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Abstract—We investigate the problem of producing local
pure states by performing local noisy operations assisted by
one-way classical communication on a given bipartite mixed
state in the one-shot setting. We consider the following two
scenarios:

1) Scenario I: A party, say Alice, is provided with a single
copy of some quantum state ρA on system A. The task
for Alice is to extract pure qubit states using only noisy
operations on A. We call this task purity concentration.

2) Scenario II: Two parties, Alice and Bob possess the A
and B sub-systems, respectively, of a given bipartite
quantum state ρAB . They are allowed to perform any
local noisy operations and communicate via a one-way
dephasing (i.e., classical) channel. The task for them is to
design a protocol using these resources such that together
they can extract pure local qubit states from the shared
state ρAB . We call this task local purity distillation.

I. INTRODUCTION

Pure quantum states are ubiquitous in quantum infor-
mation theory, both in practical applications (e.g., pure
state registers provide a necessary building-block for most
quantum algorithms [1]) and in the mathematical analysis of
communication protocols, where pure ancillary systems are
needed to consider Stinespring–Kraus dilations and model
a quantum eavesdropper [1]. A clearer understanding of the
role of pure states as a resource in QIT has been achieved
within the framework of quantum resource theories of pu-
rity, viz. nonuniformity [2]–[4]. These are in turn intimately
related with the formulation of quantum thermodynamics
as a theory of statistical comparison [4]–[13], where pure
states are naturally understood as states of full knowledge
that can be used when discussing the notion of “work”
in an information-theoretic language. This is, for example,
the language in which Landauer’s principle [14] is usually
presented nowadays, see e.g. [8], [9].

Devetak [15] was the first to provide the quantum re-
source of “purity” with a full-fledged information-theoretic
analysis. Devetak’s analysis considers the i.i.d. asymptotic
scenario and crucially relies on the method of types for
the construction of a coding protocol. However, the theory
of quantum thermodynamics is typically formulated in a
one-shot setting. This makes a direct comparison between
Devetak’s results and analogous results, such as those in
Refs. [4], [13], difficult. From this viewpoint, it is desirable
to have a generalization of Devetak’s work to the one-shot
scenario, but various technical hurdles have impeded this
project.

Crucially, the generalization of Devetak’s results to the
one-shot scenario requires a complete overhaul of the coding
techniques. This is very different from what happens for
other one-shot protocols, where the difficulty mostly lies in
finding the appropriate entropic quantities characterizing the
optimal rates, but the coding techniques remain otherwise
the same as those used in the i.i.d. asymptotic setting.
For example, when devising our one-shot purity distillation
algorithm, a crucial step is the construction of the rank-
one POVM needed in the two-party protocol. The choice
of this POVM however, does not follow easily from the
i.i.d. case, but it is nonetheless essential in determining the
rate of classical communication. Our construction instead
is inspired from a very recent one-shot version of Win-
ter’s measurement compression [16]–[18] and further some
derandomization arguments. Further problems arise later
in the protocol, when the parties use 2-universal hashing,
with certain additional regularity conditions about the hash
function. That such conditions are satisfied is easy to prove
in the asymptotic i.i.d regime based on typicality arguments,
which however completely fail in the one-shot regime. To
get around this issue, we devise a new proof technique based
on random permutations.

The ideas that we present in this work not only provide
a way to circumvent the issues mentioned above, but also
demonstrate an entirely new approach to designing purity
distillation protocols, which does not rely on any regularity
assumptions on the underlying resource state. We envision
that these insights may also be helpful in other areas of QIT.

II. PRELIMINARIES

Here we give only the definitions necessary to present
the main results in Section III. In what follows, all Hilbert
spaces, denoted H , are assumed to be finite dimensional,
so that the space of linear operators on H , denoted L(H ),
is essentially the set of matrices acting on Cd with d =
dimH . Logarithms are taken in base 2.

Definition II.1 (noisy operations [2], [4]): A completely
positive trace-preserving (CPTP) linear map E : L(HA) →
L(HB) is said to be a noisy operation iff there exist

1) finite-dimensional Hilbert spaces HX and HY with
HA ⊗ HX

∼= HA′ ⊗ HY ;
2) a unitary operator U : HA ⊗ HX → HA′ ⊗ HY



such that

E(•A) = TrY
[
U(•A ⊗ uX)U†] ,where uX =

1X

dX
.

Unitary transformations U : HA → HA and dephas-
ing channels D(•) =

∑
i |ψi⟩⟨ψi| • |ψi⟩⟨ψi|, for {ψi}i

an arbitrary orthonormal basis, both fall within the class
of noisy operations: the former can be realized with a
one-dimensional ancillary system, while the latter can be
realized as uniform random mixtures of Weyl-Heisenberg
unitary operators and are therefore noisy operations. More-
over, the composition of a finite number of noisy operations
is also a noisy operation.

Definition II.2 (bipartite case with one-way cc): A CPTP
linear map EAB→A′B′

: L(HA ⊗ HB) → L(HA′ ⊗ HB′)
is said to be a two-party noisy operation assisted by one-
way classical communication (or one-way noisy operation)
whenever there exist

1) a noisy operation N : L(HA) → L(HA′ ⊗ HC);
2) a dephasing channel D : L(HC) → L(HC), repre-

senting the classical communication;
3) a noisy operation N ′ : L(HB ⊗ HC) → L(HB′)

such that

EAB→A′B′
(•AB) =[

(N ′
BC) ◦ (idA′ ⊗DC ⊗ idB) ◦ (NA)

]
(•AB) .

Using the above operational scenario, we define the rates
of purity distillation (single-party and two-party) as follows.

Definition II.3 (single-party ε-distillable purity): Given
a density matrix ρA on HA and a value ε ∈ [0, 1], a purity
concentration ε-code consists of a dP -dimensional ancillary
system and a noisy operation N : L(HP ⊗HA) → L(HA′),
such that

||N (|0⟩⟨0|P ⊗ ρA)− |0⟩⟨0|A′ ||1 ≤ ε ,

in which case the rate k := log dA′ − log dP is said to be
ε-achievable. The supremum over all ε-achievable rates is
called the ε-purity of ρ and is denoted as κε(ρA). Notice
also how we allow the protocol to borrow an initial pure
ancillary state, whose dimension is however discounted
from the final net distillation rate.

In the above definition, the pure state |0⟩ is simply an
arbitrarily fixed reference pure state, whose actual identity
is immaterial for the protocol as unitary transformations are
freely available noisy operations.

Definition II.4 (two-party one-way ε-distillable purity):
Given a bipartite density matrix ρAB on HA ⊗ HB and a
value ε ∈ [0, 1], a one-way purity distillation ε-code consists
of a dP -dimensional ancillary system and a one-way noisy
operation NPA→B : L(HP ⊗HA⊗HB) → L(HA′⊗HB′)
such that∣∣∣∣NPA→B(|0⟩⟨0|P ⊗ ρAB)− |0⟩⟨0|A′ ⊗ |0⟩⟨0|B′

∣∣∣∣
1
≤ ε ,

in which case the rate k := log dA′ + log dB′ − log dP is
said to be one-way ε-achievable. The supremum over all
one-way ε-achievable rates is called the one-way ε-purity
of ρAB and is denoted as κA→B

ε (ρAB).

One-shot inner bounds for the task of purity distillation,
both in the single-party and two-party cases, can be mathe-
matically characterized in terms of two generalized entropic
quantities.

Definition II.5 (smoothed support max-entropy): Let ρA
be a d-dimensional density matrix on HA with eigenvalues
(λi)

d
i=1, ordered so that λ1 ≥ λ2 ≥ · · · ≥ λd. For any

arbitrarily fixed value ε ∈ [0, 1], let k ≡ k(ρ, ε) be such
that

∑d
i=k+1 λi ≤ ε. Then, the ε-smoothed support max-

entropy of ρA is defined as

H̃ε
max(A)ρ := log k .

Definition II.6 (hypothesis testing relative entropy and
mutual information): Let ρ and σ be two density matrices,
and ε ∈ [0, 1] arbitrarily fixed. The hypothesis testing
relative entropy [19] between ρ and σ of order ε is defined
as

Dε
H(ρ∥σ) := sup

0≤Λ≤I:
Tr Λρ≥1−ε

− log TrΛ σ ,

and the corresponding mutual information for a bipartite
density matrix ρAB is defined as

IεH(A : B)ρ := Dε
H(ρAB∥ρA ⊗ ρB) ,

where ρA(B) are the marginals TrB(A)[ρAB ].

III. RESULTS

Theorem III.1 (Purity Concentration): Given a density
matrix ρA on HA and a value ε ∈ [0, 1], its one-shot ε-
purity can be lower bounded as

κ3
√
ε(ρA) ≥ log dA − H̃ε

max(ρA) .

Theorem III.2 (Purity Distillation): Given a bipartite
density matrix ρAB on HA ⊗ HB , its one-way ε-purity
can be bounded as

κA→B
32
√
ε (ρAB) ≥ log dA − H̃ε

max(ρA) + log dB − H̃ε
max(ρB)

+ J
8
√
ε

H (A→ B)ρ +O(log ε) ,

where Jε
H(A → B)ρ := maxΛ:A→X IεH(X : B)σ , and

maximum is taken over all qc-channels Λ : L(HA) →
L(HX) of the form Λ(•A) =

∑
x TrΛx ρA |x⟩⟨x|X , for

rank-one POVM elements {Λx}, orthonormal label states
{|x⟩}, and σXBR := (ΛA ⊗ idB)(φABR), for some purifi-
cation φABR of the state ρAB .

Moreover, the classical communication needed to im-
plement the two-party protocol can be upper bounded by
I
√
ε

max(X;BR)σXBR
−O(log ε).

The above one-shot bounds recover the ones given by
Devetak [15] in the asymptotic i.i.d. setting, even though
the coding techniques used here are quite different from
Devetak’s. Another interesting by-product is the appearance
of a one-shot generalization of the one-way distillable
common randomness, namely, the quantity Jε

H(A → B)ρ:
its relations with quantum cryptography and the theory of
quantum correlations (including entanglement and nonlocal-
ity) remain to be explored.



IV. PURITY CONCENTRATION

We now give a detailed discussion and proof of Theo-
rem III.1. Recall from Definition II.3 that purity concentra-
tion involves some noisy operation on the input state ρA

and then discarding a part of the output system, such that
the register which is left, i.e. Ap, contains a state which
is close to a pure state |0⟩Ap . To do this, the main idea
is to discard the smallest eigenvalues of ρA, which add up
to at most ε. The eigenvectors which are left then span
a space of dimension 2H̃

ε
max(A), but are embedded in the

larger system A. Let us refer to these eigenvectors as ‘good’.
This embedding necessarily requires that the eigenvectors
be padded with 0’s on the extra coordinates which are not
required to specify them. Thus, we can relabel each of these
good eigenvectors with a vector of dimension 2H̃

ε
max(A)

tensored with the unit vector |0⟩. These unit vectors then
necessarily belongs to a space of dimension |A|/2H̃ε

max(A).
We make these ideas rigorous below.

We will first require the following fact [15, Lemma 1]:

Fact 1: Consider a vector space A ∼= Ag ⊗ Ap, with
dimAg = d1 and dimAp = d2, a state ρ on A, and a
projector Π with rank equal to d1. If Tr[Πρ] ≥ 1− ε, then
there exists a unitary U on A, a (normalized) state ρ̃ on Ag ,
and a pure state |0⟩ ∈ Ap such that∣∣∣∣UρU† − ρ̃⊗ |0⟩⟨0|

∣∣∣∣
1
≤ 3

√
ε .

Using Fact 1 above, it is easy now to prove Theorem III.1
mentioned in Section III as follows. Given ρA and ε ∈
[0, 1], let us introduce an ancillary system P such that
dP = 2H̃

ε
max(A)ρ . This step is necessary in order to make

dimensions (which are integer numbers) factorize nicely, so
that the protocol is deterministic (i.e., unitary).

Denote by ΠA the projector onto the support of ρ′A,
namely, the sub-normalized state obtained by zeroing out
the smallest eigenvalues of ρA which add to less than or
equal to ε. Notice that Tr[ΠAρA] ≥ 1−ε and Tr[ΠA] = dP .
We now define the extended state ρAP := ρA ⊗ |0⟩⟨0|P .

Clearly, H̃ε
max(AP )ρ = H̃ε

max(A)ρ. Analogously, let us
define the extended projector ΠAP = ΠA ⊗ |0⟩⟨0|P . Then,
Tr[ΠAP ρAP ] = Tr[ΠA ρA] ≥ 1− ε.

Thus, by invoking Fact 1, we see that there exists a unitary
operator from A⊗ P to Ag ⊗Ap

∼= A⊗ P , satisfying∣∣∣∣∣∣U(ρA ⊗ |0⟩⟨0|P )U† − ρ̃Ag ⊗ |0⟩⟨0|Ap

∣∣∣∣∣∣
1
≤ 3

√
ε ,

⇒ κ3
√
ε(ρ

A ⊗ |0⟩⟨0|P ) ≥ log dAp
= log(dAdP )− H̃ε

max(A),

which reduces to the statement of the theorem once we
discount the amount log dP of purity that we borrowed.

V. BIPARTITE PURITY DISTILLATION

A. Overview

We will make use of the purity concentration protocol
described in Section IV as a subroutine.

The setup: Alice and Bob share the A and B parts,
respectively, of a bipartite state ρAB . They are allowed to
use local unitaries and a one-way dephasing (i.e., classical)
channel to communicate. They can also borrow local pure
ancilla, but these will be discounted from the final rate. An
obvious protocol, requiring no communication, is obtained

if Alice and Bob simply enact the concentration protocol
locally on A and B systems respectively. In this way, they
can extract local pure states at the rate

log dA − H̃ε
max(A) + log dB − H̃ε

max(B) . (1)

However, the above is not optimal, as shown in the follow-
ing example.

Consider the maximally correlated state

ρAB :=
1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|B +

1

2
|1⟩⟨1|A ⊗ |1⟩⟨1|B

and set ε = 1
4 . Clearly, we cannot discard any eigenval-

ues from the marginals ρA and ρB , and hence the two
concentration protocols on the A and B systems together
produce no pure states. However, if Alice were to send the
system A to Bob via a dephasing channel with operational
elements |0⟩⟨0| and |1⟩⟨1|, then Bob could apply the CNOT
gate(unitary ≡ |0⟩⟨0|A ⊗ IB + |1⟩⟨1|A ⊗ XB) where X is
the quantum NOT (i.e., Pauli X) operator. This allows Bob
to extract one qubit pure state. Thus, this example demon-
strates that introducing classical communication between the
two parties can lead to strictly better rates.

The key idea in the above example is to leverage the clas-
sical correlations between the systems A and B. However
in general the A and B systems shared by Alice and Bob
will share quantum correlations. Alice will thus measure her
system using a POVM to create a classical-quantum (cq)
state, and then send the contents of the classical register
created by this measurement to Bob. The hope is that by
doing some measurement on his system, Bob should be able
to distinguish among the contents of the classical register.
If he is able to do this, then he can appropriately map the
contents of the classical register to a pure state |0⟩. However,
there are several subtle issues that needs to be addressed.

B. New approach towards one-shot purity distillation

Our approach is different from [15], in the sense that we
do not rely on concentration arguments to show that there
exists a good compressed POVM Γ(k) with a small number
of good outcomes, which also preserves the classical cor-
relations. Firstly, we require a one-shot measurement com-
pression theorem, recently proved in [18]. Next, we show
in Lemma 1 that there exists at least one sub-normalized
POVM, which preserves the classical correlations between
the two systems, as measured in terms of the smoothed
hypothesis testing mutual information. This step is hard
since chain rules, readily available for mutual information,
are not known for this quantity.

Next, we extend this sub-POVM to a full rank-one
POVM Γ(k) by extending the set of outcomes using the
eigendecomposition of the POVM element Γ⊥(k). Note that
this blows up the set of outcomes to a set which contains
at least as many indices as the dimension of the underlying
space. This is because of the additional outcomes which
together correspond to the bad outcome ⊥. However, we
mitigate this issue by using the fact that all these bad
outcomes together have probability at most ε. The key idea
is that instead of using the set of indices with the lowest
probabilities which add up to ε for the extracting the pure
states locally at Alice’s end, we instead use the set of bad
outcomes of our POVM. This allows us to distill local purity
at Alice’s end at the rate log dA − Iεmax(X : RB) , where



the quantity Iεmax(X : RB) can be bounded from above by
H̃ε

max(A), as required.

VI. TECHNICAL LEMMAS

In what follows, for the sake of readability, we will adopt
the shorthand notation for which a dot placed between two
operators denotes the adjoint map, that is, X ·Y := XYX†.

Lemma 1 (Choosing a POVM): Given a bipartite state
ρAB and a rank-one POVM

{
ΛA
x

}
with outcomes in the set

X , consider the post measurement state

ρXRB :=
∑
x

|x⟩⟨x|X ⊗ TrA

[
(ΛA

x ⊗ IRB) |φρ⟩⟨φρ|ARB
]

where |φρ⟩ARB is a purification of ρAB . Then, there exists
a rank-one POVM

{
Λ̃A
y

}
with outcomes in the set Y such

that:
1) for any ε > 0, there exists a subset S ⊂ Y such that

|S| ≤ 2I
ε
max(X:RB)ρXRB and Pr

PY

[S] ≥ 1− ε1/4 ,

where PY is induced by Λ̃ on Y upon measuring ρA;
2) denoting ΠY

S the projector onto the space spanned by
the vectors corresponding to the elements in S and
defining the corresponding projected state as

σY RB :=
ΠY

S · Λ̃A(φARB
ρ )

Tr[ΠS Λ̃(φρ)]
,

we get, with ε′ := ε1/8,

Iε
′

H (Y : B)σ ≥ Iε
′

H (X : B)ρ −O(1) +O(log(1− ε2)) .

Lemma 2 (Dividing the domain): Given the control state

ρXB =
∑
x

PX(x) |x⟩⟨x|X ⊗ ρBx

and a value ε ∈ (0, 1), there exists a bijection σ : X →
[M ]× [N ], such that:

1) M ×N = |X | ;
2) logN < IεH(X : B) + 2 log ε ;
3) let the state after applying the bijection is given by

σMNB :=
∑
m,n

PMN (m,n) |m,n⟩⟨m,n|MN ⊗ ρBmn ;

then there exists, for all m ∈ [M ], a POVM {Θn(m)}
with outcomes labeled by n ∈ [N ], such that∑
m,n

PMN (m,n)
∣∣∣∣∣∣ρmn −

√
Θn(m)ρmn

√
Θn(m)

∣∣∣∣∣∣
1

≤ ε1/4 .

The following corollary that ensures the reduced state
after extraction from X is almost unperturbed.

Corollary 1: Given the state σMNB =∑
m,n PMN (m,n) |m,n⟩⟨m,n|MN ⊗ ρBmn as in Lemma 2,

there exists a unitary WMNB such that both the following
conditions hold simultaneously:∣∣∣∣∣∣TrMB

(
WMNB · σMNB

)
− |0⟩⟨0|N

∣∣∣∣∣∣
1
≤

√
ε1/4 ,

and∣∣∣∣∣
∣∣∣∣∣TrMN

(
WMNB · σMNB

)
−

∑
m,n

PMN (m,n)ρBmn

∣∣∣∣∣
∣∣∣∣∣
1

≤ ε1/4 .

Lemma 3: The following relation holds between
Iεmax(X : RB) and H̃(ε)

max(A):

I2εmax(X : RB)σXR

≤H̃O(ε2)
max (A)ρ −O(log ε) +O(log

ε2

12
) .

VII. THE TWO-PARTY PURITY DISTILLATION PROTOCOL

We now describe the main purity distillation protocol
and prove the achievable one-shot rate as stated in The-
orem III.2. The proof consists in the following protocol.

1) Alice and Bob start with the A and B parts of the state
ρAB in their possession respectively. In the first step,
Alice applies the rank-one POVM

{
Λ̃A
y

}
given by

Lemma 1 on her system A coherently. This means that
Alice borrows log|Y| amount of ancilla and applies
the isometry

V A→Y A
1 :=

∑
y

|y⟩Y
√
Λ̃y

A

on the system A. Let |φρ⟩ARB be a purification of
ρAB , the global state is

(V1 ⊗ IRB) |φρ⟩ARB

=
∑
y

√
PY (y) |y⟩Y |ψy⟩A |ϕy⟩RB

.

Notice that
{
Λ̃A
y

}
is the compressed POVM, whereas

Devetak’s original protocol does not involve measure-
ment compression. Alice then applies the unitary

UAY→AY
1 :=

∑
y

|y⟩⟨y|Y ⊗ UA→A
y

such that Uy |ψy⟩ = |0⟩. This step yields log dA
amount of purity while using log|Y| amount of an-
cilla.

2) Next Alice measures the Y system in the computa-
tional basis to create τY B :=

∑
y PY (y) |y⟩⟨y|Y ⊗ρBy .

In this case we define ρBy for every y ∈ Y as the
reduced state on B conditioned on y. Let S ⊂ Y be
the set of high probability given by Lemma 1 and
let ΠY

S be the projector onto the span of the compu-
tational basis vectors corresponding to the elements
in S. Then, by Fact 1 there exists a local purity
concentration protocol with error at most O(ε1/8)
with rate

log|Y2| ≥ log|Y| − log|S|
≥ log|Y| − Iεmax(X : RB)ρXRB

The net purity at the end of this step is then

log dA − log|Y|+ log|Y| − Iεmax(X : RB)ρXRB

= log dA − Iεmax(X : RB)ρXRB .



3) Alice and Bob are now left with the state

σY1B :=
1

Tr[ΠSτ ]

(
IB ⊗ΠY

S · τY B
)Y1

=
1

Tr[ΠSτ ]

∑
y∈S

PY (y) |y⟩⟨y|Y1 ⊗ ρBy ,

Alice then applies the bijection given by Lemma 2 to
create the state

σMNB :=
∑
m,n

PMN (m,n) |m,n⟩⟨m,n|MN ⊗ ρBmn ,

where MN = |Y1| = |S| and

logN ≤ Iε
1/8

H (Y1 : B)σY1B + log ε1/4 .

Alice sends the systems MN to Bob through the
dephasing channel, which requires at most log|S| ≤
Iεmax(X : RB)ρXRB number of bits. This quantity can
be further bounded by HO(ε2)

max (A), see Lemma 3.
4) Finally, after receiving the system MN , Bob applies

the unitary WMNB given by Corollary 1 such that∣∣∣∣∣∣TrMB

(
WMNB · σMNB

)
− |0⟩⟨0|N

∣∣∣∣∣∣
1
≤ 2ε1/32

to distill logN amount of purity.
5) Corollary 1 also tells us that the state on system B

after Bob applies the unitary WMNB is 2ε1/32 away
from 1

Tr[ΠSτ ]

∑
y∈S PY (y)ρ

B
y .

However, since S is a set of high probability under
PY , this implies that∣∣∣∣∣
∣∣∣∣∣∑

y

PY (y)ρ
B
y −

∑
y∈S PY (y)ρ

B
y

Tr[ΠSτ ]

∣∣∣∣∣
∣∣∣∣∣
1

≤ O(ε1/64) ,

that is, in the end, Bob has a state which is not far
from his original state.
Thus, Bob applies protocol of Theorem III.1 on B
to recover log dB − H̃ε

max(B) amount of purity with
error O(ε1/32). Also, Iε

1/8

H (Y1 : B)σY1B ≥ Iε
1/8

H (X :
B)ρXB −O(1)O(log(1− ε1/4)).

Hence, the total amount of purity recovered is:

κε1/32(ρA) ≥
O(1)

log dAdB − I
√
ε

max(X : RB)ρXRB

− H̃ε
max(B) + Iε

1/8

H (X : B)ρXB + log ε1/32) (2)

which by Lemma 3 is further lower bounded by:

log dAdB − H̃ε
max(A)ρA − H̃ε

max(B)

+ Iε
1/8

H (X : B)ρXB +O(log ε1/32)−O(1) . (3)

At each step the protocol makes an additive error of at
most O(ε1/32), so that the total error of the protocol is
still bounded by O(ε1/32).
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