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We perform an information-theoretical analysis of quantum measurement processes and obtain the
global information balance in quantum measurements, in the form of a closed chain equation for quantum
mutual entropies. Our balance provides a tight and general entropic information-disturbance trade-off, and
explains the physical mechanism underlying it. Finally, the single-outcome case, that is, the case of
measurements with postselection, is briefly discussed.
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It is now well known that, even if Heisenberg uncer-
tainty relations do not describe the disturbance caused on a
quantum system by a quantum measurement [1–3], quan-
tum mechanics does indeed provide the existence of a
monotonic information-disturbance relation: the more use-
ful information is extracted from a quantum system, the
more such a system is disturbed by the measurement. This
fact is apparent from general arguments (if it were possible
to gain information without causing disturbance, then it
would be possible to determine the wave function of an
arbitrary system [4]), as well as from some explicitly
derived trade-off relations obtained for some specific esti-
mation tasks [5].

Despite the enormous relevance a universal relation
between information extraction and disturbance due to a
quantum measurement would have from both a fundamen-
tal and practical point of view, a general approach to the
problem of quantifying such a relation, quite surprisingly,
is still lacking. The main difficulty seems to be that ex-
plicitly known trade-off relations involve quantities (like,
e.g., the average error probability or the average output
fidelity) which strongly rely on the way the classical sig-
nals are encoded into quantum states, i.e., on the structure
of the input ensemble. For this reason, the only known
trade-off curves cover some specific classes of ensembles
enjoying symmetry properties, making the derivation pos-
sible [5].

The approach we propose in this Letter in order to
overcome such a specificity is to work with genuinely
quantum entities. More explicitly, we will introduce a
quantum information gain which constitutes an upper
bound to the information that the apparatus is able to
extract, independently of how this information is encoded,
and a quantum disturbance, which is related to the possi-
bility of deterministically and coherently undoing the cor-
responding state change. Both quantum information gain
and quantum disturbance are intimately related to previ-
ously known and independent notions: Groenewold’s in-
formation gain [6] on one side, and channels coherent
information [7] on the other, the latter applied by

Maccone [8] as a measure of disturbance, in the first
attempt to ‘‘quantize’’ trade-off relations. However, both
of the quantities, as they were originally introduced, are not
applicable to the most general situation. The definitions we
introduce here, not only constitute a proper reformulation
of these latter, but also allow us to elegantly link these
(previously independent) quantities by using the chain rule
for quantum mutual information only, thus establishing a
closed information balance in quantum measurements.
Such a balance provides, as a built-in feature, a tight and
general entropic information-disturbance trade-off rela-
tion. The same approach will be shown to be straightfor-
wardly applicable also to the case of measurements with
postselection.

Quantum instruments.—A general measurement process
MQ on the input system Q, described by the input density
matrix �Q on the (finite-dimensional) Hilbert space HQ,
can be described as a collection of classical outcomes
X :� fmg, together with a set of completely positive
(CP) maps fEQmgm2X [9], such that, when the outcome m
is observed with probability p�m� :� Tr�EQm��Q��,P
mp�m� � 1, the corresponding a posteriori state �Q

0

m :�
EQm��Q�=p�m� is output by the apparatus. This is the CP
quantum instruments formalism introduced by Ozawa
[10,11]. With a little abuse of notation, we can think that
the action of the measurement MQ on �Q is given in
average by the mapping

 M Q��Q� :�
X

m

p�m��Q
0

m �mX :� �Q0X; (1)

where fjmXigm is a set of orthonormal (hence perfectly
distinguishable) vectors on the classical register space X
of outcomes. If the outcomes are discarded before being
read out, that is, if �Q0X in Eq. (1) is traced over X, then
the resulting average map EQ :�

P
mE

Q
m is a channel, i.e., a

CP trace-preserving (TP) map: quantum instruments con-
tain quantum channels as a special case. If, on the other
hand, we are not interested in the a posteriori states but
only in the outcomes probability distribution ~p�m� (that is
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equivalent to tracing �Q0X over Q0), then the resulting
average map �Q � ~p�m� is described by a positive opera-
tor valued measure (POVM), namely, a set of positive
operators fPQmgm2X,

P
mP

Q
m � 1Q, such that p�m� �

Tr��QPQm�: quantum instruments contain POVMs as a spe-
cial case.

We now exploit a very useful representation theorem for
CP quantum instruments [10]: it states that whatever quan-
tum measurement can be modeled as an indirect measure-
ment, in which the input system first interacts with an
apparatus (or probe) A, initialized in a fixed pure state
�A, through a suitable unitary interaction UQA:QA!
Q0A0 ’ QA; subsequently, a particular measurement
MA0 , depending also on UQA, is performed on the appa-
ratus. In addition, by introducing a third reference system
R purifying the input state as �RQ, TrR��

RQ� � �Q, we
are in the situation schematically represented as in Fig. 1:
right after the unitary interaction UQA, the global tripartite
state is j�RQ0A0 i :� �1R �UQA��j�RQi � j�Ai�, and the
measurement on the apparatus can be chosen such that [12]

 �idRQ
0
�MA0 ���RQ0A0 � :�

X

m

p�m��RQ0A00
m �mX

:� �RQ0A00X; (2)

where �RQ0A00
m are pure states such that TrA00 ��

RQ0A00
m � �

�idR � EQm���RQ�=p�m� �: �RQ
0

m and TrR��
RQ0
m � � �Q

0

m ,
and mX are the classical register states, as before. The
above equation is nothing but a particular extension of
Eq. (1); in fact, by tracing �RQ0A00X over R and A00, one
obtains the state �Q0X in Eq. (1). (For this reason, in the
following, where no confusion arises, we will adopt the
convention that to omit indices in the exponent of a multi-
partite state means to trace over the omitted indices.) Even
though it is a simple rewriting, Eq. (2) will turn out to be
very useful for our analysis, in that it gives a deeper insight
in understanding the overall information balance.

Quantum information gain.—Having in mind Eq. (2),
we define the (quantum) information gain ���Q;MQ� of
the measurement MQ on the input state �Q as

 ���Q;MQ� :� IR:X��RX�; (3)

where IA:B��AB� :� S��A� � S��B� � S��AB� is the usual
quantum mutual information [13]. Because of the particu-
lar form of �RQ0A00X, it is possible to rewrite such a quantity
as ���Q;MQ� � S��R� �

P
mp�m�S��

R
m�, for �Rm :�

TrQ0 ��
RQ0
m �. In other words, ���Q;MQ� is the �-quantity

[14] of the ensemble induced on the system R by the
measurement MQ. In communication theory in fact, the
information gain is usually better understood as being
about the remote system R, while Q, correlated with R,
represents just the carrier that is measured. Nonetheless, it
is a crucial point, for what follows, that the information
gain (3) only depends on the input state �Q and on the
measurement MQ performed onto it, regardless of the
particular extension constructed in Eq. (2), [15]. Indeed
���Q;MQ� depends only on the input state �Q and on the
POVM fPQmgm2X induced by MQ, regardless of the par-
ticular state reduction maps fEQmgm2X and of the explicit
form of the a posteriori states f�Q

0

m gm2X .
Holevo’s upper bound [16] on the accessible information

provides a clear interpretation of our definition of infor-
mation gain: ���Q;MQ� is the Holevo bound to the amount
of classical information which can be reliably extracted by
the measurement MQ from the input state �Q. In fact,
consider whatever classical alphabet X :� fxg, however
encoded on the input state as �Q �

P
x�

Q
x : in this case,

the joint input-output probability distribution is given by
p�x;m� � Tr�EQm��

Q
x ��. On the other hand, every such an

encoding can be (formally) seen as induced by the mea-
surement of a suitable POVM over the reference system R,
in formula, �Qx � TrR��PRx � 1Q��RQ�, for some POVM
fPRx gx2X. This means that we can also write p�x;m� �
Tr��RmPRx �, implicitly considering a ‘‘dual’’ situation, in
which the encoded input is m and the decoded letter is x.
It is clear then, that the classical mutual information
I�X:X�—which is a symmetric function of its argu-
ments—between the alphabet X and the indices in X is
upper bounded by the �-quantity of the ensemble
fp�m�; �Rmgm2X, which exactly corresponds to
���Q;MQ�. In formula: I�X:X� 	 ���Q;MQ�.

It is interesting here to compare our definition of infor-
mation gain to the one dating back to Groenewold [6] (and
which, by the way, was never put in relation with what-
soever notion of disturbance). He defined the information
gain for von Neumann–Lüders measurements to be equal
to �G��

Q;MQ� :� S��Q� �
P
mp�m�S��

Q0
m �, conjecturing

its positivity. Later Ozawa [17] generalized Groenewold’s
definition to take into account all possible measurements
and characterized those with �G 
 0, explicitly pointing
out that the general quantum instruments formalism com-

FIG. 1. The action of a quantum measurement MQ on the
input state �Q (top), can always be extended as a tripartite
indirect measurement (bottom), where the apparatus A, after
having properly interacted with the input system through UQA,
undergoes the measurement MA0 . The conditional output pure
states f�RQ0A00

m gm are such that TrRA00 ��
RQ0A00
m � � �Q

0

m , 8m. See
Eqs. (1) and (2) in the text.
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monly allows situations where �G < 0. This feature, mak-
ing the interpretation of �G as an information gain problem-
atic, comes from the fact that Groenewold-Ozawa
definition, contrarily to ours, explicitly depends on the
particular a posteriori states f�Q

0

m gm2X. Nonetheless, there
are situations (to be shown in the following) where
�G��Q;MQ� � ���Q;MQ�. Incidentally, our definition
of information gain (3) always returns the same numerical
value of Winter’s ‘‘intrinsic information’’ of a POVM [18],
thus gaining an operational interpretation, and of Hall’s
‘‘dual upper bound’’ on accessible information [19], even
if their definitions slightly differ from ours.

Quantum disturbance.—As we anticipated in the intro-
duction, our notion of disturbance is closely related to that
of coherent information. A first step in this direction is due
to Maccone [8], who however used a different definition,
not suitable for the case of general quantum measurements.
We define the (quantum) disturbance ���Q;MQ� caused
by the measurement MQ on the input state �Q as

 ���Q;MQ� :� S��Q� � IR!Q
0X

c ��RQ0X�; (4)

where IA!Bc ��AB� :� S��B� � S��AB� is the so-called co-
herent information [7]. In the following we will show the
reason why the quantity ���Q;MQ� can be understood as
the disturbance.

Given a quantum channel EQ, from Q to Q0, acting on
the input state �Q, it is known that the coherent information
IR!Q

0

c ��idR � EQ���RQ�� plays a central role in quantifying
how well the channel preserves quantum coherence. In
fact, coherent information turns out to be intimately related
to the possibility of constructing a recovering operation
RQ0 , from Q0 to Q, correcting the action of EQ: the closer
the coherent information is to its maximum value S��Q�,
the closer (on the support of �Q) the corrected channel
RQ0 � EQ is to the ideal channel idQ. In particular, in
Ref. [20] it is proved that whenever S��Q� � IR!Q

0

c ��idR �
EQ���RQ�� 	 �, then it is possible to explicitly construct a
correcting channel (generally depending also on �Q, but
for sake of clarity of notation, we will drop such depen-
dence, leaving it understood) RQ0 such that Fe��Q;RQ0 �

EQ� 
 1� 2
���
�
p

, where Fe��Q;RQ0 � EQ� :�
h�RQj�idR �RQ0 � EQ���RQ�j�RQi is the entanglement
fidelity [21] of the corrected channel RQ0 � EQ with re-
spect to the input state �Q. The value of Fe��Q;RQ0 � EQ�
says how close is the corrected channel RQ0 � EQ to the
identity channel idQ on the support of �Q. If such value is
close to 1, it means not only that RQ0�EQ��Q�� is close to
�Q, but also that quantum correlations between Q and R
are almost preserved.

The correction exploited in Ref. [20] is blind, in the
sense that the channel RQ0 is a fixed one and works well on
the average channel EQ. In our setting, on the contrary, the
indices m are by definition visible, in that they are the
outcome of the measurement; this fact reflects the form of

Eq. (4), where the output Q0 is considered jointly with the
outcomes space X. Then, following [20], a fixed correct-
ing channel Q0X ! Q results in a family of correcting
channels RQ0

m :Q0 ! Q, depending on the measurement
readout m. We thus obtained the following:

Theorem 1 (Approx. measurement correction) If
���Q;MQ� 	 �, then there exists a family of recovering
operations fRQ0

m gm2X such that

 Fe��Q;
X

m

RQ0
m � E

Q
m� 
 1� 2

���
�
p
: �

We notice that also the converse statement is true, namely,
an approximately reversible instrument is almost undis-
turbing. In fact, as proved in Ref. [22], a sort of quantum
Fano inequality holds for every set of channels fRQ0

m gm2X,
namely, ���Q;MQ� 	 f�1� Fe��Q;

P
mR

Q0
m � E

Q
m��,

where f�x� is some positive, continuous, monotonic in-
creasing function such that f�0� � 0.

As we said, our definition of disturbance (4) generalizes
the usual notion of coherent information loss for quantum
channels, which can be recovered from our formula (4) by
simply tracing over the outcomes space X, thus obtaining
the quantity S��Q� � IR!Q

0

c ��RQ0 �, which, thanks to the
data-processing inequality, is always greater than or equal
to S��Q� � IR!Q

0X
c ��RQ0X�. In other words, when discard-

ing the outcomes (as done in Ref. [8]), the disturbance is
higher, thus providing a too much loose trade-off. The
importance of taking into account the measurement out-
comes during the correction is then clear [23].

Global information balance.—Before proceeding, let us
explicitly calculate the disturbance (4) for the state
�RQ0A00X: because of the classical feature of X, we find

 ���Q;MQ� � IR:A00X��RA00X�: (5)

Then, by using the chain rule for quantum mutual infor-
mation [24], valid for all tripartite states �ABC, that is
IA:C��AC� � IA:BjC��ABC� � IA:BC��ABC�, where
IA:BjC��ABC� :� S��AC� � S��BC� � S��ABC� � S��C� is
the quantum conditional mutual information, we can put
together Eqs. (3) and (5) thus obtaining the global balance
of information in a quantum measurement as

 ���Q;MQ� ����Q;MQ� � ���Q;MQ�: (6)

The positive quantity

 ���Q;MQ� :� IR:A00jX��RA00X� �
X

m

p�m�IR:A00 ��RA
00

m �;

(7)

for �RA
00

m :� TrQ0 ��
RQ0A00
m �, measures the ‘‘missing informa-

tion’’ in terms of the hidden correlations between the
reference system and some inaccessible degrees of free-
dom—internal degrees of freedom of the apparatus or
environmental degrees of freedom which interacted with
the apparatus during the measurement process—which
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cannot be controlled by the experimenter [25]. The exis-
tence of a trade-off between information gain and distur-
bance is then a direct evidence of the appearance of such
correlated hidden degrees of freedom.

The quantity ���Q;MQ� is null if and only if, for every
outcome m, the reference and the apparatus are in a fac-
torized state, that is, �RA

00

m � �Rm � �
A00
m , 8m. This is the

case, for example, of the so-called ‘‘single-Kraus’’ or
‘‘multiplicity free’’ instruments, for which every map EQm
is represented by a single contraction as EQm��Q� �
Em�

QEym, with EymEm 	 1Q. Hence, this kind of measure-
ments maximize the information gain for a fixed distur-
bance, or, equivalently, minimize the disturbance for a
fixed information gain: they are optimal measurements—
in a sense, noiseless—closely related to the notion of
‘‘clean measurements’’ introduced in Ref. [26]. Single-
Kraus measurements satisfy ���Q;MQ� � ���Q;MQ�,
while, in general cases, the trade-off ���Q;MQ� 	
���Q;MQ� holds. Moreover, for single-Kraus measure-
ments, Groenewold-Ozawa information gain coincide with
ours, namely, �G��Q;MQ� � ���Q;MQ�, as anticipated
before.

Measurements with postselection.—It is a remarkable
advantage of our approach, the fact that the analysis of the
single-outcome case is possible. The importance of such
an analysis is strongly motivated by D’Ariano in Ref. [3].
Let us define the single-outcome versions of Eqs. (5)–(7)
as �m��

Q;MQ� :� S��R� � S��Rm�, �m��
Q;MQ� :�

S��Q� � IR!Q
0

c ��RQ
0

m �, and �m��
Q;MQ� :� IR:A00 ��RA

00

m �.
These three quantities satisfy the analogous of Eq. (6),
that is �m��

Q;MQ� � �m��
Q;MQ� � �m��

Q;MQ�.
Notice now that, while �m��Q;MQ� is always positive
(since it is a quantum mutual information), both
�m��Q;MQ� and �m��Q;MQ� can assume negative val-
ues: while a negative conditional information gain can be
well understood also in classical information theory, a
negative conditional disturbance simply means that the
entanglement between R and Q0, conditionally on a par-
ticular outcome, is higher than the original entanglement in
j�RQi.
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