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We obtain the general formula for the optimal rate at which singlets can be distilled
from any given noisy and arbitrarily correlated entanglement resource by means of
local operations and classical communication �LOCC�. Our formula, obtained by
employing the quantum information spectrum method, reduces to that derived by
Devetak and Winter �Proc. R. Soc. London, Ser. A 461, 207 �2005��, in the special
case of an independent and identically distributed resource. The proofs rely on a
one-shot version of the so-called “hashing bound,” which, in turn, provides bounds
on the one-shot distillable entanglement under general LOCC. © 2010 American
Institute of Physics. �doi:10.1063/1.3483717�

I. INTRODUCTION

A fundamental problem in entanglement theory is to determine how to optimally convert
entanglement, shared between two distant parties, Alice and Bob, from one form to another.
Entanglement manipulation is the process by which Alice and Bob convert an initial bipartite state
�AB, which they share, into a required target state �AB using local operations and classical com-
munication �LOCC�. If the target state �AB is a maximally entangled state, then the protocol is
called entanglement distillation, whereas if the initial state �AB is a maximally entangled state, then
the protocol is called entanglement dilution. Optimal rates of these protocols, referred to as the
distillable entanglement and entanglement cost of the state �AB, respectively, were originally
evaluated under �i� the assumption that the entanglement resource accessible to Alice and Bob was
independent and identically distributed �i.i.d.�, that is, it consisted of multiple, independent, and
identical copies, i.e., tensor products �AB

�n, of the initial bipartite state, and under �ii� the require-
ment that the final state of the protocol is equal to n copies of the desired target state �AB

�n with
asymptotically vanishing error in the limit n→�. The distillable entanglement and entanglement
cost computed in this manner are two asymptotic measures of entanglement of the state �AB.
Moreover, in the case in which �AB is pure, these two measures of entanglement coincide and are
equal to the von Neumann entropy of the reduced state on any one of the subsystems, A or B.

The practical ability to transform entanglement from one form to another is useful for many
applications in quantum information theory. However, it is not always justified to assume that the
entanglement resource available consists of states that are multiple copies �and hence tensor
products� of a given entangled state. More generally, an entanglement resource is characterized by
an arbitrary sequence of bipartite states that are not necessarily of the tensor product form.
Sequences of bipartite states on AB are considered to exist on Hilbert spaces HA

�n
� HB

�n for n
� �1,2 ,3 , . . .�.

The asymptotic entanglement cost of such an arbitrary sequence of pure bipartite states was
evaluated in Ref. 1, whereas the corresponding cost for the more general case in which the states
in the sequence are allowed to be mixed was evaluated in Ref. 2. As regards entanglement
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distillation, Hayashi3 evaluated the optimal rate of entanglement distillation for an arbitrary se-
quence of pure states. Moreover, Matsumoto4 considered the case in which the input mixed states
are supported on the symmetric subspace. This was further generalized by Brandão and Eisert,
who considered the case of permutationally invariant mixed states.5

In this paper, we evaluate the asymptotic distillable entanglement for a sequence of arbitrary
states in two different scenarios: �i� under one-way �or forward� LOCC, that is, when classical
information can only be sent from Alice to Bob, and �ii� under two-way �or general� LOCC, that
is, when both Alice and Bob can send classical information to each other �possibly multiple times�.
The resulting expressions for the distillable entanglement constitute the main results of this paper.

A useful tool for the study of entanglement manipulation in this general scenario is provided
by the information spectrum method.10 This method was introduced in classical information theory
by Verdu and Han and has been extended to quantum information theory first by Ogawa, Nagaoka,
and Hayashi. The power of the information spectrum approach comes from the fact that it does not
depend on the specific structure of sources, channels, or entanglement resources employed in
information theoretical protocols.

An important step on the way to our main result is to obtain bounds on the distillable
entanglement in the “one-shot” scenario, in which Alice and Bob aim to convert a single copy of
a desired target state �AB, which they share, into a maximally entangled state using LOCC. The
logarithm of the maximum rank of the maximally entangled state, which can be thus obtained with
a fixed, finite accuracy, is defined as the one-shot distillable entanglement of �AB. Our first result
in this context is the one-shot analog of the well-known Hashing bound,23 which provides a lower
bound on the distillable entanglement under one-way LOCC. Further, we obtain more stringent
lower bounds on the one-shot distillable entanglement �both under one- and two-way LOCC� by
first allowing the initial state to be preprocessed by means of a suitable LOCC map and then
distilling entanglement from the resultant state. We also obtain upper bounds to the one-shot
distillable entanglement both under one- and two-way LOCC. For the case of an arbitrary se-
quence of bipartite states, the lower and upper bounds, obtained in the one-shot scenario, inde-
pendently converge to the expression for the distillable entanglement, in the asymptotic limit.
Finally, we can retrieve the well-known expression of the distillable entanglement for an i.i.d.
resource, given in terms of the regularized coherent information, from our main result by an
application of the generalized Stein’s lemma.22

This paper is organized as follows. In Sec. II we introduce the necessary definitions and
notations. In Sec. III we discuss the protocol of entanglement distillation, and in Sec. IV we obtain
bounds on the one-shot distillable entanglement. Finally, in Sec. V we state and prove our main
results and show that these reduce to the known results in the i.i.d. scenario. Appendices A and B
contain some detailed derivations.

II. DEFINITIONS AND NOTATIONS

A. Mathematical preliminaries

Let B�H� denote the algebra of linear operators acting on a finite-dimensional Hilbert space
H, and let S�H� denote the set of positive operators of unit trace �states� acting on H. Throughout
this paper, we restrict our considerations to finite-dimensional Hilbert spaces, and we take the
logarithm to base 2.

For given orthonormal bases ��iA	�i=1
d and ��iB	�i=1

d in isomorphic Hilbert spaces HA
HB


H of dimension d, we define a maximally entangled state �MES� of rank M �d to be

��M
AB	 =

1
�M

�
i=1

M

�iA	 � �iB	 . �1�

When M =d, for any given operator O�B�H�, the following relation can be shown by direct
inspection:
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�O � I���d
AB	 = �I � OT���d

AB	 , �2�

where I denotes the identity operator and OT denotes the transposition with respect to the basis
fixed by Eq. �1�. Moreover, for any given pure state ��	, we denote the projector ��	
�� simply as
�.

The trace distance between two operators A and B is given by

�A − B�1 ª Tr��A � B��A − B�� − Tr��A 	 B��A − B�� ,

where �A�B� denotes the projector on the subspace where the operator �A−B� is non-negative
and �A	B�ª I− �A�B�. The fidelity of two states � and � is defined as

F��,�� ª Tr������ = ������1. �3�

The trace distance between two states � and � is related to the fidelity F�� ,�� as follows �see, e.g.,
Ref. 9�:

1 − F��,�� 

1

2
�� − ��1 
 �1 − F2��,�� , �4�

where we use the notation F2�� ,��= �F�� ,���2.

B. Relative entropies and coherent information

Our results on the distillable entanglement are expressed in terms of the following entropic
quantities.

For any � ,��0, any 0� P� I, and any �� �0,�� \ �1�, we define the following entropic
function �related to the quasientropies introduced by Petz in Ref. 17�:

S�
P�� � �� ª

1

� − 1
log Tr��P���P�1−�� . �5�

Notice that for P=I, the function defined above reduces to the well-known Rényi relative entropy
of order �.

In this paper, in particular,

S0
P�� � �� ª lim

�↘0
S�

P�� � �� �6�

plays an important role. Note that

S0
P�� � �� = − log Tr��P��

�P�� , �7�

where �� denotes the projector onto the support of �. Further,

S0
I �� � �� = S0�� � �� ª − log�Tr ���� , �8�

which is the relative Rényi entropy of order zero.
In the following, we obtain bounds on the distillable entanglement in terms of two

“smoothed” quantities, which are derived from �6�, for any 
�0, as

I0,

A→B��AB� ª max

�̄AB�b��AB;
�
min

�B�S�HB�
S0��̄AB � IA � �B� �9�

and

Ĩ0,

A→B��AB� ª max

P�p��AB;
�
min

�B�S�HB�
S0

P��AB � IA � �B� , �10�

where
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b��;
� ª ��:� � 0, Tr��� � 1, F2��,�� � 1 − 
2� �11�

and

p��;
� ª �P:0 � P � I, Tr�P�� � 1 − 
� . �12�

Note that in �11�, the definition of fidelity �3� has been naturally extended to subnormalized
density operators. Such smoothed quantities are needed in order to allow for a finite accuracy �i.e.,
nonzero error� in the protocol, which is a natural requirement in the one-shot regime.

For any given 
�0, we refer to I0,

A→B��AB� and Ĩ0,


A→B��AB� as smoothed zero-coherent infor-
mation. These nomenclatures are justified by analogy with the coherent information as follows.
For 
=0, both the above quantities reduce to

I0
A→B��AB� ª min

�B�S�HB�
S0��AB � IA � �B� , �13�

where S0�� ��� denotes the relative Rényi entropy of order zero of � with respect to �. By
replacing the relative Rényi entropy of order zero with the quantum relative entropy,

S�� � �� ª �Tr�� log � − � log �� if supp � � supp �

+ � otherwise,
� �14�

we, in fact, obtain the usual coherent information IA→B��AB�,

min
�B�S�HB�

S��AB � IA � �B� = S��AB � IA � �B� = S��B� − S��AB� ª IA→B��AB� . �15�

Note, in particular, that for a MES of rank M, as defined by �1�, �13� yields

I0
A→B��M

AB� = IA→B��M
AB� = log M . �16�

Further, given an �-relative Rényi entropy S��� ��� for a bipartite �=�AB, we define the
corresponding �-conditional entropy as

H���AB��B� ª − S���AB � IA � �B� �17�

and

H���AB�B� ª max
�B�S�HB�

H���AB��B� = − min
�B�S�HB�

S���AB � IA � �B� . �18�

Then for any 
�0, the corresponding smoothed �-conditional entropies H�

��AB �B� are defined as

follows:

H�

��AB�B� ª � min

�̄AB�b��AB;
�
H���̄AB�B� for 0 � � 	 1

max
�̄AB�b��AB;
�

H���̄AB�B� for 1 	 � , � �19�

and the corresponding smoothed �-coherent information is defined as

I�,

A→B��AB� ª − H�


��AB�B� . �20�

For �=0, this is identical to definition �9�.
The following lemma, proven in Ref. 20, will play a central role in our proof.

Lemma 1: [Quantum data-processing inequality (Ref. 20)] For any bipartite state �AB, any
completely positive, trace-preserving map � :B�C, and any 
�0, we have

Ĩ0,2�

A→B��AB� � Ĩ0,


A→C��id � ����AB�� .
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III. ENTANGLEMENT DISTILLATION: THE “ONE-SHOT” CASE

Let Alice and Bob, who are in two different locations, share a single copy of an arbitrary state
�AB. Their aim is to distill entanglement from this shared state �i.e., convert the state into a
maximally entangled state� using local operation and classical communication �LOCC� only. If
Alice is allowed to send classical information to Bob but not allowed to receive any from him,
then the LOCC transformation is said to be one-way �or forward� and is denoted by the symbol
�→��AB�. More generally, LOCC operations in which Alice and Bob are both allowed to send
classical information to each other are referred to as two-way LOCC and denoted by the symbol
�↔��AB�. We refer to the corresponding protocols as one-shot entanglement distillation �under
one- and two-way LOCC, respectively�. Note that in a two-way LOCC, Alice and Bob are allowed
to communicate with each other classically and perform local operations multiple times.

For the sake of generality, we consider the situation where for any given ��0, the final state
of the protocol is �-close to a maximally entangled state, with respect to a suitable distance
measure. More precisely, we require the fidelity �3� of the final state of the protocol and a
maximally entangled state to be �1−�.

Definition 1: (�-achievable distillation rates) For any given ��0, a real number R�0 is said
to be an �-achievable rate for two-way entanglement distillation if there exists an integer M

�2R and a maximally entangled state �M
A�B� such that

F��↔��AB�,�M
A�B�� � 1 − � �21�

for some two-way LOCC operation �↔ :AB�A�B�. An analogous definition holds for one-way
LOCC.

Definition 2: (One-shot distillable entanglement) For any given ��0, the one-shot distillable
entanglement, ED

↔��AB ;��, under two-way LOCC is the maximum of all �-achievable two-way
entanglement distillation rates. An analogous definition holds for the one-shot distillable entangle-
ment under one-way LOCC, which is denoted by the symbol ED

→��AB ;��.

Definition 3: (One-way entanglement distillation fidelity) Given a bipartite state �AB, for any
m�N, we define the one-way entanglement distillation fidelity as follows:

FD
→��AB;m� ª max

�→
F��→��AB�,�m

A�B�� , �22�

where the maximization is over all one-way LOCC maps �→ :AB�A�B�, and �m
A�B� is some

MES of rank m. An analogous definition holds for the two-way entanglement distillation fidelity
FD

↔��AB ;m�.

Definition 4: (Completely positive instruments) A completely positive �CP� instrument11 is a
family of CP maps �Ex�x�X, labeled by the parameter x, which sums up to a trace-preserving �TP�
map.

Roughly speaking, we can think of an instrument as a quantum operation with both classical
and quantum outputs. We denote an instrument acting on a quantum system A by the symbol
IA :A→A�X, where A� and X denote the systems corresponding to the quantum and classical
outputs, respectively. Without loss of generality, the action of an instrument IA on the state � can
be represented as IA���=�x�XEx��� � �x	
x�X, where �x	 are orthonormal states representing the
classical register X storing the measurement outcome x.

The most general one-way entanglement distillation protocol consists of Alice using a CP
instrument on her part of the shared bipartite state, communicating the classical output to Bob, and
Bob performing a completely positive, trace-preserving �CPTP� map on his part of the shared state
accordingly.
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IV. ONE-SHOT BOUNDS ON DISTILLABLE ENTANGLEMENT

A. Lower bounds „direct parts…

Lemma 2: (One-shot hashing bound) For any given bipartite state �AB�HA � HB and any
��0, the one-shot distillable entanglement via one-way (forward) LOCC transformations is
bounded as follows:

ED
→��AB;�� � I0,�/8

A→B��AB� + log� 1

dA
+

�2

4
� − � , �23�

where I0,�/8
A→B denotes the smoothed zero-coherent information defined by (9), dA=dim HA, and �

� �0,1� is a constant included to ensure that the right hand side of (23) is equal to the logarithm
of an integer number.

In order to prove the above lemma, we need the following additional lemma, which is proved
in Appendix A.

Lemma 3: Given a state �AB, for any 
�0 and any positive integer m�dA,

FD
→��AB;m� � 1 − 4
 −�m�2I2,


A→E��AE� −
1

dA
� , �24�

where �AE is the reduced state TrB��ABE� of any arbitrary purification ��ABE	 of �AB and
I2,


A→E��AE� is given by (20) for �=2.

Proof of Lemma 2: For any fixed ��0, a positive real number R=log m is an �-achievable
rate for one-way distillation if FD

→��AB ,m��1−�. Due to Eq. �24�, we know that R=log m is
achievable if

4
 +�m�2I2,

A→E��AE� −

1

dA
� � � . �25�

For 0�
�� /4, log m is achievable if, in particular,

m2I2,

A→E��AE� � �� − 4
�2 +

1

dA
�26�

since m /dA�1 /dA. Since ED
→��AB ;�� is defined as the maximum over all achievable rates, Eq. �26�

implies that for all 
� �0,� /4�,

ED
→��AB;�� � log��� − 4
�2 +

1

dA
� − I2,


A→E��AE� − � , �27�

where � is a positive number, less than or equal to 1, subtracted in order to make the right hand
side of the above equation equal to the logarithm of an integer number.

The last ingredient needed to complete the proof of Lemma 2 is the fact that for the reduced
states �AB and �AE of the same pure state ��ABE	,

− I2,

A→E��AE� � I0,


A→B��AB� . �28�

This inequality is stated as Lemma 12 of Appendix B, where it is proved using duality arguments
along the lines following Ref. 16. The statement of Lemma 2 is finally obtained from �27� and �28�
for 
=� /8. �

Due to the one-shot hashing bound, Lemma 2, we know that the zero-coherent information is
an achievable rate for one-way entanglement distillation. Since the zero-coherent information can,
in general, increase under the action of a LOCC transformation, we can think of preprocessing the
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initial state by means of a suitable LOCC map and distilling entanglement out of the preprocessed
state, instead of the initial given one. This procedure leads us to the following achievable rates for
one- and two-way entanglement distillation.

Corollary 1: (Lower bounds) Let IA :A→A�X denote an instrument on A, and let
�AB

→ :AB→A�B� denote a one-way (from A to B) LOCC transformation. Then,

ED
→��AB;�� � max

�AB
→

I0,�/8
A�→B���A�B�� + log� 1

dA�
+

�2

4 � − �

� max
IA

I0,�/8
A�→BX��A�BX� + log� 1

dA�
+

�2

4 � − ��, �29�

where �A�B�=�AB
→ ��AB�, �A�BX= �IA � idB���AB�, and � ,��� �0,1� are included to ensure that the

lower bounds (29) are each equal to the logarithm of a positive integer.

Analogously, let �AB
↔ :AB→A�B� be a two-way LOCC transformation. Then,

ED
↔��AB;�� � max

�AB
↔

I0,�/8
A�→B���A�B�� + log� 1

dA�
+

�2

4 � − ��, �30�

where ��� �0,1� is included to ensure that the lower bound is equal to the logarithm of a positive
integer.

B. Upper bounds „converse parts…

When distilling entanglement with one-way LOCC protocols, there is no need to employ a full
one-way LOCC transformation when preprocessing the initial state: the following lemma shows
that, in fact, an instrument on Alice’s side only, followed by the communication of the outcome to
Bob, suffices.

Lemma 4: (One-way weak converse) For any given bipartite state �AB and any ��0,

ED
→��AB;�� � max

IA

Ĩ0,4��

A�→BX��A�BX� , �31�

where the maximization is done over instruments IAª �Em�m�X, where each Em maps A to A�, and
�A�BX

ª�m�Em � idB���AB� � �m	
m�X.

Proof: Suppose that R is a one-way �-achievable rate, i.e., there exists an integer M with
log M �R and a one-way forward LOCC operation �→ :AB�A�B� such that


�M
A�B���→��AB���M

A�B�	 � �1 − ��2. �32�

The most general one-way forward LOCC operation is constructed as follows: �i� Alice applies a
CP instrument on her share, �ii� she communicates the outcome m to Bob, and �iii� Bob determin-
istically performs a decoding operation on his share, depending on Alice’s outcome. Such a
procedure is conveniently represented by writing the following classical-quantum �c-q� state:

�A�B�X
ª �

m�X
�Em

� Dm���AB� � �m	
m�X, �33�

where Dm’s are CPTP maps for all m, while Em’s are just CP maps normalized so that their sum
Eª�mEm is TP. The classical flags �m	
m�X represent the classical information that Alice sends to
Bob. This is the reason why we consider both systems B� and X to be in Bob’s hands.

By the quantum data-processing inequality �Lemma 1�, we have that
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Ĩ0,

A�→B�X��A�B�X� � Ĩ0,2�


A�→BX��A�BX� , �34�

where �A�BX
ª�m�Em � idB���AB� � �m	
m�X. Moreover, since we assumed that


�M
A�B���A�B���M

A�B�	� �1−��2, the operator

P ª �
m

��M	
�M�A�B� � �m	
m�X

is such that Tr�P�A�B�X�� �1−��2�1−2�. Then, starting from �34� and recalling the definition
�10�,

Ĩ0,4��

A�→BX��A�BX� � Ĩ0,2�
A�→B�X��A�B�X� � − max

�B�X
log Tr��P��A�B�X�P�IA� � �B�X��

� − max
�B�X

log Tr�P�IA� � �B�X�� = I0
A�→B�X��

m

qm��M	
�M�A�B� � �m	
m�X�
�35�

for any probability distribution qm�0, �mqm=1. Finally, since the quantum data-processing in-
equality also holds when the smoothing parameter is equal to zero, we have

I0
A�→B�X��

m

qm��M	
�M�A�B� � �m	
m�X� � I0
A�→B���M

A�B�� = log M � R . �36�

Hence, we have proved that if R is an �-achievable rate, there always exists an instrument I
= �Em�m�X on A such that

Ĩ0,4��

A�→BX��A�BX� � R . �37�

This, in turn, implies that

R � max
IA

Ĩ0,4��

A�→BX��A�BX� .

Then �31� is obtained by taking the maximum over all �-achievable rates. �

While for the one-way distillation scenario the preprocessing can be reduced, without loss of
generality, to an instrument at Alice’s side only, in the two-way scenario we have to keep the
preprocessing as general as possible. In particular, for any ��0, we obtain the following upper
bound to the one-shot distillable entanglement under two-way LOCC transformations.

Lemma 5: For any given bipartite state �AB and any ��0, the distillable entanglement under
two-way LOCC satisfies the following bound:

ED
↔��AB;�� � max

�AB
↔

Ĩ0,2�
A�→B���A�B�� , �38�

where the maximization is done over two-way LOCC transformations �AB
↔ mapping AB to A�B�

and �A�B�
ª�AB

↔ ��AB�.

Proof: Let �AB
↔ be a two-way LOCC transformation whose action on the state �AB yields the

state �A�B�
ª�AB

↔ ��AB� such that F��A�B� ,�M
A�B���1−� and R=log M.

By definitions �10� and �13� of the zero-coherent information, we have
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R = log M = min
�B�S�HB�

�− log Tr��M
A�B��IA� � �B����

� min
�B��S�HB��

�− log Tr��M
A�B���A�B��M

A�B��IA� � �B����

� max
P�p��A�B�;2��

min
�B��S�HB��

�− log Tr��P��A�B��P�IA� � �B���� = Ĩ0,2�
A�→B���A�B��

� max
�

A�B�
↔

Ĩ0,2�
A�→B���A�B�� , �39�

where the second identity follows from definition �13� of the zero-coherent information and the

fact that ��M
A�B�=�M

A�B�; the first inequality follows from ��A�B�� I, and the second inequality

follows from the fact that �M
A�B��p��A�B� ;2�� �see definition �12�� since Tr��M

A�B��A�B���1

−2�, which, in turn, follows from the fact that F2��A�B� ,�M
A�B��� �1−��2. �

V. MAIN RESULT: EXACT ASYMPTOTIC FORMULAS FOR ARBITRARY RESOURCES

In this section, we consider entanglement distillation from arbitrary resources, comprising an
arbitrary sequence of bipartite states �̂ABª ��AB

n �n=1
� , where �AB

n �S�HA
�n

� HB
�n�. The one-way

distillable entanglement rate for such a sequence is defined as

ED,�
→ ��̂AB� ª lim

�→0
lim inf

n→�

1

n
ED

→��AB
n ;�� , �40�

and the two-way distillable entanglement ED,�
↔ ��̂AB� is defined analogously.

To evaluate the distillable entanglement of such a sequence of states, we employ the well-
known quantum information spectrum method.10,12 Two fundamental quantities used in this ap-
proach are the quantum spectral sup- and inf-divergence rates, defined as follows.

Definition 5: (Spectral divergence rates) Given a sequence of states �̂= ��n�n=1
� and a sequence

of positive operators �̂= ��n�n=1
� , the quantum spectral sup-�inf-�divergence rates are defined in

terms of the difference operators �n���=�n−2n��n as

D̄��̂ � �̂� ª inf�� : lim sup
n→�

Tr���n��� � 0��n���� = 0� , �41�

D��̂ � �̂� ª sup�� : lim inf
n→�

Tr���n��� � 0��n���� = 1� , �42�

respectively.

It is known that �see, e.g., Ref. 13�

D̄��̂ � �̂� � lim
n→�

1

n
S��n � �n� � D��̂ � �̂� . �43�

In analogy with the usual definition of the coherent information �15�, we moreover define the
spectral sup- and inf-coherent information rates, respectively, as follows:

ĪA→B��̂AB� ª min
�̂B

D̄��̂AB � ÎA � �̂B� , �44�
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IA→B��̂AB� ª min
�̂B

D��̂AB � ÎA � �̂B� , �45�

where �̂ABª ��AB
n �S�HA

�n
� HB

�n��n=1
� , �̂Bª ��B

n �S�HB
�n��n=1

� , and ÎAª �IA
�n�n=1

� . Inequality �43�
ensures that

ĪA→B��̂AB� � lim
n→�

1

n
IA→B��AB

n � � IA→B��̂AB� . �46�

Note that in Eqs. �44� and �45� we could write the minimum instead of infimum due to Lemma 1
of Ref. 12.

Let ÎAª �IA
n�n=1

� denote a sequence of instruments IA
n :An→An�Xn. Our main results on the

distillable entanglement for an arbitrary sequence of states �̂AB under both one- and two-way
LOCC are given by the following theorem.

Theorem 1: Given a sequence of bipartite states �̂ABª ��AB
n �n=1

� ,

ED,�
→ ��̂AB� = max

ÎA

I�A�→BX��̂A�XB� �47�

and

ED,�
↔ ��̂AB� = max

�̂AB
↔

IA�→B���̂A�B�� , �48�

where the maximization in (47) is over all sequences of instruments, ÎAª �IA
n�n=1

� , and �̂A�XB

ª �IA
n��AB

n ��n=1
� ; the maximization in (48) is over all sequences of two-way LOCC operations,

�̂AB
↔
ª ��AB

n �n=1
� , and �̂A�B�ª ��AB

n ��AB
n ��n=1

� .

From Corollary 1 and Lemma 4, we have that, for any ��0 and any n�1,

1

n
max

IA
n

Ĩ0,4��

A�→BX��A�BX
n � �

1

n
ED

→��AB
n ;�� �

1

n
max

IA
n

I0,�/8
A�→BX��ABX

n � +
1

n
log� 1

dAn�
+

�2

4 � −
��

n
,

�49�

where �A�BX
n = �IA

n
� idB���AB

n �. In the case of two-way entanglement distillation, again Corollary 1
and Lemma 5 yield

1

n
max
�AB

n
Ĩ0,2�

A�→B���A�B�
n � �

1

n
ED

↔��AB
n ;�� �

1

n
max
�AB

n
I0,�/8

A�→B���A�B�
n � +

1

n
log� 1

dAn�
+

�2

4 � −
��

n
. �50�

Theorem 1 then follows rather straightforwardly by taking the limits lim�→0 limn→� on either
sides of inequalities �49� and �50�, and applying the following two lemmas �which were proved in
Ref. 20�.

Lemma 6: [Direct part (Ref. 20)] Given a sequence of bipartite states �̂AB,

lim

→0

lim inf
n→�

max
�̄AB

n �b��AB
n ;
�

min
�B

n

1

n
S0��̄AB

n � IA
�n

� �B
n� � min

�̂B

D��̂AB � ÎA � �̂B� ,

or, equivalently, lim
→0 lim infn→�
1
n I0,


A→B��AB
n �� IA→B��̂AB�.

Lemma 7: [Weak converse (Ref. 20)] Given a sequence of bipartite states �̂AB,

lim

→0

lim inf
n→�

max
Pn�p��AB

n ;
�
min

�B
n

1

n
S0

Pn��AB
n � IA

�n
� �B

n� � min
�̂B

D��̂AB � ÎA � �̂B� ,
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or, equivalently, lim
→0 lim infn→�
1
n Ĩ0,


A→B��AB
n �� I�A→B��̂AB�.

A. The special case of i.i.d. resources

Let us now consider the case in which Alice and Bob share multiple, independent, and
identical copies of a given bipartite state �AB. The entanglement resource is in this case charac-
terized by the sequence �̂ABª ��AB

�n�n=1
� . The asymptotic distillable entanglement of the state �AB

can be obtained from Theorem 1 by employing the following lemma, which was proved in Ref. 21
by using the generalized Stein’s lemma.22

Lemma 8: For any given bipartite state �AB,

min
�̂B

D��̂AB � ÎA � �̂B� = S��AB � IA � �B� , �51�

where �̂AB= ��AB
�n�n=1

� , �̂Bª ��B
n �S�HB

�n��n=1
� , and ÎAª �IA

�n�n=1
� . Notice that the optimizing se-

quence �̂B is not i.i.d. in general.

We can then retrieve the expressions for the asymptotic distillable entanglement of any arbi-
trary bipartite state �AB, obtained in Ref. 23, as a corollary of our Theorem 1.

Corollary 2: (Reference 23) For any bipartite state �AB, the one-way distillable entanglement
rate is given by

ED,�
→ ��AB� = lim

n→�

1

n
max

IA
n

IA�→BX��A�BX
n � , �52�

where �A�BX
n = �IA

n
� idB���AB

�n�. The two-way distillable entanglement rate is given by

ED,�
↔ ��AB� = lim

n→�

1

n
max
�AB

n
IA�→B���A�B�

n � , �53�

where �A�B�
n =�AB

n ��AB
�n�.

Proof: Let �̂AB be the i.i.d. sequence ��AB
�n�n=1

� . From Theorem 1, we have that

ED,�
→ ��̂AB� � max

IA

IA�→BX��̂A�BX� , �54�

where �A�BX
n = �IA

�n
� idB

�n���AB
�n�, i.e., the sequence �̂A�BX is i.i.d. Due to Lemma 8, then

ED,�
→ ��̂AB� � max

IA

IA�→BX��A�BX� . �55�

By a standard blocking argument, it follows that, in particular, for any m�1,

ED,�
→ ��AB� �

1

m
max
IA

m
IA�→BX��A�BX

m � , �56�

where �A�BX
m = �IA

m
� idB

�m���AB
�m�. By taking the limit m→�, we obtain

ED,�
→ ��AB� � lim

m→�

1

m
max
IA

m
IA�→BX��A�BX

m � . �57�

The converse direction, that is,
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ED,�
→ ��AB� � lim

m→�

1

m
max
IA

m
IA�→BX��A�BX

m � , �58�

simply comes from the fact that the D��̂ � �̂�� limn→�
1
nS��n ��n�.

The proof for ED,�
↔ ��AB� follows from exactly the same line of arguments. �
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APPENDIX A: PROOF OF LEMMA 3

The following lemmas are employed in the proof of Lemma 3.

Lemma 9: (References 14 and 20) For any self-adjoint operator X and any positive operator
��0, we have

�X�1
2 � Tr���Tr�X�−1/2X�−1/2� � Tr���Tr�X2�−1� . �A1�

Lemma 10: Given a tripartite pure state ��A�BE	�HA� � HB � HE, let �A�B, �A�E, and �E be
its reduced states. Then, for any state �E,

max
D

F2��idA� � DB���A�B�,�m
A�B�� � F2��A�E,�A� � �E� , �A2�

where ��m
A�B�	�HA� � HB� is some fixed maximally entangled state of rank m, �A�=TrB���m

A�B��,
and D :B�HB��B�HB�� denotes a CPTP map. The same holds also if the norm of the vector
��A�BE	 is not normalized to 1.

Proof: Fix some purification ��RE	�HR � HE of �E. Then, for the fixed purification ��m
A�B�	 of

�A�, we have, by Uhlmann’s theorem,8 the monotonicity of the fidelity under partial trace, and
Stinespring’s dilation theorem,6

F2��A�E,�A� � �E� = max
��A�B�RE	

TrB�R��A�B�RE�=�A�E

F2��A�B�RE,�m
A�B� � �RE�

= max
V:B→B�R

V†V=IB

F2��IA� � VB � IE��A�BE�IA� � VB
†

� IE�,�m
A�B� � �RE�

� max
D

F2��idA� � DB���A�B�,�m
A�B�� , �A3�

where D :B�HB��B�HB�� denotes a CPTP map. In the second equality of �A3� we used the fact
that all possible purifications of a given mixed state ��A�E, in our case� are related by some local
isometry acting on the purifying system only �i.e., subsystem B�. �

Lemma 11: For any P ,Q�0,

F�P,Q� ª ��P�Q�1 �
Tr P + Tr Q

2
−

1

2
�P − Q�1. �A4�
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Proof: By adapting the proof in, e.g., Ref. 9, we see that

F�P,Q� = min
�Em�:POVM

�
m

�pm
�qm, �A5�

where pmªTr�EmP� and qmªTr�EmQ�. Also,

�P − Q�1 = max
�Em�:POVM

�
m

�pm − qm� . �A6�

Again according to Ref. 9, let �Ēm� be the positive operator valued measure �POVM� achieving
F�P ,Q�, and let p̄m and q̄m be the corresponding coefficients. Then,

�P − Q�1 � �
m

�p̄m − q̄m� = �
m

��p̄m − �q̄m� · ��p̄m + �q̄m� � �
m

��p̄m − �q̄m�2

= �
m

p̄m + �
m

q̄m − 2�
m

�p̄m
�q̄m = Tr P + Tr Q − 2F�P,Q� . �A7�

�

Proof of Lemma 3: The most general transformation composed of local operations and for-
ward classical communication �one-way LOCC� can be written as

�→��AB� =� �E� � D����AB�d� , �A8�

where d� is an appropriate measure, the D� :B→B� are CPTP maps for all �, while the E� :A
→A� are CP maps normalized so that Eª�E�d� is TP. The physical interpretation of such a
transformation is that �i� Alice performs a measurement on her share, �ii� she communicates the
outcome � to Bob, and �iii� Bob deterministically performs a decoding operation on his share,
depending on Alice’s outcome.

In the following, we will construct one particular one-way LOCC and evaluate how good that
is for distilling entanglement. Let us fix the value of the positive integer m�dA and define

Eg��A� ª
dA

m
Pm

AUg
A�A�Ug

A�†�Pm
A�†, �A9�

where Ug
A is a unitary representation of the element g of the group SU�dA� and

Pm
A = �

i=1

m

�iA�	
iA� , �A10�

the vectors �iA	, i=1, . . . ,dA, being the same as in Eq. �1�. Then, by introducing the Haar measure
dg on SU�dA�, it is a standard calculation to check that

� Eg��A�dg =
dA

m
Pm

A�� Ug
A�A�Ug

A�†dg��Pm
A�† =

dA

m
Pm

A IA

dA
�Pm

A�† =
Pm

A�Pm
A�†

m
�A11�

for all states �A, i.e., the average map is trace-preserving.
For later convenience, starting from a fixed pure state ��ABE	 purifying �AB, let us define the

unnormalized state
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��m,g
A�BE	 ª�dA

m
�Pm

AUg
A

� IB � IE���ABE	 .

The reduced unnormalized states TrE��m,g
A�BE� and TrB��m,g

A�BE� will be correspondingly denoted as

�m,g
A�B and �m,g

A�E �and so on�.
By definition, the one-way distillation fidelity FD

→��AB ,m� satisfies the bound,

FD
→��AB,m� � F�� max

D
�idA� � DB���m,g

A�B�dg,�m
A�B��

�� dgp�m,g�max
D

F��idA� � DB���̃m,g
A�B�,�m

A�B�� , �A12�

where the second line comes from concavity of the fidelity, and p�m ,g�ªTr �m,g
A�B. In the last line,

�̃m,g
A�B denotes a normalized state. In Eq. �A12�, ��m

A�B�	 is any MES of rank m purifying

�m
A�
ª

1
m Pm

A�Pm
A�†.

Using Lemma 10, we have

FD
→��AB,m� �� dgp�m,g�F��̃m,g

A�E,�m
A� � �̃m,g

E � =� dgF��m,g
A�E,�m

A� � �m,g
E � ,

where, in the second line, we used the fact that F�p� , p��= pF�� ,��. Further, using Lemma 11, we
have that

FD
→��AB,m� �� dg

Tr �m,g
A�E + Tr �m,g

E

2
−

1

2
� dg��m,g

A�E − �m
A� � �m,g

E �1

= 1 −
1

2
� dg��m,g

A�E − �m
A� � �m,g

E �1,

where, in the second line, we used the fact that �Tr �m,g
A�Edg=�Tr �m,g

E dg=1.

Now, for any fixed 
�0, let �̄AE�b��AE ;
�, where �AE=TrB��ABE�. Let us, moreover, define

�̄m,g
A�E

ª

dA

m �Pm
AUg

A
� IE��̄AE�Pm

AUg
A

� IE�†. By the triangle inequality, we have that

��m,g
A�E − �m

A� � �m,g
E �1 � ��̄m,g

A�E − �m
A� � �̄m,g

E �1 + ��m,g
A�E − �̄m,g

A�E�1 + ��m
A� � �̄m,g

E − �m
A� � �m,g

E �1

� ��̄m,g
A�E − �m

A� � �̄m,g
E �1 + ��m,g

A�E − �̄m,g
A�E�1 + ��̄m,g

E − �m,g
E �1.

Since ��̄m,g
E −�m,g

E �1� ��̄m,g
AE −�m,g

AE �1, we have that

FD
→��AB,m� � 1 −� dg��̄m,g

A�E − �m
A� � �̄m,g

E �1 − 2� dg��m,g
A�E − �̄m,g

A�E�1

for any choice of �̄AE in b��AE ;
�. Now, thanks to Lemma 3.2 of Ref. 7 and Eq. �4�, we know that

� dg��m,g
A�E − �̄m,g

A�E�1 � ��̄AE − �AE�1 � 2
 ,

which leads us to the estimate

FD
→��AB,m� � 1 − 4
 −� dg��̄m,g

A�E − �m
A� � �̄m,g

E �1.

Hence, we are left with estimating the last group average.
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In order to do so, we exploit a technique used by Renner14 and Berta18: by applying Lemma
9, for any given state �E invertible on supp �̄E, we obtain the estimate

��̄m,g
A�E − �m

A� � �̄m,g
E �1

2 � m Tr���̄m,g
A�E − �m

A� � �̄m,g
E �Xm,g

A�E� ª m��̃m,g
A�E − �m

A� � �̃m,g
E �2

2,

where

�1� Xm,g
A�E

ª �Pm
A�

� �E�−1/2��̄m,g
A�E−�m

A�
� �̄m,g

E ��Pm
A�

� �E�−1/2,

�2� Pm
A�= Pm

A�Pm
A�†=m�m

A� �see Eq. �A10��,
�3� �O�2ª�Tr�O†O� denotes the Hilbert–Schmidt norm,

�4� �̃m,g
A�E

ª �Pm
A�

� �E�−1/4�̄m,g
A�E�Pm

A�
� �E�−1/4, and finally,

�5� �̃m,g
E

ªTrA���̃m,g
A�E�= ��E�−1/4�̄m,g

E ��E�−1/4.

It is easy to check that

��̃m,g
A�E − �m

A� � �̃m,g
E �2

2 = ��̃m,g
A�E�2

2 −
1

m
��̃m,g

E �2
2.

Further, using the concavity of the function f�x�=�x, we have

FD
→��AB,m� � 1 − 4
 −��m� dg��̃m,g

A�E�2
2 −� dg��̃m,g

E �2
2� . �A13�

Standard calculations, similar to those reported in Refs. 19, 7, and 18, lead to

� dg��̃m,g
A�E�2

2 =
dA

m

dA − m

dA
2 − 1

��̃E�2
2 +

dA

m

mdA − 1

dA
2 − 1

��̃AE�2
2

and

� dg��̃m,g
E �2

2 =
dA

m

mdA − 1

dA
2 − 1

��̃E�2
2 +

dA

m

dA − m

dA
2 − 1

��̃AE�2
2,

where

�̃AE
ª �IA � �E�−1/4�̄AE�IA � �E�−1/4,

and �̃E
ªTrA��̃AE�. By simple manipulations, we arrive at

m� dg��̃m,g
A�E�2

2 −� dg��̃m,g
E �2

2 =
dA

2�m2 − 1�
m�dA

2 − 1� ���̃AE�2
2 −

1

dA
��̃E�2

2� .

Since m�dA,

dA
2�m2 − 1�

m�dA
2 − 1�

= m
1 − 1

m2

1 − 1
dA

2

� m

so that Eq. �A13� can be rewritten as

FD
→��AB,m� � 1 − 4
 −�m���̃RE�2

2 −
1

dA
��̃E�2

2�
for any choice of the states �̄AE�b��AE ;
� and �E invertible on supp �̄E.

Now, notice that
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��̃AE�2
2 � 2S2��̄AE�IA��E�.

This inequality easily follows from �A1�, i.e.,

Tr���−1/4��−1/4�2� = Tr��−1/2��−1/2�� � Tr��2�−1� = 2S2�����.

Moreover, from Lemma 9, ��̃E�2
2�1. Thus,

FD
→��AB,m� � 1 − 4
 −�m�2S2��̄AE�IA��E� −

1

dA
�

for any choice of states �̄AE�b��AE ;
� and �E, the latter strictly positive on supp �̄E. In order to
tighten the bound, we first optimize �i.e., minimize� S2��̄AE � IA � �E� over �E for any �̄AE, obtain-
ing I2

A→E��̄AE �E�. We further optimize �i.e., minimize� I2
A→E��̄AE� over �̄AE�b��AE ;
�, eventually

obtaining I2,

A→E��AE�. �

APPENDIX B: LEMMA 12

Lemma 12: For any pure state �ABE of a tripartite system ABE, for any 
�0, we have that

− I2,

A→E��AE� � I0,


A→B��AB� , �B1�

where �AE and �AB denote the corresponding reduced states of the subsystems AE and AB, respec-
tively; the smoothed two-coherent information I2,


A→E��AE� is defined through (20) for �=2, and
I0,


A→B��AB� is the smoothed zero-coherent information given by (9).

Proof: We make use of the fact that for any P ,Q�0,

Dmax�P � Q� � S2�P � Q� , �B2�

where S2�P �Q� is the relative Rényi entropy of order 2, and Dmax�P �Q� is the max-relative
entropy between P and Q defined as follows:15

Dmax�P � Q� ª log min��:P � �Q� . �B3�

For any 
�0, the smoothed conditional min-entropy is defined as

Hmin

 ��AE�E� ª max

�̄AE�b��AE;
�
max

�E�S�HE�
�− Dmax��̄AE � IA

� �E�� . �B4�

Moreover,

Hmin

 ��AE��E� ª max

�̄AE�b��AE;
�
Hmin��̄AE��̄E� = max

�̄AE�b��AE;
�
�− Dmax��̄AE � IA

� �̄E��

= max
�̄AE�b��AE;
�

�− Dmax��̄AE � IA
�

�̄E

Tr �̄E� + log Tr �̄E�
� max

�̄AE�b��AE;
�
�− Dmax��̄AE � IA

�
�̄E

Tr �̄E�� � Hmin

 ��AE�E� , �B5�

where in the third equality we used the fact that Dmax�P �Q�=Dmax�P �cQ�+log c for any c�R
and, in the subsequent inequality, the fact that Tr �̄E�1.

We also need the following duality relation, which was proved in Ref. 18 for two reduced
states �AB and �AE of the same tripartite pure state �ABE, but which can be extended to subnor-

malized states �̄AB and �̄AE coming from �̄ABE as well,
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Hmin��̄AE��̄E� ª − Dmax��̄AE � IA � �̄E� = H0��̄AB�B� , �B6�

where H0��̄AB �B�ª−min�B�S�HB� S0��̄AB � IA � �B�.
Further �as in the proof of Lemma 3 of Ref. 16�, for any 
�0, let b��� ;
� denote the set of

pure states close to a state �, i.e.,

b���;
� ª �� � b��;
� : rank� = 1� �B7�

and let

b̄��AB;
� ª �TrE��̄ABE� : �̄ABE � b���ABE;
�� , �B8�

where �ABE is any arbitrarily fixed purification of �AB. Hence, b̄��AB ;
� is the set of states that are

-close to �AB �with respect to the fidelity� on the purified space. It was proved in Ref. 16 that

b̄��AB;
� = b��AB;
� . �B9�

This is because, on one hand, the monotonicity of the fidelity under partial trace ensures that

b̄��AB ;
��b��AB ;
�. On the other hand, by Uhlmann’s theorem,8 every �̄AB�b��AB ;
� has a

purification �̄ABE�b���ABE ;
�, and this implies that b��AB ;
�� b̄��AB ;
�.
We now proceed to prove Lemma 12. From definitions �19� and �20� of I2,


A→E��AE� and the
�-conditional entropies, respectively, we have that

− I2,

A→E��AE� � H2


��AE�E� = max
�̄AE�b��AE;
�

max
�E�S�HE�

�− S2��̄AE � IA
� �E��

� max
�̄AE�b��AE;
�

max
�E�S�HB�

�− Dmax��̄AE � IA
� �E�� � Hmin


 ��AE�E� � Hmin

 ��AE��E�

= max
�̄ABE�b���ABE;
�

Hmin��̄AE��̄E� = max
�̄ABE�b���ABE;
�

�− H0��̄AB�B�� = I0,

A→B��AB� ,

�B10�

where the second inequality follows from �B5�, while the first identity on the third line follows

from the fact that b̄��AE ;
�=b��AE ;
�. The subsequent identity follows from �B6�, while the last
identity follows from �B9� and the definition of the smoothed zero-coherent information �9�. �
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