
MARLUG - Mid-Atlantic Region Local Users Group
ANNUAL CONFERENCE - OCTOBER 12, 2006

Johns Hopkins University Applied Physics Lab – Laurel, MD

Accellera VHDL-2006

By

Jim Lewis, SynthWorks VHDL Training
jim@synthworks.com

SSynthynthWWorksorks

MARLUG October 2006 2 Copyright © SynthWorks 2006

Accellera VHDL-2006Accellera VHDL-2006
IEEE VASG - VHDL-200X effort

Started in 2003 and made good technical progress
However, no $$$ for LRM editing

Accellera VHDL TSC
Took over in 2005,
Funded the technical editing,
Users reviewed and prioritized proposals,
Did super-human work to finalize it for DAC 2006

* Accellera VHDL-2006 Standard 3.0 *
Approved at DAC 2006 by Accellera board
Ready for industry adoption

* Accellera VHDL-2006 Standard 3.0 *
Approved at DAC 2006 by Accellera board
Ready for industry adoption

SSynthynthWWorksorks

MARLUG October 2006 3 Copyright © SynthWorks 2006

Accellera VHDL-2006Accellera VHDL-2006

PSL
IP Protection via Encryption
VHDL Procedural Interface - VHPI
Type Generics
Generics on Packages
Arrays with unconstrained arrays
Records with unconstrained arrays
Fixed Point Packages
Floating Point Packages
Hierarchical references of signals
Process(all)
Simplified Case Statements
Don't Care in a Case Statement
Conditional Expression Updates

Expressions in port maps
Read out ports
Conditional and Selected
assignment in sequential code
hwrite, owrite, … hread, oread
to_string, to_hstring, …
Sized bit string literals
Unary Reduction Operators
Array/Scalar Logic Operators
Slices in array aggregates
Stop and Finish
Context Declarations
Std_logic_1164 Updates
Numeric_Std Updates
Numeric_Std_Unsigned

Many of VHDL's cumbersome syntax issues were fixedMany of VHDL's cumbersome syntax issues were fixed

SSynthynthWWorksorks

MARLUG October 2006 4 Copyright © SynthWorks 2006

PSLPSL
PSL will be incorporated directly into VHDL

Implications
PSL Vunit, Vmode, Vprop are a VHDL Design Unit

PSL declarations (properties) can go in:
Packages
Declarative regions of entity, architecture, and block.

PSL directives (assert, cover, …) are VHDL statements
Can be placed in any concurrent statement part.

Note: PSL code will not need to be placed in commentsNote: PSL code will not need to be placed in comments

SSynthynthWWorksorks

MARLUG October 2006 5 Copyright © SynthWorks 2006

IP Protection and EncryptionIP Protection and Encryption

Allows IP authors to mark specific areas of VHDL code for
encryption using standard algorithms.

Tools that work with encrypted IP must not reveal any details
through any interface or output it generates.

For example, a synthesis tool should generate an encrypted
netlist for any portion of a design that is encrypted.

A pragma-based approach

The proposal:
Defines constructs to demarcate protected envelopes in
VHDL source code.
Defines keywords to specify algorithms and keys.

SSynthynthWWorksorks

MARLUG October 2006 6 Copyright © SynthWorks 2006

VHDL Procedural Interface - VHPIVHDL Procedural Interface - VHPI

Gives access to information about a VHDL model during
analysis, elaboration, and execution.

For add-in tools such as linters, profilers, code coverage,
timing and power analyzers, and
For connecting in external models

Standardized Procedural Programming Interface to VHDL

Object-oriented C model.
Gives direct access as well as callback functions for when
an event occurs.

SSynthynthWWorksorks

MARLUG October 2006 7 Copyright © SynthWorks 2006

Formal Generics Types + Generics on PackagesFormal Generics Types + Generics on Packages

package MuxPkg is

 generic(type array_type) ;

 function Mux4 (
 Sel : std_logic_vector(1 downto 0);
 A : array_type ;
 B : array_type ;
 C : array_type ;
 D : array_type
) return array_type ;
end MuxPkg ;
package body MuxPkg is
 . . .
end MuxPkg ;

package MuxPkg is

 generic(type array_type) ;

 function Mux4 (
 Sel : std_logic_vector(1 downto 0);
 A : array_type ;
 B : array_type ;
 C : array_type ;
 D : array_type
) return array_type ;
end MuxPkg ;
package body MuxPkg is
 . . .
end MuxPkg ;

generic(type array_type) ;

SSynthynthWWorksorks

MARLUG October 2006 8 Copyright © SynthWorks 2006

Formal Generics Types + Generics on PackagesFormal Generics Types + Generics on Packages

library ieee ;
package MuxPkg_slv is new work.MuxPkg
 Generic map (
 array_type => ieee.std_logic_1164.std_logic_vector
) ;

library ieee ;
package MuxPkg_unsigned is new work.MuxPkg
 Generic map (
 array_type => ieee.numeric_std.unsigned
) ;

library ieee ;
package MuxPkg_slv is new work.MuxPkg
 Generic map (
 array_type => ieee.std_logic_1164.std_logic_vector
) ;

library ieee ;
package MuxPkg_unsigned is new work.MuxPkg
 Generic map (
 array_type => ieee.numeric_std.unsigned
) ;

Making the Mux4 function available for both std_logic_vector
and unsigned.

SSynthynthWWorksorks

MARLUG October 2006 9 Copyright © SynthWorks 2006

Arrays of Unconstrained ArraysArrays of Unconstrained Arrays
type std_logic_matrix is array (natural range <>)
 of std_logic_vector ;

-- constraining in declaration
signal A : std_logic_matrix(7 downto 0)(5 downto 0) ;

entity e is
port (
 A : std_logic_matrix(7 downto 0)(5 downto 0) ;
 . . .
) ;

type std_logic_matrix is array (natural range <>)
 of std_logic_vector ;

-- constraining in declaration
signal A : std_logic_matrix(7 downto 0)(5 downto 0) ;

entity e is
port (
 A : std_logic_matrix(7 downto 0)(5 downto 0) ;
 . . .
) ;

SSynthynthWWorksorks

MARLUG October 2006 10 Copyright © SynthWorks 2006

Records of Unconstrained ArraysRecords of Unconstrained Arrays
type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

SSynthynthWWorksorks

MARLUG October 2006 11 Copyright © SynthWorks 2006

Fixed Point TypesFixed Point Types
Definitions in package, ieee.fixed_pkg.all
type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;
type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

Math is full precision math:

constant A : ufixed (3 downto -3) := "0011010000" ;

 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5

constant A : ufixed (3 downto -3) := "0011010000" ;

 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5

For downto range, whole number is on the left and includes 0.

IIII
0110

FFF
100

SSynthynthWWorksorks

MARLUG October 2006 12 Copyright © SynthWorks 2006

Floating Point TypesFloating Point Types
Definitions in package, ieee.float_pkg.all
type float is array (integer range <>) of std_logic;type float is array (integer range <>) of std_logic;

signal A, B, Y : float (8 downto -23) ;

 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127
F = Fraction has an implied 1 in leftmost bit

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <= A + B ; -- FP numbers must be same size

signal A, B, Y : float (8 downto -23) ;

 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127
F = Fraction has an implied 1 in leftmost bit

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <= A + B ; -- FP numbers must be same size

Format is Sign Bit, Exponent, Fraction

8
S

76543210
EEEEEEEE

12345678901234567890123
FFFFFFFFFFFFFFFFFFFFFFF

SSynthynthWWorksorks

MARLUG October 2006 13 Copyright © SynthWorks 2006

Hierarchical ReferenceHierarchical Reference

A <= <<signal .top_ent.u_comp1.my_sig : std_logic_vector >>;A <= <<signal .top_ent.u_comp1.my_sig : std_logic_vector >>;

Direct hierarchical reference:

Alias u1_my_sig is <<signal u1.my_sig : std_logic_vector >>;Alias u1_my_sig is <<signal u1.my_sig : std_logic_vector >>;

Using an alias to create a local short hand:

Specifies object class (signal, shared variable, constant)
path (in this case from top level design)
type (constraint not required)

Path in this case refers to component instance u1
(subblock of current block).
Can also go up from current level of heirarchy using "^"

SSynthynthWWorksorks

MARLUG October 2006 14 Copyright © SynthWorks 2006

Force and ReleaseForce and Release

A <= force '1' ;A <= force '1' ;

Forcing a port or signal:

For in ports and signals this forces the effective value
For out and inout ports this forces the driving value

A <= force in '1' ; -- driving value, effects outputA <= force in '1' ; -- driving value, effects output

Can also specify "in" with in ports and "out" with out ports,
but this is the default behavior.

Forcing the effective value of an out or inout:

Can force via hierarchical reference.
Normal driver resolution occurs at levels above force level.

SSynthynthWWorksorks

MARLUG October 2006 15 Copyright © SynthWorks 2006

Force and ReleaseForce and Release

A <= release ;A <= release ;

Releasing a signal:

SSynthynthWWorksorks

MARLUG October 2006 16 Copyright © SynthWorks 2006

Process (all)Process (all)

Mux3_proc : process(all)
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process

Mux3_proc : process(all)
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process

Creates a sensitivity list with all signals on sensitivity list

Benefit: Reduce mismatches between simulation and synthesis

Process(all)

SSynthynthWWorksorks

MARLUG October 2006 17 Copyright © SynthWorks 2006

Simplified Case StatementSimplified Case Statement
Allow locally static expressions to contain:

implicitly defined operators that produce composite results
operators and functions defined in std_logic_1164,
numeric_std, and numeric_unsigned.

constant ONE1 : unsigned := "11" ;
constant CHOICE2 : unsigned := "00" & ONE1 ;
signal A, B : unsigned (3 downto 0) ;
. . .

process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when CHOICE2 => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when ONE1 & "00" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

constant ONE1 : unsigned := "11" ;
constant CHOICE2 : unsigned := "00" & ONE1 ;
signal A, B : unsigned (3 downto 0) ;
. . .

process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when CHOICE2 => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when ONE1 & "00" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SSynthynthWWorksorks

MARLUG October 2006 18 Copyright © SynthWorks 2006

Simplified Case StatementSimplified Case Statement
Although concatenation is specifically allowed, some cases will
still require a type qualifier.

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SSynthynthWWorksorks

MARLUG October 2006 19 Copyright © SynthWorks 2006

Case With Don't CareCase With Don't Care
Allow use of '-' in targets provided targets are non-overlapping

-- Priority Encoder
process (Request)
begin
 case? Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case ;
end process ;

-- Priority Encoder
process (Request)
begin
 case? Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case ;
end process ;

Note: Only '-' in the case target is treated as a don't care.
A '-' in the case? Expression will not be treated as a don't care.
Note: Only '-' in the case target is treated as a don't care.
A '-' in the case? Expression will not be treated as a don't care.

SSynthynthWWorksorks

MARLUG October 2006 20 Copyright © SynthWorks 2006

Simplified Conditional ExpressionsSimplified Conditional Expressions

if (Cs1 and not nCs2 and Cs3) then
if (not nWe) then
if (Cs1 and not nCs2 and Cs3) then
if (not nWe) then

New: Allow top level of condition to be std_ulogic or bit:

Create special comparison operators that return std_ulogic
(?=, ?/=, ?>, ?>=, ?<, ?<=)

if (Cs1 and not nCs2 and Addr?=X"A5") then
DevSel1 <= Cs1 and not nCs2 and Addr?=X"A5" ;

if (Cs1 and not nCs2 and Addr?=X"A5") then
DevSel1 <= Cs1 and not nCs2 and Addr?=X"A5" ;

Does not mask 'X'

if (Cs1='1' and nCs2='0' and Addr=X"A5") then
if nWe = '0' then
if (Cs1='1' and nCs2='0' and Addr=X"A5") then
if nWe = '0' then

Current VHDL syntax:

SSynthynthWWorksorks

MARLUG October 2006 21 Copyright © SynthWorks 2006

HwriteHwrite,, HreadHread,, OwriteOwrite,, OreadOread

procedure hwrite (
 Buf : inout Line ;
 VALUE : in bit_vector ;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) ;

procedure hread (
 Buf : inout Line ;
 VALUE : out bit_vector ;
 Good : out boolean
) ;

procedure oread (. . .) ;
procedure owrite (. . .) ;

procedure hwrite (
 Buf : inout Line ;
 VALUE : in bit_vector ;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) ;

procedure hread (
 Buf : inout Line ;
 VALUE : out bit_vector ;
 Good : out boolean
) ;

procedure oread (. . .) ;
procedure owrite (. . .) ;

Support Hex and Octal read & write for all bit based array types

No new packages. Supported in base package
For backward compatibility, std_logic_textio will be empty

SSynthynthWWorksorks

MARLUG October 2006 22 Copyright © SynthWorks 2006

function to_string (
 VALUE : in std_logic_vector;
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

function to_string (
 VALUE : in std_logic_vector;
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

Create to_string for all types.
Create hex and octal functions for all bit based array types

To_String, To_To_String, To_HStringHString, To_, To_OStringOString

write(Output, "%%%ERROR data value miscompare." &
 LF & " Actual value = " & to_hstring (Data) &
 LF & " Expected value = " & to_hstring (ExpData) &
 LF & " at time: " & to_string (now, right, 12)) ;

write(Output, "%%%ERROR data value miscompare." &
 LF & " Actual value = " & to_hstring (Data) &
 LF & " Expected value = " & to_hstring (ExpData) &
 LF & " at time: " & to_string (now, right, 12)) ;

Formatting Output with Write (not write from TextIO):

to_string
to_hstring

to_hstring

SSynthynthWWorksorks

MARLUG October 2006 23 Copyright © SynthWorks 2006

Sized Bit String Sized Bit String LiteralsLiterals

X"AA" = "10101010"X"AA" = "10101010"

7X"7F" = "1111111"
7D"127" = "1111111"
7X"7F" = "1111111"
7D"127" = "1111111"

Allow specification of size (and decimal bit string literals):

Currently hex bit string literals are a multiple of 4 in size

9UX"F" = "000001111" Unsigned 0 fill
9SX"F" = "111111111" Signed: left bit = sign
9X"F" = "000001111" Defaults to unsigned

9UX"F" = "000001111" Unsigned 0 fill
9SX"F" = "111111111" Signed: left bit = sign
9X"F" = "000001111" Defaults to unsigned

Allow specification of signed vs unsigned (extension of value):

7X"XX" = "XXXXXXX"
7X"ZZ" = "ZZZZZZZ"
7X"XX" = "XXXXXXX"
7X"ZZ" = "ZZZZZZZ"

Allow Replication of X and Z

SSynthynthWWorksorks

MARLUG October 2006 24 Copyright © SynthWorks 2006

Signal Expressions in Port MapsSignal Expressions in Port Maps
U_UUT : UUT
 port map (A, Y and C, B) ;
U_UUT : UUT
 port map (A, Y and C, B) ;

If expression is not a single signal, constant, or does not
qualify as a conversion function, then

convert it to an equivalent concurrent signal assignment
and it will incur a delta cycle delay

Needed to avoid extra signal assignments with OVL

SSynthynthWWorksorks

MARLUG October 2006 25 Copyright © SynthWorks 2006

Read Output PortsRead Output Ports
Read output ports

Value read will be locally driven value

Assertions need to be able to read output ports

SSynthynthWWorksorks

MARLUG October 2006 26 Copyright © SynthWorks 2006

Allow Conditional Assignments forAllow Conditional Assignments for
Signals and Variables in Sequential CodeSignals and Variables in Sequential Code

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

Statemachine code:

NextState <= FLASH when (FP = '1') else IDLE ;NextState <= FLASH when (FP = '1') else IDLE ;

Simplification (new part is that this is in a process):

NextState := FLASH when (FP = '1') else IDLE ;NextState := FLASH when (FP = '1') else IDLE ;

Also support conditional variable assignment:

SSynthynthWWorksorks

MARLUG October 2006 27 Copyright © SynthWorks 2006

Allow Selected Assignments forAllow Selected Assignments for
Signals and Variables in Sequential CodeSignals and Variables in Sequential Code

signal A, B, C, D, Y : std_logic ;
signal MuxSel : std_logic_vector(1 downto 0) ;
. . .

Process(clk)
begin
 wait until Clk = '1' ;
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 Yreg <= nReset and Mux ;
end process ;

signal A, B, C, D, Y : std_logic ;
signal MuxSel : std_logic_vector(1 downto 0) ;
. . .

Process(clk)
begin
 wait until Clk = '1' ;
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 Yreg <= nReset and Mux ;
end process ;

 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

SSynthynthWWorksorks

MARLUG October 2006 28 Copyright © SynthWorks 2006

Unary Reduction OperatorsUnary Reduction Operators

Calculating Parity without reduction operators:
Parity <= Data(7) xor Data(6) xor Data(5) xor
 Data(4) xor Data(3) xor Data(2) xor
 Data(1) xor Data(0) ;

Parity <= Data(7) xor Data(6) xor Data(5) xor
 Data(4) xor Data(3) xor Data(2) xor
 Data(1) xor Data(0) ;

Define unary AND, OR, XOR, NAND, NOR, XNOR
function "and" (anonymous: BIT_VECTOR) return BIT;
function "or" (anonymous: BIT_VECTOR) return BIT;
function "nand" (anonymous: BIT_VECTOR) return BIT;
function "nor" (anonymous: BIT_VECTOR) return BIT;
function "xor" (anonymous: BIT_VECTOR) return BIT;
function "xnor" (anonymous: BIT_VECTOR) return BIT;

function "and" (anonymous: BIT_VECTOR) return BIT;
function "or" (anonymous: BIT_VECTOR) return BIT;
function "nand" (anonymous: BIT_VECTOR) return BIT;
function "nor" (anonymous: BIT_VECTOR) return BIT;
function "xor" (anonymous: BIT_VECTOR) return BIT;
function "xnor" (anonymous: BIT_VECTOR) return BIT;

Calculating Parity with reduction operators:
Parity <= xor Data ;Parity <= xor Data ;xor

SSynthynthWWorksorks

MARLUG October 2006 29 Copyright © SynthWorks 2006

Array / Scalar Logic OperatorsArray / Scalar Logic Operators
Overload logic operators to allow:

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

A(0)

A(1)

A(3)

ASel

T(0)

T(1)

T(3)

...

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

SSynthynthWWorksorks

MARLUG October 2006 30 Copyright © SynthWorks 2006

Array / Scalar Logic OperatorsArray / Scalar Logic Operators
A common application is to data read back logic

signal Sel1, Sel2, Sel3, Sel4 : std_logic ;
signal DO, Reg1, Reg2, Reg3, Reg4

: std_logic_vector(3 downto 0) ;
. . .

DO <= (Reg1 and Sel1) or (Reg2 and Sel1) or
 (Sel3 and Reg3) or (Sel4 and Reg4) ;

signal Sel1, Sel2, Sel3, Sel4 : std_logic ;
signal DO, Reg1, Reg2, Reg3, Reg4

: std_logic_vector(3 downto 0) ;
. . .

DO <= (Reg1 and Sel1) or (Reg2 and Sel1) or
 (Sel3 and Reg3) or (Sel4 and Reg4) ;

SSynthynthWWorksorks

MARLUG October 2006 31 Copyright © SynthWorks 2006

Slices in Array AggregatesSlices in Array Aggregates

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

Allow slices in an Array Aggregate

(CarryOut, Y)

Currently, this would have to be written as:
(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;
(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;

SSynthynthWWorksorks

MARLUG October 2006 32 Copyright © SynthWorks 2006

Stop and FinishStop and Finish
STOP - Stop like breakpoint
FINISH - Stop and not able to continue

package ENV is
 procedure STOP (STATUS: INTEGER);
 procedure FINISH (STATUS: INTEGER);
 . . .
end package ENV;

package ENV is
 procedure STOP (STATUS: INTEGER);
 procedure FINISH (STATUS: INTEGER);
 . . .
end package ENV;

Usage:

Defined in package ENV in library STD

use std.env.all ;
. . .
 TestProc : process begin
 . . .
 Stop(0) ;
 end process TestProc ;

use std.env.all ;
. . .
 TestProc : process begin
 . . .
 Stop(0) ;
 end process TestProc ;

SSynthynthWWorksorks

MARLUG October 2006 33 Copyright © SynthWorks 2006

Context Declaration = Primary Design UnitContext Declaration = Primary Design Unit
Allows a group of packages to be referenced by a single name
Context project1_Ctx is
 library ieee, YYY_math_lib ;
 use std.textio.all ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use YYY_math_lib.ZZZ_fixed_pkg.all ;
end ;

Context project1_Ctx is
 library ieee, YYY_math_lib ;
 use std.textio.all ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use YYY_math_lib.ZZZ_fixed_pkg.all ;
end ;

Reference the named context unit
Library Lib_P1 ;
 context Lib_P1.project1_ctx ;
Library Lib_P1 ;
 context Lib_P1.project1_ctx ;

Benefit increases as additional standard packages are created
Fixed Point, Floating Point, Assertion Libraries, . . .

SSynthynthWWorksorks

MARLUG October 2006 34 Copyright © SynthWorks 2006

Std Logic_1164 UpdatesStd Logic_1164 Updates
Goals: Enhance current std_logic_1164 package

A few items on the list are:
std_logic_vector is now subtype of std_ulogic_vector
Uncomment xnor operators
Add shift operators for vector types
Add logical reduction operators
Add array/scalar logical operators
Added text I/O read, oread, hread, write, owrite, hwrite

SSynthynthWWorksorks

MARLUG October 2006 35 Copyright © SynthWorks 2006

Numeric Std UpdatesNumeric Std Updates

A few items on the numeric_std list are:
Array / scalar addition operators
TO_X01, IS_X for unsigned and signed
Logic reduction operators
Array / scalar logic operators
TextIO for numeric_std

Goals:
Enhance current numeric_std package.
Unsigned math with std_logic_vector/std_ulogic_vector

SSynthynthWWorksorks

MARLUG October 2006 36 Copyright © SynthWorks 2006

Numeric Std UnsignedNumeric Std Unsigned

Replacement for std_logic_unsigned that is consistent with
numeric_std

Overloads for std_ulogic_vector to have all of the operators
defined for ieee.numeric_std.unsigned

SSynthynthWWorksorks

MARLUG October 2006 37 Copyright © SynthWorks 2006

Resulting Operator OverloadingResulting Operator Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean

SSynthynthWWorksorks

MARLUG October 2006 38 Copyright © SynthWorks 2006

VHDL Standards Next StepsVHDL Standards Next Steps
Constrained Random Stimulus Generation

Random value generation with dynamic weighting
Randomly generate sequences of stimulus

Functional Coverage
Interfaces
Verification Data Structures:

associative arrays, queues, FIFOs, and memories
Direct C and Verilog/SystemVerilog Calls
Object Orientation

Goal = HDVL: Hardware Description and Verification Language
Full verification capabilities in one consistent language

SSynthynthWWorksorks

MARLUG October 2006 39 Copyright © SynthWorks 2006

Accellera VHDL-2006 3.0: SummaryAccellera VHDL-2006 3.0: Summary

Help us with the next revision …
Participate! Don't sit on the bench and wait and watch.

See http://www.accellera.org/activities/vhdl/

Tell your vendors about features you want supported.
Be specific and prioritize your requests

Ask your colleagues and vendors to participate

Join Accellera and help fund the effort
Corporate membership

Accellera VHDL-2006 3.0 is done and ready for adoptionAccellera VHDL-2006 3.0 is done and ready for adoption

SynthWorks & VHDL StandardsSynthWorks & VHDL Standards
At SynthWorks, we are committed to see that VHDL is
updated to incorporate the good features/concepts from other
HDL/HVL languages such as SystemVerilog, E (specman),
and Vera.

At SynthWorks, we invest 100's of hours each year working
on VHDL's standards

Support VHDL's standards efforts by:
Encouraging your EDA vendor(s) to support VHDL
standards,
Participating in VHDL standards working groups, and / or
Purchasing your VHDL training from SynthWorks

SSynthynthWWorksorks

SynthWorks VHDL TrainingSynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

Intermediate VHDL Coding for Synthesis 2 Days
 http://www.synthworks.com/intermediate_vhdl_synthesis.htm
 Learn RTL (hardware) coding styles that produce better, faster, and

smaller logic.

VHDL Testbenches and Verification 3 days
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn to simplify writing tests by creating transaction-based testbenches.

For additional courses see: http://www.synthworks.com

SSynthynthWWorksorks

Advanced VHDL Coding for Synthesis 2 Days
 http://www.synthworks.com/advanced_vhdl_synthesis.htm
 Learn to avoid RTL coding issues, problem solving techniques, and

advanced VHDL constructs.

