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The crucial feature of a memoryless stochastic process is that any information about its state can only decrease
as the system evolves. Here we show that such a decrease of information is equivalent to the underlying stochastic
evolution being divisible. The main result, which holds independently of the model of the microscopic interaction
and is valid for both classical and quantum stochastic processes, relies on a quantum version of the so-called

Blackwell-Sherman-Stein theorem in classical statistics.
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I. INTRODUCTION

Discrete-time Markov chains constitute the mathematical
model of memoryless stochastic processes, i.e., those processes
whose future state can be (statistically) predicted from the
present, independent of the past (see, e.g., Refs. [1,2]).
As many real-world situations appear to be approximately
memoryless, Markov chains are ubiquitous in many fields,
ranging from physics, chemistry, biology, and information
theory to economics and social sciences.

Formally, a discrete-time stochastic process is described
by an ordered sequence of random variables (X;)o<i<n>
whose values x; represent the state of the system at successive
time-steps o < -+ < f; < -+ - < ty. The probability law of
the process is given by specifying a joint N-point probability
distribution Pr( Xy = xn; Xn_1 = xn—15...; X0 = X0) =
P(XNL NS XN—1,EN—1} -} X0,20). The process is Markovian if
and only if the joint probability distribution can be factorized
as follows (see, e.g., Sec. 6.2 in Ref. [1] and Theorem 1.1.1
in Ref. [2]):

PN In|xXN—1.tn—1) - - p(X1,11]X0,70) (X0, 10)- (D

Notice that, even though it is often assumed that the conditional
probabilities p(r,t;|s,t;—1) in Eq. (1) do not depend on time (in
which case the chain is called homogeneous), discrete-time
Markov chains can, in general, be inhomogeneous; that is,
the conditional probabilities may vary with time. In any
case, Eq. (1) suggests an insightful information-theoretic
interpretation: it states that any Markov chain can always
be seen, without loss of generality, as arising from an initial
distribution p(xp,f) that propagates through an ordered
sequence of independent noisy channels [7'(#;,%-1)]i<i<n>
defined by the conditional probabilities p(r,f|s,t;—1). In
particular, for any pair of time steps (¢;,t;), with #; > 1,
there exists a noisy channel T'(¢;,#;), with transition matrix
p(r.tils,t;), such that p(x;,t;) = in p(xj,tilx;, 1) p(x;, ),
independent of the choice of the initial distribution p(xo,%).
This is called the divisibility property of Markov chains [1].
Such an information-theoretic description not only imparts
an operational significance to the memoryless property of a
Markov chain but also suggests ways to “quantify” it. This
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is done in terms of various inequalities, which show how
certain information-theoretic quantities cannot increase along
a Markov chain. Such inequalities, called data-processing in-
equalities [3,4], formalize the idea that the a priori knowledge
that one has about the state of the system cannot increase along
a Markov chain.

While the formalism of Markov chains (both homogeneous
and inhomogeneous in time) is perfectly settled in classical
probability theory, when trying to extend the same ideas
to quantum theory, some ambiguities arise. Concerning this
ongoing debate, we refer the interested reader to [5—19] and,
in particular, to the recent comprehensive review by Rivas et al.
[20]. The reasons for such ambiguities can be arguably traced
back to two main factors. First, there is a formal obstacle:
quantum theory does not, in general, allow the description
of quantum stochastic processes in terms of joint N-point
probability distributions or quantum states, so that any direct
analogy with classical stochastic processes is irreparably lost.
A thorough discussion about this point is outside the scope
of the present contribution, and we refer the interested reader
to the discussions presented in Refs. [18,20-22]. Second, a
historical reason exists: traditionally, the definition of quantum
Markov processes has been restricted to those processes
which are homogeneous in time, with special emphasis on
their semigroup structure (see, e.g., Refs. [23-26]). Indeed,
the systematic study of inhomogeneous quantum stochastic
processes is still in its infancy, and there exist different,
possibly inequivalent, approaches to it [20].

The approach we adopt here is one that was first advocated
by Breuer et al. [6], namely, that a quantitative definition
of “quantum Markovianity” may be possible in information-
theoretic terms by defining as “Markovian” those processes
that never increase “information” over time. The terms given
within quotation marks will be defined precisely in the
next section. According to this approach, data-processing
inequalities serve as witnesses of non-Markovianity since the
violation of any such inequality implies that the underlying
stochastic process is non-Markovian [6,8,10,12,14-16,20].
Indeed, while there are ambiguities in defining what quantum
Markovianity is, general consensus does exist on what is
not Markovian, and processes that violate any sensible data-
processing inequality should definitely be considered as non-
Markovian. The following question then arises naturally: is it
possible to assume, as a starting point, the validity of some

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.93.012101

FRANCESCO BUSCEMI AND NILANJANA DATTA

data-processing inequality and to derive, from only such an
assumption, a complete algebraic characterization of all those
processes that never violate such an inequality?

In what follows, we show that such a characterization
is indeed possible and that it exactly singles out so-called
divisible processes [see Eq. (3)], thus supporting the idea that
“information-theoretic Markovianity” is equivalent to “divis-
ibility.” An important step in this same direction, although
based on a completely different proof strategy, has already
been made in Ref. [8]. We note, however, that the analysis
there relies on an extra assumption, which cannot be justified
solely on an information-theoretic basis, on the nature of the
underlying stochastic process: it is thus model dependent and
less general than the one proposed here. We will come back to
this point later on, in Sec. VIL

The paper is structured as follows: in Sec. II we introduce
the notation, terminology, and basic definitions; in Sec. ITII we
formally define the idea of divisibility and the memoryless
property and discuss their connections. In Sec. IV we define
information-decreasing evolutions via the notion of guessing
probability. The two main results, equating the notion of
information decrease with divisibility (and hence with the
memoryless property), are discussed in Secs. V and VI, for
the classical and the quantum cases, respectively. Sec. VII
concludes the paper with some discussions and remarks.

II. QUANTUM DYNAMICAL MAPPINGS

In what follows, we consider only quantum systems defined
on finite-dimensional Hilbert spaces H. The definitions used
here closely adhere to those given in standard textbooks
[27,28]. We denote by L(7) the set of all linear operators
acting on H and by D(H) the set of all density operators
(or states) p € L(H), with p > 0 and Tr[p] = 1. The identity
operator in L(H) is denoted by the symbol 1. An ensemble
E = {p(x); p*}rea is a finite family of states p* and their a
priori probabilities p(x). A positive operator-valued measure
(POVM) is a finite family of positive semidefinite operators
{P"}yea, such that )", P¥ =1. A quantum channel is
a linear, completely positive trace-preserving (CPTP) map
N : L(H4) — L(H3p). Theidentity channel from L() to itself
is denoted by id.

The physical model we consider is that of a quantum
system S which, at an initial time 7y, is put in contact with its
surrounding environment £ and allowed to evolve jointly with
the latter through successive discrete instants in time fy < #; <
- .- < ty. We assume that the environment, at time ¢, iS in some
fixed state (e.g., equilibrium state) o, which is uncorrelated
with the state of the system. The joint unitary evolution can
be described by a (discrete) two-parameter family of unitary
operators U(j,i) € L(Hs ® Hg), with 0 < i < j < N, each
one modeling the joint system-environment evolution from
time # to time f; > t; and satisfying the composition law
U(k,i)=U(k,jHU(j,i) for all t > t; > t;. Of course, the
consistency requirement U (i,i) = 1 for all i is understood.

Hence, if the initial state of the system is ,02, its state at time
t; is given by

P = Trg [UG,0) (0§ ® o) UT(0,0)]. 2
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In this paper we also assume that the system’s state in Eq. (2)
can be arbitrarily initialized, so that Eq. (2) can be used to
define a sequence of quantum channels from L(H) into itself,
given by

N(;,0) :=Trg[U(i,0) (e ® ) U'(0,0)],

describing the change of the reduced system from the initial
time fy to later times #; > ty and satisfying the consistency
requirement N (fp,e) = id. In what follows, for the sake of
readability, we will denote each channel N/ (z;,e) simply by N.

In fact, the Stinespring-Kraus unitary representation theo-
rem [29,30] guarantees that any sequence of quantum channels
(N0 with N° =id can always be physically interpreted
as arising from an open-system evolution similar to the one
described above. It is hence possible (and preferable whenever
the underlying microscopic model is unknown) to start the
analysis from an arbitrarily given family of channels, without
further assumptions about the underlying interaction.

In order to keep our analysis general enough to encom-
pass typical information-theoretic processes like encodings,
decodings, noisy channels, quantum measurements, decision
processes, coarse grainings, etc., we allow the input and output
systems to be associated with different Hilbert spaces, so
that channels N’ are linear CPTP maps, all with the same
initial space L(H ) but with different output spaces L(H;). For
later convenience, we summarize the above discussion in the
following definition:

Definition 1. Quantum dynamical mappings. Given an
initial quantum system S and its Hilbert space Hs, a (discrete-
time) dynamical mapping of S is given by a sequence of
quantum channels (N7);>o from L(Hs) into L(H;), each
modeling the operation mapping S from the initial time #; to
later times #; > o and satisfying the consistency requirement
N =id.

Clearly, when we know that the system’s Hilbert space does
not change in time, we are back to the usual scenario in which
‘H; = Hg for all i: all the results presented in this paper are
still valid, without modification, in this special case too.

II1. DIVISIBILITY AND THE MEMORYLESS PROPERTY

A crucial point to stress is that, while the joint system-
environment evolution can always be divided (as a conse-
quence of its unitarity) into successive steps, i.e., U(j,i) =
U(j,O)[U(i,O)]T for all j > i, the same is not, in general, true
for the reduced dynamics of the system S alone. Namely, given
a dynamical mapping (NV?);o, it is not, in general, possible to
find a family of channels {£(j,i)} j>i>o from L(H;) into L(H;)
such that

NI =L(,iyoN', Yj=i>0. (3)
Whenever this is the case, we say that the dynamical mapping
(N0 is divisible. Notice that, in order to show that a
dynamical mapping (N?); is divisible, it is sufficient to find
another sequence of quantum channels (C/) i>1 from L(H;_)
to L(*;), such that

NiJrl — Ci+1 ONi, Vi 2 0’ (4)
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FIG. 1. Schematic representation of a discrete-time dynamical
mapping. Top: The system’s evolution from an initial time 7 to the
final time ty is represented by a sequence of quantum channels
W i)()g,‘gN (the thin arrows), describing the stochastic evolution
of the system from the initial time #, to some later time #; > fo.
Bottom: The dynamical mapping is divisible if there exists another
sequence of quantum channels (C');<;<y (the thick arrows) such that
N+ =l o Niforall0 < i < N — 1.

with the consistency requirement C' = A!. The channels
L(j,i) in Eq. (3) are then given by

L(,j))=id, Vj=0
and

LGi)=CoC o 0CT, Vji>i>0.

A schematic representation of a divisible dynamical mapping
is given in Fig. 1.

The memoryless property

Divisibility, as described above, is intimately related to
the memoryless property as follows. Suppose that a joint
system-environment interaction (for which we do not make any
particular assumption) gives rise to a reduced system dynamics
that is divisible. This means that, from the point of view
of an observer without direct access to the environment, the
evolution of the system is completely indistinguishable from
the sequential application of independent quantum channels
(C! )i>1, each modeling the evolution of the system from time
step t;—; to ¢;.

Then, the Stinespring-Kraus theorem [29,30] says that a se-
quential application of channels (C?); can be represented as a
sequence of independent unitary interactions (W, W,, W3, ...)
of the system with a corresponding sequence of independent
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FIG. 2. Top: The joint system-environment evolution. Middle:
The reduced dynamics of the system is divisible if it cannot be dis-
tinguished from a sequence of independent quantum channels (C');~,
applied in series. Bottom: As a consequence of the Stinespring-Kraus
representation theorem [29,30], any divisible process can always
be thought of as originating from a collisionlike model, in which
the system interacts with an environment that is reset after every
interaction.

. e 1 . 2) @3
environments, initialized in states (05,62),02),...) and

discarded after the interaction. Such a model, similar to
collisionlike [31] or power-dilation [32] models, is depicted
in Fig. 2.

It is then clear that divisibility implies, as a consequence of
the Stinespring-Kraus representation theorem, a strong form
of the memoryless property: no memory can be kept of the
past because the system’s evolution is indistinguishable from
that arising from the interaction with an environment that is
reset at each time step.

Two remarks are in order at this point. First, the fact that
a divisible quantum mapping admits a collisionlike model
does not mean that the underlying joint evolution actually is
collisionlike. In general, it is possible that correlations between
the system and its environment are established and kept along
the evolution; however, if the system’s dynamics is divisible,
such correlations do not give rise to any observable memory
effect. This is in line with the fact that a well-defined CPTP
reduced dynamics exists also for strongly correlated systems
[33].

The second remark is about weaker notions of divisibility,
most notably the so-called P-divisibility property [20], which
holds whenever there exists a sequence of (not necessarily
completely) positive trace-preserving maps (P');~1 satisfying
Eq. (4). In such a case, the Stinespring-Kraus representa-
tion theorem does not hold, so that the relation with the
memoryless property is lost. In addition, it is possible to
observe memory effects just by suitably extending the system
(see Corollary 2).
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IV. INFORMATION-DECREASING
DYNAMICAL MAPPINGS

As we mentioned before, the fact that information can only
decrease along a Markov chain can be formalized in many
ways via a number of data-processing inequalities [4,20,34]. In
what follows, we focus on one such data-processing inequality,
which enjoys a simple definition and a natural interpretation.

Suppose that the experimenter knows a priori that the
system’s “true” state belongs to a known family of possible
states {p5}, and that each element pg can be the true state
with probability p(x). The experimenter’s initial (partial)
knowledge of the system is therefore modeled by an ensemble
&€ = {p(x); p5ly. In this situation, therefore, the information
initially possessed by the experimenter depends on the dis-
tinguishability of the states in the ensemble: the higher the
distinguishability of the states pg is, the more information
is available to the experimenter. A natural measure of the
information about the system’s initial state is therefore given
by the guessing probability [35,36]

Pguess(g) = maXZP(x)Tr [Péc pg:]’

where the maximization is over all POVMs { P{}, on H;. The
fact that the guessing probability cannot increase under the
action of a channel on the states of the ensemble is a very
simple consequence of its definition.

Definition 2. A discrete-time dynamical mapping (AV);>o
is said to be information decreasing if and only if, for any
ensemble £ = {p(x); p5}., the ordered sequence of guessing
probabilities [ Pyyess(£i)]iz0, Where

& = {px)N'(p3)},.
is monotonically nonincreasing, i.e.,

Pguess(gi) = Pguess(gi+l)

foralli > 0.

The above definition constitutes our formalization of the
fact that the information about the initial state of the system
does not increase as the system evolves. This, of course, has to
happen irrespective of the information about the system that
the experimenter initially has. This fact is reflected in the above
definition by the requirement that the guessing probability
cannot increase for any ensemble of initial states, i.e., for any
finite set 2 = {x}, any probability distribution on 2", and
any collection of states p5 € D(Hs).

This paper builds upon a series of results extending the so-
called Blackwell-Sherman-Stein theorem [37-39] of classical
statistics to quantum statistical decision theory [40-45]. In
particular, a crucial role in this paper is played by the following
result:

Lemma 1 [43]. Given two channels N7 : L(Hs) — L(H,),
i = 1,2, the following are equivalent:

(1 Pguess(gl) = Pguess(52) for any
{p(x); 5}, where & := {p(x); N" (0))«.

(2)  Pauess(E1) 2 Pouess(&)  for any ensemble & =
{p(x); pi}e, with Y° p(x)ps = (dim Hg) ' L.

(3) For any POVM {Q"}, on H,, there exists a corre-
sponding POVM {P”}, on H; such that Tr[N'(ps) P*] =
Tr[N?(ps) Q*] for any y € % and for any ps € D(Hy).

ensemble & =
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Proof. That point 1 implies point 2 is obvious since
point 2 considers only a subset of all possible ensembles,
i.e., those whose average state is the completely mixed state
(dim Hs)~'1 5. Also the implication point 3 = point 1 is trivial
since, if point 3 holds, then any statistics obtainable from the
outputs of A/ can also be obtained from the outputs of N'!.

The remaining implication, i.e., point 2 = point 3, is a
direct consequence of Theorem 3 of Ref. [43]: point 2 above
corresponds to point 4 there; point 3 above corresponds to
point 3 there. ]

In other words, the guessing probability for a channel N!
(for any ensemble) is greater than or equal to that for a channel
N?if and only if the image of A2 (in the Heisenberg picture) is
contained in that of N''. We use the notation A'! = N2 (which
denotes a partial ordering between channels) whenever one of
the above conditions holds. Accordingly, a dynamical mapping
W )i>o is information decreasing if and only if

NOENLE"'ENiE"'-

V. THE SEMICLASSICAL CASE

Even though our analysis has been focused so far on the
case of quantum dynamical mappings, we now show how
the classical case too can also be treated within the same
framework under some further assumptions. This is done by
passing through the intermediate case of “semiclassical” dy-
namical mappings, defined as sequences of channels (N);~
with commuting output, i.e.,

[N (ps), N (p5)] = 0

for all i > 1 and for all ps,p5 € D(Hs). Notice that the
commutativity condition is required to hold for all times
t; > ty: the system is assumed to be initially quantum and its
state space at fy is generally noncommuting. One can think of
semiclassical dynamical mappings as sequences of completely
decohering (sometimes dubbed “quantum-to-classical,” or just
gc) channels, e.g., sequences of complete nondegenerate
projective (von Neumann) measurements.

We can now state the first main result of this paper as
follows:

Proposition 1. Semiclassical case. A given discrete-time
semiclassical dynamical mapping is divisible if and only if it
is information decreasing.

The above is a direct consequence of the following lemma:

Lemma 2. Let N : L(H4) — L(Hp) and N7 : L(H,4) —
L(H ) be two CPTP maps. Suppose that the output of A is
Abelian, i.e., [N'(p),N'(c)] = O for any p,0 € D(H,).

Then, ' > N if and only if there exists a third CPTP map
C : L(Hp) — L(Hp ) such that

N =CoWN.

Proof. Here we prove only the “only if” part of the statement
because the “if” part is trivial. The proof is based on the
analogous result for bipartite states derived in Ref. [42].

Since the outputs of N are all commuting, it is possible
to find a basis {|ip) € Hp}; that diagonalizes them all
simultaneously. A simple identity then gives

N'(pa) =Y lig) (i | Te(N (pa) lis) (i |} (&)
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for all py € D(H,). On the other hand, since N > A’ and
since {|ip)(ip|}i constitutes a well-defined POVM on Hp,
we know that there exists a POVM { Py} on Hp such that

TrN (o) lig )i l) = Tr [N(pa) P

forall p4 € D(H4) and all i. Inserting the above equation into
(5), one obtains the identity

N'(pa) =Y lin)in| Tr {N(pa) Py},
valid for all p4 € D(H,), which can be equivalently written
as N/ = C o NV upon defining the CPTP map C as

Clep) =Y lip)in|Tr{ep Ph}.
The above equation shows, in particular, that the map C :
L(Hg) —> L(Hp) is a CPTP map defined everywhere, as
claimed in the statement. |

The fully classical case

The fully classical case corresponds to the situation in
which the evolving system is assumed to be classical already
from the start (i.e., from f¢ included). Indeed, when the
evolving system is classical, under the customary correspon-
dence between diagonal density matrices and probability
distributions, CPTP maps become conditional probabilities.
In this way, the formalism of classical Markov chains can be
recovered:

Corollary 1. Classical case. Let (N');>¢ be a sequence of
noisy channels represented by the conditional probabilities
p(xi,ti|x0,t), modeling the evolution of an initial random
variable X to successive time steps ; > ty. Then, the sequence
(N')i>o is information decreasing if and only if, for any
initial distribution p(xo,fy) of X, there exists a Markov chain
(X;)j>0 whose two-point marginals (X;,Xy) are distributed
according to p(x;,t;; xo,t0) = p(x;,t;|x0,t0) p(xo,t) forall i >
1.

In other words, a classical dynamical mapping never
increases the distinguishability of any initial ensemble of
probability distributions if and only if it can always be
“embedded” in an underlying Markov chain.

VI. THE QUANTUM CASE

We now turn to the case in which the discrete-time dynami-
cal mapping is fully quantum, i.e., the channels in the sequence
(N");>0 are linear, CPTP maps with noncommuting outputs.
In this case, it is customary to allow the evolving quantum
system, originally associated with the Hilbert space Hg, to be
part of a larger system, associated with a tensor product space
Hs ® Hs. Accordingly, we reformulate Definition 2 to take
into account such possible extensions:

Definition 3. A discrete-time dynamical mapping (NV%);>o
is said to be completely information decreasing if and only if,
for any auxiliary Hilbert space Hs and for any finite ensemble
& = {p(x); pg¢}. of states on Hg ® Hs, the ordered sequence
of guessing probabilities [Pguess(g’,- )]i>0, where

& = {p(x0); (ids ® N§) (055)} .

PHYSICAL REVIEW A 93, 012101 (2016)

is monotonically nonincreasing, i.e.,

Pguess(g‘i) 2 Pguess(g-&-l)

foralli > 0.

Using the partial ordering notation > previously introduced,
we can equivalently say that the process described by the
dynamical mapping (N7);>o is completely information de-
creasing if and only if

(ids/ ®N§)) > (ids' ®NSI) Z ez (ids/ ®N§V)

for all auxiliary systems S’. Then, the following statement
holds:

Proposition 2. Quantum case. A given discrete-time quan-
tum dynamical mapping is divisible if and only if it is
completely information decreasing.

The above is a direct consequence of the following:

Lemma 3. Given a pair of CPTP maps N : L(H,) —
L(Hp) and N’ : L(H4) — L(Hp), let Hp» be an auxiliary
Hilbert space isomorphic with Hp/, i.e., Hp = Hp, and
id : L(Hp+) — L(Hp~) being the corresponding identity map.

Then, id ® A > id ® A if and only if there exists a third
CPTP map C : L(Hjp) — L(Hp/) such that

N =CoWl.

Proof. Here we prove only the “only if” part of the statement
because the “if” part is trivial. The proof presented here is
based on a series of results that appeared in Refs. [40,42,43,45].

By hypothesis, it holds that id ® N > id ® N/, which
implies, in particular, that for any finite alphabet % = {y}
and any POVM {Q%, 5}, there exists a POVM {Pj, ,}, such
that

Tr [fws @ N'(04)} Qg | = Tt [{wn ® N(0a)} Py ]
©6)

forall y € %, all wgr € D(Hpr), and all py € D(H ).

Upon introducing another auxiliary Hilbert space Hp» =
Hp = Hp and a maximally entangled state |®}.p.) €
‘Hp» ® Hpr, the condition expressed in Eq. (6) can be
rewritten as follows: for any alphabet %" = {y} and any POVM
{Q% )y there exists a POVM { Py, ,}, such that

Tr[{|19 5 (P hrp | @ N (o)} {257 @ Qg }]
=Tr[{|19F 5 ) (Phrp | @ N(pa)} {25 @ Phgt] (D)
forally € %, all ps € D(H,), and all 0 < Qp» € L(Hp»).
We now make use of the simple fact that Tr[ X A] = Tr[Y A]
for all A > 0 if and only if X =Y to reformulate condition
(7), involving positive numbers, into a condition involving
operators: for any alphabet % = {y} and any POVM { Q7% By
there exists a POVM { Py, 5}, such that
Trprp (9550 (@hp | @ N (o) {157 ® Qo }]
=Trgrp [{|95 5 ) (P hrp | @ N} {157 ® Pyipl]
®)
forall y € % and all ps € D(H4).
Now we recall the protocol of (generalized) teleportation

of Ref. [46], according to which one can always choose the
alphabet % = {y} and the POVM {Qﬁ,g,,}y in Eq. (8) such
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that
N'(pa) =D U 0 Trgnp [{19 ) (@ h | ® N (p))
y

x {1pr ® Qprp}]
for all py € D(H4), where the maps U” : L(Hg») — L(Hp')
are suitable unitary CPTP maps, i.e., U”(e) = U, o U, with

U; U, = 1p. Then, condition (8) guarantees the existence of
a POVM { P}, 5}, such that

N'(pa) =Y Uy o Trgep [{19h 5 (P ge | © N(pa)}

y
<15 @ PYg)]

for all py € D(H4). The above identity can be equivalently
written as the channel identity N/ = C o AV, upon introducing
the map C : L(Hp) — L(Hp'), defined as

Clop): =Y UpuoTrgp [{I9fp ) (Phupi| ® o)
y

{1 @ Py}

The above equation shows, in particular, that the map C
is a CPTP map defined everywhere, as claimed in the
statement. |

A direct consequence of Proposition 2 is that any quantum
dynamical mapping that is not CPTP divisible gives rise to
observable memory effects in the following sense:

Corollary 2. A quantum dynamical mapping (N7);~¢ is not
divisible into linear CPTP maps if and only if there exists an
auxiliary Hilbert space Hy , a finite ensemble of bipartite states
&€ = {p(x); pis}x, and a time fz such that

Pguess(g‘lz) > Pguess(glz—I)

In other words, it is possible to observe, at some time step #z,
a strict increase in the distinguishability for an initial ensemble
&. This can happen only if some memory is being kept during
the evolution.

VII. DISCUSSION

Propositions 1 and 2 above establish that divisibility of a
discrete-time dynamical mapping is equivalent to a monotonic
decrease of information (as measured by the guessing prob-
ability). This in particular implies (see Corollary 2) that, as
soon as a discrete-time dynamical mapping is not divisible,
then there necessarily exists an initial ensemble of quantum
states whose guessing probability strictly increases at some
point along the evolution. Propositions 1 and 2 hence provide
the information-theoretic underpinning of divisibility, which
therefore constitutes the key feature of memoryless processes.
This equivalence is also valid in the case of continuous-time
stochastic processes since the latter can be obtained from the
discrete-time setting by considering instants in time which are
arbitrarily close to each other.

In this respect, our approach can be seen as a general-
ization of the idea first proposed by Breuer et al. [6]. They
characterize stochastic processes by tracking the change in the
distinguishability of two different initial states of the system
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under dynamic evolution. However, while in Ref. [6] only
equiprobable pairs of states are considered, here we track
the evolution of arbitrary ensembles of quantum states, i.e.,
ensembles consisting of more than two states in general,
with arbitrary a priori probabilities, and possibly living on
an extended Hilbert space.

Our condition is therefore stronger than that in Ref. [6],
and it is indeed equivalent to divisibility, while the criterion
proposed in Ref. [6] is only necessary but not sufficient, as ex-
plicitly shown by Chrusciniski ez al. [8]. In fact, building upon
the results of [47], Chrusciniski ef al. also propose a strength-
ened version of the criterion of Breuer et al., which is similar
to ours, but based on a completely different proof strategy.

In particular, their criterion can be applied only to se-
quences of quantum channels (N7);>¢ that are all bijective
(as linear maps), thus excluding physically relevant situa-
tions (for example, semiclassical processes such as quantum
measurements and decoherence but not only those [48,49])
and common information-theoretic processes (for example,
encodings, decodings, measurements, etc.) that are typically
nonbijective.

The assumption of bijectivity is very limiting not only in
quantum information theory but also in classical information
theory, in which Markov chains are typically used to model
encoding-channel-decoding schemes [3]. As such, it is clear
that the assumption of bijectivity eludes a purely information-
theoretic or operational description and must be put “by hand”
on top of the dynamical evolution. Hence, a merit of our
approach is that it does not require any assumption about
the underlying stochastic process: the channels constituting
the dynamical mapping can be completely arbitrary, and our
results can therefore be applied to any possible situation.

Note that Proposition 2 also provides an operational
characterization of reversible stochastic processes, such as
those for which the guessing probability is constant, i.e.,

Pguess(gi) = Pguess(gi+1), 0<i<N-1,

for any initial ensemble. The above equality implies not only
the existence of “direct propagators,” i.e., quantum channels
C! such that C'*!' o AP = Ni*1) but also the existence of
“reverse propagators,” i.e., quantum channels R’ such that
R~ o N7 = N~ (recall the consistency requirement A0 =
id). In other words, a stochastic process which preserves
information has to be reversible. In the particular case in which
the system’s Hilbert space remains the same (i.e., H; = Hg
foralli > 1), since the only reversible CPTP maps from L(H)
into itself are unitary ones [50], we arrive at the following
conclusion: the only dynamical mappings which preserve
information perfectly are those describing the evolution of a
closed system. This is in keeping with intuition since a closed
system has no environment to serve as memory: its evolution
is therefore automatically Markovian [51].

A further (perhaps surprising) observation is that, according
to the results in Refs. [42,43], the ensembles of bipartite states
€ used in Definition 3 can, without loss of generality, be
restricted to ensembles of separable states. This is because, as
shown in Ref. [43], the identity channel idg, used in Definition
3 to define the partial ordering relation {idy ® N7} > {idy ®
N1 can be replaced, without loss of generality, with
some other noisy channel My : L(Hg) — L(Hg) under the
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sole condition that My is complete [43], i.e., its image
spans the whole L(Hg). Since there exist complete quantum
channels which are entanglement breaking [e.g., a depolarizing
channel D*(w) = ew + (1 — e)d~'1 with sufficiently small
but nonzero €], we arrive at the conclusion that in Definition 3
it actually suffices to consider bipartite states pg, ; which are
separable. In principle this fact may simplify the experimental
assessment of Markovianity since entanglement is not needed.
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