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General Theory of Environment-Assisted
Entanglement Distillation

Francesco Buscemi and Nilanjana Datta

Abstract—We evaluate the one-shot entanglement of assistance
for an arbitrary bipartite state. This yields another interesting re-
sult, namely a characterization of the one-shot distillable entangle-
ment of a bipartite pure state. This result is shown to be stronger
than that obtained by specializing the one-shot hashing bound to
pure states. Finally, we show how the one-shot result yields the op-
erational interpretation of the asymptotic entanglement of assis-
tance proved by Smolin and coworkers.

I. INTRODUCTION

O NE of the most basic and widely studied entanglement
measures for bipartite quantum states is the entanglement

of formation (EoF) [1], a quantity so named because it was in-
tended to quantify the resources needed to create (or form) a
given bipartite entangled state. The EoF of any bipartite pure
state is quantified by the entropy of entanglement, which is equal
to the von Neumann entropy of the reduced state of a subsystem.
The EoF of a bipartite mixed state is then defined via the
convex roof extension, i.e., as the minimum average entangle-
ment of an ensemble of pure states that represents

(1)

where is an ensemble of pure biparite states
such that , and is the von Neu-
mann entropy of the reduced state . The
popularity of the EoF is partly due to its formal elegance and
the many nice properties it enjoys [2], [3], and perhaps also due
to its connections with the additivity problem in quantum infor-
mation theory [4], [5].
From the operational point of view, the EoF is associated with

the entanglement manipulation protocol by which two distant
parties, say Alice and Bob, prepare a given bipartite quantum
state, starting from an initial entangled state which they share,
by using only local operations and classical communication
(LOCC). It turns out that the optimal (i.e., minimum) rate, at
which entanglement has to be consumed in order for Alice and
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Bob to create multiple copies of the state with asymptotically
vanishing error, is given by the regularized EoF of the state [6].
Soon after the introduction of the EoF, another quantity,

namely the entanglement of assistance (EoA) [7], was intro-
duced as its “dual.” It is defined analogously to EoF but with
the minimization over ensembles replaced by a maximization,
i.e.,

(2)

Unlike the EoF, the EoA is not an entanglement monotone,
and hence, it can in general increase under LOCC [8]. However,
like the EoF, the EoA too can be associated with an entangle-
ment manipulation protocol, namely the one by which Alice
and Bob distill entanglement from an initial mixed bipartite
state which they share, when a third party (say Charlie), who
holds the purification of the state, assists them. Charlie is
allowed to do local operations on his share of the tripartite pure
state, and his assistance is in the form of one-way classical
communication to Alice and Bob. This is the sort of scenario
which occurs, for example, in the case of environment-assisted
quantum error correction [9]–[14], in which errors, incurred
from sending quantum information through a noisy environ-
ment, are corrected by using classical information obtained
from a measurement on the environment. In this case, the tri-
partite structure Alice–Bob–Charlie is mirrored by the structure
sender–receiver–environment, and the assistance from Charlie
is replaced by the ability to perform measurements on the
environment and to exploit the resulting information for error
correction.
Another area in which the EoA arises is in the study of lo-

calizable entanglement in spin systems [15]–[18]. The scenario
here is as follows: a pure state of a system of inter-
acting spins is given, and the goal is to localize (or “focus”) as
much entanglement as possible between two arbitrarily chosen
spins, by performing a suitable measurement on the remaining

spins. In this case, the assisting party is actually divided
into many subsystems (which are the spins) and so it is
natural to ask what happens when the assisting measurements
are restricted to be local in each subsystem. The amount of en-
tanglement that can be focused in this case is referred to as the
localizable entanglement, and it is always at most as much as
the EoA. In fact, in the case in which the assisting parties are al-
lowed to perform global measurements on all their subsystems
at once, the localizable entanglement obviously equals the EoA.
In the literature, one encounters cases in which the EoA is

used to characterize operational tasks of assisted distillation
studied in the generic scenario, where no assumptions are
made on the state to be distilled. This is often referred to as the
“one-shot” scenario. However, the definition of the EoA given
in (2) has been shown to have an operational relevance only in
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the asymptotic regime, i.e., when asymptotically many copies
of the same state are available for assisted distillation [11].
This points to an apparent mismatch between the operational
task and the quantity used to characterize it. In order to remedy
this problem, one should start from the operational task itself,
and from it, evaluate an expression quantifying the amount
of entanglement that can be distilled under assistance from a
single sample of an arbitrary bipartite state. This leads to a
one-shot EoA, which, by its very construction, has a direct
operational interpretation.
In this paper, we obtain bounds on the one-shot EoA in the

scenario mentioned previously. As an intermediate step, we ob-
tain a complete characterization of the one-shot distillable en-
tanglement of an arbitrary bipartite pure state. This result im-
proves on previous known bounds, derived from the one-shot
hashing bound [23]. Finally, we apply our results to get an al-
ternative proof of the fact [11] that the regularized EoA is the
optimal rate of environment-assisted entanglement distillation
in the asymptotic scenario.
This paper is organized as follows. In Section II, we intro-

duce the necessary notation and definitions. In Section III, we
evaluate the one-shot distillable entanglement of a pure bipartite
state. The one-shot EoA is introduced in Section IV and evalu-
ated in Section V. SectionVI deals with the asymptotic scenario,
where some previous results are recovered. Finally, Section VII
concludes the paper with a summary and an open question.

II. NOTATION AND DEFINITIONS

A. Mathematical Preliminaries

Let denote the algebra of linear operators acting on a
finite-dimensional Hilbert space and let de-
note the subset of positive operators of unit trace (states). Fur-
ther, let denote the identity operator. Throughout
this paper, we restrict our considerations to finite-dimensional
Hilbert spaces, and we take the logarithm to base 2. For any
given pure state , we denote the projector simply as
. Moreover, for any state , we define to be the projector
onto the support of .
For a state , the von Neumann entropy is defined

as . Further, for a state and a positive
operator such that , the quantum relative
entropy is defined as whereas
the relative Rényi entropy of order is defined as

(3)

For given orthonormal bases and in iso-
morphic Hilbert spaces of dimension , we define
the standard maximally entangled state (MES) of rank
to be

(4)

In order to measure how close two states are, we will use the
fidelity, defined as

(5)

and the trace distance

(6)

In what follows, (5) and (6) will sometimes be directly extended
to operators other than normalized states, if required.
The trace distance between two states and is related to the

fidelity as follows (see, e.g., [19]):

(7)

where we use the notation
The following lemmas will prove useful.
Lemma 1 ([20]): For any self-adjoint operators and , and

any positive operator

where denotes the positive part of the difference op-
erator .
Lemma 2 (Gentle Measurement Lemma [21], [22]): For a

state and an operator , if ,
then

The same holds if is a subnormalized density operator.
Lemma 3: For any pure state and any given , if

is an operator such that , then

(8)

Proof: Since , by Lemma 2, we have that

The lower bound on the trace distance in (7) then yields

(9)

Lemma 4: For any normalized state and any , if
, then

(10)

where .
Proof: By Lemma 2, the condition implies

that . Let us define .

Due to Lemma 11 in [23], we have that

(11)

Let be the normalized state defined as . Since
, we obtain the statement of the lemma.

In this paper, we consider entanglement distillation under
LOCC transformations. In this context, a result by Lo and
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Popescu [24] on entanglement manipulation of bipartite pure
states plays a crucial role. They proved that any LOCC trans-
formation ( ) on a bipartite pure state ,
shared between two distant parties Alice and Bob, is equiva-
lent to an LOCC transformation with only one-way classical
communication, which can be represented as follows:

(12)

where the operators are unitary and the operators satisfy
the relation . Henceforth, we say that an LOCC
transformation is of the Lo–Popescu form if it can be expressed
as in (12). Consequently, for a map of the Lo–Popescu form,
we have

(13)

where .

B. Entropies and Coherent Information

Optimal rates of the entanglement distillation protocols con-
sidered in this paper are expressible in terms of the following
entropic quantities.
For any , any , and any ,

we define the following entropic function (introduced in [25])

(14)

Notice that for , the function defined previously reduces
to the relative Rényi entropy of order given by (3).
In this paper, we are in particular interested in the quantity

(15)

where denotes the projector onto the support of .
Note that

(16)

which is the relative Rényi entropy of order zero. This quantity
acts as a parent quantity for the zero-coherent information, de-
fined as follows:

(17)

the nomenclature arising from its analogy with the ordinary co-
herent information , which is expressible in a sim-
ilar manner, when the zero-relative Rényi entropy is replaced by
the ordinary relative entropy

(18)

(19)

The aforementioned equality follows easily by expanding the
last term according to the definition of the quantum relative en-
tropy and by noticing that the minimum is achieved when
, since and .

(For the complete derivation, see, for example, Lemma 6 in
[25].)

If is a purification of the state , then

(20)

where .
Note in particular that for an MES of rank , as defined by

(4)

(21)

Another entropic quantity of relevance in this paper is the
min-entropy of a state, which is defined for any state as follows
[26]:

(22)

where denotes the maximum eigenvalue of the state .
For one-shot entanglement distillation protocols, it is natural

to allow for a finite accuracy, i.e., a nonzero error (say ),
in the extraction of singlets from a given state. In this case, the
optimal rates of the protocols are given by “smoothed versions”
of the entropic quantities introduced previously. In order to de-
fine them, we consider the following sets of positive operators
for any normalized state , and any :

(23)

(24)

Further, by restricting the states in (23) to be pure states,
we obtain the subset

(25)

It was proved in [27] that for a bipartite pure state , for
any

(26)

where .
The relevant smoothed entropic quantities are then defined as

follows:
Definition 1: For any given , the smoothedmin-entropy

of a state is defined as

(27)

We consider two different smoothed versions of the zero-co-
herent information, defined as follows:
Definition 2: The state-smoothed zero-coherent information

is given by

(28)
and the operator-smoothed zero-coherent information is given
by

(29)
Remark 1: A variant of the operator-smoothing introduced

previously has been used in [28]–[30]. Note, however, that in
this paper, we only use the operator-smoothed zero-coherent in-
formation as an intermediate quantity: the main results are given
entirely in terms of the more familiar state-smoothed quantities.
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The following technical lemmas involving the oper-
ator-smoothed coherent information are used in proving
some of our main results.
Lemma 5: If for a bipartite state and a pure state ,

for any given

(30)

then

(31)

Proof: Since the state is pure,
. It follows that . Using

this fact, (29) and (14), we obtain

(32)

where the second inequality follows from the fact that
, since .

Lemma 6: For any bipartite pure state , any LOCCmap
, and any

(33)

Proof: Since the LOCCmap acts on a pure state, without
loss of generality, we can assume it to be of the Lo–Popescu
form (12). Defining , we have, starting from
(29), the following equation shown at the bottom of the page
for any state . In the above, is the operator in

for which the maximum in the first line is achieved;
is a state in such that ,

and denotes the dual map of , defined, for
any operator and state , as .

Let us now define . Then, con-
tinuing from (34), shown at the bottom of the page, we obtain

(35)

for any state , since . Since the
aforementioned inequality holds for any state , we have in
particular that

(36)

We next prove that . In fact, since
, by the Gentle Measurement Lemma

(37)

We therefore have by definition of

(38)

where the second line follows from the cyclicity of the trace, the
first inequality follows from Lemma 1, and the last inequality

(34)
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follows from (37). This implies that .
Hence, we have from (36)

(39)

which completes the proof.

Lemma 7: For any bipartite pure state and any

(40)

where . Further

(41)

where .
Proof: We first prove (40). Starting from (28), we have

(42)

where in the fifth line we made use of (26).
Next, we prove (41). By Lemma 4, for any ,

the normalized pure state is such that

, implying that .
Let us define (43), which is shown at the bottom of the page, for
any given bipartite pure state : Obviously, for ,

, with the set being de-
fined by (25). Then, we have (44) and (45), shown at the bottom
of the page, where and .
In the above, the second inequality follows from the fact that

, the third identity follows from the
fact that as stated in (26), and the last
identity holds because is a pure state.

III. DISTILLABLE ENTANGLEMENT OF A SINGLE PURE STATE

In order to approach the problem of quantifying the one-shot
EoA of an arbitrary bipartite mixed state, we start from the
simple but insightful case in which two distant parties, say Alice
and Bob, initially share a single copy of a pure state .
Their aim is to distill entanglement from this shared state (i.e.,
convert the state to an MES) using LOCC only. For sake of gen-
erality, we consider the situation where, for any given , the
final state of the protocol is -close to an MES, with respect to
a suitable distance measure. More precisely, we require the fi-
delity (5) between the final state of the protocol and an MES to
be .

(43)

(44)

(45)
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Definition 3 ( -Achievable Distillation Rates For Pure
States1): For any given , a real number is said to
be an -achievable rate for one-shot entanglement distillation
of a pure state , if there exists an integer

and an MES such that

(46)

for some LOCC operation .
Definition 4 (One-Shot Pure-State Distillable Entanglement):

For any given , the one-shot distillable entanglement,
, of a pure state is the maximum of all

-achievable entanglement distillation rates for the state .
Bounds on the one-shot distillable entanglement of a pure

state are given by the following theorem.
Theorem 1: For any bipartite pure state and any

(47)
where , , and is a number
included to ensure that the lower bound in (47) is the logarithm
of an integer number.
Remark 2: The aforementioned theorem shows that, for any

given , the smoothed min-entropy essentially
characterizes the one-shot distillable entanglement of the bipar-
tite pure state . In particular, for perfect one-shot environ-
ment-assisted entanglement distillation, i.e., , we obtain
the identity

(48)

Remark 3: It is interesting to compare the lower bound of
Theorem 1 with the one-shot hashing bound proved in Lemma
2 of [23] for an arbitrary (possibly mixed) state. For pure states,
using Lemma 7, the latter yields

(49)

where . It is evident that the lower bound in The-
orem 1 is tighter than (49), in particular because it does not have
any explicit logarithmic dependence on the smoothing param-
eter . (For example, in contrast to (47), the aforementioned
inequality provides a trivial bound in the case ). From
the technical point of view, this arises as an artifact of random
coding arguments used to derive (49), whereas, for the case of
pure states, we can directly employ Nielsen’s majorization cri-
terion.
The proof of Theorem 1 can be divided into the following two

lemmas.
Lemma 8: For any bipartite pure state and any

(50)

where is the least number such that the left-hand side is
equal to the logarithm of a positive integer.

Proof: Let us begin by considering the case . In this
case, Nielsen’s majorization theorem [31] implies that, using

1For the more general case of mixed states, see [23]

LOCC, it is possible to exactly convert any pure state

to an MES of rank equal to , where denotes the

maximum eigenvalue of the reduced density matrix . Using
the definition (27) of the min-entropy we then infer that

(51)

If we allow a finite accuracy in the conversion, a lower bound
to the distillable entanglement can be given as follows.
For any , by Nielsen’s theorem, there

exists an LOCC map such that

(52)

where .
On the other hand, due to the monotonicity of fidelity under

the action of a completely positive trace-preserving map

(53)

This yields the bound , for any
. In particular, we have that

(54)

Since the two sets and
coincide [27], we finally arrive at

(55)

Lemma 9: For any bipartite pure state and any

(56)

for .
Proof: Let be the maximum of all achievable rates

of entanglement distillation for the pure state , i.e.,
. This means that there exists an

LOCC transformation that maps into a state
which is -close to an MES of

rank , i.e., . Then

(57)

for , where the first, second, and third inequalities
follow from Lemmas 5–7, respectively.

IV. ONE-SHOT EOA

As stated in the introduction, the definition of the EoA arises
naturally when considering the task in which Alice and Bob dis-
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till entanglement from an initial mixed bipartite state which
they share, when a third party (say Charlie), who holds the pu-
rification of the state, assists them, by doing local operations on
his share and communicating classical bits to Alice and Bob.
In order to express these ideas in a mathematically sound

form, we start by noticing that any strategy that Charlie may em-
ploy can be described as the measurement of a positive operator-
valued measure (POVM) , followed by the communica-
tion, to both Alice and Bob, of the resulting classical outcome .
Since the state shared between Alice, Bob, and Charlie is pure,
say , Charlie’s POVM’s are in one-to-one correspon-
dence with decompositions of into ensembles ,
via the relation . The fact
that Charlie announces which outcome he got, means that Alice
and Bob can apply a different LOCC map for each value of .
An important point to stress now is that, in general, the distil-

lation process is allowed to be approximate. This is needed, in
particular, if one later wants to recover, from the one-shot set-
ting, the usual asymptotic scenario, where errors are required to
vanish asymptotically but are finite otherwise. In the classically
assisted case, we are studying here, since the index is visible
to Alice and Bob, they can apply a different LOCC map for
each state . We can hence choose to evaluate the distillation
accuracy according to a worst case or an average criterion. Here,
we choose the average fidelity as a measure of the “expected”
accuracy. This leads us to define the maximum amount of en-
tanglement that can be distilled in the assisted case, namely, the
one-shot EoA as shown in (58) at the bottom of the page where
each is an LOCC map from to .
As proved in Appendix A, the maximization over Charlie’s

measurement in the aforementioned definition can always be re-
stricted, without loss of generality, to rank-one POVM’s. Since
rank-one POVM’s at Charlie’s side are in one-to-one correspon-
dence with pure-state ensemble decompositions of , we can
equivalently write (59) shown at the bottom of the page.
In order to quantify then, it is sufficient to quan-

tify the maximum expected amount of entanglement that can be
distilled, in average, from any given ensemble of pure bipartite
states. This is the aim of the following section.

V. DISTILLABLE ENTANGLEMENT OF AN ENSEMBLE
OF PURE STATES

Given an ensemble of pure states, we define,
for any given , the one-shot distillable entanglement of
as

(60)

where each is an LOCCmap from to . According to
(59), the one-shot EoA of a given mixed state is given
by

(61)

where the maximum is over all possible pure-state ensemble
decompositions of .
For any given ensemble of pure states, we

define the quantity

(62)

where . This quantity can be intuitively inter-
preted as a conservative estimate of the amount of entanglement
present in the ensemble . Further, for any such ensemble, and
any given , let us define the set

(63)

and let denote the set obtained from by re-
stricting the pure states to be normalized.

(58)

(59)



BUSCEMI AND DATTA: GENERAL THEORY OF ENVIRONMENT-ASSISTED ENTANGLEMENT DISTILLATION 1947

Theorem 2: For any given ensemble of pure
states and any

(64)
where , , and is a number
which is included to ensure that the lower bound in (64) is the
logarithm of an integer number.
As a note, we explicitly remark that Theorem 2 gives the fol-

lowing characterization of the one-shot EoA for :

(65)

where the maximum is over all possible pure-state ensemble
decompositions of .
The proof of Theorem 2 is divided into the following two

lemmas.
Lemma 10 (Direct Part): For any pure-state ensemble

and any

(66)

where is the minimum number in such that the right-
hand side (RHS) is equal to the logarithm of an integer number

.
Proof: From Theorem 1, we know that, given the pure

bipartite state , Alice and Bob can distill

ebits with zero error. Hence, given the ensemble
, Alice and Bob can distill, without error, at

least ebits. For any pure-state en-

semble , let us then introduce the quantity

.

If a finite accuracy is allowed, then it is possible to
give a lower bound on the one-shot distillable entanglement

as follows. Let us consider the set of ensembles of
normalized pure states of the form , such that

. Then, for any ensemble in such
a set, there exist LOCC maps such that

(67)

where denotes an MES of rank . Equivalently,

, for all . Then

(68)

where the second line follows from the monotonicity of fidelity
under completely positive trace-preserving (CPTP) maps, the
third line follows from the concavity of the fidelity, and the last
identity follows from (67). Hence, we conclude that there exist
LOCC maps for which

(69)

that is

(70)

for any in the set introduced previously. By maximizing
over all such ensembles and comparing the result with

the definition in (62), we obtain the statement of the lemma.

Lemma 11 (Converse Part): For any pure-state ensemble
and any

(71)

where .
Proof: Let be a positive integer such that
. According to (60), this means that there exist LOCCmaps

such that

(72)

Since the maps act on pure states, without loss of generality,
we can assume them to be of the Lo–Popescu form (12).
Further, (72), in particular, informs us that

(73)

This fact in turns implies that

(74)

for any state . To obtain the last inequality, we simply used
the fact that , for any . We
then choose so that we obtain (75) shown at the bottom of
the next page. From (73)–(75), we infer that

(76)

Let us now introduce an auxiliary system and an or-
thonormal basis for it that keeps track of the clas-
sical outcome labeling the states in . Let us denote by

the projector . By further introducing the states
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and ,
so that , we have

(77)

where the operator in the third line is the one achieving the
maximum, and in the fourth line is any state in . In
particular, since , we have that

(78)
for any state .
Let us then choose to be the state such that we ob-

tain (79) shown at the bottom of the page. Moreover, note that

, since . In fact,
the operator also belongs to the following set of
quantum–classical (q–c) operators shown in (80) at the bottom
of the page.
Hence, we can write (81) shown at the bottom of the page.
Let the Kraus representations of the CPTP maps

satisfying (72) be written as , so

that for all . Using these, we construct a
CPTP map as

(82)

In terms of the map so constructed

(83)

Defining the q–c state , we have,
continuing from (81), (84) shown at the bottom of the next page
where is the q–c operator achieving
the maximum in the second line. This implies that

(85)
for any state .

(75)

(79)

(80)

(81)
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Due to the fact that the maps are in the Lo–Popescu form
(12), it follows that the map (obtained from the ’s) is also
in the Lo-Popescu form. The identity (13) then implies that

(86)
for any state . By using the dual map

(87)

for any state . By denoting the operator
as , we have for any

state

(88)

since . Let us also choose
so that

(89)

Using the particular form (82) of , and the facts that
is a q–c state and , we can prove that the
operator , using arguments similar to
those leading to (38).
Hence, continuing from (88), we can write (90) shown at the

bottom of the page.
Let . Then, for any in

, let us define . As a
consequence of Lemma 3, we have that

, so that we obtain (91) shown at the bottom of the
page where we used the fact that

, since is a pure state.

VI. ASYMPTOTIC EOA

Consider the situation in which three parties, Alice, Bob, and
Charlie, jointly possess multiple (say ) copies of a tripartite
pure state . Alice and Bob, considered in isolation,
therefore possess copies of the state , i.e.,
they share the state . We refer to this situation as the “i.i.d.
scenario,” in analogy with the classical case of independent

(84)

(90)

(91)
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and identically distributed (i.i.d.) random variables. We define
the asymptotic EoA of a state as

(92)

where for any , denotes the one-shot EoA of
the state , defined in (58) and quantified in (61) and (64).
The notation was used in [11] to denote the regu-

larized EoA, formally defined as from (2).
The aim of this section is to show that the two quantities coin-
cide. This provides an alternative proof of the operational inter-
pretation of the regularized EoA given in [11].
The main result of this section is the following theorem.
Theorem 3: For any bipartite state

(93)
where for any state

(94)

denotes its EoA, with .
In order to prove this, we first need to introduce a few more

definitions. Let be a q–c state, i.e.,

(95)

for some probabilities , , some normalized
states , and some orthogonal rank-one
projectors (that we fix here once and for all). As
it has been done already in (80), along the proof of Lemma 11,
we define the sets

(96)

and (97) shown at the bottom of the page. The sets defined
previously are analogous to those introduced in (23) and (24),

with the difference that the q–c structure of the argument
is here maintained.
For technical reasons that will be apparent in the proofs, we

also need to introduce an additional smoothed zero-coherent in-
formation, besides those in (28) and (29), defined as, for any q–c
state and any

(98)

We then proceed by proving the following lemma, which is
nothing but a convenient reformulation of Theorem 2.
Lemma 12: For any bipartite state and any

(99)

where the maxima are taken over all possible pure-state ensem-
bles such that , and for a
given ensemble , In
the above, the real number is included to ensure that
the lower bound is equal to the logarithm of a positive integer.
For the sake of clarity, we divide the proof of the afore-

mentioned Lemma into two separate lemmas. The first is the
following.
Lemma 13: For any given ensemble of pure

states and any

(100)

where , and is de-
fined in (29).

Proof: Equation (90) in the proof of Theorem 2, that is,
(101) which is shown at the bottom of the page. already proves
the statement, since .

Lemma 14: For any given ensemble of pure
states and any

(102)

(97)

(101)
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where and is defined
in (98).

Proof: The statement is a direct consequence of the lower
bound in Theorem 2. This can be shown as follows:

(103)

since , with

and , because is a pure state.
To obtain the identity on the third line, we made use of the fact
that .

The proof of Theorem 3 can be divided into the following two
lemmas.
Lemma 15: For any bipartite state

(104)

Proof: Let be an ensemble of pure states
for and be an ensemble of pure states
for . First of all, note that the pure states need not
be factorized. For this ensemble, define the tripartite state

(105)
where , with being an or-
thonormal basis of .
From (99) of Lemma 12, we have for any given

(106)

with . We then have

(107)

The proof of (107) can be found in Appendix B

From the definition of the state , it follows that for the
ensemble

(108)

where . From (107) and (108), we hence
obtain

(109)

The statement of the lemma can then be obtained by the usual
blocking argument.

Lemma 16: For any bipartite state

(110)

Proof: From (99) of Lemma 12, we have for any given

(111)

where the maximization is over all possible pure-state decom-
positions of the state .
From Lemma 14 of [25], we have the following inequality

relating the smoothed zero-coherent information to the ordinary
coherent information:

(112)

where , , , and
. Moreover, analogous to (108), we have

(113)

Hence

(114)

VII. DISCUSSION

In this paper, we evaluated the one-shot EoA for an arbitrary
bipartite state . In doing this, we proved a result, which is
of interest on its own, namely a characterization of the one-shot
distillable entanglement of a bipartite pure state. This result
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turned out to be stronger than what one obtains by simply spe-
cializing the one-shot hashing bound, obtained in [23], to pure
states.
Further, we showed how our one-shot result yields the op-

erational interpretation of the asymptotic EoA in the asymp-
totic i.i.d. scenario. In this context, an interesting open ques-
tion is to find a one-shot analog of the result

proved in [11].

APPENDIX A
OPTIMALITY OF RANK-ONE MEASUREMENTS IN (58)

Suppose in fact that the optimal assisting measurement at
Charlie’s is given by the POVM (not necessarily rank-
one). Then, the resulting shared state will be

, where , and
is the shorthand notation for the projector . In this form,

the systems and , at Alice’s and Bob’s side, respectively,
are classical registers carrying the information about the out-
come of Charlie’s measurement.
Now, consider the situation where Charlie actually

performs the rank-one POVM , with
, and communicates the double

index outcome to Alice and Bob. In this case,
the shared state between Alice and Bob can be written as

,
where

It is easy to verify that
, so that, in order to retrieve the optimal case, Alice

and Bob simply have to first perform a partial trace over the
registers and , respectively, and then proceed with the
required LOCC transformation. The partial trace can be effec-
tively seen as a coarse graining of Charlie’s measurement.

APPENDIX B
PROOF OF (107)

Equation (107) is proved by using Lemma 17 and Lemma
18, given in the following. However, before stating and proving
these lemmas, we need to recall some definitions and notations

extensively used in the quantum information spectrum approach
[32], [33]. A fundamental quantity used in this approach is the
quantum spectral inf-divergence rate, defined as follows [33]:

Definition 5 (Spectral Inf-Divergence Rate): Given a se-
quence of states , , and a sequence
of positive operators , with , the
quantum spectral inf-divergence rate is defined in terms of the
difference operators as follows:

(115)
where the notation , for a self-adjoint operator , is
used to indicate the projector onto the nonnegative eigenspace
of .

Lemma 17: For any given bipartite state , let denote
a pure-state ensemble decomposition, and let denote a pure-
state ensemble decomposition of the state . Then, using the
notation of (105), we have

(116)

where , , and

.
Proof: Let be the pure-state ensemble decomposition of
for which the maximum on the r.h.s. of (116) is achieved.

Since is fixed, in the following, we drop the superscript
whenever no confusion arises, denoting simply as .
From the definition (98), it follows that, for any fixed ,

we obtain (117) shown at the bottom of the page.
For each and any , define the projector

(118)
Since the operator in (117) is a q–c operator, it is clear
that the minimization over in (117) can be restricted to
states diagonal in the basis chosen in representing q–c operators.
Consequently, also has the same q–c structure.
Next, let us denote by the i.i.d. sequence of states

. For any sequence , fix
and choose . Then, it
follows from the definition (115) that for large enough

(119)

(117)
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for any . Further, define

(120)

which, by Lemma 4, is clearly in , the qc-ball
around the state , defined by (97).
Then, using the fact that , and Lemma 2 of

[34], we have for any fixed

(121)

Since this holds for any arbitrary , it yields the required
inequality (116) in the limit .

We also use the following lemma from [6], which employs
the generalized Stein’s Lemma [35] and Lemma 4 of [25]. We
include its proof for the sake of completeness.

Lemma 18: For any given bipartite state

(122)

where , ,
, and .

Proof: Consider the family of sets

(123)

such that . For this family, the generalized
Stein’s Lemma (Proposition III.1 of [35]) holds.
More precisely, for a given bipartite state , let us define

(124)

with , and
. From the generalized Stein’s

Lemma [35] it follows that for

(125)

implying that . On the
other hand, for

(126)

implying that . Hence

Finally, by noticing that, due to the definition (123) of

(127)

and that due to Lemma 4 in [25]

(128)

we obtain the statement of the lemma.

From Lemmas 17 and 18, we conclude that

(129)

where . Thus, (107) is proved.
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