). In either case, how-
ever, it is important that the minimal conditions for internal
consistency are satisfied: (i) every free state is mapped to a
free state by a free operation, and (ii) every free state can be
generated by a free operation. A resource theory is said to be
convex if the set of free states and/or the set of free operations
is closed under convex combination. A convex resource the-
ory is further said to be affine if no resource state can be rep-
resented as a linear combination of free states [71, 9.3 Affine
Resource Theories].

The set of free states in our resource theory of microscop-
icity is the set of macroscopic states, as characterized in the-
orem 4.2. Given a pair (P,γ), we denote such a set as

M(P,γ) := {σ ∈ S (H) |∆P,γ (σ) = σ}

=

∑
y∈Y

py
Πyγ

Tr[Πyγ]

∣∣∣∣∣∣py ⩾ 0,
∑
y

py = 1


= span{Πyγ}y ∩S (H) , (65)

where ΠP,γ = {Πy}y is the uniquely defined γ-commuting
MPPP and ∆P,γ is the map defined by equation (25). The
final equality in equation (65) follows because all blocks Πyγ
are non-zero and orthogonal to each other by construction,
so that any linear combination

∑
y∈Y λyΠyγ, with λy ∈ R,

belongs to S(H) if and only if λy ⩾ 0 and
∑

yλyTr[Πyγ] = 1,
i.e. it is in fact a convex combination of the extremal points.
Alternatively, although more implicitly, affinity of M(P,γ)
can be seen as a consequence of its definition, where σ ∈
M(P,γ) if and only if ∆P,γ(σ) = σ, where ∆P,γ is linear.
Anyway, in conclusion, the resource theory of microscopicity
is convex and affine.

Since for any ρ ∈ S(H)we have∆P,γ(ρ) ∈M(P,γ), while
∆P,γ(σ) = σ for any σ ∈M(P,γ), the map ∆P,γ is the
resource destroying map (RDM) [33] in the resource theory
of microscopicity. From it, free operations (i.e. macroscopic
operations in our language) can be introduced as follows.

Definition 5.1 (Macroscopic operations). We introduce
three classes of free operations. A CPTP map E is called a

• microscopicity non-generating operation (MNO) if σ ∈
M(P,γ) =⇒ E(σ) ∈M(P,γ);

• resource-destroying covariant operation (RCO) if E ◦
∆P,γ =∆P,γ ◦ E ;

• coarse-graining covariant operation (CCO) if E ◦ CP,γ =
CP,γ ◦ E .

MNO and RCO are natural generalizations of maximally
incoherent operations (MIOs) and dephasing-covariant inco-
herent operations (DIOs), respectively, in the resource the-
ory of coherence [34, 36, 73] (see example 5.6 below). CCO
instead constitutes a new class, since in general CP,γ 6=∆P,γ .
The following proposition shows that the above classes of
macroscopic operations in fact form a hierarchy, which can
be strict or not, depending on the POVM P and the prior γ.

Proposition 5.2. The three classes of free operations satisfy
the following inclusion relation:

CCO⊆ RCO⊆MNO . (66)

A sufficient condition for the first equality is P�ΠP,γ . The
second equality holds if and only if the MPPP is trivial, i.e.
ΠP,γ = {1}.

Proof. The first relation follows from the fact that∆P,γ is rep-
resented by CP,γ as equation (41). The second relation fol-
lows because E(σ) = E ◦∆P,γ(σ) = ∆P,γ ◦ E(σ) ∈M(P,γ)
for any σ ∈M(P,γ) and E ∈ RCO.

The relation P�ΠP,γ , which is equivalent to P'ΠP,γ as
P�ΠP,γ holds by definition, guarantees that any element of
P is proportional to an element ofΠP,γ , which is the case when
P is obtained fromΠP,γ by probabilistic splitting of the meas-
urement outcomes. Hence, if it holds, we have CP,γ =∆P,γ

and thus CCO= RCO.
When ΠP,γ = {1}, the prior state γ is the only mac-

roscopic state due to (65). In this case, RDM takes the
form of ∆P,γ( • ) = Tr[ • ]γ and is the only element of
MNO, which implies RCO=MNO. Conversely, suppose that
ΠP,γ = {Πy}y∈Y , where |Y|⩾ 2. Let |ϕ〉 be a normalized vec-
tor such thatΠy1 |ϕ〉 6= 0 andΠy2 |ϕ〉 6= 0 for some y1 6= y2, and
define an operation

E (•) := Tr [(•) |ϕ〉〈ϕ|]Πy1γ+Tr [(•) (I− |ϕ〉〈ϕ|)]Πy2γ .
(67)

It is straightforward that ∆P,γ ◦ E(|ϕ〉〈ϕ|) = Πy1γ 6= E ◦
∆P,γ(|ϕ〉〈ϕ|) and ∆P,γ ◦ E = E , which implies RCO⊊
MNO.

Remark 5.3. In general, the first inclusion, equation (66) can
also be strict, that is, it could indeed be the case that CCO⊊
RCO. An example is given as follows. Consider a one-qubit
system (dimH= 2) and let P≡ {P0,P1} be a binary POVM
such that

P0 =
2
3
|0〉〈0|+ 1

3
|1〉〈1|, P1 =

1
3
|0〉〈0|+ 2

3
|1〉〈1| , (68)

for which the MPPP is trivial. For the uniform prior, the
RDM takes the form of ∆P,u( • ) = Tr[ • ]u, thus commutes
with the Hadamard gate H := |+〉〈0|+ |−〉〈1|. Nevertheless,
the coarse-graining map CP,u(•) does not commute with H.
The unitary channel H is thus in RCO but not in CCO. The
search for necessary and equivalent conditions for equality
between CCO and RCO is left open for future research.
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5.2. Relative entropy of microscopicity

We introduce the relative entropy of microscopicity to quantify
how a state is distant from the set of the macroscopic states,
and analyze its property as a resource measure. This is a spe-
cial case of the Umegaki relative entropy of resourcefulness in
general resource theories [71].

Definition 5.4 (Relative entropy of microscopicity). For a
POVM P= {Px}x and an invertible quantum state γ, the rel-
ative entropy of microscopicity is defined as

DP,γ (•) := inf
σ∈M(P,γ)

D(•‖σ) . (69)

By definition and from a general argument, it is straightfor-
ward to see that DP,γ(•) is a microscopicity monotone, that
is, DP,γ(ρ)⩾ DP,γ(E(ρ)) for any ρ ∈ S(H) and E ∈MNO.
The relative entropy of microscopicity can be represented in
terms of RDM and is bounded below by the observational
deficit:

Theorem 5.5. Let ΠP,γ ≡Π= {Πy}y∈Y be the MPPP with
respect to a quantum prior γ and a POVMP= {Px}x∈X . Then,
for any quantum state ρ,

DP,γ (ρ) = D(ρ‖∆P,γ (ρ)) (70)

⩾ δP (ρ‖σ) (71)

for all σ ∈M(P,γ). The condition for equality in (71) is
that a classical post-processing that converts P to ΠP,γ ,
which is represented by the conditional probability distri-
bution {p(y|x)} as Πy =

∑
x∈X p(y|x)Px, is sufficient with

respect to the dichotomy (MP(ρ),MP(σ)).

Proof. For any σ ∈M(P,γ), we get

D(ρ‖σ) (72)

= Tr[ρ logρ]−Tr[ρ logσ] (73)

= Tr[ρ logρ]−Tr[ρ log∆P,γ (ρ)]+Tr[ρ log∆P,γ (ρ)]

−Tr[ρ log∆P,γ (σ)] (74)

= D(ρ‖∆P,γ (ρ))+Tr[PΠ (ρ) log∆P,γ (ρ)]

−Tr[PΠ (ρ) log∆P,γ (σ)] , (75)

where we introduced the pinching map PΠ(•) :=∑
y∈Y Πy•Πy. (Note that, in general,PΠ 6=∆P,γ .) The second

term is calculated as

Tr[PΠ (ρ) log∆P,γ (ρ)]

=
∑
y

Tr

[
ΠyρΠy log

(
Tr[Πyρ]

Πyγ

Tr[Πyγ]

)]
(76)

=
∑
y

Tr

[
ΠyρΠy

{
log(Tr[Πyρ])1+ log

(
Πyγ

Tr[Πyγ]

)}]
.

(77)

Similarly, for the third term we have

Tr[PΠ (ρ) log∆P,γ (σ)]

=
∑
y

Tr

[
ΠyρΠy

{
log(Tr[Πyσ])1+ log

(
Πyγ

Tr[Πyγ]

)}]
.

(78)

Thus,
Tr[PΠ (ρ) log∆P,γ (ρ)]−Tr[PΠ (ρ) log∆P,γ (σ)]

= D
(
MΠP,γ (ρ)‖MΠP,γ (σ)

)
. (79)

Combining this with (75), we obtain

D(ρ‖∆P,γ (ρ)) = D(ρ‖σ)−D
(
MΠP,γ (ρ)‖MΠP,γ (σ)

)
(80)

Since ΠP,γ is obtained from P by classical post-processing,
we have

D(MP (ρ)‖MP (σ))⩾ D
(
MΠP,γ (ρ)‖MΠP,γ (σ)

)
(81)

by the DPI. Thus, we obtain D(ρ‖∆P,γ(ρ))⩾ δP(ρ‖σ).
From (80), and noting that ∆P,γ(ρ) ∈M(P,γ), we also have

D(ρ‖∆P,γ (ρ))⩾ inf
σ∈M(P,γ)

D(ρ‖σ)⩾ D(ρ‖∆P,γ (ρ)) ,

(82)

which implies DP,γ(ρ) = D(ρ‖∆P,γ(ρ)).

5.3. Reduction to other resource theories

The resource theories of coherence, athermality, nonuniform-
ity and asymmetry are obtained from the resource theory of
microscopicity by properly choosing the prior state γ, or by
restricting the POVM P so that the MPPP satisfies certain con-
ditions, or both. Figure 1 provides a schematic diagram illus-
trating the situation.

Example 5.6 (Resource theory of coherence). Fix a com-
plete orthonormal system {|i〉}i on the d-dimensional Hilbert
spaceH. Suppose that the prior state γ is diagonal in that basis
and that P is a rank-one POVM which is also diagonal. In
this case, the MPPP is the rank-one PVM in that basis. The
RDM reduces to the completely dephasing (pinching) map
P{|i⟩⟨i |}i(•) =

∑
i 〈i|•|i〉|i〉〈i |. The free states are the diagonal

states:

M(P,γ) =

{∑
i

pi|i〉〈i ‖ pi ⩾ 0,
∑
i

pi = 1

}
= span{|i〉〈i |}i ∩S (H) . (83)

The MNO and RCO reduces to the MIOs and the DIO [34, 36,
73], respectively, defined as

MIO := {E ∈ CPTP | σ ∈M(P,γ) =⇒ E (σ) ∈M(P,γ)}
(84)

10
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Figure 1. A schematic diagram illustrating the relationship between
the resource theory of microscopicity and other prominent resource
theories. The large vertical ellipse represents the theory of
microscopicity, which encompasses several other theories. Within
this framework, the inner circle signifies the resource theory of
coherence, while the Sun symbol represents the resource theory of
athermality, a specific case of microscopicity (see example 5.7). The
dashed, partially overlapping horizontal ellipse depicts the resource
theory of asymmetry, where the cloud denotes a special case in
which the multiplicity space of group representations is trivial (see
example 5.8). Finally, the star symbol stands for the resource theory
of block-coherence, which cannot be derived from our framework
due to the more constrained structure of macroscopic states (see
remark 5.9).

DIO :=
{
E ∈ CPTP | P{|i⟩⟨i |}i ◦ E = E ◦P{|i⟩⟨i |}i

}
. (85)

It is known that the inclusion of DIO in MIO is strict, i.e.
DIO⊊MIO [73]. This is also valid in the theory of micro-
scopicity, since the inclusion of RCO in MNO is strict as soon
as the MPPP is not the trivial one, see proposition 5.2.

Example 5.7 (resource theory of athermality and nonuni-
formity). Suppose that the MPPP is trivial, i.e. ΠP,γ = {1}.
This happens when, for example, Tr[PxPx′ ] 6= 0 for any x,x ′ ∈
X . Due to Condition IV in theorem 4.2, the only macroscopic
state in this case is the prior state γ. Furthermore, the classes of
free operations RCO coincides with MNO (proposition 5.2).
If γ is the Gibbs state for a given Hamiltonian and a tem-
perature, it reduces to the resource theory of athermality [37,
38]. The free operations are the Gibbs preserving operations,
which are the operations that preserves the Gibbs state invari-
ant. If γ is the maximally mixed state, it is the resource theory
of nonuniformity, in which the free operations are those that
are described as the unital CPTP channels.

Example 5.8 (resource theory of asymmetry). Let G be a
group that represents a symmetry of a given quantum system,
and let UG := {Ug}g∈G be a unitary representation ofG. In the
resource theory of asymmetry, a state σ ∈ S(H) is said to be
symmetric (or G-invariant) if it is invariant under the action of
any element ofG, that is,UgσU†

g = σ for all g ∈ G. It is known

that, given a unitary representation UG, there exists a decom-
position of the Hilbert space H into the direct-sum-product
formH=

⊕
λ∈Irr(U)Aλ =

⊕
λ∈Irr(U)Bλ ⊗Cλ, such that Ug is

decomposed into Ug =
⊕

λ∈Irr(U) v
Bλ

g,λ ⊗ ICλ , where each vg,λ
is an irreducible unitary representation ofG. A state σ ∈ S(H)
is symmetric if and only if it is of the form

σ =
⊕

λ∈Irr(U)

uBλ ⊗σCλ

λ , (86)

where σCλ

λ := TrBλ
[ΠAλσΠAλ ]. We particularly consider the

case where the multiplicity space is trivial, i.e. dimCλ = 1.
Then the above decomposition yields σ =

⊕
λ∈Irr(U) c̃σ,λu

Bλ ,
with the coefficients satisfying c̃σ,λ ⩾ 0 and

∑
λ∈Irr(U) c̃σ,λ =

1. The states of this form are exactly the macroscopic states
for the uniform prior state, with the block-diagonal decom-
position of the space defined by the MPPP (see IV in theorem
4.2). When G is a compact Lie group, there is a unique group
invariant measure µ on UG, which is referred to as the Haar
measure. TheG-twirling operation [71, 15.2.1 TheG-Twirling
Operation] is then defined by

TUG (•) :=
ˆ
g∈G

Ug (•)U†
g µ(dg) , (87)

and is equal to the RDM ∆P,u(•). Let

C(G) :=
{
E ∈ CPTP | E

(
Ug • U†

g

)
= Ug E (•) U†

g (∀g ∈ G)
}

(88)

be the set of covariant operations. In this case, C(G)⊂ RCO.
It is left open whether C(G) = CCO holds for a proper choice
of the POVM.

Remark 5.9 (resource theory of block-coherence). It is
obvious from condition IV in theorem 4.2 that themacroscopic
states are not only block-diagonal with respect to the MPPP
but also in a fixed state in each block, which is ΠP,γγ. Thus,
a state which is block-diagonal in MPPP is not necessarily a
macroscopic state. Consequently, the resource theory of block
coherence [74] cannot be deduced from the resource theory of
microscopicity.

6. Observer-dependent measure of quantum
correlations

This section applies the framework developed in the pre-
ceding sections to explore quantum correlations, specifically
entanglement [44, 45], deficit [46–49], and discord [50–52],
from the perspective of the observer’s (quantum) reference
frame [41, 42, 53]. Our approach is inspired by Ryszard
Horodecki’s vision of correlations as physical resources, in
which correlations emerge not only from state structure but
also from the interplay between observation, inference, and
prior knowledge.

More precisely, here we explore how limitations in meas-
urement capabilities influence the perception and utility of
these correlations. We establish a resource theory for locally

11
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macroscopic states and their corresponding operations, con-
sidering observational limitations on a subsystem rather than
the entire system. This leads us to introduce the concept of
local microscopicity, which describes quantum features that
are lost when a system is observed through a coarse-grained
local measurement.

6.1. Locally macroscopic states and operations

We begin with a complete characterization of states that
are locally macroscopic with respect to POVM PA = {PxA}x
and prior state γAB = γA⊗ γB. In what follows, MPA is the
quantum–classical channel corresponding to the POVM PA on
the Hilbert space HA, as in equation (1).

Theorem 6.1 (locally macroscopic states). Let γAB := γA⊗
γB be a product quantum prior in HA⊗HB, ΠPA,γA ≡Π=
{Πy}y∈Y be the MPPP with respect to POVM PA and prior
state γA, and IB be an identity operator on the set of linear
operators on a Hilbert spaceHB. Then, for any ρAB ∈ S(HA⊗
HB), the following conditions are equivalent:

(i) D(ρAB‖γAB) = D
(
(MPA ⊗IB)(ρAB)‖(MPA ⊗IB)(γAB)

)
;

(ii) (CPA,γA ⊗IB)(ρAB) :=
[
(RMPA , γA

◦MPA)⊗IB
]
(ρAB) =

ρAB;
(iii) (∆PA,γA ⊗IB)(ρAB) = ρAB;
(iv) there exist ciy ⩾ 0, λi ⩾ 0 satisfying

∑
iλi = 1, σiA ∈

S(HA), and σiB ∈ S(HB) such that

ρAB =
∑
i

λi σ
i
A⊗σiB (89)

=
∑
i

λi ∆PA,γA

(
σiA
)
⊗σiB (90)

=
∑
i

λi

∑
y∈Y

ciyΠyγA

⊗σiB . (91)

Proof. The equivalence (i)⇐⇒ (ii) follows directly from
the equality condition for the DPI of the Umegaki relative
entropy, i.e. D(ρAB‖γAB) = D((MPA ⊗IB)(ρAB)‖(MPA ⊗
IB)(γAB)) ⇐⇒ CPA,γAB(ρAB) := (RMPA⊗IB, γAB) ◦ (MPA ⊗
IB)(ρAB) = ρAB. By assumption γAB = γA⊗ γB which together
with the locality of measurement, implies CPA,γAB = CPA,γA ⊗
IB. Furthermore, (iii)⇐⇒ (iv) follows from ∆PA,γ being
entanglement breaking [60], i.e. (∆PA,γA ⊗IB)(ρAB) is the sep-
arable state. Therefore, we show (ii)⇐⇒ (iii). By CPA,γA also
being entanglement breaking, if (CPA,γA ⊗IB)(ρAB) = ρAB,
then

ρAB =
∑
i

λiσ
i
A⊗σiB (92)

= (CPA,γA ⊗IB)

(∑
i

λiσ
i
A⊗σiB

)
(93)

=
∑
i

λiCPA,γA
(
σiA
)
⊗σiB (94)

=
∑
i

λiCkPA,γA
(
σiA
)
⊗σiB , (95)

where σiA ∈ S(HA) and σiB ∈ S(HB). Moreover, from the-
orem 4.14, we get

ρAB =
∑
i

λi

(
lim
n→∞

1
n

n∑
k=1

CkPA,γA
(
σiA
))

⊗σiB (96)

=
∑
i

λi ∆PA,γA

(
σiA
)
⊗σiB . (97)

Thus, we have (ii)=⇒ (iii). Conversely, (iii)=⇒ (ii) follows
from the fact that ∆PA,γA is a RDM.

Remark 6.2. We note that theorem 6.1 is derived under the
assumption of a prior state in tensor-product form, i.e. γAB :=
γA⊗ γB. This simplification enables a clear characterization
of locally macroscopic states. In general, for a correlated prior
γAB, it becomes CPA,γAB 6= CPA,γA ⊗IB. Therefore, whether the-
orem 6.1 holds for a prior that includes general non-tensor-
product states remains an open question.

In addition, it is possible to define locally macroscopic
operations. The set of locally macroscopic states with respect
to POVM PA and prior state γAB = γA⊗ γB is denoted
L(PA,γAB).

• Local MNOs (LMNOs): a CPTP map EAB is LMNO
whenever

EAB (ρAB) ∈ L(PA,γAB) , (98)

for all ρAB ∈ L(PA,γAB).
• Local RCOs (LRCOs): a CPTPmap EAB is LRCOwhenever

EAB ◦ (∆PA,γA ⊗IB) = (∆PA,γA ⊗IB) ◦ EAB . (99)

• Local CCOs (LCCOs): a CPTPmap EAB is LCCOwhenever

EAB ◦ (CPA,γA ⊗IB) = (CPA,γA ⊗IB) ◦ EAB . (100)

Similar to the resource theory of microscopicity (see proposi-
tion 5.2), the following hierarchy holds:

LCCC⊆ LRCO⊆ LMNO . (101)

6.2. Observational discord

Based on the concept of locally macroscopic states, we intro-
duce a new measure of quantum correlation that depends on
an observer’s measurement capabilities. While standard meas-
ures, such as quantum (one-way) deficit [46–49] and dis-
cord [50–52], quantify an intrinsic property of a quantum state
by optimizing over all possible measurements, our approach
addresses a different operational question: ‘When is a local
observer with fixed—and possibly limited—measurement
capabilities able to access all the correlations present in a
bipartite state?’ This question is physically relevant in many
scenarios where optimization is not possible. The measure
we introduce, observational discord, quantifies the amount of
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total correlation, measured by quantum mutual information,
that is inaccessible to a specific local observer characterized
by the pair (PA,ρA).

In what follows,MPA is the quantum–classical channel cor-
responding to the POVM PA on the Hilbert space HA, as in
equation (1).

Definition 6.3 (observational discord). Let ρAB ∈ S(HA⊗
HB). Then, the observational discord is defined as

DPA

(
Ā;B

)
ρAB

:= D(ρAB∥ρA ⊗ ρB)−D((MPA ⊗IB)(ρAB)∥(MPA ⊗IB)(ρA ⊗ ρB))

= I(A;B)ρAB − I(X;B)ωXB
. (102)

With the overbar denoting the measured system, ωXB :=
(MPA ⊗IB)(ρAB) and I(A;B)ρAB := D(ρAB‖ρA⊗ ρB) is the
quantum mutual information.

Note that in the above definition, the prior is taken to be the
product of the marginals of ρAB, instead of an arbitrary tensor
product state, as in the previous subsection.

Remark 6.4 (quantum discord). While the observational dis-
cord is defined for a fixed POVM acting on A, optimizing over
all POVMs we obtain the quantum discord [50–52, 75]

inf
PA: POVM

DPA (Ā;B)ρAB = I(A;B)ρAB − sup
PA: POVM

I(X;B)ωXB
.

(103)

The minimum is achieved with a rank-one POVM [51, 75, 76].

In the precise sense that discord is optimized over
all POVMs, discord is observer-independent. However, our
observational discord depends on the choice of a particular
observer’s macroscopic viewpoint.

As a consequence of theorem 6.1, we can derive the neces-
sary and sufficient conditions for vanishing observational dis-
cord.

Corollary 6.5. Let ρAB ∈ S(HA⊗HB) and letΠPA,ρA ≡Π=
{Πy}y∈Y be the MPPP with respect to POVM PA and prior
state ρA. Then, the following conditions are equivalent:

(i) DPA(Ā;B)ρAB = 0;
(ii) (CPA,ρA ⊗IB)(ρAB) = (RMPA⊗IB, ρA⊗ρB) ◦ (MPA ⊗

IB)(ρAB) = ρAB;
(iii) (∆PA,ρA ⊗IB)(ρAB) = ρAB;
(iv) there exist ciy ⩾ 0, λi ⩾ 0 satisfying

∑
iλi = 1, σiA ∈

S(HA), and σiB ∈ S(HB) such that

ρAB =
∑
i

λi σ
i
A⊗σiB (104)

=
∑
i

λi ∆PA,ρA

(
σiA
)
⊗σiB (105)

=
∑
i

λi

∑
y∈Y

ciyΠyρA

⊗σiB . (106)

Corollary 6.5 implies that the correlation, as quantified by
definition 6.3, vanishes when one part of the bipartite system is

coarse-grained. This contrasts with the observer-independent
nature of quantum (one-way) deficit [46–49] and discord [50–
52]. Our measure (definition 6.3) thus highlights a more real-
istic aspect of quantum correlations: their perceived ‘quantum-
ness’ is not absolute but depends on the capabilities and per-
spective of the observer.

In the case of quantum discord [51, 52], the necessary and
sufficient condition for being

inf
PA: POVM

DPA (Ā;B)ρAB = 0 (107)

is that ρAB is a classical-quantum state, i.e. ρAB =∑
iλi|i〉〈i |A⊗σiB for some local orthonormal basis {|i〉A}i,

λi ⩾ 0,
∑

iλi = 1, and σB ∈ S(HB). Let CQ be the set of
classical-quantum states. Then,

inf
σAB∈CQ

D(•‖σAB) (108)

is called relative entropy of discord [36, 51, 52].
Similarly, we can define the relative entropy of local micro-

scopicity as follows:

inf
σAB∈L(PA,γAB)

D(•‖σAB) , (109)

where L(PA,γAB) is the set of locally macroscopic states
with respect to POVM PA and the prior state γAB. Note that
while L(PA,γAB) is a convex set, CQ is not. We leave it
open the problem of finding a more quantitative relationship
between the relative entropy of local microscopicity and our
definition 6.3.

7. Conclusion

In this paper, we developed a general framework for under-
standing macroscopic states in quantum systems, grounded in
the interplay between general POVMs and quantum priors.
We defined macroscopic states operationally as fixed points
of a coarse-graining map, i.e. the composition of a measure-
ment and its Petz recovery map, and provided several equi-
valent characterizations. These include conditions based on
quantum statistical sufficiency, the structure of MPPPs, and
the fixed points of a corresponding resource-destroying map.
Together, these results offer a unified perspective on mac-
roscopic irreversibility and open the way for a generalized
resource-theoretic treatment of coarse-graining and retrodic-
tion in quantum theory. These developments provide a new
perspective on the nature of quantum correlations within real-
istic and constrained settings.

Future work includes extending our framework to the case
of incompatible POVMs, where the structure of observa-
tional entropy and macroscopic states becomes more subtle.
In this context, a rigorous definition of generalized obser-
vational entropy and a corresponding law of irreducibil-
ity (i.e. monotonicity under macroscopic operations) remain
open questions. Moreover, a key challenge is to formulate
an appropriate notion of the tensor product for macroscopic
states, which is essential for analyzing composite systems and
catalytic transformations.
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An intriguing direction is the connection between the rel-
ative entropy of microscopicity and correlated catalytic trans-
formations. In the resource theory of coherence, it is known
that

D
(
ρ
∥∥∥P{|i⟩⟨i |}i (ρ)

)
⩾ D

(
σ
∥∥∥P{|i⟩⟨i |}i (σ)

)
(110)

If and only if a correlated catalytic state conversion from ρ
to σ is possible under DIOs [77, 78]. Similar to results in the
resource theory of coherence and building on the generalized
quantum Stein’s lemma [79, 80], we conjecture that convert-
ing a state from ρ to σ via free macroscopic operations with a
correlated catalyst might be possible if the following condition
holds:

D
(
ρ
∥∥∥∆P,γ (ρ)

)
⩾ D

(
σ
∥∥∥∆P,γ (σ)

)
. (111)

Proving this conjecture remains an open problem.
Furthermore, we can discuss the implications of this frame-

work for quantum memory usefulness [81], particularly by
exploring how the inferential reference frame (i.e. the prior
used to evaluate correlations) determines the operational value
of entanglement in communication protocols where encod-
ing operations are restricted by coarse-graining [82, 83]. We
can also consider the connection between irreversible sym-
metries imposed on quantum systems by the coarse-graining
map [84] and the limits of possible measurements, particularly
in light of foundational results like the Wigner–Araki–Yanase
theorem [85].

Finally, a promising line of investigation is to use this
framework to analyze entropy production in coarse-grained
quantum systems, possibly unifying recent approaches
to fluctuating entropy production and thermodynamic
consistency [86–88].
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[7] Bai G, Šafránek D, Schindler J, Buscemi F and Scarani V
2024 Observational entropy with general quantum priors
Quantum 8 1524

[8] Riera-Campeny A, Sanpera A and Strasberg P 2021 Quantum
Systems Correlated with a Finite Bath: nonequilibrium
Dynamics and Thermodynamics PRX Quantum 2 010340
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2022 Encoding classical information into quantum
resources IEEE Trans. Inf. Theory 68 4518–30

[83] Hayashi M and Wang K 2022 Dense coding with locality
restriction on decoders: quantum encoders versus
superquantum encoders PRX Quantum 3 030346

[84] Okada M and Tachikawa Y 2024 Noninvertible symmetries
act locally by quantum operations Phys. Rev. Lett.
133 191602

[85] Loveridge L 2020 A relational perspective on the
Wigner-Araki-Yanase theorem J. Phys.: Conf. Ser.
1638 012009

[86] Degünther J, Meer J and Seifert U 2024 Fluctuating entropy
production on the coarse-grained level: inference
and localization of irreversibility Phys. Rev. Res.
6 023175

[87] Bai G, Buscemi F and Scarani V 2024 Fully quantum
stochastic entropy production (arXiv:2412.12489)

[88] Dieball C and Godec A 2025 Perspective: time irreversibility
in systems observed at coarse resolution J. Chem. Phys.
162 090901

16

https://arxiv.org/abs/2402.05474
https://doi.org/10.1088/1751-8121/abafe5
https://doi.org/10.1088/1751-8121/abafe5
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1088/1751-8113/48/39/395303
https://doi.org/10.1088/1751-8113/48/39/395303
https://doi.org/10.1103/PhysRevA.92.042321
https://doi.org/10.1103/PhysRevA.92.042321
https://doi.org/10.1103/PhysRevLett.130.240204
https://doi.org/10.1103/PhysRevLett.130.240204
https://doi.org/10.1103/PhysRevLett.128.240501
https://doi.org/10.1103/PhysRevLett.128.240501
https://arxiv.org/abs/2408.02722
https://doi.org/10.1109/TIT.2025.3543610
https://doi.org/10.1109/TIT.2025.3543610
https://doi.org/10.1007/s11005-024-01831-x
https://doi.org/10.1007/s11005-024-01831-x
https://doi.org/10.1109/TIT.2022.3157440
https://doi.org/10.1109/TIT.2022.3157440
https://doi.org/10.1103/PRXQuantum.3.030346
https://doi.org/10.1103/PRXQuantum.3.030346
https://doi.org/10.1103/PhysRevLett.133.191602
https://doi.org/10.1103/PhysRevLett.133.191602
https://doi.org/10.1088/1742-6596/1638/1/012009
https://doi.org/10.1088/1742-6596/1638/1/012009
https://doi.org/10.1103/PhysRevResearch.6.023175
https://doi.org/10.1103/PhysRevResearch.6.023175
https://arxiv.org/abs/2412.12489
https://doi.org/10.1063/5.0251089
https://doi.org/10.1063/5.0251089

	Macroscopicity and observational deficit in states, operations, and correlations
	1. Introduction
	2. Notations
	3. Macroscopic states
	3.1. Observational entropy

	4. Equivalent characterizations of macroscopic states and inferential reference frames
	4.1. MPPP
	4.2. Fixed points of the coarse-graining map

	5. Resource theory of microscopicity
	5.1. Free states and operations
	5.2. Relative entropy of microscopicity
	5.3. Reduction to other resource theories

	6. Observer-dependent measure of quantum correlations
	6.1. Locally macroscopic states and operations
	6.2. Observational discord

	7. Conclusion
	References


