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Time series data sets often contain heterogeneous signals, composed of
both continuously changing quantities and discretely occurring events.
The coupling between these measurements may provide insights into
key underlying mechanisms of the systems under study. To better extract
this information, we investigate the asymptotic statistical properties of
coupling measures between continuous signals and point processes. We
first introduce martingale stochastic integration theory as a mathematical
model for a family of statistical quantities that include the phase lock-
ing value, a classical coupling measure to characterize complex dynam-
ics. Based on the martingale central limit theorem, we can then derive the
asymptotic gaussian distribution of estimates of such coupling measure
that can be exploited for statistical testing. Second, based on multivariate
extensions of this result and random matrix theory, we establish a prin-
cipled way to analyze the low-rank coupling between a large number of
point processes and continuous signals. For a null hypothesis of no cou-
pling, we establish sufficient conditions for the empirical distribution
of squared singular values of the matrix to converge, as the number of
measured signals increases, to the well-known Marchenko-Pastur (MP)
law, and the largest squared singular value converges to the upper end
of the MP support. This justifies a simple thresholding approach to as-
sess the significance of multivariate coupling. Finally, we illustrate with
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simulations the relevance of our univariate and multivariate results in
the context of neural time series, addressing how to reliably quantify the
interplay between multichannel local field potential signals and the spik-
ing activity of a large population of neurons.

1 Introduction

The observation of highly multivariate temporal point processes, corre-
sponding to the activity of a large number of individuals or units, is per-
vasive in many applications (for example, neurons in brain networks;
Johnson, 1996) and members in social networks (Dai, Wang, Trivedi, &
Song, 2016; De, Valera, Ganguly, Bhattacharya, & Rodriguez, 2016). As the
number of observed events per unit may remain small, inferring the under-
lying dynamical properties of the studied system from such observations is
challenging. However, in many cases, it is possible to observe continuous
signals whose coupling with the events can offer key insights.

In neuroscience, this is the case of the extracellular electrical field, which
provides information complementary to spiking activity. Local field poten-
tials (LFP) are mesoscopic (Liljenstroem, 2012) signals resulting from the
superposition of the electric potentials generated by ionic currents flow-
ing across the membranes of the cells located close to the tip of recording
electrodes. The LFP reflects neural cooperation due to the anisotropic cy-
toarchitecture of most brain regions, allowing the summation of the extra-
cellular currents resulting from the activity of neighboring cells. As such, a
number of subthreshold integrative processes (i.e., modifying the neurons’
internal state without necessarily triggering spikes) contribute to the LFP
signal (Buzsaki, Anastassiou, & Koch, 2012; Buzsaki, Logothetis, & Singer,
2013; Einevoll, Kayser, Logothetis, & Panzeri, 2013; Pesaran et al., 2018; Her-
reras, 2016).

Reliably quantifying the coupling between activities of individual units
(e.g., spikes generated by individual neurons) in a circuit and the aggre-
gated measures (such as the LFP) may provide insights into underlying
network mechanisms, as illustrated in the electrophysiology literature. At
the single neuron level, the relationship of spiking activity to subthresh-
old activity has broad implications for the underlying cellular and network
mechanisms at play. For instance, it has been suggested that synaptic plas-
ticity triggers changes in the coupling between spikes and LFPs (Grosmark,
Mizuseki, Pastalkova, Diba, & Buzsáki, 2012; Grosmark & Buzsáki, 2016).
Regarding the putative functional role of such observed couplings, it has
been hypothesized to support cognitive functions such as attention. Such
coordination by oscillations hypothesis proposes that network oscillations
modulate differentially the excitability of several target populations, such
that a sender population can emit messages during the window of time for
which a selected target is active, while unselected targets are silenced (Fries,
2005, 2015; Womelsdorf et al., 2007).
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Coupling Between Continuous Signals and Point Processes 1753

In the case of two continuous signals, coupling measures such as coher-
ence and phase locking value (PLV) (Rosenblum, Pikovsky, Kurths, Schäfer,
& Tass, 2001; Pereda, Quiroga, & Bhattacharya, 2005) are widely used, and
their statistical properties have been investigated, in particular in the sta-
tionary gaussian case (Brillinger, 1981; Aydore, Pantazis, & Leahy, 2013). In
a similar way, PLV (Ashida, Wagner, & Carr, 2010) and spike-field coher-
ence (SFC) (Mitra, 2007) can measure spike-LFP coupling (see among oth-
ers: Vinck, Battaglia, Womelsdorf, & Pennartz, 2012; Vinck, van Wingerden,
Womelsdorf, Fries, & Pennartz, 2010; Jiang, Bahramisharif, van Gerven, &
Jensen, 2015; Zarei, Jahed, & Daliri, 2018; Li, Cui, & Li, 2016) and are broadly
used to makes sense of the role played by neurons in coordinated network
activity (Buzsaki & Schomburg, 2015). There are notable contributions in-
vestigating potential biases of those measures when both point processes
and continuous signals are involved (Lepage, Kramer, & Eden, 2011; Ko-
vach, 2017). However, two issues relevant for practical applications remain:
(1) the effect of the intrinsic variability of spike occurrence on key statistical
properties of the estimates, such as the variance, have not yet been thor-
oughly described, and (2) how to extend the rigorous statistical analysis of
spike-field coupling in the context of the highly multivariate signals avail-
able with modern recording techniques remains largely unaddressed.

We address these two issues by using continuous time martingale the-
ory (see Liptser & Shiryaev, 2013a), the related concept of stochastic inte-
gration (see Protter, 2005) and random matrix theory (Anderson, Guionnet,
& Zeitouni, 2010; Capitaine & Donati-Martin, 2016). The martingale central
limit theorem (CLT) allows us to derive analytically the asymptotic gaus-
sian distribution of a general family of coupling measures that can be ex-
pressed as stochastic integrals. We exploit this general result to show that
the classical univariate PLV estimator is also asymptotically normally dis-
tributed and provide the analytical expression for its mean and variance.
Furthermore, we study potential sources of bias for the commonly used
von Mises coupling model (Ashida et al., 2010). We then go beyond univari-
ate coupling measures and analyze the statistical properties of a family of
multivariate coupling measures taking the form of a matrix with stochastic
integral coefficients. We characterize the jointly gaussian asymptotic distri-
bution of matrix coefficients, and exploit random matrix theory (RMT) prin-
ciples to show that after appropriate normalization, the spectral distribution
of such large matrices under the null hypothesis (of absence of coupling),
follows approximately the Marchenko-Pastur (MP) law (Marchenko & Pas-
tur, 1967), while the magnitude of the largest singular value converges to
a fixed value whose simple analytic expression depends only on the shape
of the matrix. We finally show how this result provides a fast and princi-
pled procedure to detect significant singular values of the coupling matrix,
reflecting an actual dependency between the underlying signals. In the ap-
pendixes, we included detailed proofs and background material on RMT

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



1754 S. Safavi, N. Logothetis, and M. Besserve

and stochastic integration, such that nonexpert readers can further apply
these tools in neuroscience.

2 Background

2.1 Spike-Field Coupling in Neuroscience. Although our results are
relevant to a broad range of applications within and beyond neuroscience,
we will use the estimation of spike-LFP coupling introduced above as the
guiding example of this letter. Spikes convey information communicated
between individual neurons. This information is believed to be encoded in
the occurrence times of successive spike events, which are typically mod-
eled with point processes—for example, Poisson (Softky & Koch, 1993) or
Hawkes process (Truccolo, 2016; Krumin, Reutsky, & Shoham, 2010).

While oscillatory dynamics is ubiquitous in the brain and instrumental
to its coordinated activity (Buzsaki, 2006; Buzsaki et al., 2013; Peterson &
Voytek, 2018), it is often challenging to uncover based solely on the sparse
spiking activity of recorded neurons. On the other hand, LFPs often exhibit
oscillatory components that can be isolated with signal processing tools
(typically bandpass filtering or template matching), such that pairing the
temporal information from LFPs and spiking activity can help extract reli-
able markers of neural coordination.

An example of a coupling measure achieving such pairing is the phase
locking value (PLV). Given, on the one hand, event (spike) times {t j} where
j ∈ {1, 2, . . . , N} (with N the number of spikes in the spike train), and on the
other hand, φ(t) the time-varying phase of an oscillatory continuous signal,
which is typically a bandpassed filtered LFP, phase locking between these
two signals is estimated by the complex number

P̂LV = 1
N

N∑
j=1

eiφ(t j ), with i2 = −1. (2.1)

We use a “hat” notation to reflect that this quantity is empirical: indeed,
even if we assume a fixed φ, the PLV depends on the specific values of event
times t j. In this work, we assume these points are drawn from a Poisson
process, with a possibly time-varying rate (inhomogeneous Poisson pro-
cess), such that we can define a population statistics that is a function of the
point process population distribution instead of its empirical counterpart.
We then address under which conditions the empirical PLV reflects a true
coupling between the rate of the underlying point process and φ.

2.2 Counting Process Martingales. We use a continuous time frame-
work leading to powerful results based on concise deterministic and
stochastic integral expressions, which can trivially be approximated us-
ing discrete time signals in practice. A (continuous time) stochastic process
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Figure 1: Doob-Meyer decomposition for an example inhomogeneous Poisson
process with oscillatory of rate λ(t) of frequency f = 1 Hz; average firing rate
λ0 = 5 Hz (dashed line indicates the reference 0). See section 3.3 for details of
the simulation.

M = {M(t); t ∈ [0, τ ]} is a zero-mean martingale relative1 to the filtration
{Ft} (which represents the past information accumulated up to time t) if
(1) M(0) = 0, (2) it is adapted to {Ft} (informally the law of M up to time
t “uses” only past information up to t), and (3) it satisfies the martingale
property:

E [M(t)|Fs] = M(s), for all t > s. (2.2)

Consider now a (univariate) counting process
{
(N(t),Ft ); t ≥ 0

}
, count-

ing the number of events that occurred up to time t, adapted to filtration
{Ft} (Aalen, Borgan, & Gjessing, 2008, chap. 2). Under mild assumptions, it
has a Doob-Meyer decomposition,

N(t) = M(t) +
∫ t

0
λ(t)dt, (2.3)

where λ(t) is a predictable process with respect to {Ft} called the intensity
function and M(t) is a martingale, called the compensated counting process.
Figure 1 shows an illustration of this decomposition for a Poisson process
with sinusoidal intensity.

Consider now an empirical coupling measure c between a (real or com-
plex) predictable process x(t) and N(t) observed during time interval [0, T],
which takes the form of the stochastic integral (see Protter, 2005),

ĉ =
∑
tk<T

x(tk) =
∫ T

0
x(t)dN(t), (2.4)

1
Any martingale in this paper is zero-mean.
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where {tk} denote the jump times of the counting process (note that the PLV
defined in equation 2.1 is a normalized version of such coupling). The em-
pirical coupling measure, ĉ, can then be decomposed as

ĉ =
∫ T

0
x(t)λ(t)dt +

∫ T

0
x(t)dM(t). (2.5)

Interestingly, it can be shown that the second integral on the right-hand side
is also a martingale (see Liptser & Shiryaev, 2013b, theorem 18.7).

In order to keep our results concise, we assume the following deter-
ministic setting in the remainder of this letter (see section 5 for potential
extensions).

Assumption 1. Assume the intensity function, λ(t) = λ(t|Ft ) of N(t) and
the signal x(t) are deterministic bounded left-continuous and adapted to Ft

over [0, T].

Note this entails that N(t) is a (possibly inhomogeneous) Poisson process
(Liptser & Shiryaev, 2013b, theorem 18.10). Under assumption 1, the terms
of equation 2.5 separate the deterministic part from the (zero-mean) random
fluctuations of the measure that are integrally due to the martingale term.
Using martingale properties, the statistics of the coupling measure are2

c∗ � E [̂c] =
∫ T

0
x(t)λ(t)dt and

Var[̂c] = E
[|̂c − c∗|2] =

∫ T

0

∣∣x2(t)
∣∣ λ(t)dt. (2.6)

In case x(t) integrates to zero, the expected coupling c∗ thus reflects the
covariation across time between x(t) and the intensity of the point process
up to random fluctuations.

2.3 Random Matrix Theory. As data sets get increasingly high dimen-
sional, it becomes important to replace the above univariate measure ĉ by
a quantity that summarizes the coupling between a large number of units
and continuous signals. This extension leads to assessing the spectral prop-
erties of a coupling matrix Ĉ that gathers all pairwise measurements. How-
ever, such task is nontrivial due to the martingale fluctuations affecting Ĉ,
leading to spurious nonzero coupling coefficients, and can also hide the de-
terministic structure of the matrix associated with significant coupling.

Random matrix theory allows investigating the spectral properties of
some matrices in noisy settings by studying their asymptotic spectral prop-
erties as dimensions grow to infinity. Any (p × p) complex Hermitian or

2
See section B.1.1 for more details.
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real symmetric matrix M has a set of p real eigenvalues {�k} (where we put
several times the same eigenvalue in the set according to its multiplicity).
One classically studied quantity is the empirical spectral distribution (ESD)
(or empirical eigenvalue distribution, see Mingo & Speicher, 2017 and An-
derson et al., 2010) of the set of all eigenvalues {�k}. ESD indistinctly refers
(with a slight abuse of language), to either the probability measure (also
called spectral measure in our case),

μM (t) = 1
p

(δ�1 (t) + · · · + δ�p (t)), t ∈ R,

where δ�k is the dirac measure with unit mass in �k, or to its associated cu-
mulative distribution:

FM (t) =
∫ t

−∞
dμM(s).

Seminal works by Wigner (1955, 1958), Marchenko and Pastur (1967), and
many others have established the convergence of the ESD of large random
matrix ensembles (see section B.2 for the precise notions of convergence). In
particular, for a sequence of matrices {Xn}n>0 of dimension p × n such that
p
n →

n→+∞ α ≤ 1, with coefficients sampled independently and identically dis-

tributed (i.i.d.) from a (possibly complex) standard Normal distribution, the
ESD of the Wishart matrix Sn = 1

n XnXH
n (where .H indicates the transposed

complex conjugate) converges to the Marchenko-Pastur (MP) law μMP(x)
(Marchenko & Pastur, 1967) with density

dμMP

dx
(x) =

{ 1
2παx

√
(b − x)(x − a), a ≤ x ≤ b,

0, otherwise,
(2.7)

with a = (1 − √
α)2 and b = (1 + √

α)2. Additionally, the smallest and
largest eigenvectors converge to a and b, respectively. Importantly, these
convergences also hold in the case α > 1, but equation 2.7 is modified to
account for the rank deficiency of the Wishart matrix, imposing p − n zero
eigenvalues in the spectrum (see section B.3.1 for details).

Notably, recent developments in the field of random matrix theory ex-
tend the classic results that were only valid for independent coefficients
(uncorrelated Wishart matrices) to various forms of dependencies between
coefficients. For instance, El Karoui (2007, 2008) showed that the ESD and
the distribution of the largest eigenvalue for a sequence of matrices {Xn}n>0
with general covariance matrices (not necessarily with identity covariance
matrix) follow similar laws and Banna, Merlevède, and Peligrad (2015) in-
vestigate the case of symmetric random matrices with correlated entries.
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Furthermore, the behavior of high-dimensional autocovariance matrices in
the context of discrete time stochastic processes is discussed in Liu, Aue,
and Paul (2015) and Bhattacharjee and Bose (2016). Applications of this
framework have also been considerably extended including global finance
(Namaki et al., 2020) and various aspects of machine learning and sig-
nal processing such as shallow (Louart, Liao, & Couillet, 2018) and deep
(Pennington & Bahri, 2017; Pennington & Worah, 2019) neural networks,
denoising (Bun, Bouchaud, & Potters, 2017) and dimensionality reduction
(Johnstone & Onatski, 2020).

In this study, we show that the martingale fluctuations of the coupling
matrices also cause spectral convergence to the MP law in the absence of
actual coupling between the signals. Recent results on the low-rank pertur-
bation (Capitaine & Donati-Martin, 2016; Loubaton & Vallet, 2011; Benaych-
Georges & Nadakuditi, 2012) of random matrices suggest this convergence
can be exploited to further assess the significance of the largest eigenvalues
of the coupling matrix with respect to the null hypothesis that they only
reflect random fluctuations.

3 Assessment of Univariate Coupling

3.1 Mathematical Formulation. We consider the setting of K ≥ 1 inde-
pendent trials of measurements on [0, T] available to estimate the coupling
statistics by the trial average

ĉK = 1
K

K∑
k=1

∫ T

0
x(t)dN(k)(t),

where {N(k)} are K independent copies of the process N(t), associated with
each trial. As this letter focuses on the statistical properties induced by the
intrinsic variability of point process realizations, we assumed above that the
continuous signal does not change across trials. However, including some
forms of variability across trials, such as random time shifts affecting all
processes in the same way, would not affect the results, barring additional
technical details.

We exploit a central limit theorem (CLT) for martingales to show the
residual variability (difference between the empirically estimated ĉK and
the expected coupling c∗ of equation 2.6) is asymptotically normally dis-
tributed. We formally state it in theorem 1.

Theorem 1. Assume (Ft, x(t), λ(t)) satisfy assumption 1, and x(t) real-valued.
Then,

E[̂cK] � c∗ =
∫ T

0
x(t)λ(t)dt and Var[̂cK] = 1

K

∫ T

0
x2(t)λ(t)dt.
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Moreover, as the number of trials increases, fluctuations converge in distribution:

√
K (̂cK − c∗) −→

K→+∞
N

(
0,

∫ T

0
x2(t)λ(t)dt

)
.

Sketch of the proof. We rely on the decomposition of equation 2.5. As
described in section B.1.1, the martingale property is preserved by the
stochastic integral term and allows us to exploit a martingale CLT to prove
convergence to a gaussian distribution. �

The case of x(t) complex-valued can be dealt with by distinguishing the
real and imaginary parts of the signal, as is done in the proofs of the follow-
ing corollaries. We can exploit theorem 1 to derive the asymptotic proper-
ties of the PLV introduced in section 2.1. For that, we adapt the empirical
estimate of equation 2.1 to the K trials setting introduced above and define

P̂LVK = 1∑K
k=1 Nk

K∑
k=1

Nk∑
j=1

eiφ(tk
j )
, (3.1)

where Nk is the number of events observed during trial k and {tk
j } is the

collection of the time stamps of these events. The specificity of this multi-
trial estimate is to use a single normalization constant corresponding to the
total number of events pooled across trials.3 For this estimate, we get the
following result.

Corollary 1. Assume (Ft, x(t) = eiφ(t), λ(t)) satisfy assumption 1, where φ is
real-valued and stands for the phase of the signal x. Then the expectation of the
PLV statistics P̂LVK estimated from K trials of measurements on [0, T] tends to
the limit

PLV∗ =
∫ T

0
eiφ(t)λ(t)dt/	(T ), with 	(T ) =

∫ T

0
λ(t)dt. (3.2)

Moreover, as K → +∞, the residual,

√
K
(

P̂LVK − PLV∗
)

, (3.3)

3
This allows the normalization factor to converge to a deterministic quantity as K →

+∞ equation 2.1.
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converges in distribution to a zero-mean complex gaussian variable Z (i.e., the joint
distribution of real and imaginary parts is gaussian), such that

Cov

([
Re{Z}
Im{Z}

])
= 1

	(T )2

∫ T

0
M(t)λ(t)dt,

where M(t) =
[

cos2(φ(t)) sin(2φ(t))/2

sin(2φ(t))/2 sin2(φ(t))

]
.

Sketch of the proof. This relies on applying theorem 1 to the real and imag-
inary parts of eiφ(t). In addition, the coupling between both quantities is
taken into account by replacing the variance of univariate quantities Ṽ (t)
in theorem 1 by a covariance matrix that can be assessed with martingale
results given in section B.1.1. �

Remark 1. For the simple case of a T/k-periodic sinusoidal signal (k inte-
ger), such that φ(t) = 2πkt/T, and a sinusoidal modulation of the intensity
with phase shift ϕ0 and modulation amplitude κ such that

λ(t) = λ0 (1 + κ cos (φ(t) − ϕ0)) , λ0 > 0, 0 ≤ κ ≤ 1,

we get easily with trigonometric identities that PLV∗ = 1
2κeiϕ0 and the resid-

ual of equation 3.3 converges to an isotropic complex gaussian of total vari-
ance4 1

λ0T such that the coupling strength κ affects the mean but not the
variance of the PLV estimate.

Also, it is easy to see that if λ(t) is modulated by a sine wave at a different
integer multiple m 	= k of the fundamental frequency 1/T, such that

λ(t) = λ0 + κ cos (2πmt/T − ϕ0) ,

the PLV∗ vanishes and the residual’s variance remains the same. These
properties make PLV straighforward to interpret and test for sinusoidal
coupling with a carefully chosen observation duration T. Assumption 3 and
corollary 5, in appendix C, provide formal statements of this remark.

We can use corollary 1 to predict the statistics of PLV estimates for other
models of phase-locked spike trains. A classical model uses the von Mises
distribution (also known as circular normal distribution) with parameter
κ ≥ 0 to model the concentration of spiking probability around a speci-
fied locking phase φ0 (for more details, see Ashida et al., 2010). The orig-
inal model uses a purely sinusoidal time series by assuming a linearly

4
The sum of the variances of real and imaginary parts.
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increasing phase φ(t) = 2π f t, where f is the modulating frequency, to de-
rive the intensity of an inhomogeneous Poisson spike train,

λ(t) = λ0 exp (κ cos(φ(t) − ϕ0)) . (3.4)

resulting in an analytical expression for the asymptotic complex-valued
PLV,

PLV∗ = eiϕ0

∫ π

0 cos(θ ) exp(κ cos(θ ))dθ∫ π

0 exp(κ cos(θ ))dθ
= eiϕ0

I1(κ )
I0(κ )

,

with the Ik’s denoting the modified Bessel functions of the first kind for k
integer (see Abramowitz & Stegun, 1972, p. 376):

Ik(κ ) = 1
π

∫ π

0
cos(kθ ) exp(κ cos(θ ))dθ.

Compared to the sinusoidal coupling described in remark 1, whose PLV
magnitude can reach at most 1/2, this model can achieve arbitrarily large
PLV, which might explain why it is more frequently used in applications.

Corollaries 2 and 3 derive the asymptotic covariance of the variability of
the PLV estimate around this theoretical value (which is novel to the best
of our knowledge). Furthermore, the results are derived in a more general
model setting accounting for “biases”5 due to nonlinear phase increases φ(t)
and observation intervals that are not multiples of the modulating oscilla-
tion period. It should be noted that the mentioned biases are inherent in
the estimator’s definition. They happen independent of additional biases
originating from the phase estimation procedure (e.g., phase extraction via
Hilbert transform; see Kovach, 2017).

We thus assume a coupling, parameterized by κ between a possibly non-
linearly increasing phase φ(t) and a point process with intensity

λ(t) = λ0 exp (κ cos(φ(t) − ϕ0))
dφ

dt
(t). (3.5)

Note that for linearly increasing phases, this coupling amounts to the clas-
sical von Mises model of equation 3.4. The additional factor dφ

dt (t) allows
preserving the analytical expression of PLV statistics even for nonlinearly
increasing phases, providing a novel generalization of the von Mises model
(see corollary 4 in appendix C for a simplified version of corollary 2, assum-
ing a linearly increasing phase φ(t) = 2π f t with frequency f ).

5
They are biases in the sense that one would expect a coupling measure to vanish if

there is no coupling in the data generating procedure.
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Corollary 2. Under the assumptions of corollary 1, assume additionally that φ(t)
is continuous, strictly increasing, and piece-wise differentiable on [0, T] and the
intensity of the point-process is given by equation 3.5 for a given κ ≥ 0, then the
expectation of the multitrial PLV estimate converges (for K → +∞) to

PLV∗ =
∫ φ(T )
φ(0) eiθ exp(κ cos(θ − ϕ0))dθ∫ φ(T )

φ(0) exp(κ cos(θ − ϕ0))dθ
. (3.6)

If in addition [0, T] corresponds to an integer number of periods of the oscillation,

PLV∗ = eiϕ0

∫ π

0 cos(θ ) exp(κ cos(θ ))dθ∫ π

0 exp(κ cos(θ ))dθ
= eiϕ0

I1(κ )
I0(κ )

, (3.7)

and the scaled residual
√

K
(

P̂LVK − PLV∗
)

converges to a zero mean complex
gaussian Z with the following covariance:

Cov

[
Re{Ze−iϕ0}
Im{Ze−iϕ0}

]

= 1
2λ0(φ(T ) − φ(0))I0(κ )2

[
I0(κ ) + I2(κ ) 0

0 I0(κ ) − I2(κ )

]
. (3.8)

Sketch of the proof. This is based on plugging the intensity function λ(t)
of equation 3.5 in corollary 1. Using change of variable in the integrals (φ(t)
to θ ) and exploiting the symmetries of the functions, the integrals in the
analytical expressions of the expectation and covariance turn into modified
Bessel functions Ik for k integer. �

The above result has important consequences for the assessment of PLV
from data. In particular, it exhibits key experimental requirements for PLV
estimates to match the classical Bessel functions expression of equation 3.7:
(1) evaluate PLV on an integer number of periods (this is critical for trials
with short duration) and (2) take into account the fluctuations of the rate
of increase of the phase φ(t) across the oscillation period. This second point
is critical in applications where the phase is inferred from signals (such as
LFPs) through the Hilbert transform, as nonlinearities of the underlying
phenomena may lead to nonsinusoidal oscillations, with periodic fluctu-
ations of the time derivative of the phase φ′(t). To further emphasize the
consequences of this aspect, we also derive the asymptotic distribution of
PLV for a homogeneous Poisson process that corresponds to the special case
κ = 0 of the classical von Mises coupling of equation 3.5. Although there
is no actual coupling between events and the continuous signal in such a
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case,6 the nonlinear phase increase leads asymptotically (for K large) to a
nonvanishing PLV estimate and to false detection of coupling.

Corollary 3. Under the assumptions of corollary 1, we assume additionally that
the point process is homogeneous Poisson with rate λ0 and that φ(t) is strictly
increasing (almost everywhere) and differentiable on [0, T]. Let θ �→ τ (θ ) be its
inverse function (such that τ (φ(t)) = t). Then the expectation of P̂LVK converges
(for K → +∞) to

PLV∗ =
∫ φ(T )
φ(0) eiθ τ ′(θ )dθ

φ(T ) − φ(0)
, (3.9)

and the scaled residual,

Z =
√

K
(

P̂LVK − PLV∗
)

,

converges to a zero mean complex gaussian:

√
K
(

P̂LVK − PLV∗
)

−→
K→+∞

N
([

0

0

]
, Cov(Z)

)
,

with the following covariance:

Cov(Z) = 1
λ0T2

∫ φ(T )

φ(0)

[
cos2(θ ) sin(2θ )/2

sin(2θ )/2 sin2(θ )

]
τ ′(θ )dθ.

Sketch of the proof. The result stems from using the intensity function λ0

in corollary 1 and then using change of variable in the integrals and exploit-
ing the symmetries of the functions. �

This corollary will be further illustrated in the next paragraphs.

3.2 Application to Bias Assessment. Corollary 3 predicts scenarios
where in the absence of modulation of spiking activity (having a constant
intensity function λ(t) = λ0), the expectation of the PLV estimates remains
far from zero even when the number of trials is large, that is, the coupling
between a homogeneous point process and a continuous oscillatory signal
would appear significant and reflect a form of bias. Corollary 3 allows com-
puting this bias and therefore correcting it.

6
In the sense that we can generate the homogeneous spike train and the oscillation

without parametric models that do not share any information.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



1764 S. Safavi, N. Logothetis, and M. Besserve

One such case is when the observation interval is not an integer number
of oscillation periods. To demonstrate this analytically, we can start from
the PLV expectation with the constant intensity λ0,

PLV∗ =
∫ T

0 eiφ(t)λ(t)dt∫ T
0 λ(t)dt

= λ0
∫ T

0 eiφ(t)dt

λ0
∫ T

0 dt
= 1

T

∫ T

0
eiφ(t)dt. (3.10)

Furthermore, we assume φ(t) has linear phase (assumption 3): φ(t) = 2π f t,
where f is the frequency of oscillation of the continuous signal. We then get

PLV∗ = 1
T

∫ T

0
ei2π f tdt = 1

2πγT i

(
e2πγT i − 1

)
, (3.11)

where γT = T f is the ratio of the length of the time series (T) to the period of
oscillation 1

f . As is noticeable in equation 3.11, the coupling measure PLV∗

is not zero when γT is not an integer number. Notably, this bias affects both
the magnitude and the phase of the PLV∗ estimate.

Furthermore, even using an observation interval covering an integer
number of periods, nonlinear increases in phase may lead to a nonvan-
ishing PLV. This can be demonstrated with a simple example. Again, we
can start from the original definition of PLV expectation, equation 3.2, but
now we do not assume the linearity of the phase. As introduced in corol-
lary 3, let θ �→ τ (θ ) be the inverse of φ(t), and let us use equation 3.9 to
compute the PLV∗. Taking a sinusoidal modulation over the oscillation pe-
riod, τ (θ ) = θ + ε sin(θ ) with |ε| < 1,7 we get a nonvanishing asymptotic
expected PLV:

PLV∗ = 1
2π

∫ 2π

0
eiθ (1 + ε cos(θ ))dθ = ε

∫ π

0
eiθ cos(θ )dθ = ε/2 	= 0, if ε 	= 0.

Our theoretical framework can be used for developing methods to cor-
rect such biases. In the linear phase setting, bias can be avoided simply by
using an integer number of periods for coupling estimation. In the case of
a nonlinear phase evolution of the continuous signal, we can use the theo-
retical phase (if available) or its empirical estimate to evaluate PLV∗ under
constant spike intensity assumptions with equation 3.9 and subtract this
quantity to the estimated PLV. For resolving issues that arise due to the
nonlinearity of the estimated phase, specialized methods have been sug-
gested. For instance, Hurtado, Rubchinsky, and Sigvardt (2004) dealt with
phase jumps (a particular form of nonlinearity) by interpolating the signal
from the available data before and after the sudden change and Cole and

7
To guarantee the phase to be strictly increasing.
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Voytek (2019) introduced a cycle-by-cycle method for analyzing oscillatory
dynamics. In this method, they consider a linear phase for each detected cy-
cle of oscillation. Therefore, with this linear choice of phase, one can avoid
the spurious coupling that can appear due to phase nonlinearities. Based
on our framework, theoretically motivated methods that are not relying on
the linearization of the phase can be developed.

3.3 Simulations. We demonstrate the outcome of our theoretical results
using simulated phase-locked spike trains (similar to what has been intro-
duced in corollaries 2 and 4) and sinusoidal oscillations. For generating
phase-locked spike trains, we adopt the method introduced in Ashida et al.
(2010). As the model has already been described elsewhere, we restrict our-
selves to a brief explanation.

To generate phase-locked or periodic spike trains based on the classi-
cal von Mises model with rate λ(t) as introduced in equation 3.4, we use
a purely sinusoidal continuous signal x(t) with linearly increasing phase
φ(t) = 2π f t, with f = 1 Hz and various coupling strength (κ) (see ap-
pendix E for lists of parameters used for each figure). Based on this simu-
lation we perform two numerical experiments to demonstrate the practical
relevance of our (asymptotic) theoretical results.

3.3.1 Experiment 1. In order to demonstrate the validity of corollaries 2
and 4, in Figure 2 we show the empirical distribution of the normalized
residual of the PLV estimate and compare it to its asymptotic theoretical
distribution. We simulate two cases, one with homogeneous Poisson spike
trains (κ = 0) and one with phase-locked spike trains (κ = 0.5) with Pois-
son statistics. In both cases, we observe the agreement between theory and
simulation, as the joint distribution of real and imaginary part approaches
an isotropic gaussian. The slightly non-gaussian shape of the real part his-
togram for κ = 0.5 suggests, however, a slower convergence to the normal
distribution in the case of coupled signals.

3.3.2 Experiment 2. We demonstrate an application of corollary 3 for bias
evaluation with a simple simulation. In section 3.2 we pointed out that us-
ing a noninteger f T (T is not a multiple of the oscillation period) can lead
to spurious correlation between the point process and the oscillatory con-
tinuous signal. By using equation 3.11 we can compute this bias.

We use a simulation similar to the one used in the previous experiment
with an oscillatory signal and a homogeneous Poisson spike train (κ = 0)
and investigate the coupling between these two signals. If the length of the
continuous signal is not an integer number of the oscillation period, the PLV
estimate has a nonzero empirical mean (see Figures 3A and B) while when
it is a multiple of number of the oscillation period, the estimate matches
the ground truth (see Figure 3C). In Figure 3D we compare the theoretical
prediction and the numerical simulation for various length of the signals,
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1766 S. Safavi, N. Logothetis, and M. Besserve

Figure 2: Simulation of (A) homogeneous Poisson spike trains and (B) phase-
locked spike train with Poisson statistics (von Mises model with κ = 0.5). First
row: Example raster plot of the spikes. Second row: Empirical firing rate (gray
line) and ground truth firing rate (orange and purple traces). Third row: Contin-
uous signal x(t). (C) Scatter plots represent the complex-valued PLVs estimates.
Each dot represents one realization of the simulation. Insets depict the zoomed
version of both distributions. Green crosses indicate the theoretical complex-
valued PLV. (D, E) Histograms of real and imaginary parts of scaled residuals
for simulations (D) without coupling and (E) with coupling. Green lines indicate
the theoretical predictions of corresponding distributions according to corollar-
ies 2 and 4, and the bars indicate the empirical distributions. Note the subtle
difference between real and imaginary parts in panels D versus E. See Table 1
for parameters used for this figure.
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Coupling Between Continuous Signals and Point Processes 1767

Figure 3: (A–C) Distribution of simulated complex-valued PLVs (gray dots),
average of the simulated PLVs (red circle), and theoretical prediction based on
equation 3.11 (green crosses) for (A) γT = 0.75, (B) γT = 0.5, and (C) γT = 1. All
complex-valued PLVs are represented in the complex plane. Angles indicate the
locking phase and the radius the PLV. (D) PLV for different interval lengths T.
Box plots represent the simulated PLVs, and the dashed green trace represents
theoretical prediction of the expectation based on equation 3.11. Vertical broken
blue lines indicate integer number of oscillation periods. See Table 2 for param-
eters used for this figure.

showing that this effect disappears when the observation window covers a
larger number of oscillation periods.

4 Assessment of Multivariate Coupling

High-dimensional data sets have become increasingly important in biol-
ogy (Bühlmann, Kalisch, & Meier, 2014). More specifically in neuroscience,
state-of-the-art multichannel electrophysiology recording systems (Dickey,
Suminski, Amit, & Hatsopoulos, 2009; Jun et al., 2017; Juavinett, Bekheet, &
Churchland, 2019) allow the simultaneous recording of thousands of sites
(Pesaran et al., 2018; Jun et al., 2017; Buzsáki, 2004; Fukushima, Chao, & Fu-
jii, 2015). This growth in dimensionality requires the development of appro-
priate tools (Stevenson & Kording, 2011; O’Leary, Sutton, & Marder, 2015;
Gao & Ganguli, 2015; Williamson, Doiron, Smith, & Yu, 2019) for comput-
ing an interpretable summary of the coupling between neurophysiologi-
cal quantities reflecting the collective dynamics of the underlying neural
ensembles (Truccolo, 2016; Safavi et al., 2020). To achieve this aim, deriv-
ing low-rank approximations of high-dimensional matrices is supported
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by empirical evidence and theoretical predictions of the existence of low-
dimensional structures in neural activity (Ermentrout & Kleinfeld, 2001; Er-
mentrout & Pinto, 2007; Truccolo, Hochberg, & Donoghue, 2010; Gallego,
Perich, Miller, & Solla, 2017; Mastrogiuseppe & Ostojic, 2018; Sohn, Narain,
Meirhaeghe, & Jazayeri, 2019; Cueva et al., 2020). This section provides sta-
tistical results for such approximation in the context of the coupling be-
tween point processes and continuous signals.

As a natural extension of the scalar case discussed in the previous
section, we now consider the expected coupling matrix C∗ between an
n-dimensional vector of counting processes N with associated intensity vec-
tor λ(t) and a multivariate p-dimensional signal x(t), and its estimate based
on independent trials ĈK, respectively defined as

C∗ =
∫ T

0
x(t)λ(t)�dt and ĈK = 1

K

K∑
k=1

∫ T

0
x(t)dN(k)(t)�. (4.1)

In this multivariate setting, the coupling matrix between the point process
and continuous signal can be characterized by the singular value(s) of C∗,

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0,

and associated orthonormal singular vectors {(uk, vk)}, such that

C∗ =
p∑

k=1

ukσkv
H
k .

When the dimension of the coupling matrix gets large, recovering the entire
structure of C∗ using its estimate ĈK becomes unlikely due to the fluctua-
tions of individual coupling coefficients investigated in the previous sec-
tion. However, the largest singular values may remain reliably estimated
because they correspond to low-rank structures of the matrix that stand
out from the noise. Random matrix theory provides justifications for this
approach by characterizing the spectral properties of “noisy” matrices. Up
to a normalization explained later, this will involve indirectly characteriz-
ing the behavior of the empirical singular values {σ̂k} of the estimate matrix

ĈK by analyzing the eigenvalues of the hermitian matrix 1
nĈKĈ

H
K denoted

�1 ≥ �2 ≥ . . . ≥ �p ≥ 0.

These are related to each other by the relation σ̂k = √
n�k for all k.

4.1 Mathematical Formulation. We now replace assumption 1 to adapt
to this multivariate setting. By restricting ourselves to homogeneous
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Coupling Between Continuous Signals and Point Processes 1769

Poisson processes, we investigate a null hypothesis of no coupling between
continuous signals and point processes. Let us denote x̄ the complex conju-
gate of x and δ the Kronecker delta symbol:

δl j =
{

1, if l = j,

0, otherwise.
(4.2)

Assumption 2 (Complex Multivariate Case). We consider an infinite se-
quence {x j(t)} j≥1 of complex valued left-continuous deterministic functions
uniformly bounded on [0, T] and assume

(1) For all i, j ≥ 1, 1
T

∫ T
0 x̄ix jdt = δi j and

∫ T
0 xix jdt = 0.

(2) For all i ≥ 1,
∫ T

0 xidt = 0,
(3) There exist 0 < λmin < λmax and a sequence of independent homoge-

neous Poisson processes {Ni}i∈N∗ ’s with associated rates {λi}i∈N∗ in the
interval [λmin, λmax].

While the assumptions on {xi(t)} are designed for complex signals, which
is the classical case when dealing with PLV-like quantities, the results of this
section also hold for real signals by using the assumption 1

T

∫ T
0 xix jdt = δi j

instead of the above condition 1. Condition 2 is also added to ensure that
there is no trivial bias leading to a nonvanishing expectation of the coupling
coefficients (as illustrated in section 3.2). Indeed, when the time average of
each signal vanishes, based on theorem 1, the expectation of all univariate
coupling measures for a homogeneous Poisson process vanishes. We then
exploit a multivariate generalization of the martingale CLT to characterize
the distribution of the coupling matrix given these assumptions.

Theorem 2. For given n, p ≥ 1 and all K ≥ 1, we use sequences of signals defined
in assumption 2 to build multivariate continuous signal x(t) = (xj ) j=1...p and K
independent copies of multivariate Poisson process N(t) = (Ni)i=1...n with rate vec-
tor λ = [λ1, . . . , λn]�. Then the normalized coupling matrix

√
KĈKdiag(

√
Tλ)−1,

with ĈK given by equation 4.1, converges in distribution for K → +∞ to a matrix
with i.i.d. complex standard normal coefficients.

Sketch of the proof. This essentially uses a generalization of the CLT to
multivariate point processes described in Aalen et al. (2008, appendix B).
Based on the statistics of stochastic integrals presented in section B.1.1, as-
sumptions on x entail vanishing correlations between all matrix coefficients
and lead to the analytical expression of the covariance matrix. �

This result suggests that for large n and p = p(n), coupling matrices Ĉ
n
K

of increasing size can be used to build the Wishart-like matrix sequence,

Sn � K
n

Ĉ
n
Kdiag(Tλ)−1(Ĉ

n
K )H, (4.3)
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whose ESD may converge to the Marchenko-Pastur law. This is, however,
not guaranteed by classical results due to the nongaussianity and depen-
dence of the matrix coefficients of Ĉ

n
K for fixed n and K. Convergence will

thus depend on how much the departure from these assumptions plays a
role as n becomes large. We show in the following theorem that increasing
the number of trials as a function of the dimension guarantees convergence
to the MP law.
Theorem 3. In addition to assumption 2, assume an increasing, positive integer
sequence {p(n), K(n)}n∈N∗ such that p(n)

n −→
n→+∞ α ∈ (0,+∞), and

1
n2K(n)2

∑
�

(∫ T

0
x̄ jxlx j′ x̄l′ dt

)2

→ 0, uniformly in k ≤ n, (4.4)

where � = {( j, l, j′, l′) : 1 ≤ j, l, j′, l′ ≤ p} \ {( j, l, j′, l′) : j = j′ 	= l = l′ or j =
l′ 	= j′ = l}. Consider the sequence {Ĉn

K(n)}n∈N∗ built as in theorem 2 for p = p(n);
then the corresponding sequence {Sn} defined by equation 4.3 has an ESD converg-
ing weakly with probability one to the MP law of equation 2.7.

Sketch of the proof. We use theorem 1.1 of Bai and Zhou (2008) addressing
the case of matrices with dependence of coefficients within columns. We use
Itô’s formula (see appendix B) to check the simplified necessary conditions
provided in corollary 1.1 of Bai and Zhou (2008). This implies convergence
of the Stieltjes transform to the same function as the transform of the MP
distribution. By classical results on the Stieltjes transform (Anderson et al.,
2010, theorem 2.4.4), this implies weak convergence to the MP measure (i.e.,
convergence for the weak topology; see appendix B.2). �
Remark 2. Condition in equation 4.4 determines how many trials are
needed at most for spectral convergence. Due to the uniform bounded-
ness assumption on signal x(t) and given the number of terms in the sum
bounded by n4, we can already see that n

K(n) → 0, that is, having the num-
ber of trials increasing at an even slightly faster rate than the dimension
is enough for convergence for any choice of continuous signals respecting
orthonormality assumption 2. However, there are cases where even fewer
trials than dimensions are required. An important example is the Fourier
basis of the [0, T] interval, xl (t) = 1√

T
exp(i2π lt/T ). Then all terms in the

sum of equation 4.4 vanish, except the ones satisfying j − j′ − l + l′ = 0,
such that we are left with a number of bounded terms that scale with n3.
As a consequence, the condition on the number of trials to achieve spec-
tral convergence becomes

√
n

K(n) → 0, such that we need increasingly fewer
trials than dimensions. On the contrary, due to the uniform bound that we
impose on the signals, choosing a basis of signals with decreasing support,
such as a wavelet basis, typically departs from our condition 1 of assump-
tion 2, as the normalization of condition 1 of assumption 2 imposes unit
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norm on each signal, requiring their amplitude to increase as their support
decreases, violating the uniform bound assumption. This limitation sup-
ports the intuition that statistical regularities exploited by our asymptotic
results deteriorate with highly transient signals.

This convergence of the spectral measure to the MP law guarantees
eigenvalues do not accumulate in a large proportion above the upper end
of the support of the MP law; however, they do not provide rigorous guar-
antees regarding convergence of individual eigenvalues and, in particular,
the largest eigenvalue. Although such convergence is satisfied in classical
settings (gaussian i.i.d. coefficients), they typically require stronger assump-
tions than for the (weak) spectral convergence to the MP law, and still only
very few results are available in the non-i.i.d. setting. We could, however,
prove such convergence by adding a constraint to our model.

Theorem 4. In addition to assumption 2, assume all homogeneous rates λk are
equal. Assume two increasing, positive integer sequences {p(n), K(n)}n∈N∗ such
that

p(n)
n →α ∈ (0,+∞) and 1

K(n)

∑
1≤i,k≤p(n)

∫ T
0 |xix j|2(t)dt < B, (4.5)

for some constant B. Then Sn defined in equation 4.3 has an ESD converging weakly
with probability one to the MP law of equation 2.7. Moreover, let �1 and �p be the
largest and smallest eigenvalues of {Sn}, respectively. Then in probability

�1(n) → (1 + √
α)2 and �p(n) → (1 − √

α)21α<1.

Sketch of the proof. The identical intensities assumption allows us to use
the result of Chafaï and Tikhomirov (2018) for matrices with i.i.d. columns.
We first checked that their proof holds also for the complex case by replacing
symmetric matrices by Hermitian matrices and squared scalar product by
an absolute squared Hermitian product. We satisfy their strong tail projec-
tion (STP) assumption using Chebyshev’s inequality. The necessary fourth-
order moment conditions exploit the same stochastic integration results as
theorem 3. �
Remark 3. Without additional assumptions, the moment condition of
equation 4.5 is satisfied by choosing K(n) = n2 (as there are p2 bounded mo-
ments, scaling as n2 when n grows). It is likely from the proof that taking
into account more information about the moments of the continuous signal
sequence {x j}, we can achieve convergence with a lower rate of increase for
the number of trials. This is left to future work.

This result thus provides the guarantees that under a null hypothe-
sis of no coupling (due to homogeneity of the Poisson processes), the ex-
treme eigenvalues of S will asymptotically cover exactly the full support
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of the MP law. This will be used in section 4.2 to assess the significance
of the eigenvalues �k by simply checking whether they are larger than
(1 + √

α)2.
This significance analysis relies as well on understanding what happens

to the eigenvalues when the model departs from the null hypothesis. In a
practical setting, we hypothesize that the coupling matrix has a determin-
istic structure superimposed on the martingale noise modeled in the above
results. One qualitative justification of this assumption can be found in re-
mark 1, showing that for sinusoidal coupling, a nonvanishing expectation
proportional to the coupling is superimposed to martingale noise, whose
distribution is unaffected by coupling, such that the noisy part of the matrix
satisfies the conditions of the above theorems. As typically done in applica-
tions, we are mostly interested in the low-rank structure associated with the
largest singular values of the coupling matrix, providing an interpretable
summary of the multivariate interactions.

This naturally leads to a modeling departure from the null hypothesis
with a low-rank perturbation assumption. In such a case, the eigenvalues
related to significant coupling are expected to be reflected in the spectrum
of the perturbed matrix, such that they can be isolated from the remaining
eigenvalues associated with the martingale noise. This intuition is justified
by results in the case of the Wishart ensemble (Loubaton & Vallet, 2011); see
also Benaych Georges and Nadakuditi (2012) for a more general result and
Capitaine and Donati Martin (2016) for an overview of matrix perturbation
results), that we restate here:

Theorem 5 (From Loubaton & Vallet, 2011, Theorem 6). Let Xn be an n × p
sequence of i.i.d. complex gaussian matrices defined in section 2.3 and An be
a finite rank perturbation of the null matrix with nonzero eigenvalues θi. Let
Mn = ( 1√

n Xn + An)( 1√
n Xn + An)H. Then as n → ∞ and p

n → α ∈ (0, 1), almost
surely,

λi(Mn) →
{ (1+θi )(c+θi )

θi
, if θi >

√
α,

(1 + √
α)2, otherwise.

A demonstration that this further applies rigorously to our nongaussian,
non-i.i.d. case is left to further work (but see Benaych-Georges & Nadaku-
diti, 2012, for a generalization in this direction). This result shows the upper
end of the MP support is indeed the critical threshold for the eigenvalues of
An to stand out from the noise. Below this threshold, the largest eigenvalue
convergence to the upper end of the support of the MP distribution is not
informative about θi. Above this threshold, the value of θi can be recovered
and detected by comparing the largest eigenvalue to the upper end of the
MP distribution.
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We next illustrate the interest of these theoretical predictions in the con-
text of neural time series for reliably quantifying the interplay between mul-
tichannel LFP signals and the spiking of multiple neurons. Nevertheless, the
results are potentially applicable in other domains as well. In neuroscience,
x may represent LFP measurements collected on each recording channel
and N the spiking activity of different neurons, called units. The number
of recording channels nc and recorded units nu correspond to p and n, re-
spectively. These numbers may differ, and as a consequence, the coupling
matrix is generally rectangular.

4.2 Application to Significance Assessment. In order to statistically as-
sess the significance of the largest singular value(s) of coupling matrix Ĉ

n
K,

considered as a measure of coupling between point processes and contin-
uous signals, we need a null hypothesis. Hypothesis testing based on the
generation of surrogate data is one of the common methods for significant
assessment in neuroscience and other fields. Generating appropriate sur-
rogate data can be not only challenging (see Grün, 2009, and Elsayed &
Cunningham, 2017, for examples in neuroscience), but also computation-
ally expensive due to the increasingly large dimensions of modern data sets.
Exploiting our theoretical results for this setting allows us to perform such
statistical assessment in a principled way, without using surrogate data and
sparing computational resources.

In order to exploit the results of the theoretical part, it is best to pre-
process the p × q matrix of time-discretized signals L that correspond to q
samples over interval [0, T] with sampling interval � = T/q. The chosen
signals are driven by the application (in our case, they are preprocessed
LFPs, see section 4.3 for a simulation reproducing the context of neurophys-
iolgy data). We assume the rows of L sum to zero to match condition 2 of
assumption 2 (and avoid bias in the coupling measure similar to what is de-
scribed in section 3.3). We then need to process further this signal such that
condition 1 of assumption 2 is satisfied approximately. In order to achieve
this, we perform classical whitening of the signals to generate matrix X, the
discrete time approximation of x(t), according to

X = WL, with W =
(

1
q

LLH
)− 1

2

, (4.6)

where the power in the expression of the whitening matrix W describes
the inversion of a matrix square root, typically achieved via eigenvalue de-
composition, and which may require PCA-like dimensionality reduction in
practice to minimize the numerical effects of small eigenvalues. This pro-
cedure decorrelates the martingale fluctuations of coefficients within the
same column of the coupling matrix (see theorem 2), a key requirement for
convergence to the MP law.
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Figure 4: We assume Ĉ
n
K is a superposition of martingale noise and a low-rank

deterministic matrix C∗ reflecting the actual coupling. If the singular values of a
normalized version of C∗ are large enough (larger than the upper end of the MP
law support), theory suggests that they will correspond to the largest eigen-
values of Sn appearing beyond the support of MP distributed eigenvalues re-
flecting martingale noise. They can thus be detected with a simple thresholding
approach (see equation 4.7).

As explained in section 4.1, theoretical results support using θDET = (1 +√
α)2, the upper end of the support of the MP law, as a detection threshold

for the significance of the eigenvalues of the Hermitian matrix,

Sn = K
n

Ĉ
n
Kdiag(Tλ0)−1(Ĉ

n
K )H .

The null hypothesis of nonsignificance of the kth largest singular value
σ̂k of the normalized coupling matrix,

√
KĈ

n
Kdiag(

√
Tλ0)−1,

should thus be rejected if the corresponding kth largest eigenvalue �k of Sn

is superior to the significance threshold, leading to the condition

σ̂k =
√

n�k >
√

nθDET = √
n(1 + √

α). (4.7)

Therefore, this last condition on the empirical singular values is used to
identify those reflecting a significant coupling between the multivariate
point process and continuous signal. An illustration of our overall signif-
icance assessment approach is shown in Figure 4.
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4.3 Simulation. We use a simulation to demonstrate the outcome of
our (asymptotic) theoretical results on mutlivariate coupling. Similar to the
simulations of section 3.3 for the univariate case, we use simulated phase-
locked spike trains with Poisson statistics. The main difference between this
simulation and the previous one is in synthesizing the LFP. In order to sim-
ulate multichannel oscillatory signals that lead to a low-rank structure for
C∗, we use a combination of noisy oscillatory components.

The LFPs contain Nosc oscillatory groups of channels; each channel l
within the same group contains the same oscillatory component with in-
dex j(l), with the time course of all these components being Oj(t) = e2π i f jt ,
j ∈ {1, . . . , Nosc}, with all frequencies f j in the range [ fmin, fmax], and all
multiples of 1/T. Due to the necessary time axis discretization, the bracket
notation [t] indicates the oscillation is sampled at equispaced discrete times
t = {k�}k=1,...,q. The synthesized discrete time multichannel LFP (�[t] =
{ψl[t]}l=1,...,nc ) can be written as

�l[t] = Oj(l)[t] 
 exp (iηl[t]) , (4.8)

with 
 entrywise product and {ηl[t])} i.i.d. sampled (white) phase noises
contaminating each channel independently (see appendix D for more
details).

In this simulation, the frequencies of the oscillatory components range
from 11 to 15 Hz. We used 100 LFP channels (nc = 100) and different choices
for the number of spiking units (10, 50, and 90). Spiking activities are sim-
ulated in different scenarios, with and without coupling to the LFP os-
cillations. In the latter case, we have two populations of neurons (each
consisting of 1/5th of the total number of neurons) that are each coupled to
one of the oscillatory groups of LFP channels. Both populations are coupled
to their respective oscillation with identical strength (κ = 0.15) and phase
(φ0 = 0).

To compute the coupling matrix ĈK, we first preprocess �[t] by applying
bandpass filtering in a range covering [ fmin, fmax] and convert it to an ana-
lytic signal via the discrete time Hilbert transform, leading to data matrix L,
following the standards of PLV analysis in neuroscience (Chavez, Besserve,
Adam, & Martinerie, 2006).

This signal matrix is then whitened according to equation 4.6 to yield
matrix X, the discrete time version of x(t). The coupling matrix ĈK is then
computed according to equation 4.1 using 10 trials (barring trivial approx-
imation to the closest time sample in X).

Then in order to approximate the normalization
√

KĈ
n
Kdiag(

√
Tλ0)−1

based on empirical data, we use the total number of events for unit u oc-
curring across all K trials Nu

tot = ∑K
k=1 Nu

k and multiply each column u of
the coupling matrix by
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1776 S. Safavi, N. Logothetis, and M. Besserve

Figure 5: Theoretical Marchenko-Pastur distribution (green lines) and empir-
ical distribution (gray bars) for (A) simulation without coupling (κ = 0) and
(B) with coupling (κ = 0.15) between multivariate spikes and LFP. Rows repre-
sent the spectral distribution of simulations with different number of spiking
units—rows 1, 2, and 3, respectively, 10, 50, and 90 (which leads to different α

for MP law). Insets zoom the tail of the distributions. Parameters used for this
figure are denoted in Table 3.

K√
Nu

tot

≈ K√
K
∫ T

0 λu(t)dt

for the corresponding unit u, asymptotically matching the theoretical nor-
malization in the homogeneous Poisson case.

We observe in Figure 5A that in the absence of coupling, the distribution
of eigenvalues originating from the random matrix structure is very close to
the theoretically predicted MP distribution. In Figure 5B, we have coupling
between spike and eigenvalues reflecting the coupling beyond the MP sup-
port (blue line in Figure 5), and the eigenvalue bulk below the threshold is
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also close to MP distribution. This suggests an easy thresholding approach
for significance assessment.

5 Discussion

5.1 Insights for Data Analysis. Our theoretical results provide guar-
antees for specific coupling models to respect univariate and multivari-
ate asymptotic statistics that can be easily exploited for statistical testing.
The required assumptions provide guidelines for practical settings that
are likely of interest beyond the strict framework that we imposed to get
the rigorous results. For the univariate coupling measure, corollaries and
simulations point out the importance of the choice of the observation in-
terval [0, T], which is particularly sensitive when considering short inter-
vals covering only a few oscillation periods. This is the case when doing
time-resolved analysis or dealing with experiments with short trial du-
rations. Moreover, the univariate results also emphasize the effect of
nonlinear phase increases, highly relevant in neuroscience due to the per-
vasive effects of nonlinear dynamics in the mesoscopic signals. Our results
provide asymptotic bias correction terms that can be used for statistical
testing.

In the same way, theoretical results in the multivariate setting may seem
to be constrained by our assumptions, but they provide critical guidelines to
interpret singular values. First, whitening the continuous signals and nor-
malizing the coupling by the square root of the rate are key preprocessing
steps for making the asymptotic behavior of the martingale noise invariant
to the specifics of the data at hand. This then reduces to an analytical model,
the MP law, dependent on only a single matrix shape parameter. After as-
sessment of the significance of the singular value of the normalized cou-
pling matrix, it is of course possible to revert these preprocessing steps to get
a low-rank approximation of the original coupling matrix (nonnormalized,
nonwhitened) to summarize the significant coupling structure in an inter-
pretable way. A second insight provided by the multivariate results is the
role of fourth-order moments of the continuous signals, represented by the
integrals of order four monomials of components of x(t), in the MP conver-
gence results. The magnitude of these moments determines the number of
trials asymptotically needed to achieve convergence. Since these moments
can be estimated empirically, we can check how they grow with the dimen-
sion of the signals in a specific application. With our minimal assumptions
on the signals, the number of trials need only to grow at most sublinearly in
the dimension for spectral convergence; however, we could only show that
convergence of the largest eigenvalues requires at most quadratic increase
in the dimension n. This last result might be improved in future work, with
extra assumptions, to reach linear growth.

Our theoretical results can be extended in two directions. The first is
toward exploiting point processes different from inhomogeneous Poisson
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(e.g., Hawkes processes) in order to be able to apply the framework in the
context of stochastic intensities. The second direction is toward exploiting
recent developments in RMT, in order to develop a probabilistic significance
assessment.

5.2 Extension of Signal Assumptions. Our theoretical results assume
deterministic continuous signals and point process intensities (see assump-
tion 1). This entails limitations, such as implicitly assuming the considered
point processes are (homogeneous or inhomogeneous) Poisson processes.
This assumption may be too restrictive in realistic scenarios (for examples
in neuroscience, see Deger, Helias, Boucsein, & Rotter, 2012; Reimer, Staude,
Ehm, & Rotter, 2012; Nawrot et al., 2008; Shinomoto, Shima, & Tanji, 2003;
Maimon & Assad, 2009; Shinomoto et al., 2009). However, the stochastic in-
tegration methods that provide the basis of our results allow the treatment
of random signals and intensities, provided they are predictable, which en-
compasses a wide enough class of processes to cover most applications
(Protter, 2005). Our results thus have potential for generalizations to the
case of random continuous signal, with the difference that the variance of
the estimates would increase due to the additional variability induced by
the signal fluctuations, and to the case of random intensities, leading to dif-
ferent asymptotic properties of the coupling measures, which may or may
not have simple analytical expressions.

As a potential direction for extending this framework, Hawkes processes
(Hawkes, 1971) are point processes for which the probability of occurrence
of future events can also depend on the sequence of past events. Due to this
history dependency, they are also called self-exciting processes. Hawkes
processes are used for modeling recurrent interactions in various fields; for
instance—in finance it is used to model buy or sell transaction events on
stock markets (Embrechts, Liniger, & Lin, 2011) in geology to model the
origin times and magnitudes of earthquakes (Ogata, 1988), in online social
media to model user actions over time (Rizoiu, Lee, Mishra, & Xie, 2017),
and even modeling reliability of information on the web and controlling the
spread misinformation (Tabibian et al., 2017; Kim, Tabibian, Oh, Schölkopf,
& Gomez-Rodriguez, 2018), and in neuroscience to model spike trains (Kru-
min et al., 2010). We conjecture that such history dependency can be incor-
porated in our analytic treatment of the coupling measure, such that our
theoretical results can be extended to this model.

5.3 Extension beyond Binary Significance Assessment. We show that
the Marchenko-Pastur distribution provides a good approximation of the
distribution of eigenvalues in the absence of coupling, and the upper end of
its support approximates the largest eigenvalue. This provides us a thresh-
old to assess the significance of empirical singular values. Nevertheless, this
hard thresholding approach does not take into account the actual fluctu-
ations of the largest eigenvalue around this asymptotic upper end of the
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support and thus does not provide meaningful p-value for the statistical
test.

It has been shown that the appropriately rescaled and recentered8 largest
eigenvalue of Wishart matrices is asymptotically distributed as the Tracy-
Widom distribution—for example, see Johnstone (2001); Tracy and Widom
(2002); and El Karoui (2003, 2005, 2007). However, note that in some cases
of practical relevance, the normal distribution might be more appropriate
(Bai & Yao, 2008). Such asymptotic distribution of the largest eigenvalue
can be exploited for reporting a theoretical p-value for the significance of
the coupling and therefore extending the significance assessment from a
binary decision to a probabilistic one. For example, Kritchman and Nadler
(2009) exploit this idea (but in a simpler scenario) to determine the number
of signal components in noisy data. This extension would allow a precise
probabilistic assessment of the significance of weaker couplings leading to
eigenvalues in the neighborhood of the asymptotic threshold introduced
above.

6 Conclusion

We investigated the statistical properties of coupling measures between
continuous signals and point processes. We first used martingale theory to
characterize the distributions of univariate coupling measures such as the
PLV. Then, based on multivariate extensions of this result and RMT, we es-
tablished predictions regarding the null distribution of the singular values
of coupling matrices between a large number of point processes and contin-
uous signals and a principled way to assess significance of such multivari-
ate coupling. These theoretical results build a solid basis for the statistical
assessment of such coupling in applications dealing with high dimensional
data.

Appendix: Proofs of Theorems in the Main Text

Proof of Theorem 1. For the first part of the theorem (expectation), we use
the martingale M(k) associated with each copied process N(k) to rewrite

ĉK = 1
K

K∑
k=1

∫ T

0
x(t)dM(k)(t) + 1

K

K∑
k=1

∫ T

0
x(t)λ(t)dt(t). (A.1)

Elements of the sum in the first term are then zero mean martingale, and
by linearity, so is the whole term. As a consequence (using the zero mean

8
The required recentering and rescaling of the eigenvalues is studied in the literature

(Johnstone, 2001; El Karoui, 2003, 2007).
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property), the expectation of the first term is zero so only the second term
remains:

E [̂cK] =
∫ T

0
x(t)λ(t)dt(t).

We then exploit a central limit theorem (CLT) for martingales to prove
the second part of the theorem (convergence to gaussian distribution). To
satisfy the CLT in such a case, it is sufficient to find a particular martingale
M̃(K) sequence that will satisfy the conditions described in Aalen et al. (2008,

p. 63) (
P→ indicate convergence in probability):

1. Var(M̃(K)(t))
P−→

K→+∞
Ṽ (t) for all t ∈ [0, T], with Ṽ increasing and

Ṽ (0) = 0.
2. Informally, the size of the jumps of M̃(K) tends to zero (see Aalen et al.,

2008, p. 63). Formally, for any ε > 0, the martingale M̃(K)
ε (t) gathering

the jumps > ε satisfies Var
(

M̃(K)
ε (t)

)
P−→

K→+∞
0.

Then M̃(K)(t) converges in distribution to a gaussian martingale of variance
Ṽ (t).

To achieve these conditions, we define M(k), the sequence of i.i.d.
zero mean martingales defined on [0, T] canonically associated with the
point process of each trial N(k). Then we build martingales M(k)

x (t) =∫ t
0 x(s)dM(k)(s)ds and construct M̃(K) = 1/

√
K
∑K

k=1 M(k)
x .

The variance of this latter martingale (also called its predictable variation
processes) can be computed based on the rules provided in section B.1.1.
First, due to trial independence,

Ṽ (t) = Var
(

M̃(K)(t)
)

= Var

(
1√
K

K∑
k=1

M(k)
x (t)

)
=

K∑
k=1

Var
(

1√
K

Mx(t)
)

,

(A.2)

and using equation B.4, we get

Ṽ (t) = 1
K

∑∫ t

0
x2(t)λ(t)dt =

∫ t

0
x2(t)λ(t)dt. (A.3)

Equation A.3 clearly fulfills CLT’s condition 1.
For condition 2, due to assumption 1, x(t) is bounded, such that there

is a B > 0 satisfying |x(t)| < B over [0, T]. As a consequence, the size of all
jumps is bounded by B/

√
K, and for any ε, M̃(K)

ε (t) is the constant zero for
K > B2

ε2 and condition 2 is satisfied.
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Fulfillment of both conditions leads to convergence in distribution to a
gaussian martingale of variance Ṽ (t);

M̃(K) −→
K→+∞

N
(

0,

∫ T

0
x2(t)λ(t)dt

)
. (A.4)

Finally, using equation A.1, we conclude the proof by noticing that
the above martingale corresponds exactly to the quantity

√
K (̂cK − c∗).

Therefore,

√
K (̂cK − c∗) −→

K→+∞
N

(
0,

∫ T

0
x2(t)λ(t)dt

)
. (A.5)

�
Proof of Corollary 1. We apply theorem 1 to eiφ(t) (i.e., replacing x(t) with
eiφ(t)). As eiφ(t) is complex valued, we should have a covariance function
for its predictable variation process Ṽ (t). The covariance between a martin-
gale’s real part,

MRe(t) =
∫ t

0
Re(eiφ(s) )dM(s)ds,

and imaginary part,

MIm(t) =
∫ t

0
Im(eiφ(s) )dM(s)ds,

is given by

∫ t

0
Re(eiφ(s) )Im(eiφ(s) )λ(s)ds. (A.6)

The diagonal elements of the covariance function are the predictable varia-
tion process of MRe and MIm that can be computed based on equation B.4,
and the off-diagonal elements are the covariance between martingale’s real
and imaginary part that can be computed based on equation B.5. Therefore,
the covariance function for its predictable variation process is

Cov

([
Re{Z}
Im{Z}

])

=
⎡⎣ ∫ t

0

(
Re(eiφ(s) )

)2
λ(s)ds

∫ t
0 Re(eiφ(s) )Im(eiφ(s) )λ(s)ds∫ t

0 Re(eiφ(s) )Im(eiφ(s) )λ(s)ds
∫ t

0

(
Im(eiφ(s) )

)2
λ(s)ds

⎤⎦ (A.7)
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=
∫ t

0

[
cos2(φ(s)) sin(2φ(s))/2

sin(2φ(s))/2 sin2(φ(s))

]
λ(s)ds. (A.8)

Similar to theorem 1, as K → +∞, the residuals converge in distribution
to a zero-mean complex gaussian variable Z (i.e., the joint distribution of
real and imaginary parts is gaussian):

√
K (̂cK − c∗) −→

K→+∞
N (0, Cov(Z)) .

Because theorem 1 guarantees that the
√

K(̂cK − c∗) tends to a gaussian with
finite variance, ĉK tends to the Dirac measure at c∗.

However, given that we use x(t) = eiφ(t), ĉK is not exactly the multitrial
PLV estimate—more precisely,

ĉK = 1
K

K∑
k=1

∫ T

0
eiφ(t)dN(k)(t) = 1

K

K∑
k=1

Nk∑
j=1

eiφ(tk
j ) =

(∑K
k=1 Nk

)
K

P̂LVK.

Thus, we can write P̂LVK = νK · ĉK, with νK = K
(
∑K

k=1 Nk )
. With the same tech-

niques (using x(t) = 1), we can show convergence in the distribution of νK

to a constant:

1
νK

=
(∑K

k=1 Nk

)
K

= 1/K
∑

k

∫ T

0
1 · dN(k) −→

K→+∞

∫ T

0
λ(t)dt = 	(T ).

This leads to

νK −→
K→+∞

1
	(T )

.

Following a version of Slutsky’s theorem (Mittelhammer, 1996, theo-
rem 5.10), since νk and ĉK tend to a limit in distribution, and one of these
limits is a constant, the product tends to the product of the limits such that
we get

PLV∗ = lim
K→∞

νK · ĉK = c∗

	(T )

and can decompose the PLV residual as follows:

√
K
(

P̂LVK − PLV∗
)

=
√

KνK (̂cK − c∗) +
√

K (νKc∗ − PLV∗) .
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Taking the limit of the above equation, the second term clearly vanishes (see
the above limit of νK), and the first term, using again the limit of products,
leads to the final result:

√
K
(

P̂LVK − PLV∗
)

−→
K→+∞

N
(

0,
1

	(T )2 Cov(Z)
)

.

�
Proof of Corollary 2. We use the intensity function introduced in equation
3.5 in corollary 1. The PLV asymptotic value (PLV∗) can be derived from
definition introduced in equation 3.2:

PLV∗ =
∫ T

0 eiφ(t)λ(t)dt∫ T
0 λ(t)dt

(A.9)

= ro
∫ T

0 eiφ(t) exp(κ cos(φ(t) − ϕ0))φ′(t)dt

ro
∫ T

0 exp(κ cos(φ(t) − ϕ0))φ′(t)dt
. (A.10)

We change the integration variable from φ(t) to θ :

PLV∗ =
∫ φ(T )
φ(0) eiθ exp(κ cos(θ − ϕ0))dθ∫ φ(T )

φ(0) exp(κ cos(θ − ϕ0))dθ
. (A.11)

To simplify the integral (bring the ϕ0 out of the integral), we change the
integration variable again, from θ to ψ , (ψ = θ − ϕ0):

PLV∗ =
∫ φ(T )−ϕ0

φ(0)−ϕ0
ei(ψ+ϕ0 ) exp(κ cos(ψ ))dψ∫ φ(T )−ϕ0

φ(0)−ϕ0
exp(κ cos(ψ ))dψ

(A.12)

= eiϕ0

∫ φ(T )−ϕ0

φ(0)−ϕ0
eiψ exp(κ cos(ψ ))dψ∫ φ(T )−ϕ0

φ(0)−ϕ0
exp(κ cos(ψ ))dψ

. (A.13)

Given that that integrand is a 2π -periodic functions (thus, the integral is
invariant to translations of the integration interval), we get

PLV∗ = eiϕ0

∫ π

−π
eiψ exp(κ cos(ψ ))dψ∫ π

−π
exp(κ cos(ψ ))dψ

.

Observing that the integrand of the denominator is even, while for the nu-
merator, the imaginary part is odd and the real part is even, we get

PLV∗ = eiϕ0

∫ π

0 cos(ψ ) exp(κ cos(ψ ))dψ∫ π

0 exp(κ cos(ψ ))dψ
.
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This proves the first part of the corollary—equation 3.6. By using the inte-
gral form of the modified Bessel functions Ik for k integer (see, e.g., Watson,
1995, p. 181):

Ik(κ ) = 1
π

∫ π

0
cos(kθ ) exp(κ cos(θ ))dθ + sin(kπ )

π

∫ +∞

0
e−κ cosh t−ktdt (A.14)

= 1
π

∫ π

0
cos(kθ ) exp(κ cos(θ ))dθ, (A.15)

we can derive the compact form:

PLV∗ = eiϕ0
I1(κ )
I0(κ )

. (A.16)

The covariance matrix of the asymptotic distribution can be easily de-
rived by plugging equation 3.5 as λ(t) in corollary 1 and integrating on
[0, T]:

(Cov(Z))11 = λ0

	(T )2

∫ T

0
cos2(φ(t)) exp (κ cos(φ(t) − ϕ0)) φ′(t)dt. (A.17)

Based on the above developments and noticing that the integration inter-
vals correspond to 2πγT , with γT the number of oscillation periods, we have

	(T ) = λ02γTπ I0(κ ) = λ02
φ(T ) − φ(0)

2π
π I0(κ ),

such that

(Cov(Z))11 = 1

λ0 (φ(T ) − φ(0))2 I0(κ )2

×
∫ T

0
cos2(φ(t)) exp (κ cos(φ(t) − ϕ0)) φ′(t)dt. (A.18)

To simplify the rest of the derivations, we transform the complex variable
coordinates by using eiφ(t)e−iϕ0 instead of eiφ(t) as predictable with respect
to {Ft} (i.e., replacing x(t) with eiφ(t)e−iϕ0 in theorem 1). With this change,
equation A.18 becomes

(Cov(Z))11 = 1

λ0 (φ(T ) − φ(0))2 I0(κ )2

×
∫ T

0
cos2(φ(t) − ϕ0) exp (κ cos(φ(t) − ϕ0)) φ′(t)dt. (A.19)
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We change the variable of the integral from φ(t) − ϕ0 to θ and use the fol-
lowing trigonometric identity,

cos2(θ ) = 1
2

(1 + cos(2θ )) , (A.20)

to obtain

(Cov(Z))11 = 1

2λ0 (φ(T ) − φ(0))2 I0(κ )2

∫ φ(T )

φ(0)
(1 + cos(2θ )) exp (κ cos(θ )) dθ

= 1

2λ0 (φ(T ) − φ(0))2 I0(κ )2

×
∫ φ(T )

φ(0)

(
exp (κ cos(θ )) + cos(2θ ) exp (κ cos(θ ))

)
dθ.

Using again that the integration interval is 2πγT with γT integer, and inte-
grates 2π-periodic functions (thus, the integral is invariant to translations
of the integration interval), we get

(Cov(Z))11 = 1

2λ0 (φ(T ) − φ(0))2 I0(κ )2

[∫ 2πγT

0
exp (κ cos(θ )) dθ

+
∫ 2πγT

0
cos(2θ ) exp (κ cos(θ )) dθ

]
,

(Cov(Z))11 = 1

2λ0 (φ(T )−φ(0))2 I0(κ )2
[2γTπI0(κ )+2γTπI2(κ )] (A.21)

= 2πγT

2λ0 (φ(T ) − φ(0))2 I0(κ )2
[I0(κ ) + I2(κ )] (A.22)

= 1
2λ0 (φ(T ) − φ(0)) I0(κ )2 [I0(κ ) + I2(κ )] , (A.23)

where γT is the number of oscillation periods contained in [0, T].
We can have a similar calculation for the imaginary part, (Cov(Z))22,

as well, but using the identity sin2(θ ) = 1
2 (1 − cos(2θ )) instead of equation

A.20. The off-diagonal elements of the covariance matrix vanish due to sym-
metries of integrand.

Therefore, we showed that for a given κ ≥ 0, scaled residual

Z′ = e−iϕ0
√

K
(

P̂LVK − PLV∗
)
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1786 S. Safavi, N. Logothetis, and M. Besserve

converges to a zero mean complex gaussian with the following covariance:

Cov

[
Re{Z′}
Im{Z′}

]
=
[

Re{Ze−iϕ0}
Im{Ze−iϕ0}

]

= 1
2λ0(φ(T ) − φ(0))I0(κ )2

[
I0(κ ) + I2(κ ) 0

0 I0(κ ) − I2(κ )

]
.

�
Proof of Corollary 3. Similar to corollary 2, we can derive the asymptotic
PLV, equation 3.9, for this case, from the definition in equation 3.2. We ap-
ply the intensity function λ = λ0 in corollary 1. The PLV asymptotic value
(PLV∗) can be derived simply by changing the integration variable from φ(t)
to θ (and let θ �→ τ (θ ) be its inverse).

The covariance matrix of the asymptotic distribution, can be derived by
the procedure we used for the proof of corollary 2. We plug the rate λ0 as
λ(t) in corollary 1 and integrate on [0, T]:

(Cov(Z))11 = λ0

	(T )2

∫ T

0
cos2(φ(t))dt. (A.24)

By changing the variable from φ(t) to θ , we get

(Cov(Z))11 = λ0

	(T )2

∫ φ(T )

φ(0)
cos2(θ )τ ′(θ )dθ. (A.25)

As 	(T ) = ∫ T
0 λ0dt = λ0T, we have

(Cov(Z))11 = λ0

	(T )2

∫ φ(T )

φ(0)
cos2(θ )τ ′(θ )dθ (A.26)

= 1
λ0T2

∫ φ(T )

φ(0)
cos2(θ )τ ′(θ )dθ. (A.27)

With a similar calculation for other coefficients of the covariance matrix, we
get

Cov(Z) = 1
λ0T2

∫ φ(T )

φ(0)

[
cos2(θ ) sin(2θ )/2

sin(2θ )/2 sin2(θ )

]
τ ′(θ )dθ.

Therefore, we showed that the scaled residual,

Z =
√

K
(

P̂LVK − PLV∗
)

,
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Coupling Between Continuous Signals and Point Processes 1787

converges to a zero mean complex gaussian:

√
K
(

P̂LVK − PLV∗
)

−→
K→+∞

N
([

0

0

]
, Cov(Z)

)
.

�
Proof of Theorem 2. Similar to the proof of theorem 1, we rely on a CLT,
but this time adapted to the case of vector-valued martingales (Aalen et al.,
2008, appendix B) to prove this theorem.

We start from the single trial empirical vector-valued coupling measure
of equation 4.1:

C =
∫ t

0
x(t)dN(t)�. (A.28)

As for the univariate case, under mild assumptions, we can associate a mar-
tingale with a vector-valued counting process N(t):

M(t) = N(t) −
∫ t

0
λ(s)ds. (A.29)

As in this theorem, we assume λ(t) = λ0, t ∈ [0, T], we get

M(t) = N(t) − λ0t. (A.30)

The (p × n) matrix-valued martingale for the empirical coupling matrix of
equation 4.1, resulting from stochastic integration, is

Mx(t) =
∫ t

0
x(s)dM�(s)ds (A.31)

and can be decomposed similarly to equation B.3 as

Mx(t) =
∫ t

0
x(s)dN(s)� −

∫ t

0
x(s)λ0ds. (A.32)

By generalizing the steps of theorem 1, we introduced the (p × n)-variate
martingale:

M̃
(K)

(t) = 1/
√

K
K∑

k=1

M(k)
x (t) (A.33)

= 1/
√

K
K∑

k=1

∫ t

0
x(s)

(
dM(k)

)�
(s)ds. (A.34)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



1788 S. Safavi, N. Logothetis, and M. Besserve

We now state the CLT theorem for multivariate stochastic integrals.

Proposition 1 (Multivariate Martingale CLT; Aalen et al., 2008, Section B.3).
Given the (real) matrix valued predictable functions H (K)(t), consider the multi-
variate stochastic integral of multivariate martingale M(K) with intensity vector
λ(K)(t):

∫ t

0
H (K)(u)dM(K)(u).

Assume:

1.
∫ t

0 H (K)(u)diag{λ(K)(u)}H (K)(u)�du
P−→V (t).

2.
∑k

j=1

∫ t
0 (H (K)(u))21|H (K) (u)|>ελ

(K)
j (u)du

P−→ 0, for all t ∈ [0.T] and ε > 0.

The above stochastic integral converges in distribution to a mean-zero gaussian
martingale of covariance V (t).

We notice that when summing across K trials (see equation A.34), deter-
ministic signals x remain identical and point processes are pooled across
K-trials. Given that trials are independent, the counting processes derived
from the trial-pooled Poisson processes

∑K
k=1 N(k)(t) are distributed as mul-

tivariate Poisson processes with intensity vector Kλ0, such that

M̃
(K)

(t) = 1/
√

K
∫ t

0
x(s)dP�(s)ds, (A.35)

where P is the martingale associated with the pooled process,

P(t) =
(

K∑
k=1

N(k)(t)

)
−
∫ t

0
Kλ(s)ds. (A.36)

Given that the coupling matrix is matrix valued, we have to vectorize
it in order to apply the above CLT. Let Vec{.} be the operator that con-
catenates the successive columns of a matrix into a larger column vector.

M̃
(K)

(t) is a (p × n)-variate matrix-valued process, and its vectorized ver-

sion, Vec{M̃(K)
(t)}, is a (pn × 1)-variate vector process. We can write equa-

tion A.35 in vectorized form as

Vec{M̃(K)
(t)} =

∫ t

0
H(s)dP�(s)ds,

with the (pn × n)-variate block diagonal matrix:
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H(s) = 1√
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(s) 0 · · · · · · 0

0 x(s) 0 · · · 0

0 0
. . .

. . . 0

0
. . .

. . .
. . . 0

0 · · · · · · 0 x(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.37)

The variance of Vec{M̃(K)
(t)} (a (pn × pn)-variate covariance matrix

which is also called predictable variation process) can be written, based on
proposition 1, as

Ṽ (t) =
∫ t

0
H(s)diag

{
λ(s)

}
H(s)�ds. (A.38)

Since we assume a constant intensity function, λ(t) = λ0 = {λk}k ((n × 1)-
variate matrix), we can simplify equation A.38 as follows:

Ṽ (t) =
∫ t

0
H(s)diag {Kλ0} H(s)�ds. (A.39)

Replacing H(s) with the block diagonal matrix defined in equation A.37
leads us to

Ṽ (t) = 1
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t
0 Kλ1x(s)x(s)Hds 0 · · · · · · 0

0
∫ t

0 Kλ2x(s)x(s)Hds 0 · · · 0

0 0
. . .

. . . 0

0
. . .

. . .
. . . 0

0 · · · · · · 0
∫ t

0 Kλnx(s)x(s)Hds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.40)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
∫ t

0 x(s)x(s)Hds 0 · · · · · · 0

0 λ2
∫ t

0 x(s)x(s)Hds 0 · · · 0

0 0
. . .

. . . 0

0
. . .

. . .
. . . 0

0 · · · · · · 0 λn
∫ t

0 x(s)x(s)Hds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.41)
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1790 S. Safavi, N. Logothetis, and M. Besserve

This fulfills condition 1 of the CLT for all t ∈ [0, T]. For the second condi-
tion, it is enough to see that the coeffcients of H are bounded by a term
decreasing in 1√

K
. The CLT is thus satisfied, and we get convergence in the

distribution to a zero-mean complex gaussian of covariance Ṽ (t) for each t.
Specializing the result for t = T, we get, based on assumption 2, a diagonal
covariance matrix with block-constant diagonal coefficients,

Ṽ (T ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tλ1Ip 0 · · · · · · 0

0 Tλ2Ip 0 · · · 0

0 0
. . .

. . . 0

0
. . .

. . .
. . . 0

0 · · · · · · 0 TλnIp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.42)

where Ip indicates the (p × p) identity matrix, which provides the covari-
ance matrix of the (vectorized) coefficients of matrix

√
KĈK.

Therefore, for the normalized coupling matrix, ĈKdiag(
√

Tλ0)−1, the col-
umn by-column normalization, normalizes each block of the above covari-
ance matrix by a multiplicative term 1

Tλk
to lead to an identity covariance.

This proves convergence of the normalized coupling matrix in distribution
for K → +∞ to a random matrix with i.i.d. unit variance complex gaussian
coefficients (because lack of correlations implies independence in the gaus-
sian case):

√
KVec{ĈKdiag(

√
Tλ0)−1} −→

K→+∞
N

(
0pn, Ipn

)
. (A.43)

Proof of Theorem 3. Based on proposition 6 in section B.3, we need only
to check the four following necessary conditions, using the Kronecker delta
notation of equation 4.2:

1. EX̄jkXlk = δl j, for all k.

2. 1
n max j 	=l E

∣∣X̄jkXlk
∣∣2 → 0 uniformly in k ≤ n.

3. 1
n2

∑
�

(
E[
(
X̄jkXlk − δl j

) (
Xj′kX̄l′k − δ j′l′

))2 → 0 uniformly in k ≤ n,
where � = {( j, l, j′, l′) : 1 ≤ j, l, j′, l′ ≤ p} \ {( j, l, j′, l′) : j = j′ 	= l =
l′ or j = l′ 	= j′ = l}.

4. p/n → α ∈ (0,∞).

Based on the same developments as theorem 2, we use the auxiliary
processes

Xlk(t) =
√

K√
λkT

1
K

∫ t

0
xl (s)dPk(s) = 1√

KλkT

∫ t

0
xl (s)dPk(s) =

∫ t

0
Hlk(s)dPk(s)
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with Pk zero-mean martingale associated with the Poisson process of inten-
sity Kλk (see equation A.36) and

Hlk(t) = xl (t)√
KλkT

,

and will denote Xlk = Xlk(T )—that is, random variables that we are con-
cerned with are the final values (at t = T) of those processes.

Condition 1 is a direct application of results from equation A.42 in the
proof of theorem 2 because E

[
X̄jkXlk

]
is the covariance between the coeffi-

cients of the normalized coupling matrix.
For condition 2, let us first evaluate

E
∣∣X̄jkXlk − δl j

∣∣2 .

For that, we can use Ito’s formula of equation B.10 and derive the expression
of X̄jkXlk as a stochastic integral, using the function F(X̄jk, Xlk) = X̄jkXlk We
obtain

X̄jkXlk = −
∫ T

0

(
XlkH̄jk(s) + X̄jkHlk(s)

)
Kλkds

+
∫ T

0

[(
X̄jk(s−) + H̄jk(s−)

)
(Xlk(s−) + Hlk(s−))

− X̄jkXlk(s−)
]

(dPk(s) + Kλkdt) ,

=
∫ T

0

(
XlkH̄jk(s−) + X̄jkHlk(s−)

)
dPk(s)

+
∫ T

0

[
H̄jk(s−)Hlk(s−)

]
(dPk(s) + Kλkds) . (A.44)

The first term is a stochastic integral of a zero mean martingale, while the
second term is a stochastic integral of a Poisson counting process, which
we can verify (due to assumption 2) that it has mean δi j. As a conse-
quence, E

∣∣X̄jkXlk − δl j
∣∣2 is the variance of the above expression, which is

(by stochastic integral formula)

E
∣∣X̄jkXlk − δl j

∣∣2 = −
∫ T

0
E

[(
Xlk(s−)H̄jk(s−) + X̄jk(s−)Hlk(s−)

)2
]

Kλkds

+
∫ T

0

[
H̄jk(s−)Hlk(s−)

]2 Kλkds. (A.45)
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Applying again the formula for predictable variation process, we obtain

E
∣∣X̄jkXlk − δl j

∣∣2 = −
∫ T

0

[∫ s

0

(
Hlk(u)H̄jk(s−) + H̄jk(u)Hlk(s−)

)2 Kλkdu
]

Kλkds

+
∫ T

0

[
H̄jk(s−)Hlk(s−)

]2 Kλkds. (A.46)

Due to assumption 2, this expression is bounded uniformly for any values
of i, j, n, k, and condition 2 is fulfilled.

For condition 3, we use the auxiliary result presented in proposition 2 to
compute the required fourth-order moments:

1
K2λ2

k

E
[(

X̄jkXlk
) (

Xj′kX̄l′k
)] =

∫ T

0
HlkHj′kds

∫ T

0
H̄jkH̄l′kds

+
∫ T

0
HlkH̄jkds

∫ T

0
Hj′kH̄l′kds +

∫ T

0
HlkH̄l′kds

∫ T

0
H̄jkHj′kds

+ 1
Kλk

∫ T

0
HlkH̄jkHj′kH̄l′kds

= 1
λ2

kT2K2

[∫ T

0
xlx j′ ds

∫ T

0
x̄ jx̄l′ ds +

∫ T

0
xlx̄ jds

∫ T

0
x j′ x̄l′ ds

+
∫ T

0
xlx̄l′ ds

∫ T

0
x̄ jkx j′kds

]
+ 1

K3λ3
kT2

∫ T

0
xlx̄ jx j′ x̄l′ ds.

We first consider the term consisting in all products of two integrals, which
we call integral product term; the last term in this expression will be dealt with
independently. Given assumption 2, it is clear that for l, j, j′, l′, all different
from each other, the integral product term is vanishing. If there happen to be
only two indices that are equal, the moment also vanishes (at least one term
of each product vanishes). For the case j = l = k′ = l′, the integral product
term possibly does not vanish, but is uniformly bounded, and only n terms
satisfy this relation, such that it will not affect the limit of the relevant ex-
pression for condition 3 (due to the 1/n2 factor).

It remains the case in which three indices exactly are identical. In such a
case, one among δ jl or δ j′l′ is one while the other is zero. Take δ jl = 1 and
δ j′l′ = 0 without loss of generality, assuming j = l = j′ 	= l′. The relevant
quantity of condition 3 is

1
K2λ2

k

E
[(

X̄jkXlk − 1
) (

Xj′kX̄l′k
)]

= 1
K2λ2

k

E
[(

X̄jkXlk
) (

Xj′kX̄l′k
)] − 1

K2λ2
k

E
[
Xj′kX̄l′k

]
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= 1
λ2

kT2K2

[∫ T

0
xlx j′ ds

∫ T

0
x̄ jx̄l′ds +

∫ T

0

(
xlx̄ j − T

)
ds
∫ T

0
x j′ x̄l′ ds

+
∫ T

0
xlx̄l′ ds

∫ T

0
x̄ jkx j′kds

]
+ 1

K3λ3
kT2

∫ T

0
xlx̄ jx j′ x̄l′ ds,

in which, due to assumption 2, the integral product term still vanishes.
As a consequence, the asymptotic behavior we are interested in is given
by the behavior of the remaining single integral term of the moment:

1
Kλk

∫ T
0 xlx̄ jx j′ x̄l′ds (the only remaining nonvanishing terms are bounded and

intervene only in n terms of the sum), such that

lim
1
n2

∑
�

(
E
[(

X̄jkXlk − δl j
) (

Xj′kX̄l′k − δ j′l′
)])2

= lim
1

n2K2λ2
k

∑
�

(
E
[(

X̄jkXlk − δl j
) (

Xj′kX̄l′k − δ j′l′
)])2

. (A.47)

Thus condition 3 is satisfied due to the theorem’s assumption.
To sum up, all four necessary conditions for the application of proposi-

tion 6 are fulfilled (condition 4 is part of the assumptions), and the conver-
gence to the MP law follows immediately. �
Proof of Theorem 4. Let us use the result of Chafaï and Tikhomirov (2018)
adapted to our complex case and adapt the dimension notation (n → p(n),
mn → n, but we keep the notation Xn). We additionally checked in all proofs
and lemmas that the result still holds when we replace symmetric matri-
ces by Hermitian ones and the scalar product of real vectors by Hermitian
products of complex vectors, putting an absolute value on the Hermitian
product when the original scalar product was squared. We consider {Xn},
a sequence of isotropic (i.e. identity covariance) zero mean random vectors
and consider the empirical covariance matrix estimated from observing n
independent copies of Xn,

�̂n = 1
n

n∑
k=1

X (k)
n X (k)

n
H
.

We rely on the strong tail projection property (STP) that guarantees conver-
gence of the spectral measure of the empirical covariance to the MP law,
and convergence of the extreme eigenvalues to the ends of the MP support.

Definition 1 (Strong Tail Projection Property (STP)). STP holds when there
exist f : N → [0, 1], g : N → R

+ such that f (r) → 0 and g(r) → 0 as r → ∞,
and for every p ∈ N, for any orthogonal projection P : Cp → C

p of rank r > 0, for
any real t > f (r).r we have

P
(‖PXn‖2 − r ≥ t

) ≤ g(r)r
t2 .
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By noting that E ‖PXn‖2 = r, we can use Chebyshev’s inequality to sat-
isfy such property. Let σ 2 be the variance of ‖PXn‖2. The inequality leads
to, for any t,

P
(‖PXn‖2 − r ≥ σ t

) ≤ P
(∣∣‖PXn‖2 − r

∣∣ ≥ σ t
) ≤ 1

t2 ,

so we get P
(‖PXn‖2 − r ≥ t

) ≤ σ 2/t2 and just need to find an upper bound
of σ 2 of the form g(r)r. To limit the complexity of the rank-dependent anal-
ysis, we will look for g(r) = C/r for a fixed positive constant C, such that we
just need to bound the above variance by a constant. Finer bounds are likely
possible but left to future work.

In our specific case, in line with the proof of theorem 3, we use

Xn =
∫ T

0

x(t)√
KλT

dP(t),

with P the compensated Poisson process martingale of rate Kλ. In an or-
thonormal basis adapted to the othogonal projection P with rank r, we can
rewrite

‖PXn‖2 =
r∑

k=1

|〈wk, Xn〉|2 ,

where {wk} are r orthonormal vectors in C
p. Then we have

σ 2 =
∑
k,l≤r

E
[|〈wk, Xn〉|2 |〈wl, Xn〉|2 − 1

]
.

Using similar fourth-order moment results as in theorem 3 (based on propo-
sition 2) leads to an expansion for which all terms vanish but one per ex-
pectation, leading to

σ 2 = 1
KλT2

∑
k,l≤r

∫ T

0

〈
wk, x(t)

〉 〈
x(t), wk

〉 〈
wl, x(t)

〉 〈
x(t), wl

〉
dt,

which can be rewritten using the Hermitian operator X acting on the space
of p × p matrices as a positive definite bilinear form,

X (U,V ) =
∫ T

0

〈
V, xxH (t)

〉 〈
xxH (t), U

〉
dt,
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with associated eigenvalues ξ1 ≥ ... ≥ ξp2 ≥ 0 such that

σ 2 = 1
KλT2

∑
k,l≤r

X
(
wkw

H
l ,wkw

H
l

)
.

This sum is maximized when the r2 unitary tensor matrices of the sum wkwl

are eigenvectors associated with the largest eigenvalues of the operator,
such that we get

σ 2 ≤ 1
KλT2

∑
k=1≤r2

ξk,

which is itself upper bounded by the trace of the operator, leading to

σ 2 ≤ 1
KλT2

∑
k,l≤p(n)

∫ T

0
|xkxl |2dt,

which is bounded according to the theorem’s assumptions, completing the
proof.

Appendix B: Additional Background and Useful Results

B.1 Jump Processes. Jump processes exhibit discontinuities related to
the occurrence of random events, which are distributed according to the
given point process models. In this letter, we are concerned with jump times
distributed according to (possibly inhomogeneous) Poisson processes.

B.1.1 Martingales Related to Counting Processes. As introduced in section
2.2 (see equation 2.3), under mild assumptions, we can associate a zero-
mean martingale with a counting process N(t):

M(t) = N(t) −
∫ t

0
λ(s)ds. (B.1)

In addition, in our case (deterministic intensity), the variance of M(t) is
given by

V (t) = E
[
M(t)2] =

∫ t

0
λ(s)ds.
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1796 S. Safavi, N. Logothetis, and M. Besserve

B.1.2 Stochastic Integrals. Now, if we consider for a deterministic pre-
dictable process H (with regard to the same filtration Ft), the stochastic
integration

MH (t) =
∫ t

0
H(s)dM(s)ds. (B.2)

Using equation B.1, we can write

MH (t) =
∫ t

0
H(s)dN(s) −

∫ t

0
H(s)λ(s)ds, (B.3)

which is equivalent to equation 2.5, which introduced the separation of
the deterministic component of empirical coupling measure from the (zero-
mean) random fluctuations of the measure. MH (t) is also a zero-mean mar-
tingale with respect to history {Ft}. This trivially entails that E [MH (t)] = 0
at all times.

A.1.3 Second Order Statistics. In addition, the second-order statistics of
such stochastic integrals can be explicitly derived from the original intensi-
ties. In particular, for MH (t) = ∫ t

0 H(s)dM(s)ds, we have the variance

VH (t) = E
[
MH (t)2] =

∫ t

0
H(s)2λ(s)ds, (B.4)

which corresponds to its predictable variation process (see Aalen et al.,
2008, sec. 2.2.6). A similar result applies to covariance as well. Let G and
H be deterministic predictable; then

VH,G(t) = E [MH (t)MG(t)] =
∫ t

0
H(s)G(s)λ(s)ds. (B.5)

Importantly, we note that this nonvanishing covariance reflects the fact that
both stochastic integrals are computed from the same realization of M(t). If
two stochastic integrals are derived from independent point processes, the
resulting covariance between them is zero.

B.1.4 General Jump Stochastic Processes. For the proofs of our results, it is
convenient to state some general results for jump processes that combine
deterministic and a jump stochastic integral, decomposable as

X(t) = X(0) +
∫ t

0
f (X(s), s)ds +

∫ t

0
h(X(s), s)dN(s), (B.6)
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Coupling Between Continuous Signals and Point Processes 1797

with N(t) a Poisson process with intensity λ(t), f and h square integrable.
This clearly includes the martingales defined above.

B.1.5 Mean Stochastic Jump Integrals. According to Hanson (2007, theo-
rem 3.20), we can compute the expectation of X(t) defined in equation B.6:

E[X(t)] = E[X(0)] +
∫ t

0
f (X(s), s)ds +

∫ t

0
E [h(X(s), s)] λ(s)ds. (B.7)

This allows retrieval of the zero-mean property of the stochastic integral of
martingales.

B.1.6 Itô’s Formula. Itô’s formula or Itô’s lemma is an identity to find
the differential of a function of a stochastic process. It is a counterpart of
the chain rule used to compute the differential of composed functions. We
restrict ourselves to the case of a time-independent scalar function of a jump
process, while different formulas exist for other cases.

A generalized chain rule for the time derivative of such processes allows
deriving an integral formula for scalar process Y(t) = F(X(t)) with F con-
tinuously differentiable (see Hanson, 2007, lemma 4.22, rule 4.23):

Y(t) = Y(0) +
∫ t

0

dF
dx

(X(s)) f (X(s), s)ds

+
∫ t

0
[F (X(s−) + h(X(s−), s)) − F(X(s−))] dN(s), (B.8)

where X(s−) = limt→s− X(t) indicates the left limit.
For a scalar function of a multivariate process Y(t) = F(X (t)) with

X (t) = X (0) +
∫ t

0
f (X (s), s)ds +

∫ t

0
h(X (s), s)dN(s), (B.9)

the generalization is straightforward:

Y(t) = Y(0) +
∫ t

0

∑
k

dF
dxk

(X (s)) fk(X (s), s)ds

+
∫ t

0
[F (X (s−) + h(X (s−), s)) − F(X (s−))] dN(s). (B.10)

This allows retrieving the expression of martingale second-order statistics
presented above, as well as computing higher-order moments required in
the proof of theorem 3.
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An application of this formula that we will use follows:

Proposition 2. Assume that W (t) = ∫ t
0 A(s)dM(s), X(t) = ∫ t

0 B(s)dM(s),
Y(t) = ∫ t

0 C(s)dM(s), and Z(t) = ∫ t
0 D(s)dM(s) are stochastic integrals with

respect to the same (possibly inhomogeneous) Poisson process martingale
M(t) = N(t) − ∫ t

0 λ(s)ds with intensity λ(t). Then

E [WXYZ] (t) =
∫ t

0
ABCD(s−)λ(s)ds

+
(∫ t

0
AB(s)λ(s)ds

)(∫ t

0
CD(s)λ(s)ds

)
+
(∫ t

0
AC(s)λ(s)ds

)(∫ t

0
BD(s)λ(s)ds

)
+
(∫ t

0
ADλ(s)(s)ds

)(∫ t

0
BC(s)λ(s)ds

)
. (B.11)

Proof. We apply the above formula to F(W, X,Y, Z) = WXYZ, yielding

WXYZ(t) = −
∫ t

0
(AXYZ(s) + WBYZ(s) + WXCZ(s) + WXYD(s))λds

+
∫ t

0
[(W (s−) + A)(X(s−) + B)(Y(s−) + C)(Z(s−) + D)

− WXYZ(s−)]dN(s).

Expanding the second term, we obtain the formula

WXYZ(t) =
∫ t

0
(AXYZ(s) + WBYZ(s) + WXCZ(s) + WXYD(s)) dM(s)

+
∫ t

0
(ABYZ(s−) + AXCZ(s−) + AXYD(s−) + WBCZ(s−)

+ WBYD(s−) + WXCD(s−))dN(s) +
∫ t

0
ABCD(s−)dN(s)

+
∫ t

0
(ABCZ(s−) +AXCD(s−) + ABYD(s−) + WBCD(s−))dN(s).

The first and last integral terms in this formula have vanishing expecta-
tion, the first because it is a stochastic integral of zero mean martingale M,
the last because each term inside the integral contains only one random
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variable, which is itself a stochastic integral of the martingale M (and thus
zero mean). Thus, for the expectation, we get

E [WXYZ] (t) =
∫ t

0
ABCD(s−)dλ(s) +

∫ t

0
(ABEYZ(s−) + ACEXZ(s−)

+ ADEXY(s−) + BCEWZ(s−) + BDEWY(s−)

+ CDEWX(s−))λ(s)ds. (B.12)

Based on the Itô integral formula, one can easily derive an expression for the
expectation of each product of two variables (see equation A.44), leading to,
after reordering the terms,

E [WXYZ] (t) =
∫ t

0
ABCD(s−)dλ(s) +

∫ t

0

(
AB(s−)

∫ s

0
CD(u−)λ(u)du

+ CD(s−)
∫ s

0
AB(u−)λ(u)du + AC(s−)

∫ s

0
BD(u−)λ(u)du

+ BD(s−)
∫ s

0
AC(u−)λ(u)du + AD(s−)

∫ s

0
BC(u−)λ(u)du

+ BC(s−)
∫ s

0
AD(u−)λ(u)du

)
λ(s)ds. (B.13)

We then observe that the terms inside the integral can be paired such that the
integral form of the product derivative formula (

∫
f
∫

g = ∫ (
g
∫

f + f
∫

f
)
)

can be applied, leading directly to equation B.11. �

B.2 Notions of Convergence. In contrast to finite-dimensional vectors,
there are different and nonequivalent notions of convergence for functions
and random variables. We explain the two types of convergence encoun-
tered in this letter. For a random variable X, we consider its probability
measure μX such that

μX (A) = P(X ∈ A),

and its associated cumulative distribution function (CDF),

FX (x) = μX ((−∞, x]) = P(X ≤ x).

B.2.1 Convergence in Distribution. The classical definition is based on the
CDF.
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Definition 2 (Convergence in Distribution). We say that the sequence of ran-
dom variables {Xn} converges in distribution (or in law) to X whenever

FXn (x) −→
n→+∞ FX,

at all continuity points of FX. This is then denoted Xn
D−→ X.

An equivalent definition can be formulated in terms of weak conver-
gence:

Proposition 3. Xn
D−→ X if and only if, for any bounded continuous function f ,

E
[

f (Xn)
] =

∫
f dμXn → E

[
f (X )

] =
∫

f dμX,

that is, in classical topological terms, the measure μXn converges weakly to μX.

The generalization to multidimensional variables encountered in theo-
rem 2 consists simply in replacing the cumulative distribution by its mul-
tivariate version, FX (x) = P(X1 < x1, . . . , Xn < xn), in definitions. A simple
necessary and sufficient condition for X −→ Y is that for all vectors t,
t�X −→ t�Y (this is the Cramér-Wold theorem, see Billingsley, 1995).

B.2.2 Convergence in Probability. This stronger notion of convergence de-

notes Xn
P−→ X, stating that for any ε > 0,

P (|Xn − X| > ε) −→
n→+∞ 0. (B.14)

It can be shown that convergence in probability implies convergence in
distribution. The converse is true only in special cases:

Proposition 4. If X converges in distribution to a (deterministic) constant c, then
it also converges to it in probability.

An extension to the multivariate case is obtained in finite vector spaces
by replacing the absolute value in equation B.14 by any norm, or simply by
requiring the convergence of all components individually.

B.2.3 Convergence of Random Measures. The ESDs are random measures,
and as such, random variables, leaving in an infinite-dimensional space of
measures. This means that for a fixed realization ω, the random measure μ

takes the deterministic value μ(ω).
Several types of convergence can be defined. First, the notion of conver-

gence weakly in probability can be seen as a combination of the above defini-
tions. It is known that the weak convergence of deterministic measures (see
proposition 3) can be associated with a (nonunique) metric (the topological
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space of weak convergence is metrizable). Let us pick such a metric ρ(μ, ν)
between two deterministic measures; then:

Definition 3 (Convergence Weakly in Probability). The sequence of random
measures μn converges weakly in probability to the deterministic measure ν for any
ε > 0:

P (ρ(μn, ν) > ε) −→
n→+∞ 0. (B.15)

Next, we can also define convergence with probability 1 (also called al-
most sure convergence).

Definition 4 (Convergence (Weakly) with Probability One). The sequence of
random measures μn converges weakly with probability one to the deterministic
measure ν for any ε > 0:

P
(

ρ(μn(ω), ν) −→
n→+∞ 0

)
= 1. (B.16)

As for the case of scalar random variables, convergence with probability
one implies convergence in probability.

B.3 Random Matrix Theory. Random matrix theory resulted from
fairly recent developments in high-dimensional statistics. It has various ap-
plication in physics (Guhr, Müller-Groeling, & Weidenmüller, 1998; Dous-
sal, Majumdar, & Schehr, 2016), machine learning (Pennington & Bahri,
2017; Pennington & Worah, 2017; Louart et al., 2018), and neuroscience
(Timme, Geisel, & Wolf, 2006; Veraart et al., 2016; Almog et al., 2019).

B.3.1 Wishart Ensemble. Let X be a p × n data matrix. Assume that the
coefficients of X , xi j are i.i.d. NC (0, 1). NC specifies a standard complex
normal distribution. By definition, this means that xi j = xreal

i j + iximag
i j , where

xi j = xreal
i j and ximag

i j are independent (real)N (0, 1
2 ). This implies that columns

of X are i.i.d. NC

(
0p, Ip

)
and, similarly, the real and imaginary parts are

N
(
0p, Ip/2

)
.

As n grows and p
n →

n→+∞ α ∈ (0,+∞), the ESD of the so-called Wishart

ensemble, Sn = 1
n XXH , converges to the Marchenko-Pastur law μMP(x)

(Marchenko & Pastur, 1967) with density

dμMP

dx
(x) = 1 − α

α
1α>1δ0 + 1

2παx

√
(b − x)(x − a)1[a,b], (B.17)

with a = (1 − √
α)2 and b = (1 + √

α)2 (see examples for Marchenko-Pastur
law for different values of α in Figure 6).
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1802 S. Safavi, N. Logothetis, and M. Besserve

Figure 6: Density of the Marchenko-Pastur law for different values of the aspect
ratio of the matrices, α, in equation 2.7.

We wrote here the general formula that holds for all α > 0, accounting
for zero eigenvalues with a Dirac mass in zero in the rank-deficient case
α > 1.

B.3.2 Stieltjes Transform of ESD. The Stieltjes transform is a very useful
tool to establish the convergence of ESD and determine its limit. The Stieltjes
transform of a measure μ is defined as

mμ(z) =
∫

1
x − z

dμ(x), z ∈ C \ R.

A key example for us is the Stieltjes transform of the MP law:

m(z) = 1 − c − z +
√

(1 + c − z)2 − 4c
2cz

.

Many important results relate measures to their Stieltjes transform. We only
need the property that the Stieltjes transform identifies the limit of a se-
quences of measures, with the following proposition that immediately de-
rives from Anderson et al. (2010, theorem 2.4.4).

Proposition 5. If two sequences of random measures {μk} and {νk} converge
weakly in probability to a deterministic with identical Stieltjes transform, they con-
verge to the same measure.

B.3.3 Convergence to MP for Matrices with Dependent Coefficients. Based on
the above, we can now write a result that is a combination of results found
in Bai and Zhou (2008—mainly theorem 1.1 and corollary 1.1) adapted to
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Coupling Between Continuous Signals and Point Processes 1803

our specific case. We consider a sequence of random matrices {Xn} with
independent columns and study the ESD of

Sn = 1
n

XnXH
n .

In the following proposition, we use the Kronecker delta symbold delta (see
equation 4.2) and denote by X̄ the complex conjugate of X.

Proposition 6. Let As n → ∞, and assume the following. Let

1. EX̄jkXlk = δl j , for all k.

2. 1
n max j 	=l E

∣∣X̄jkXlk − δl j
∣∣2 → 0 uniformly in k ≤ n.

3. 1
n2

∑
�

(
E
(
X̄jkXlk − δl j

) (
Xj′kX̄l′k − δ j′l′

))2 → 0 uniformly in k ≤ n,
where � = {( j, l, j′, l′) : 1 ≤ j, l, j′, l′ ≤ p} \ {( j, l, j′, l′) : j = j′ 	= l =
l′ or j = l′ 	= j′ = l}.

4. p/n → α ∈ (0,∞).

Then, with probability 1, the ESD of Sn tends (weakly) to the MP law.

Sketch of the proof. We use theorem 1.1 from Bai and Zhou (2008) com-
bined with the sufficient condition of corollary 1.1, assuming the identity
matrix T n. These conditions are compatible with the case of the Wishart en-
semble, such that the ESD converges to a distribution with the same Stieltjes
transform as the MP law.9 As a consequence of proposition 5, we get that
the limit ESD is the MP law. �

Appendix C: Additional Corollaries

The additional results in this appendix are corollaries based on simplify-
ing assumption 3, where a linear phase is considered instead of the general
assumption on phase that was used in corollaries 2 and 3.

Assumption 3. Assume that φ(t) is a linear function of t on [0, T],

φ(t) = mt, m = 2π f = 2π/τ, (C.1)

where f > 0 (interpretable as the frequency of an oscillation for the contin-
uous signal) and γT is the ratio of length (T) of signal to period of oscillation
τ :

γT = T
τ

= φ(T ) − φ(0)
2π

.

9
This requires checking that the self-consistency equation 1.1 in Bai and Zhou (2008)

has a unique solution, which they establish by equation 1.2.
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Corollary 4. Under the assumptions of corollary 2, assume additionally assump-
tion 3 is also satisfied, and the intensity of the point-process is given by

λ(t) = λ0 exp(κ cos(φ(t) − ϕ0)), (C.2)

for a given κ ≥ 0. Then the expectation of the multitrial PLV estimate converges
(for K → +∞) to

PLV∗ =
∫ T

0 ei2π f t exp(κ cos(2π f t − ϕ0))dt∫ T
0 exp(κ cos(2π f t − ϕ0))dt

. (C.3)

If, in addition, [0, T] corresponds to an integer number γT > 0 of periods of the
oscillation,

PLV∗ = eiϕ0

∫ φ(T )
φ(0) cos(θ ) exp(κ cos(θ ))dθ∫ φ(T )

φ(0) exp(κ cos(θ ))dθ
= eiϕ0

I1(κ )
I0(κ )

, (C.4)

and the scaled residual
√

K
(

P̂LVK − PLV∗
)

converges to a zero mean complex
gaussian Z with the following covariance:

Cov

[
Re{Ze−iϕ0}
Im{Ze−iϕ0}

]
= 1

2λ0TI0(κ )2

[
I0(κ ) + I2(κ ) 0

0 I0(κ ) − I2(κ )

]
. (C.5)

Proof. We use the intensity function introduced in equation C.2. The PLV
asymptotic value (PLV∗) can be derived from definition introduced in equa-
tion 3.2 by using assumption 3:

PLV∗ =
∫ T

0 eiφ(t)λ(t)dt∫ T
0 λ(t)dt

(C.6)

= λ0
∫ T

0 eiφ(t) exp(κ cos(φ(t) − ϕ0))dt

λ0
∫ T

0 exp(κ cos(φ(t) − ϕ0))dt
(C.7)

= λ0
∫ T

0 eimt exp(κ cos(mt − ϕ0))dt

λ0
∫ T

0 exp(κ cos(mt − ϕ0))dt
. (C.8)

We change the integration variable from mt to θ :

PLV∗ =
∫ θ (T )
θ (0) eiθ exp(κ cos(θ − ϕ0))dθ∫ θ (T )

θ (0) exp(κ cos(θ − ϕ0))dθ
. (C.9)
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Coupling Between Continuous Signals and Point Processes 1805

To simplify the integral (bring the ϕ0 out of the integral), we change the
integration variable again, from θ to ψ , (ψ = θ − ϕ0),

PLV∗ =
∫ θ (T )−ϕ0

θ (0)−ϕ0
ei(ψ+ϕ0 ) exp(κ cos(ψ ))dψ∫ θ (T )−ϕ0

θ (0)−ϕ0
exp(κ cos(ψ ))dψ

(C.10)

= eiϕ0

∫ θ (T )−ϕ0

θ (0)−ϕ0
eiψ exp(κ cos(ψ ))dψ∫ θ (T )−ϕ0

θ (0)−ϕ0
exp(κ cos(ψ ))dψ

. (C.11)

When [0, T] corresponds to an integer number of periods of the oscillation
(i.e., is an integer number), and given that the integration interval is 2πγT ,
and integrates 2π-periodic functions (thus the integral is invariant to trans-
lations of the integration interval), we have

PLV∗ = eiϕ0

∫ π

−π
eiψ exp(κ cos(ψ ))dψ∫ π

−π
exp(κ cos(ψ ))dψ

.

Observing that the integrand of the denominator is even, while for the nu-
merator the imaginary part is odd and the real part is even, we get

PLV∗ = eiϕ0

∫ π

0 cos(ψ ) exp(κ cos(ψ ))dψ∫ π

0 exp(κ cos(ψ ))dψ
.

We prove the first part of the corollary, equation C.3. By using the integral
form of the modified Bessel functions Ik for k integer (see Watson, 1995,
p. 181)

Ik(κ ) = 1
π

∫ π

0
cos(kθ ) exp(κ cos(θ ))dθ + sin(kπ )

π

∫ +∞

0
e−κ cosh t−ktdt

(C.12)

= 1
π

∫ π

0
cos(kθ ) exp(κ cos(θ ))dθ, (C.13)

we can derive the compact form:

PLV∗ = eiϕ0
I1(κ )
I0(κ )

. (C.14)

The covariance matrix of the asymptotic distribution can be easily de-
rived by plugging equation C.2 as λ(t) in corollary 1 and integrating on
[0, T]
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(Cov(Z))11 = λ0

	(T )2

∫ T

0
cos2(φ(t)) exp (κ cos(φ(t) − ϕ0)) dt. (C.15)

As we have

	(T ) = λ0TI0(κ ),

we can continue with equation C.15 as,

(Cov(Z))11 = 1
λ0T2I0(κ )2

∫ T

0
cos2(φ(t)) exp (κ cos(φ(t) − ϕ0)) dt. (C.16)

To simplify the rest of the derivations, we transform the complex variable
coordinates by using eiφ(t)e−iϕ0 instead of eiφ(t) as predictable with respect
to {Ft} (i.e., replacing x(t) with eiφ(t)e−iϕ0 in theorem 1). With this change,
equation C.16 becomes

(Cov(Z))11 = 1
λ0T2I0(κ )2

∫ T

0
cos2(φ(t) − ϕ0) exp (κ cos(φ(t) − ϕ0)) dt.

(C.17)

Then we change the variable of the integral from mt − ϕ0 to θ (and conse-
quently dt to 1

m dθ ) and use the following trigonometric identity,

cos2(θ ) = 1
2

(1 + cos(2θ )) , (C.18)

to obtain

(Cov(Z))11 = 1
2mλ0T2I0(κ )2

∫ θ (T )

θ (0)
(1 + cos(2θ )) exp (κ cos(θ )) dθ

= 1
2mλ0T2I0(κ )2

∫ θ (T )

θ (0)

(
exp (κ cos(θ )) + cos(2θ ) exp (κ cos(θ ))

)
dθ.

Given that the integral is invariant to translations of the integration, we get

(Cov(Z))11 = 1
2mλ0T2I0(κ )2

[∫ 2πγT

0
exp (κ cos(θ )) dθ

+
∫ 2πγT

0
cos(2θ ) exp (κ cos(θ )) dθ

]
(Cov(Z))11 = 1

2mλ0T2I0(κ )2 [2γTπ I0(κ ) + 2γTπI2(κ )] (C.19)
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Coupling Between Continuous Signals and Point Processes 1807

= 2πγT

2mλ0T2I0(κ )2 [I0(κ ) + I2(κ )] (C.20)

= mT
2mλ0T2I0(κ )2 [I0(κ ) + I2(κ )] (C.21)

= 1
2λ0TI0(κ )2 [I0(κ ) + I2(κ )] . (C.22)

We can have a similar calculation for the imaginary part, (Cov(Z))22,
as well, but using the identity sin2(θ ) = 1

2 (1 − cos(2θ )) instead of equation
A.20. The off-diagonal elements of the covariance matrix vanish due to sym-
metry of integrand.

Therefore, we showed that for a given κ ≥ 0, scaled residual

Z′ = e−iϕ0
√

K
(

P̂LVK − PLV∗
)

converges to a zero mean complex gaussian with the following covariance:

Cov

[
Re{Z′}
Im{Z′}

]
=
[

Re{Ze−iϕ0}
Im{Ze−iϕ0}

]
= 1

2λ0TI0(κ )2

[
I0(κ ) + I2(κ ) 0

0 I0(κ ) − I2(κ )

]
.

�
Corollary 5. Assume φ(t) = 2πkt/T, with k > 0 integer, and a sinusoidal mod-
ulation of the intensity at frequency m/T, with m > 0 integer possibly different
from k, phase shift ϕ0, and modulation amplitude κ such that

λ(t) = λ0 (1 + κ cos (2πmt/T − ϕ0)) , λ0 > 0, 0 ≤ κ ≤ 1, (C.23)

and the point process is homogeneous Poisson with rate λ0. Then the expectation
of the PLV estimate converges (for K �→ +∞) to

PLV∗ = 1
2
κeiϕ0δkm, (C.24)

where δkm denotes the Kronecker symbol. Moreover, the asymptotic covariance of

Z = √
K
(

P̂LVK − PLV∗
)

is

Cov

[
Re{Z}
Im{Z}

]
= 1

2λ0T

[
1 0

0 1

]
. (C.25)

Proof. Similar to corollary 2, we can derive the asymptotic PLV (see equa-
tion C.24) for this case, from the definition in equation 3.2. We use the
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assumed phase φ(t) = 2πkt/T and apply the intensity function defined in
equation C.23 in corollary 1:

PLV∗ =
∫ T

0 eiφ(t)λ(t)dt∫ T
0 λ(t)dt

(C.26)

=
∫ T

0 ei2πkt/T (1 + κ cos (2πmt/T − ϕ0)) dt∫ T
0 (1 + κ cos (2πmt/T − ϕ0)) dt

. (C.27)

By using Euler’s formula, we can write the second term in the numerator
as weighted sum of exponentials (cos(x) = 1

2 (eix + e−ix)),

PLV∗ = 1
2

∫ T
0 ei2πkt/T + κ

∫ T
0 ei2πkt/T

(
ei(2πmt/T−ϕ0 ) + e−i(2πmt/T−ϕ0 )

)
dt∫ T

0 dt + ∫ T
0 κ cos (2πmt/T − ϕ0) dt

(C.28)

= 1
2

∫ T
0 ei2πkt/T + κ

∫ T
0 ei2π (k+m)t/Teiϕ0 + κ

∫ T
0 e−i2π (k−m)t/Teiϕ0 dt∫ T

0 dt + ∫ T
0 κ cos (2πmt/T − ϕ0) dt

(C.29)

= 1
2

∫ T
0 ei2πkt/T + κeiϕ0

∫ T
0 ei2π (k+m)t/T + κeiϕ0

∫ T
0 e−i2π (k−m)t/Tdt∫ T

0 dt + κ
∫ T

0 cos (2πmt/T − ϕ0) dt
. (C.30)

Given that k, m > 0 and we are integrating over full periods, all terms van-
ish except the last term in the numerator (if and only if k = m) and the first
term in the denominator. Therefore we have,

PLV∗ = 1
2
κeiϕ0

∫ T
0 e−i2π (k−m)t/Tdt∫ T

0 dt
(C.31)

= 1
2
κeiϕ0δkm. (C.32)

We prove the first part of the corollary.
The covariance matrix of the asymptotic distribution can be derived by

the procedure we used for the proof of corollary 2. We plug the rate λ(t)
assumed in the corollary (see equation C.23) and integrate on [0, T],

(Cov(Z))11 = λ0

	(T )2

∫ T

0
cos2(2πkt/T ) (1 + κ cos (2πmt/T − ϕ0)) dt, (C.33)
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and use the trigonometric identity, equation A.20, to get

(Cov(Z))11 = λ0

2	(T )2

∫ T

0
(1 + cos(4πkt/T )) (1 + κ cos (2πmt/T − ϕ0)) dt.

(C.34)

In the resulting equation,

(Cov(Z))11

= λ0

2	(T )2

[∫ T

0
dt + κ

∫ T

0
cos (2πmt/T − ϕ0) dt +

∫ T

0
cos(4πkt/T )dt

+ κ

∫ T

0
cos(4πkt/T ) cos (2πmt/T − ϕ0) dt

]
, (C.35)

all terms except the first one vanish. The second and third vanish as we
integrate in the full period, and the last term vanishes given that∫ T

0
cos(4πkt/T ) cos (2πmt/T − ϕ0) dt

= cos(ϕ0)
∫ T

0
cos(4πkt/T ) cos (2πmt/T ) dt

+ sin(ϕ0)
∫ T

0
cos(4πkt/T ) sin (2πmt/T ) dt, (C.36)

and k and m are integers.
Finally, given that 	(T ) = ∫ T

0 λ(t)dt = λ0T, we have

(Cov(Z))11 = 1
2λ0T

. (C.37)

We have a similar calculation for the imaginary part, (Cov(Z))22. The off-
diagonal elements of the covariance matrix vanish due to the symmetry of
he integrand.

Therefore, we showed that for the scaled residual,

Z =
√

K
(

P̂LVK − PLV∗
)

converges to a zero mean isotropic complex gaussian:

√
K
(

P̂LVK − PLV∗
)

−→
K→+∞

N
([

0

0

]
,

1
2λ0T

[
1 0

0 1

])
.

�
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Appendix D: Circular Noise

We use random numbers drawn from the von Mises distribution to generate
noise for the phase of an oscillation. Consider the oscillation Oorig[t] = e2π i f t ,
where the bracket indicates the oscillation is sampled at equispaced discrete
times t = {k�}k=1,...,q. Then O[t] is a noisy version of this oscillation, which
is perturbed in the phase

O[t] = e2π i f t exp (iη[t]) , (D.1)

where η[t] is sampled i.i.d. from the zero-mean von Mises distribution
M(0, κ ) at each time t. Notably, κ is the dispersion parameter; therefore,
larger κ correspond to smaller variance of the noise. In the simulation used
in section 4.3, we use κ = 10.

In the simulation for the multivariate case, we use Nosc-dimensional vec-
tor of oscillations, Oorig[t] = {Oorig

j [t]} j=1,...,Nosc , and sample i.i.d. the noise for
each oscillation, leading to the vector time series η[t]. In this case, the noisy
oscillations can be written as

O[t] = Oorig[t] 
 exp (iη[t]) , (D.2)

where 
 is (entrywise) Hadamard product.
The advantage of such phase noise is to preserve the spectral content of

the original oscillation better than conventional normal noise. Nevertheless,
using conventional normal (white) noise (on both the real and imaginary
parts of the oscillation) did not change the results significantly.

Appendix E: Tables of Parameters

The choice of parameters used in the figures in the main text. In all simula-
tions, φ0 = 0.

Table 1: Parameters Used for Simulations in Figure 2.

Parameter Description A B

f Frequency 1 Hz
K Number of trials 5000
T Simulation length 5 s
λ0 Average firing rate 20 Hz
NS Number of simulations 5000
κ Modulation strength 0 0.5

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



Coupling Between Continuous Signals and Point Processes 1811

Table 2: Parameters Used for Simulations in Figure 3.

Parameter Description A B C D

f Frequency 1 Hz
K Number of trials 10
T Simulation length 0.75 s 0.5 s 1 s x-axis
λ0 Average firing rate 30 Hz
NS Number of simulations 500
κ Modulation strength 0

Table 3: Parameters Used for Simulations in Figure 5.

Parameter Description A1 A2 A3 B1 B2 B3

f Frequency 5 oscillatory components, 11–15 Hz
K Number of trials 10
T Simulation length 11 s
λ0 Average firing rate 20 Hz
NS Number of simulations 100
κ Modulation strength 0 0.15
nc Number of LFP channels 100
ns Number of spiking units 10 50 90 10 50 90
κnoise Dispersion parameter of

phase noise
10

Code Availability

The code to reproduce our simulation results is at https://github.com/
shervinsafavi/safavi_neuralComp2021.

Acknowledgments

We are very grateful to Afonso Bandeira and Asad Lodhia for fruitful dis-
cussions at the beginning of the project. We thank Edgar Dobriban for point-
ing us to Bai and Yao (2008) and Joachim Werner and Michael Schnabel
for their excellent IT support. This work was supported by the Max Planck
Society.

References

Aalen, O. O., Borgan, Ø., & Gjessing, H. K. (2008). Survival and event history analysis:
A process point of view. New York: Springer.

Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables. New York: Dover.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021

https://github.com/shervinsafavi/safavi_neuralComp2021


1812 S. Safavi, N. Logothetis, and M. Besserve

Almog, A., Buijink, M. R., Roethler, O., Michel, S., Meijer, J. H., Rohling, J. H. T.,
& Garlaschelli, D. (2019). Uncovering functional signature in neural systems via
random matrix theory. PLOS Computational Biology, 15(5), e1006934.

Anderson, G. W., Guionnet, A., & Zeitouni, O. (2010). An introduction to random ma-
trices. Cambridge: Cambridge University Press.

Ashida, G., Wagner, H., & Carr, C. E. (2010). Processing of phase-locked spikes and
periodic signals. In S. Rotter& S. Grn (Eds.), Analysis of parallel spike trains (pp.
59–74). New York: Springer.

Aydore, S., Pantazis, D., & Leahy, R. M. (2013). A note on the phase locking value
and its properties. NeuroImage, 74, 231–244.

Bai, Z., & Yao, J.-f. (2008). Central limit theorems for eigenvalues in a spiked popu-
lation model. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 44 (3),
447–474.

Bai, Z., & Zhou, W. (2008). Large sample covariance matrices without independence
structures in columns. Statistica Sinica, 18, 425–442.

Banna, M., Merlevède, F., & Peligrad, M. (2015). On the limiting spectral distribution
for a large class of symmetric random matrices with correlated entries. Stochastic
Processes and Their Applications, 125(7), 2700–2726.

Benaych-Georges, F., & Nadakuditi, R. R. (2012). The singular values and vectors of
low rank perturbations of large rectangular random matrices. Journal of Multivari-
ate Analysis, 111, 120–135.

Bhattacharjee, M., & Bose, A. (2016). Large sample behaviour of high dimensional
autocovariance matrices. Annals of Statistics, 44(2), 598–628.

Billingsley, P. (1995). Probability and measure. New York: Wiley.
Brillinger, D. R. (1981). Time series: Data analysis and theory. Philadelphia: SIAM.
Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a

view toward applications in biology. Annual Review of Statistics and Its Application,
1, 255–278.

Bun, J., Bouchaud, J.-P., & Potters, M. (2017). Cleaning large correlation matrices:
Tools from random matrix theory. Physics Reports, 666, 1–109.

Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience,
7 (5), 446–451.

Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press.
Buzsaki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields

and currents–EEG, ECOG, LFP and spikes. Nat. Rev. Neurosci., 13 (6), 407–20.
Buzsaki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing:

Evolutionary preservation of brain rhythms. Neuron, 80(3), 751–764.
Buzsaki, G., & Schomburg, E. W. (2015). What does gamma coherence tell us about

inter-regional neural communication? Nat. Neurosci., 18, 484–489.
Capitaine, M., & Donati-Martin, C. (2016). Spectrum of deformed random matrices and

free probability. arXiv:1607.05560.
Chafaï, D., & Tikhomirov, K. (2018). On the convergence of the extremal eigenvalues

of empirical covariance matrices with dependence. Probability Theory and Related
Fields, 170(34), 847–889.

Chavez, M., Besserve, M., Adam, C., & Martinerie, J. (2006). Towards a proper esti-
mation of phase synchronization from time series. J. Neurosci. Methods, 154(1–2),
149–160.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



Coupling Between Continuous Signals and Point Processes 1813

Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of
Neurophysiology, 122(2), 849–861.

Cueva, C. J., Saez, A., Marcos, E., Genovesio, A., Jazayeri, M., Romo, R., . . . Fusi,
S. (2020). Low-dimensional dynamics for working memory and time encoding.
PNAS, 117, 23021–23032.

Dai, H., Wang, Y., Trivedi, R., & Song, L. (2016). Recurrent coevolutionary latent fea-
ture processes for continuous-time recommendation. In Proceedings of the First
Workshop on Deep Learning for Recommender Systems (pp. 29–34). New York: ACM.

De, A., Valera, I., Ganguly, N., Bhattacharya, S., & Rodriguez, M. G. (2016). Learning
and forecasting opinion dynamics in social networks. In D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing
systems, 29 (pp. 397–405). Red Hook, NY: Curran.

Deger, M., Helias, M., Boucsein, C., & Rotter, S. (2012). Statistical properties of su-
perimposed stationary spike trains. Journal of Computational Neuroscience, 32(3),
443–463.

Dickey, A. S., Suminski, A., Amit, Y., & Hatsopoulos, N. G. (2009). Single-unit sta-
bility using chronically implanted multielectrode arrays. J. Neurophysiol., 102(2),
1331–1339.

Doussal, P. L., Majumdar, S. N., & Schehr, G. (2016). Large deviations for the height
in 1D Kardar-Parisi-Zhang growth at late times. Europhysics Letters, 113(6), 60004.

Einevoll, G. T., Kayser, C., Logothetis, N. K., & Panzeri, S. (2013). Modelling and
analysis of local field potentials for studying the function of cortical circuits. Nat.
Rev. Neurosci., 14(11), 770–785.

El Karoui, N. (2003). On the largest eigenvalue of Wishart matrices with identity covariance
when n, p and p/n tend to infinity. arXiv:0309355(math).

El Karoui, N. (2005). Recent results about the largest eigenvalue of random covari-
ance matrices and statistical application. Acta Physica Polonica. Series B, B35(9),
2681–2697.

El Karoui, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of
complex sample covariance matrices. Annals of Probability, 35(2), 663–714.

El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices
using random matrix theory. Annals of Statistics, 36(6), 2757–2790.

Elsayed, G. F., & Cunningham, J. P. (2017). Structure in neural population recordings:
An expected byproduct of simpler phenomena? Nature Neuroscience, 20(9), 1310.

Embrechts, P., Liniger, T., & Lin, L. (2011). Multivariate Hawkes processes: An appli-
cation to financial data. Journal of Applied Probability, 48(A), 367–378.

Ermentrout, B., & Pinto, D. (2007). Neurophysiology and waves. SIAM News, 40(2).
Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: In-

sights from phase dynamics and speculation on a computational role. Neuron,
29(1), 33–44.

Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication
through neuronal coherence. Trends Cogn. Sci., 9(10), 474–80.

Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron,
88, 220–35.

Fukushima, M., Chao, Z. C., & Fujii, N. (2015). Studying brain functions with meso-
scopic measurements: Advances in electrocorticography for non-human pri-
mates. Current Opinion in Neurobiology, 32, 124–131.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



1814 S. Safavi, N. Logothetis, and M. Besserve

Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A. (2017). Neural manifolds for
the control of movement. Neuron, 94, 978–984.

Gao, P., & Ganguli, S. (2015). On simplicity and complexity in the brave new
world of large-scale neuroscience. Current Opinion in Neurobiology, 32, 148–
155.

Grosmark, A. D., & Buzsáki, G. (2016). Diversity in neural firing dynamics sup-
ports both rigid and learned hippocampal sequences. Science, 351(6280), 1440–
1443.

Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K., & Buzsáki, G. (2012). REM
sleep reorganizes hippocampal excitability. Neuron, 75(6), 1001–1007.

Grün, S. (2009). Data-driven significance estimation for precise spike correlation.
Journal of Neurophysiology, 101(3), 1126–1140.

Guhr, T., Müller-Groeling, A., & Weidenmüller, H. A. (1998). Random-matrix theo-
ries in quantum physics: Common concepts. Physics Reports, 299(4–6), 189–425.

Hanson, F. B. (2007). Applied stochastic processes and control for jump-diffusions: Model-
ing, analysis and computation. Philadelphia: SIAM.

Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 33(3), 438–443.

Herreras, O. (2016). Local field potentials: Myths and misunderstandings. Front. Neu-
ral Circuits, 10, 101.

Hurtado, J. M., Rubchinsky, L. L., & Sigvardt, K. A. (2004). Statistical method for de-
tection of phase-locking episodes in neural oscillations. Journal of Neurophysiology,
91(4), 1883–1898.

Jiang, H., Bahramisharif, A., van Gerven, M. A. J., & Jensen, O. (2015). Measuring
directionality between neuronal oscillations of different frequencies. NeuroImage,
118, 359–367.

Johnson, D. H. (1996). Point process models of single-neuron discharges. Journal of
Computational Neuroscience, 3(4), 275–299.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal
components analysis. Annals of Statistics, 29, 295–327.

Johnstone, I. M., & Onatski, A. (2020). Testing in high-dimensional spiked models.
Annals of Statistics, 48(3), 1231–1254.

Juavinett, A. L., Bekheet, G., & Churchland, A. K. (2019). Chronically implanted
Neuropixels probes enable high-yield recordings in freely moving mice. eLife, 8,
e47188.

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., . . .
Harris, T. D. (2017). Fully integrated silicon probes for high-density recording of
neural activity. Nature, 551(7679), 232–236.

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., & Gomez-Rodriguez, M. (2018). Leverag-
ing the crowd to detect and reduce the spread of fake news and misinformation.
In Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining (pp. 324–332). New York: ACM.

Kovach, C. K. (2017). A biased look at phase locking: Brief critical review and pro-
posed remedy. IEEE Transactions on Signal Processing, 65(17), 4468–4480.

Kritchman, S., & Nadler, B. (2009). Non-parametric detection of the number of sig-
nals: Hypothesis testing and random matrix theory. IEEE Transactions on Signal
Processing, 57, 3930–3941.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/7/1751/1961328/neco_a_01389.pdf by guest on 23 Septem
ber 2021



Coupling Between Continuous Signals and Point Processes 1815

Krumin, M., Reutsky, I., & Shoham, S. (2010). Correlation-based analysis and gen-
eration of multiple spike trains using Hawkes models with an exogenous input.
Front. Comput. Neurosci., 4, 147.

Lepage, K. Q., Kramer, M. A., & Eden, U. T. (2011). The dependence of spike field
coherence on expected intensity. Neural Computation, 23(9), 2209–2241.

Li, Z., Cui, D., & Li, X. (2016). Unbiased and robust quantification of synchronization
between spikes and local field potential. J. Neurosci. Methods, 269, 33–8.

Liljenstroem, H. (2012). Mesoscopic brain dynamics. Scholarpedia, 7(9), 4601.
Liptser, R. S., & Shiryaev, A. N. (2013a). Statistics of random processes: I. General theory.

New York: Springer Science & Business Media.
Liptser, R. S., & Shiryaev, A. N. (2013b). Statistics of random processes II: Applications.

New York: Springer Science & Business Media.
Liu, H., Aue, A., & Paul, D. (2015). On the Marčenko–Pastur law for linear time series.
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