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A R T I C L E I N F O A B S T R A C T

Communicated by M.G.A. Paris Quantum statistical models (i.e., families of normalized density matrices) and quantum measurements (i.e., 
positive operator-valued measures) can be regarded as linear maps: the former, mapping the space of effects 
to the space of probability distributions; the latter, mapping the space of states to the space of probability 
distributions. The images of such linear maps are called the testing regions of the corresponding model or 
measurement. Testing regions are notoriously impractical to treat analytically in the quantum case. Our first 
result is to provide an implicit outer approximation of the testing region of any given quantum statistical model 
or measurement in any finite dimension: namely, a region in probability space that contains the desired image, 
but is defined implicitly, using a formula that depends only on the given model or measurement. The outer 
approximation that we construct is minimal among all such outer approximations, and close, in the sense that it 
becomes the maximal inner approximation up to a constant scaling factor. Finally, we apply our approximation 
to provide sufficient conditions, that can be tested in a semi-device-independent way, for the ability to transform 
one quantum statistical model or measurement into another.
1. Introduction

In statistics, information theory, and mathematical economics one is 
often faced with the problem of comparing two setups in terms of their 
expected performances on a particular task of interest. For example, one 
might compare two statistical models by comparing their informative-
ness in a given parameter estimation problem, or two noisy channels 
with respect to a given communication figure of merit, or again two 
portfolios with respect to their expected utility in a given betting sce-
nario. The comparison could also be extended, so to ask when a given 
setup is always better than another one, i.e., independent of any partic-
ular task at hand. Such “global” comparisons, generally described by a 
preorder relation, play a crucial role in the formulation of mathematical 
statistics.

The simplest example of one such preorder in statistics is given by 
the majorization preorder of probability distributions [1–4]. Generalizing 
this, we find the comparison of families comprising two or more prob-
ability distributions. The case of pairs of probability distributions (i.e., 
dichotomies) is also known as relative majorization [5–8], whereas the 
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1 The definition of testing region can be straightforwardly extended also to families of effects 𝝅 = {𝜋𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}. In this case the region in ℝ𝑛 to consider is the 

case of multiple elements is usually referred to as comparison of statis-
tical experiments or models [5–7,9].

The relevance of such preorder relations is epitomized by Black-
well’s theorem [5,6], which establishes the equivalence between the 
above mentioned statistical comparisons, and the existence of a suitable 
stochastic map that transforms one setup (the “always better” one) into 
the other (the “always worse” one). For this reason, Blackwell’s theo-
rem and its variants provide a powerful framework for general resource 
theories [10], and indeed recent quantum extensions of Blackwell’s the-
orem [11–13] have found fruitful application in the study of quantum 
entanglement [14], quantum thermodynamics [15,16], and quantum 
measurement theory [17–19], for example.

Mathematically, equivalence theorems à la Blackwell start from the 
characterization of suitably defined testing regions, corresponding to the 
statistical models at hand. In the simplest scenario, the testing region of a 
statistical model {𝜌𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is constructed as follows: for any effect 
0 ≤ 𝜋 ≤ 1, one computes the 𝑛-dimensional real vector whose 𝑖-th com-
ponent is Tr[𝜋 𝜌𝑖]; the collection of all such vectors, for varying effect 𝜋, 
constitute the testing region of {𝜌𝑖}𝑖.1 In other words, the testing region 
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of a statistical model is the image of the set of effect through the linear 
map induced by the former. For this reason, in what follows we will use 
the terms “testing region” and “image” interchangeably. Two statisti-
cal models with the same number of elements can then be compared by 
looking at their testing regions. A particularly relevant condition occurs 
when the testing region of one statistical model contains that of the other 
one. In the case of dichotomies, the inclusion relation for testing regions 
corresponds exactly with the preorder of relative majorization [8,13].

Unfortunately, due to the non-commutativity of the underlying alge-
bra, the quantum version of Blackwell’s equivalence [11] turns out to be 
more convoluted than its original classical variant. One reason for this 
is that testing regions quickly become impractical to treat analytically.2

This is particularly evident already in the case of relative majorization: 
while classical relative majorization can be summarized in a finite col-
lection of easily computable inequalities [5,8], in the quantum case 
(with the notable exceptions of qubits [20,21]) an infinite number of 
scalar inequalities must be evaluated [13]. The situation becomes even 
more cumbersome in the case of quantum statistical models [11].

In this paper, in order to shed more light on the structure of quantum 
testing regions, we provide techniques to construct implicit approxima-
tions of the testing region of arbitrary quantum statistical models and 
measurements, in any finite dimension. More precisely, we construct 
conic regions in probability space that contain (outer approximations), 
or are contained (inner approximations) by, the desired testing region. 
Such approximations, unlike the testing region, can be defined implic-
itly, using a formula that depends only on the given setup (i.e., quantum 
statistical model or measurement). The approximations that we con-
struct are optimal among all such approximations, that is, we prove that 
they are the minimal outer and the maximal inner conic approximations. 
They are moreover close, in the sense that the minimal outer approxima-
tion becomes the maximal inner approximation up to a constant scaling 
factor. Our approximation techniques thus generalize the bounding re-
cently provided in Ref. [22] by Xu, Schwonnek, and Winter: first, the 
extension is from Pauli strings to arbitrary measurements; second, the 
optimization is not restricted to the radius of fixed-axis ellipsoids, but it 
is a global optimization over all the parameters of the ellipsoid.

As an application, we utilize our approximation formulas to pro-
vide sufficient conditions, that can be tested in a semi-device indepen-
dent way, for the ability to transform one quantum measurement into 
another, or one quantum statistical model into another. Other fields 
of applications of our approximation formulas include the contexts of 
the accessible information [31] of quantum ensembles, the informa-
tional power [32] of quantum measurements, and the observational 
entropy [33] of quantum measurements, as well as other related opti-
mization tasks. In these tasks, given a measurement or statistical model, 
the goal consists of optimizing an operationally relevant payoff function 
(in the cases above, a relative entropy) over its domain; our approxima-
tions thus provide a more tractable domain of optimization that can lead 
e.g. to bounds on the desired quantities.

2. Main results

2.1. Quantum measurements

Given a 𝑑-dimensional quantum measurement 𝝅 = {𝜋𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, 
𝜋𝑖 ≥ 0, 

∑
𝑖 𝜋𝑖 = 1, its testing region is defined as the image 𝝅(𝕊𝑑 ) of the 

set 𝕊𝑑 of 𝑑-dimensional states through 𝝅. By definition, this is given in 
parametric form, that is, it is a body in the probability space parameter-
ized by states in the state space. Ideally, one would aim at implicitizing 
it, that is, writing it in the form 𝑓 (𝑝) ≤ 1, for probability distributions 
𝑝. However, due to intractability of the structure of the state space, we 
resort here to providing inclusion conditions in terms of implicit bodies.

2 Another reason is that the requirement of complete positivity demands an 
2

extended comparison [11].
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Definition 1. For any 𝑑-dimensional, 𝑛-outcome measurement 𝝅 =
{𝜋𝑖}𝑛𝑖=1, we define the family {𝑟(𝝅)}𝑟∈ℝ of hyper-ellipsoids given by:

𝑟 (𝝅) ∶=
{
𝐩 ∈ 𝝅

(
ℂ𝑑
) ||| |||√𝑄+ (𝐩− 𝐭)|||22 ≤ 1

𝑟2

}
,

where 𝑄+ ∈ℝ𝑛×𝑛 is the pseudo-inverse of the symmetric positive semi-
definite covariance matrix given by

𝑄𝑖𝑗 =
𝑑 − 1
𝑑

(
Tr
[
𝜋𝑖𝜋𝑗

]
−

Tr
[
𝜋𝑖
]
Tr[𝜋𝑗 ]
𝑑

)
,

for any 0 ≤ 𝑖, 𝑗 ≤ 𝑛, and 𝐭 ∈ℝ𝑛 is the vector

𝑡𝑖 =
1
𝑑
Tr
[
𝜋𝑖
]
, 1 ≤ 𝑖 ≤ 𝑛.

Theorem 1. For any 𝑑-dimensional, 𝑛-outcome informationally complete 
measurement 𝝅, one has that 𝑑−1(𝝅) is the maximum volume ellipsoid en-

closed in 𝝅(𝕊𝑑 ) and 1(𝝅) is the minimum volume ellipsoid enclosing 𝝅(𝕊𝑑 ).

If measurement 𝝅 is not informationally complete, ellipsoids 𝑑−1(𝝅)
and 1(𝝅) still are inner and outer approximations of 𝝅(𝕊𝑑 ), although 
not necessarily maximal and minimal in volume, respectively.

We postpone the proof of Theorem 1 to Section 3.2.
As examples, let us consider symmetric, informationally complete 

(SIC) and mutually unbiased basis (MUB) measurements.
A 𝑑-dimensional measurement 𝝅 is SIC if and only if it has 𝑛 = 𝑑2 ef-

fects satisfying the condition Tr 𝜋𝑖𝜋𝑗 = (𝑑𝛿𝑖,𝑗 +1)∕(𝑑2(𝑑+1)). By explicit 
computation one has

𝑄 = 𝑑 − 1
𝑑2 (𝑑 + 1)

(
1𝑑2 −𝐮̂𝐮̂𝑇

)
,

where 𝐮̂ denotes the unit vector with all equal entries. As expected, 𝑄 is 
a 𝑑2 ×𝑑2 matrix of rank 𝑑2 −1, and it is proportional to a projector [23]. 
Its pseudo-inverse is then given by

𝑄+ = 𝑑2 (𝑑 + 1)
𝑑 − 1

(
1𝑑2 −𝐮̂𝐮̂𝑇

)
.

A 𝑑-dimensional measurement 𝝅 is a complete MUB if and only if it 
has 𝑛 = 𝑑(𝑑 +1) effects satisfying the condition Tr[𝜋𝑖,𝑗𝜋𝑘,𝑙] = (𝛿𝑖,𝑘𝛿𝑗, 𝑙+
(1 − 𝛿𝑖,𝑘)∕𝑑)∕(𝑑 +1)2, where indices 𝑖, 𝑘 denote the basis and indices 𝑗, 𝑙
denote the effect within the basis. By explicit computation one has

𝑄 = 𝑑 − 1
𝑑 (𝑑 + 1)2

(
1𝑑(𝑑+1) −⊕𝑑+1

𝑖=1 𝐮̂𝑖
𝑑
𝐮̂𝑖𝑇
𝑑

)
,

where 𝐮𝑖
𝑑

is the vector with ones for the entries corresponding to basis 
𝑖 and zero otherwise. As expected, 𝑄 is a 𝑑(𝑑 + 1) × 𝑑(𝑑 + 1) matrix of 
rank 𝑑2 −1, and it is proportional to a projector [23]. Its pseudo-inverse 
is then given by

𝑄+ = 𝑑 (𝑑 + 1)2

𝑑 − 1
(
1𝑑(𝑑+1) −⊕𝑑+1

𝑖=1 𝐮̂𝑖
𝑑
𝐮̂𝑖𝑇
𝑑

)
.

Now that we have a close approximation of the image of the set 
of states through any given measurement, we turn our attention to 
applying it to semi-device independent tests of simulability. A test is 
semi-device independent if it only assumes the dimension of the devices 
involved, but does not otherwise assume their mathematical description. 
We say that a 𝑑1-dimensional, 𝑛-outcome measurement 𝝅1 simulates a 
𝑑0-dimensional, 𝑛-outcome measurement 𝝅0 if and only if there exists a 
completely positive map  ∶(ℂ𝑑0 ) → (ℂ𝑑1 ) such that

𝝅1◦ = 𝝅0. (1)

In Corollary 2 of Ref. [21] the following sufficient condition, that 
can in principle be tested in a semi-device-independent way, was given( )

𝝅0 𝕊𝑑 ⊆ conv ,
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for any uncharacterized qubit or qutrit measurement 𝝅0 to be simu-
lable by whatever three-outcomes qubit measurement 𝝅1 generated a 
given a set  of probability distributions. However, when 𝝅0 is a qutrit 
measurement, its range 𝝅0(𝕊𝑑 ) is challenging to characterize, render-
ing such a test impractical; in this case, the tight conic approximation is 
much more convenient to work with. The following corollary addresses 
this issue, providing a practical semi-device independent test of Eq. (1).

Corollary 1 (Semi-device independent simulability test). Given a set  of 
𝑛-element probability distributions generated by a 𝑑1-dimensional (otherwise 
unspecified) measurement 𝝅1, for any 𝑑0 and for any 𝑑0-dimensional 𝑛-

outcome measurement 𝝅0 such that

1
(
𝝅0
)
⊆ conv ,

there exists a trace preserving map  that is positive on the orthogonal com-

plement to the kernel of 𝝅0 such that Eq. (1) holds. Moreover, if 𝑑1 = 2, 
𝑛 ≤ 3, and 𝑑0 ≤ 3, map  in Eq. (1) is completely positive, that is, measure-

ment 𝝅1 simulates measurement 𝝅0.

Proof. The first part of the statement follows from Theorem 1 and from 
Proposition 7.1 of Ref. [24]. The second part of the statement follows 
from Theorem 1 and from Theorem 2 of Ref. [21]. □

2.2. Quantum statistical models

Given a 𝑑-dimensional quantum statistical model 𝝆 = {𝜌𝑖 ∶ 1 ≤ 𝑖 ≤
𝑛}, 𝜌𝑖 ≥ 0, Tr[𝜌𝑖] = 1, its testing region is defined as the image 𝝆(𝔼) of 
the cone 𝔼 of effects through 𝝆, seen as a classical-quantum (c-q for 
short) channel. By definition, the testing region 𝝆(𝔼) is given in para-
metric form, that is, it is a body in the probability space parameterized 
by effects in the effect space. Ideally, one would aim at implicitizing it, 
that is, write it in the form 𝑓 (𝑞) ≤ 1, for vectors of probabilities 𝑞. How-
ever, due to the intractability of the structure of the effect space, we 
resort here to providing inclusion conditions in terms of implicit bodies.

Definition 2. For any 𝑑-dimensional family 𝝆 = {𝜌𝑖}𝑛𝑖=1 of 𝑛 states, let 
{𝑘

𝑟
(𝝆)}𝑘=0,…𝑑

𝑟∈ℝ be the following family of hyper-ellipsoids:

𝑘
𝑟
(𝝆) =

{
𝐪 ∈ 𝝆

(
ℂ𝑑
) ||| ||||

√
𝑄+

𝑘

(
𝐪− 𝑘

𝑑
𝐮
)||||22 ≤ 1

𝑟2

}
,

where 𝑄+
𝑘
∈ℝ𝑛×𝑛 is the pseudo-inverse of the symmetric positive semi-

definite covariance matrix given by(
𝑄𝑘

)
𝑖𝑗
=
(
𝑘− 𝑘2

𝑑

)(
Tr
[
𝜌𝑖𝜌𝑗

]
− 1

𝑑

)
,

for any 0 ≤ 𝑖, 𝑗 ≤ 𝑛, and 𝐮 ∈ℝ𝑛 is the vector with all unit entries.

We introduce a 𝑑-cone as a generalization of the bicone. A 𝑑-cone 
in ℝ𝑛 is the convex hull of the origin and 𝑑 arbitrary (𝑛 − 1)-balls with 
aligned and equidistant centers lying on hyperplanes orthogonal to the 
line of the centers (hence, including the origin, the 𝑑-cone is the convex 
hull of (𝑑 + 1) balls). Let 𝑟(𝑥) be the radius of the ball at distance 𝑥
from the origin and 𝐿 be the distance of the furthest ball. If 𝑟(𝑥) is 
symmetric, that is 𝑟(𝑥) = 𝑟(𝐿 − 𝑥) for any 0 ≤ 𝑥 ≤ 𝐿, then we say that 
the 𝑑-cone is symmetric. In this case, symmetry imposes that the ball 
lying further from the origin is itself a point, as the origin is. The usual 
bicone is recovered as the symmetric 2-cone. A pictorial representation 
of 𝑑-cones is given in Fig. 1. An elliptical 𝑑-cone is the image of a 𝑑-
cone through a linear transformation that preserves the line joining the 
centers of the balls.

Theorem 2. For any 𝑑-dimensional, 𝑛-outcome informationally complete 
family 𝝆 of states, one has that conv∪𝑑

𝑘=0
𝑘
𝜂(𝑘,𝑑)(𝝆) is the maximum vol-

ume elliptical 𝑑-cone enclosed in 𝝆(𝔼) and conv∪𝑑
𝑘=0

𝑘
1 (𝝆) is the minimum 
3

volume elliptical 𝑑-cone enclosing 𝝆(𝔼), where
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Fig. 1. A pictorial representation of symmetric 𝑑-cones in ℝ3, for 𝑑 = 2,3,4.

𝜂 (𝑘,𝑑)2 = (𝑑 − 1)
𝑘 (𝑑 − 𝑘)

min
(
𝑘2, (𝑑 − 𝑘)2

) .
If family 𝝆 of states is not informationally complete, elliptical d-

cones conv∪𝑑
𝑘=0

𝑘
𝑑−1(𝝆) and conv∪𝑑

𝑘=0
𝑘
1 (𝝆) still are inner and outer 

approximations of 𝝆(𝔼), although not necessarily maximal and minimal 
in volume, respectively.

We postpone the proof of Theorem 2 to Section 3.3.
As examples, let us consider symmetric, informationally complete 

(SIC) and mutually unbiased basis (MUB) families of states.
A 𝑑-dimensional family 𝝆 of states is SIC if and only if it has 𝑛 = 𝑑2

states satisfying the condition Tr 𝜌𝑖𝜌𝑗 = (𝑑𝛿𝑖,𝑗 + 1)∕(𝑑 + 1). By explicit 
computation one has

𝑄𝑘 =
𝑘𝑑 − 𝑘2

𝑑2 (𝑑 + 1)
(
1𝑑2 −𝐮̂𝐮̂𝑇

)
,

where 𝐮̂ denotes the unit vector with all equal entries. As expected, 
𝑄𝑘 are 𝑑2 × 𝑑2 matrix of rank 𝑑2 − 1, and they are proportional to a 
projector. Their pseudo-inverses are then given by

𝑄+
𝑘
= 𝑑2 (𝑑 + 1)

𝑘𝑑 − 𝑘2

(
1𝑑2 −𝐮̂𝐮̂𝑇

)
.

A 𝑑-dimensional family 𝝆 of states is a complete MUB if and only if 
it has 𝑛 = 𝑑(𝑑+1) states satisfying the condition Tr[𝜌𝑖,𝑗𝜌𝑘,𝑙] = (𝛿𝑖,𝑘𝛿𝑗, 𝑙+
(1 − 𝛿𝑖,𝑘)∕𝑑), where indices 𝑖, 𝑘 denote the basis and indices 𝑗, 𝑙 denote 
the effect within the basis. By explicit computation one has

𝑄𝑘 =
𝑘𝑑 − 𝑘2

𝑑 (𝑑 + 1)2
(
1𝑑(𝑑+1) −⊕𝑑+1

𝑖=1 𝐮̂𝑖
𝑑
𝐮̂𝑖𝑇
𝑑

)
,

where 𝐮𝑖
𝑑

is the vector with ones for the entries corresponding to basis 
𝑖 and zero otherwise. As expected, 𝑄𝑘 are 𝑑(𝑑 + 1) × 𝑑(𝑑 + 1) matrices
of rank 𝑑2 − 1, and they are proportional to a projector. Their pseudo-
inverses are then given by

𝑄+
𝑘
= 𝑑 (𝑑 + 1)2

𝑘𝑑 − 𝑘2

(
1𝑑(𝑑+1) −⊕𝑑+1

𝑖=1 𝐮̂𝑖
𝑑
𝐮̂𝑖𝑇
𝑑

)
.

Now that we have a close approximation of the image of the set of 
effects through any given family of states, we turn our attention to apply-
ing it to semi-device independent tests of simulability. We say that a 𝑑1-
dimensional, 𝑛-outcome family of states 𝝆 simulates a 𝑑0-dimensional, 
𝑛-outcome measurement 𝝆0 if and only if there exists a completely pos-
itive trace preserving map (a quantum channel)  ∶ (ℂ𝑑1 ) → (ℂ𝑑0 )
such that

◦𝝆1 = 𝝆0. (2)

The following corollary generalizes Corollary 1 of Ref. [21] to the ar-
bitrary dimensional case, providing a semi-device independent test of 

Eq. (2).



M. Dall’Arno and F. Buscemi

Corollary 2 (Semi-device independent simulability test). Given a set  of 
𝑛-element vectors of probabilities generated by a 𝑑1-dimensional (otherwise 
unspecified) family of 𝑛 states 𝝆1, for any 𝑑0 and for any 𝑑0-dimensional 
family of 𝑛 states 𝝆0 such that

conv∪𝑑
𝑘=0

𝑘
1
(
𝝆0
)
⊆ conv,

there exists a (not necessarily trace preserving) map  that is positive on the 
orthogonal complement to the kernel of 𝝆0 such that Eq. (1) holds. Moreover, 
if 𝑑1 = 2, 𝑛 = 2, and 𝑑0 = 2, map  in Eq. (1) is completely positive trace 
preserving, that is, family 𝝆1 of states simulates family 𝝆0 of states.

Proof. The first part of the statement follows from Theorem 2. The sec-
ond part of the statement follows from Theorem 2 and from Theorem 1 
of Ref. [21]. □

3. Proofs

3.1. Formalization

For any positive integer 𝑑, let (ℂ𝑑 ) denote the space of Hermitian 
operators on ℂ𝑑 equipped with the Hilbert-Schmidt product, that is, for 
any 𝜌, 𝜋 ∈ (ℂ𝑑 ) we have 𝜌 ⋅ 𝜋 = Tr[𝜌𝜋]. For any positive integer 𝑛, let 
ℝ𝑛 denote the space of 𝑛-dimensional real vectors equipped with the 
usual inner product, that is, for any 𝑝, 𝑞 ∈ℝ𝑛 we have 𝑝 ⋅ 𝑞 =

∑𝑛

𝑖=1 𝑝
†
𝑖
𝑞𝑖.

A 𝑑-dimensional, 𝑛-outcome measurement is a map

𝝅 ∶ 
(
ℂ𝑑
)
→ℝ𝑛.

Any measurement 𝝅 can be represented as an indexed family {𝜋𝑖 ∈
(ℂ𝑑 )}𝑛

𝑖=1 of operators as follows. Recalling that the space (ℂ𝑑 ) is 
equipped with the Hilbert-Schmidt product, the action of 𝝅 on an oper-
ator 𝜌 ∈ (ℂ𝑑 ) is naturally given by

𝝅 (𝜌) ∶=
⎡⎢⎢⎣
⟨⟨𝜋1|
⋮⟨⟨𝜋𝑛|

⎤⎥⎥⎦ |𝜌⟩⟩ =
⎡⎢⎢⎣
Tr
[
𝜋1𝜌

]
⋮

Tr
[
𝜋𝑛𝜌

]⎤⎥⎥⎦ ∈ℝ𝑛,

where ⟨⟨𝜋| ∶ (ℂ𝑑 ) →ℝ is given by ⟨⟨𝜋|𝜌⟩⟩ = Tr[𝜋𝜌].
Recalling that the space ℝ𝑛 is instead equipped with the usual inner 

product, the action of the Hermitian conjugate 𝝅† on a vector 𝐩 ∈ℝ𝑛 is 
naturally given by

𝝅
†𝐩 =

[ |𝜋1⟩⟩ … |𝜋𝑛⟩⟩ ] ⎡⎢⎢⎣
𝑝1
⋮
𝑝𝑛

⎤⎥⎥⎦
=

𝑛∑
𝑖=1

𝑝𝑖|𝜋𝑖⟩⟩ ∈
(
ℂ𝑑
)
.

Finally, for any measurements 𝝅 and 𝝉 , the compositions 𝝉†𝝅 and 𝝅𝝉†
are given by

𝝉
†
𝝅 =

[ |𝜏1⟩⟩ … |𝜏𝑛⟩⟩] ⎡⎢⎢⎣
⟨⟨𝜋1|
⋮⟨⟨𝜋𝑛|

⎤⎥⎥⎦
=

𝑛∑
𝑖=1

|𝜏𝑖⟩⟩⟨⟨𝜋𝑖| ∈ 
(
ℂ𝑑
)
→ 

(
ℂ𝑑
)
,

and

𝝅𝝉
† =

⎡⎢⎢⎣
⟨⟨𝜋1|
⋮⟨⟨𝜋𝑛|

⎤⎥⎥⎦
[ |𝜏1⟩⟩ … |𝜏𝑛⟩⟩ ]

=
⎡⎢⎢Tr

[
𝜋1𝜏1

]
… Tr

[
𝜋1𝜏𝑛

]
⋮ ⋮[ ] [ ]⎤⎥⎥ ∈ℝ𝑛 →ℝ𝑛.
4

⎣Tr 𝜋𝑛𝜏1 … Tr 𝜋𝑛𝜏𝑛 ⎦
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For any 𝑑-dimensional, 𝑛-outcome measurement 𝝅, its pseudo-
inverse 𝝅+ is the unique 𝑛-elements row vector of operators in (ℂ𝑑 )
such that

𝝅𝝅
+
𝝅 = 𝝅,

𝝅
+
𝝅𝝅

+ = 𝝅
+,

𝝅
+
𝝅 =

(
𝝅
+
𝝅
)†

,

𝝅𝝅
+ =

(
𝝅𝝅

+)† .
3.2. Quantum measurements

Leveraging on the formalism introduced in Section 3.1, for any 𝑑-
dimensional, 𝑛-outcome measurement 𝝅 we can provide the following 
definitions of covariance matrix 𝑄 and probability distribution 𝐭:

𝑄 ∶= 𝑑 − 1
𝑑

(𝝅 − 𝝉) (𝝅 − 𝝉)† ,

and

𝐭 ∶= 𝝉
|1⟩⟩
𝑑

,

where 𝝉 is the 𝑑-dimensional, 𝑛-outcome measurement given by

𝝉 ∶= 1
𝑑

⎡⎢⎢⎣
Tr
[
𝜋1
] ⟨⟨1|
⋮

Tr
[
𝜋𝑛
] ⟨⟨1|

⎤⎥⎥⎦ .
Notice that these definitions are consistent with those in Definition 1.

For any dimension 𝑑 we denote with 𝔹𝑑 the ball whose extremal 
points include all pure states, that is

𝔹𝑑 ∶=
{
𝜌 ∈

(
ℂ𝑑
) |||Tr [𝜌] = 1, Tr

[
𝜌2
]
≤ 1

}
.

Consider the image 𝝅(𝔹𝑑 ) of the ball 𝔹𝑑 through a measurement 𝝅. 
Again, this expression describes a body in the probability space parame-
terized by a body in the state space. The following lemma makes implicit 
this parametric equation by removing the dependence on the states and 
expressing the image of 𝔹𝑑 in the form 𝑓 (𝐩) ≤ 0. The lemma generalizes 
Theorem 1 of Ref. [25] from the qubit case to the arbitrary dimensional 
case.

Lemma 1 (Implicitization of 𝝅(𝔹𝑑 )). For any 𝑑-dimensional, 𝑛-outcome 
measurement 𝝅, the image 𝝅(𝔹𝑑 ) is given by the following hyper-ellipsoid:

𝝅
(
𝔹𝑑

)
∶= 1 (𝝅) .

Proof. One has

𝐩 = 𝝅|𝜌⟩⟩
= (𝝅 − 𝝉 + 𝝉)|𝜌⟩⟩
= (𝝅 − 𝝉)|𝜌⟩⟩+ 𝝉|𝜌⟩⟩
= (𝝅 − 𝝉)|𝜌⟩⟩+ 𝐭.

Hence

𝝅
(
𝔹𝑑

)
=
{
𝐩 = (𝝅 − 𝝉) |𝜌⟩⟩+ 𝐭|||Tr 𝜌 = 1,Tr 𝜌2 ≤ 1

}
.

Solutions of (𝝅 − 𝝉)|𝜌⟩⟩ = 𝐩 − 𝐭 in 𝜌 exist if and only if 𝐩 − 𝐭 belongs 
to the range of 𝝅 − 𝝉 . Solutions are given by

|𝜌⟩⟩ = (𝝅 − 𝝉)+ (𝐩− 𝐭) + (1−Π) |𝜎⟩⟩, (3)

where Π ∶= (𝝅 − 𝝉)+(𝝅 − 𝝉), for any 𝜎 ∈ (ℂ𝑑 ). Notice that Π|1⟩⟩ = 0

since (𝝅 − 𝝉)|1⟩⟩ = 𝐭 − 𝐭. Hence Eq. (3) is equivalent to
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|𝜌⟩⟩ =(𝝅 − 𝝉)+ (𝐩− 𝐭) + 𝜆
|1⟩⟩
𝑑

+
(
1− 1

𝑑
|1⟩⟩⟨⟨1|−Π

) |𝜎⟩⟩,
again for any 𝜎 ∈(ℂ𝑑 ).

The condition Tr 𝜌 = 1 immediately implies 𝜆 = 1. Moreover, due to 
the Hilbert-Schmidt orthogonality of (𝝅−𝝉)+(𝐩 − 𝐭) and (1−|1⟩⟩⟨⟨1|∕𝑑−
Π)|𝜎⟩⟩, one has that for any 𝜎 such that Tr 𝜌2 ≤ 1, the same condition is 
also verified for 𝜎 = 0. Hence, without loss of generality we take 𝜎 = 0. 
Thus we have

|𝜌⟩⟩ = (𝝅 − 𝝉)+ (𝐩− 𝐭) +
|1⟩⟩
𝑑

.

Hence,

Tr 𝜌2 = (𝐩− 𝐭)𝑇 (𝝅 − 𝝉)+† (𝝅 − 𝝉)+ (𝐩− 𝐭) + 1
𝑑
.

Thus, condition Tr 𝜌2 ≤ 1 becomes

(𝐩− 𝐭)𝑇 (𝝅 − 𝝉)+† (𝝅 − 𝝉)+ (𝐩− 𝐭) ≤ 1 − 1
𝑑
.

Hence the statement follows. □

We are now in a position to prove Theorem 1, that we rewrite here 
for convenience.

Theorem 3. For any 𝑑-dimensional, 𝑛-outcome informationally complete 
measurement 𝝅, one has that 𝑑−1(𝝅) is the maximum volume ellipsoid en-

closed in 𝝅(𝕊𝑑 ) and 1(𝝅) is the minimum volume ellipsoid enclosing 𝝅(𝕊𝑑 ).

Proof. First, we prove that the image 𝝅(𝔹𝑑 ) coincides with the mini-
mum volume ellipsoid (𝝅(𝕊𝑑 )) enclosing the image of 𝕊𝑑 . This can be 
shown as follows. First, we show that any 2-design {𝜆𝑘, 𝜌𝑘}𝑘 is a scalable 
frame, that is, a family of weights over states such that∑
𝑘

𝜆𝑘|𝜌𝑘 − 1
𝑑
⟩⟩⟨⟨𝜌𝑘 − 1

𝑑
| = (1− 1

𝑑
|1⟩⟩⟨⟨1|) .

Indeed, for any state 𝜌 we have∑
𝑘

𝜆𝑘

(
𝜌𝑘 −

1
𝑑

)
Tr
[(

𝜌𝑘 −
1
𝑑

)(
𝜌− 1

𝑑

)]
=
∑
𝑘

𝜆𝑘𝜌𝑘 Tr
[
𝜌𝑘

(
𝜌− 1

𝑑

)]
=Tr2

[∑
𝑘

𝜆𝑘𝜌
⊗2
𝑘

(
1⊗

(
𝜌− 1

𝑑

))]
=Tr2

[
(1+𝑆)

(
1⊗

(
𝜌− 1

𝑑

))]
=Tr2

[
𝑆

(
1⊗

(
𝜌− 1

𝑑

))]
=
(
𝜌− 1

𝑑

)
,

where 𝑆 denotes the swap operator. Notice that, from Sections 6.9 and 
6.11 of Ref. [26] it immediately follows that finite 2-designs exist in 
any dimension 𝑑, hence the existence of scalable frames in any dimen-
sion 𝑑. Then, the statement immediately follows from Theorem 2.11 of 
Ref. [27].

Notice that, if rescaled by constant factor 𝑑2 − 1, minimum vol-
ume enclosing ellipsoids are enclosed in the convex body (see e.g. Sec-
tion 8.4.1 of Ref. [28]). However, the lower bound in Theorem 1 is 
tighter than this, hence the need for the following independent proof.

The inner ellipsoid must include boundary states, otherwise it would 
not be a maximizer of the volume as it could be rescaled while re-
maining inside the state space. It is immediate to verify that, among 
all boundary states, the ones that minimize the 2-norm are the pro-
jectors of rank 𝑑 − 1. The ellipsoids we are considering lie on a plane 
5

orthogonal to the maximally mixed state. Since for the 2-norm of pure 
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states and of the maximally mixed state one has Tr[|𝜙⟩⟨𝜙|]1∕2 = 1 and 
Tr[1∕𝑑2]1∕2 = 1∕

√
𝑑, a direct application of the Pythagorean theorem 

shows that the radius of the outer ellipsoid is given by 
√
1 − 1∕𝑑 =√

(𝑑 − 1)∕𝑑. Since for the 2-norm of rank (𝑑 − 1) projectors one has 
that Tr[(1− |𝜙⟩⟨𝜙|)∕(𝑑 − 1)2]1∕2 = 1∕

√
𝑑 − 1, a new application of the 

Pythagorean theorem shows that the radius of the inner ellipsoid is given 
by 
√
1∕(𝑑 − 1) − 1∕𝑑 =

√
1∕(𝑑(𝑑 − 1)). Hence, the ratio of the two radii 

is 
√
(𝑑 − 1)∕𝑑

√
(𝑑(𝑑 − 1)) = 𝑑 − 1.

Using Theorem [J] of Ref. [29], we have that the lower bound in 
Theorem 1 holds again in any dimension in which there exists a finite 
scalable frame {𝜆𝑘, 𝜌𝑘} of states proportional to rank-(𝑑 −1) projectors. 
Since for any pure state 𝜙 one has

1− |𝜙⟩⟨𝜙|
𝑑 − 1

− 1
𝑑
= − 𝑑

𝑑 − 1

(|𝜙⟩⟨𝜙|− 1
𝑑

)
,

one has that such a scalable frame exists if and only if a scalable frame 
of pure states exists, hence the proof of the lower bound goes along that 
of the upper bound. □

3.3. Quantum states

Leveraging on the formalism introduced in Section 3.1, for any 𝑑-
dimensional, 𝑛-outcome family 𝝆 of states we can provide the following 
definition of covariance matrix 𝑄:

𝑄𝑘 ∶=
(
𝑘− 𝑘2

𝑑

)
(𝝆− 𝝈) (𝝆− 𝝈)† ,

where 𝝈 is the 𝑑-dimensional, 𝑛-outcome c-q channel given by

𝝈 ∶= 1
𝑑

⎡⎢⎢⎣
⟨⟨1|
⋮⟨⟨1|
⎤⎥⎥⎦ .

Notice that this definition is consistent with that in Definition 2.
For any dimension 𝑑 and any 0 ≤ 𝑘 ≤ 𝑑 we denote with 𝔹𝑘

𝑑
the ball 

whose extremal points include all extremal effects with trace 𝑘, that is

𝔹𝑘
𝑑
∶=

{
𝜋 ∈

(
ℂ𝑑
) |||Tr [𝜋] = 𝑘, Tr

[
𝜋2] ≤ 𝑘

}
.

We denote with 𝔻𝑑 the symmetric 𝑑-cone whose extremal points include 
all extremal effects, that is

𝔻𝑑 ∶= conv∪𝑑
𝑘=0𝔹

𝑘
𝑑
.

Consider the image 𝝆(𝔻𝑑 ) of the 𝑑-cone 𝔻𝑑 through a c-q channel 𝝆. 
Again, this expression describes a body in the probability space pa-
rameterized by a body in the effect space. The following lemma makes 
implicit this parametric equation by removing the dependence on the 
effects and expressing the image of 𝔻𝑑 in the form 𝑓 (𝐪) ≤ 0. The lemma 
generalizes Proposition 2 of Ref. [30] from the qubit case to the arbi-
trary dimensional case.

Lemma 2 (Implicitization of 𝝆(𝔻𝑑 )). For any 𝑑-dimensional, 𝑛-outcome c-q 
channel 𝝆, the image 𝝆(𝔻𝑑 ) is given by the following convex hull of hyper-

ellipsoids:

𝝆
(
𝔻𝑑

)
∶= conv∪𝑑

𝑘=0
𝑘
1 (𝝆) .

Proof. One has

𝐪 = 𝝆|𝜋⟩⟩
= (𝝆− 𝝈 + 𝝈)|𝜋⟩⟩
= (𝝆− 𝝈)|𝜋⟩⟩+ 𝝈|𝜋⟩⟩
= (𝝆− 𝝈)|𝜋⟩⟩+ 𝑘 𝐮.
𝑑
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Hence

𝝆
(
𝔹𝑘
𝑑

)
=
{
𝐪 = (𝝆− 𝝈) |𝜋⟩⟩+ 𝑘

𝑑
𝐮|||Tr 𝜋 = 𝑘,Tr 𝜋2 ≤ 𝑘

}
.

Solutions of (𝝆−𝝈)|𝜋⟩⟩ = 𝐪 − 𝑘𝐮∕𝑑 in 𝜋 exist if and only if 𝐪 − 𝑘𝐮∕𝑑
belongs to the range of 𝝆− 𝝈. Solutions are given by

|𝜋⟩⟩ = (𝝆− 𝝈)+
(
𝐪− 𝑘

𝑑
𝐮
)
+ (1−Π) |𝜏⟩⟩, (4)

where Π ∶= (𝝆 − 𝝈)+(𝝆 − 𝝈), for any 𝜏 ∈ (ℂ𝑑 ). Notice that Π|1⟩⟩ = 0
since (𝝆− 𝝈)|1⟩⟩ = 𝑘𝐮∕𝑑 − 𝑘𝐮∕𝑑. Hence Eq. (4) is equivalent to

|𝜋⟩⟩ =(𝝆− 𝝈)+
(
𝐪− 𝑘

𝑑
𝐮
)
+ 𝜆

𝑘

𝑑
|1⟩⟩

+
(
1− 1

𝑑
|1⟩⟩⟨⟨1|−Π

)|𝜏⟩⟩,
again for any 𝜏 ∈ (ℂ𝑑 ).

The condition Tr 𝜋 = 𝑘 immediately implies 𝜆 = 1. Moreover, 
due to the Hilbert-Schmidt orthogonality of (𝝆 − 𝝈)+(𝐪 − 𝑘𝐮∕𝑑) and 
(1−|1⟩⟩⟨⟨1|∕𝑑 − Π)|𝜎⟩⟩, one has that for any 𝜏 such that Tr 𝜋2 ≤ 𝑘, the 
same condition is also verified for 𝜏 = 0. Hence, without loss of gener-
ality we take 𝜏 = 0. Thus we have

|𝜋⟩⟩ = (𝝆− 𝝈)+
(
𝐪− 𝑘

𝑑
𝐮
)
+ 𝑘

𝑑
|1⟩⟩.

Hence,

Tr 𝜋2

=
(
𝐪− 𝑘

𝑑
𝐮
)𝑇

(𝝆− 𝝈)+† (𝝆− 𝝈)+
(
𝐪− 𝑘

𝑑
𝐮
)
+ 𝑘2

𝑑
.

Thus, condition Tr 𝜋2 ≤ 𝑘 becomes(
𝐪− 𝑘

𝑑
𝐮
)𝑇

(𝝆− 𝝈)+† (𝝆− 𝝈)+
(
𝐪− 𝑘

𝑑
𝐮
)

≤𝑘− 𝑘2

𝑑
.

Hence the statement follows. □

We are now in a position to prove Theorem 2, that we rewrite here 
for convenience.

Theorem 4. For any 𝑑-dimensional, 𝑛-outcome informationally complete 
family 𝝆 of states, one has that conv∪𝑑

𝑘=0
𝑘
𝜂(𝑘,𝑑)(𝝆) is the maximum vol-

ume elliptical 𝑑-cone enclosed in 𝝆(𝔼) and conv∪𝑑
𝑘=0

𝑘
1 (𝝆) is the minimum 

volume elliptical 𝑑-cone enclosing 𝝆(𝔼), where

𝜂 (𝑘,𝑑)2 = (𝑑 − 1)
𝑘 (𝑑 − 𝑘)

min
(
𝑘2, (𝑑 − 𝑘)2

) .
Proof. An effect 0 ≤ 𝜋 ≤ 1 is extremal if and only if it is a projector. 
Hence, the set 𝔼𝑑 of effects is the convex hull of projectors, that is

𝔼𝑑 = conv∪𝑑
𝑘=0

{
𝜋 ∈

(
ℂ𝑑
) |||Tr[𝜋] = 𝑘,𝜋2 = 𝜋

}
.

The proof proceeds along the lines of the proof of Theorem 1. First, 
due to Sections 6.9 and 6.11 of Ref. [26], for any dimension there exists 
a finite scalable frame of 𝑘-trace projectors. Then, due to Theorem 2.11 
of Ref. [27], the minimum volume ellipsoid enclosing 𝑘-trace projectors 
is the ball 𝔹𝑑

𝑘
.

The only difference with respect to Theorem 1 is that, rather than a 
single ellipsoid, we have a family of ellipsoids parameterized by 𝑘. For 
each 𝑘, the extremal effects with trace equal to 𝑘 are the projectors Π𝑘 of 
rank 𝑘. The effects on the boundary (that is, with at least one non-null 
eigenvalue) with minimum 2-norm and trace equal to 𝑘, instead, are 
6

the subnormalized (so to satisfy the trace constraint) projectors Π𝑑−1 of 
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rank 𝑑 − 1, or their subnormalized complement 1−Π𝑑−1. The radii 𝑅𝑘

and 𝑟𝑘 of the outer and inner ellipsoids, respectively, are thus given by

𝑅2
𝑘
=
||||Π𝑘 − 𝑘

1
𝑑

||||22 = 𝑑𝑘− 𝑘2
𝑑

,

and

𝑟2
𝑘
=min

(|||| 𝑘

𝑑 − 1
Π𝑑−1 − 𝑘

1
𝑑

||||22 , ||||
(
1−𝑑 − 𝑘

𝑑 − 1
Π𝑑−1

)
− 𝑘

1
𝑑

||||22
)

=
min

(
𝑘2, (𝑑 − 𝑘)2

)
𝑑 (𝑑 − 1)

.

The rest of the computation proceeds as in the proof of Theorem 1. □

4. Conclusion and outlook

In this paper we provided an implicit outer approximation of the im-
age of any given quantum measurement in any finite dimension, thus 
generalizing a recent result [22] by Xu, Schwonnek, and Winter on the 
image of Pauli strings. The outer approximation that we constructed is 
minimal among all such outer approximations, and close, in the sense 
that it becomes the maximal inner approximation up to a constant scal-
ing factor. We also obtained a similar result for the dual problem of 
implicitizing the image of the set of effects through a family of quantum 
states. Finally, we applied our approximation formulas to characterize, 
in a semi-device independent way, the ability to transform one quan-
tum measurement into another, or one quantum statistical model into 
another.
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