
VHDL-2006-D3.0 Tutorial
Agenda:

Accellera Standards Dennis Brophy

IEEE Standards Edward Rashba

VHDL Tutorial Jim Lewis
Accellera-VHDL-D3.0
Fixed and Floating Point Packages
Whats Next In VHDL

Questions & Answers

Accellera VHDL-2006-D3.0
By

Jim Lewis, SynthWorks VHDL Training
jim@synthworks.com

SynthWorks

2 Copyright © SynthWorks 2007

Accellera VHDL-2006-D3.0
IEEE VASG - VHDL-200X effort

Started in 2003 and made good technical progress
However, no $$$ for LRM editing

Accellera VHDL TSC
Took over in 2005,
Funded the technical editing,
Users reviewed and prioritized proposals,
Did super-human work to finalize it for July 2006

* Accellera VHDL-2006-D3.0 *
Approved in July 2006 by Accellera board
Ready for industry adoption

SynthWorks

3 Copyright © SynthWorks 2007

Accellera VHDL-2006

PSL
IP Protection via Encryption
VHDL Procedural Interface - VHPI
Type Generics
Generics on Packages
Arrays with unconstrained arrays
Records with unconstrained arrays
Fixed Point Packages
Floating Point Packages
Hierarchical references of signals
Process(all)
Simplified Case Statements
Don't Care in a Case Statement
Conditional Expression Updates

Expressions in port maps
Read out ports
Conditional and Selected
assignment in sequential code
hwrite, owrite, … hread, oread
to_string, to_hstring, …
Sized bit string literals
Unary Reduction Operators
Array/Scalar Logic Operators
Slices in array aggregates
Stop and Finish
Context Declarations
Std_logic_1164 Updates
Numeric_Std Updates
Numeric_Std_Unsigned

Many of VHDL's cumbersome syntax issues were fixed

SynthWorks

4 Copyright © SynthWorks 2007

PSL
PSL will be incorporated directly into VHDL

Implications
PSL Vunit, Vmode, Vprop are a VHDL Design Unit

PSL declarations (properties) can go in:
Packages
Declarative regions of entity, architecture, and block.

PSL directives (assert, cover, …) are VHDL statements
Can be placed in any concurrent statement part.

Note: PSL code will not need to be placed in comments

SynthWorks

5 Copyright © SynthWorks 2007

IP Protection and Encryption

Allows IP authors to mark specific areas of VHDL code for
encryption using standard algorithms.

Tools that work with encrypted IP must not reveal any details
through any interface or output it generates.

For example, a synthesis tool should generate an encrypted
netlist for any portion of a design that is encrypted.

A pragma-based approach

The proposal:
Defines constructs to demarcate protected envelopes in
VHDL source code.
Defines keywords to specify algorithms and keys.

SynthWorks

6 Copyright © SynthWorks 2007

VHDL Procedural Interface - VHPI

Gives access to information about a VHDL model during
analysis, elaboration, and execution.

For add-in tools such as linters, profilers, code coverage,
timing and power analyzers, and
For connecting in external models

Standardized Procedural Programming Interface to VHDL

Object-oriented C model.
Gives direct access as well as callback functions for when
an event occurs.

SynthWorks

7 Copyright © SynthWorks 2007

Formal Generics Types + Generics on Packages

package MuxPkg is

 generic(type array_type) ;

 function Mux4 (
 Sel : std_logic_vector(1 downto 0);
 A : array_type ;
 B : array_type ;
 C : array_type ;
 D : array_type
) return array_type ;
end MuxPkg ;
package body MuxPkg is
 . . .
end MuxPkg ;

SynthWorks

8 Copyright © SynthWorks 2007

Formal Generics Types + Generics on Packages

library ieee ;
package MuxPkg_slv is new work.MuxPkg
 Generic map (
 array_type => ieee.std_logic_1164.std_logic_vector
) ;

library ieee ;
package MuxPkg_unsigned is new work.MuxPkg
 Generic map (
 array_type => ieee.numeric_std.unsigned
) ;

Making the Mux4 function available for both std_logic_vector
and unsigned.

SynthWorks

9 Copyright © SynthWorks 2007

Arrays of Unconstrained Arrays
type std_logic_matrix is array (natural range <>)
 of std_logic_vector ;

-- constraining in declaration
signal A : std_logic_matrix(7 downto 0)(5 downto 0) ;

entity e is
port (
 A : std_logic_matrix(7 downto 0)(5 downto 0) ;
 . . .
) ;

SynthWorks

10 Copyright © SynthWorks 2007

Records of Unconstrained Arrays
type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

SynthWorks

11 Copyright © SynthWorks 2007

Fixed Point Types
Definitions in package, ieee.fixed_pkg.all
type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

Math is full precision math:

constant A : ufixed (3 downto -3) := "0110100" ;

 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5

For downto range, whole number is on the left and includes 0.

SynthWorks

12 Copyright © SynthWorks 2007

Floating Point Types
Definitions in package, ieee.float_pkg.all
type float is array (integer range <>) of std_logic;

signal A, B, Y : float (8 downto -23) ;

 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127
F = Fraction with implied 1 left of the binary point

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <= A + B ; -- FP numbers must be same size

Format is Sign Bit, Exponent, Fraction

SynthWorks

13 Copyright © SynthWorks 2007

Hierarchical Reference

A <= <<signal .top_ent.u_comp1.my_sig : std_logic_vector >>;

Direct hierarchical reference:

Alias u1_my_sig is <<signal u1.my_sig : std_logic_vector >>;

Using an alias to create a local short hand:

Specifies object class (signal, shared variable, constant)
path (in this case from top level design)
type (constraint not required)

Path in this case refers to component instance u1
(subblock of current block).
Can also go up from current level of hierarchy using "^"

SynthWorks

14 Copyright © SynthWorks 2007

Force and Release

A <= force '1' ;

Forcing a port or signal:

For in ports and signals this forces the effective value
For out and inout ports this forces the driving value

A <= force in '1' ; -- driving value, effects output

Can also specify "in" with in ports and "out" with out ports,
but this is the default behavior.

Forcing the effective value of an out or inout:

Can force via hierarchical reference.
Normal driver resolution occurs at levels above force level.

SynthWorks

15 Copyright © SynthWorks 2007

Force and Release

A <= release ;

Releasing a signal:

SynthWorks

16 Copyright © SynthWorks 2007

Process (all)

Mux3_proc : process(all)
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process

Creates a sensitivity list with all signals on sensitivity list

Benefit: Reduce mismatches between simulation and synthesis

SynthWorks

17 Copyright © SynthWorks 2007

Simplified Case Statement
Allow locally static expressions to contain:

implicitly defined operators that produce composite results
operators and functions defined in std_logic_1164,
numeric_std, and numeric_unsigned.

constant ONE1 : unsigned := "11" ;
constant CHOICE2 : unsigned := "00" & ONE1 ;
signal A, B : unsigned (3 downto 0) ;
. . .

process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when CHOICE2 => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when ONE1 & "00" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SynthWorks

18 Copyright © SynthWorks 2007

Simplified Case Statement
Although concatenation is specifically allowed, some cases will
still require a type qualifier.

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SynthWorks

19 Copyright © SynthWorks 2007

Case With Don't Care
Allow use of '-' in targets provided targets are non-overlapping

-- Priority Encoder
process (Request)
begin
 case? Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case ;
end process ;

Note: Only '-' in the case target is treated as a don't care.
A '-' in the case? Expression will not be treated as a don't care.

SynthWorks

20 Copyright © SynthWorks 2007

Simplified Conditional Expressions

if (Cs1 and not nCs2 and Cs3) then
if (not nWe) then

New: Allow top level of condition to be std_ulogic or bit:

Create special comparison operators that return std_ulogic
(?=, ?/=, ?>, ?>=, ?<, ?<=)

if (Cs1 and not nCs2 and Addr?=X"A5") then
DevSel1 <= Cs1 and not nCs2 and Addr?=X"A5" ;

Does not mask 'X'

if (Cs1='1' and nCs2='0' and Addr=X"A5") then
if nWe = '0' then

Current VHDL syntax:

SynthWorks

21 Copyright © SynthWorks 2007

Hwrite, Hread, Owrite, Oread

procedure hwrite (
 Buf : inout Line ;
 VALUE : in bit_vector ;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) ;

procedure hread (
 Buf : inout Line ;
 VALUE : out bit_vector ;
 Good : out boolean
) ;

procedure oread (. . .) ;
procedure owrite (. . .) ;

Support Hex and Octal read & write for all bit based array types

No new packages. Supported in base package
For backward compatibility, std_logic_textio will be empty

SynthWorks

22 Copyright © SynthWorks 2007

function to_string (
 VALUE : in std_logic_vector;
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

Create to_string for all types.
Create hex and octal functions for all bit based array types

To_String, To_HString, To_OString

write(Output, "%%%ERROR data value miscompare." &
 LF & " Actual value = " & to_hstring (Data) &
 LF & " Expected value = " & to_hstring (ExpData) &
 LF & " at time: " & to_string (now, right, 12)) ;

Formatting Output with Write (not write from TextIO):

SynthWorks

23 Copyright © SynthWorks 2007

Sized Bit String Literals

X"AA" = "10101010"

7X"7F" = "1111111"
7D"127" = "1111111"

Allow specification of size (and decimal bit string literals):

Currently hex bit string literals are a multiple of 4 in size

9UX"F" = "000001111" Unsigned 0 fill
9SX"F" = "111111111" Signed: left bit = sign
9X"F" = "000001111" Defaults to unsigned

Allow specification of signed vs unsigned (extension of value):

7X"XX" = "XXXXXXX"
7X"ZZ" = "ZZZZZZZ"

Allow Replication of X and Z

SynthWorks

24 Copyright © SynthWorks 2007

Signal Expressions in Port Maps
U_UUT : UUT
 port map (A, Y and C, B) ;

If expression is not a single signal, constant, or does not
qualify as a conversion function, then

convert it to an equivalent concurrent signal assignment
and it will incur a delta cycle delay

Needed to avoid extra signal assignments with OVL

SynthWorks

25 Copyright © SynthWorks 2007

Read Output Ports
Read output ports

Value read will be locally driven value

Assertions need to be able to read output ports

SynthWorks

26 Copyright © SynthWorks 2007

Allow Conditional Assignments for
Signals and Variables in Sequential Code

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

Statemachine code:

NextState <= FLASH when (FP = '1') else IDLE ;

Simplification (new part is that this is in a process):

NextState := FLASH when (FP = '1') else IDLE ;

Also support conditional variable assignment:

SynthWorks

27 Copyright © SynthWorks 2007

Allow Selected Assignments for
Signals and Variables in Sequential Code

signal A, B, C, D, Y : std_logic ;
signal MuxSel : std_logic_vector(1 downto 0) ;
. . .

Process(clk)
begin
 wait until Clk = '1' ;
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 Yreg <= nReset and Mux ;
end process ;

SynthWorks

28 Copyright © SynthWorks 2007

Unary Reduction Operators

Calculating Parity without reduction operators:
Parity <= Data(7) xor Data(6) xor Data(5) xor
 Data(4) xor Data(3) xor Data(2) xor
 Data(1) xor Data(0) ;

Define unary AND, OR, XOR, NAND, NOR, XNOR
function "and" (anonymous: BIT_VECTOR) return BIT;
function "or" (anonymous: BIT_VECTOR) return BIT;
function "nand" (anonymous: BIT_VECTOR) return BIT;
function "nor" (anonymous: BIT_VECTOR) return BIT;
function "xor" (anonymous: BIT_VECTOR) return BIT;
function "xnor" (anonymous: BIT_VECTOR) return BIT;

Calculating Parity with reduction operators:
Parity <= xor Data ;

SynthWorks

29 Copyright © SynthWorks 2007

Array / Scalar Logic Operators
Overload logic operators to allow:

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

A(0)

A(1)

A(3)

ASel

T(0)

T(1)

T(3)

...

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

SynthWorks

30 Copyright © SynthWorks 2007

Array / Scalar Logic Operators
Common application: Data read back logic
signal Sel1, Sel2, Sel3, Sel4 : std_logic ;
signal DO, Reg1, Reg2, Reg3, Reg4

: std_logic_vector(3 downto 0) ;
. . .

DO <= (Reg1 and Sel1) or (Reg2 and Sel1) or
 (Sel3 and Reg3) or (Sel4 and Reg4) ;

SynthWorks

31 Copyright © SynthWorks 2007

Slices in Array Aggregates

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

Allow slices in an Array Aggregate

Currently, this would have to be written as:
(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;

SynthWorks

32 Copyright © SynthWorks 2007

Stop and Finish
STOP - Stop like breakpoint
FINISH - Stop and not able to continue

package ENV is
 procedure STOP (STATUS: INTEGER);
 procedure FINISH (STATUS: INTEGER);
 . . .
end package ENV;

Usage:

Defined in package ENV in library STD

use std.env.all ;
. . .
 TestProc : process begin
 . . .
 Stop(0) ;
 end process TestProc ;

SynthWorks

33 Copyright © SynthWorks 2007

Context Declaration = Primary Design Unit
Allows a group of packages to be referenced by a single name
Context project1_Ctx is
 library ieee, YYY_math_lib ;
 use std.textio.all ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use YYY_math_lib.ZZZ_fixed_pkg.all ;
end ;

Reference the named context unit
Library Lib_P1 ;
 context Lib_P1.project1_ctx ;

Benefit increases as additional standard packages are created
Fixed Point, Floating Point, Assertion Libraries, . . .

SynthWorks

34 Copyright © SynthWorks 2007

Std Logic_1164 Updates
Goals: Enhance current std_logic_1164 package

A few items on the list are:
std_logic_vector is now subtype of std_ulogic_vector
Uncomment xnor operators
Add logical shift operators for vector types
Add logical reduction operators
Add array/scalar logical operators
Added text I/O read, oread, hread, write, owrite, hwrite

SynthWorks

35 Copyright © SynthWorks 2007

Numeric Std Updates

A few items on the numeric_std list are:
Array / scalar addition operators
TO_X01, IS_X for unsigned and signed
Logic reduction operators
Array / scalar logic operators
TextIO for numeric_std

Goals:
Enhance current numeric_std package.
Unsigned math with std_logic_vector/std_ulogic_vector

SynthWorks

36 Copyright © SynthWorks 2007

Numeric Std Unsigned

Replacement for std_logic_unsigned that is consistent with
numeric_std

Overloads for std_ulogic_vector to have all of the operators
defined for ieee.numeric_std.unsigned

SynthWorks

37 Copyright © SynthWorks 2007

Resulting Operator Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean

SynthWorks

38 Copyright © SynthWorks 2007

Accellera VHDL-2006-D3.0: Summary

Help us with the next revision …
Participate! Don't sit on the bench and wait and watch.

See http://www.accellera.org/activities/vhdl/
You do not need to be an Accellera member to participate

Tell your vendors about features you want supported.
Be specific and prioritize your requests

Ask your colleagues and vendors to participate

Join Accellera and help fund the effort
Corporate membership

Accellera VHDL-2006-D3.0 is done and ready for adoption

Fixed and Floating Point
Packages

By
Jim Lewis, SynthWorks VHDL Training

David Bishop, Kodak

SynthWorks

2 Copyright © SynthWorks 2007

Fixed and Floating Point Packages
Fixed Point

Package & Types
Format
Sizing & Overloading
Literals in Assignments and Expressions
Quirks

Floating Point
Package & Types
Format
Sizing & Overloading
Literals in Assignments and Expressions

These packages are part of Accellera VHDL-2006-D3.0 standardThese packages are part of Accellera VHDL-2006-D3.0 standard

SynthWorks

3 Copyright © SynthWorks 2007

Fixed Point Package

In the mean time, there is a temporary package fixed_pkg_c.vhd that
uses constants and can be edited to be ZZZ_fixed_pkg.

With fixed point, there are parameters that need to be specified.
In Accellera VHDL-2006-D3.0 they are specified using generics:

package ZZZ_fixed_pkg is
 new ieee.fixed_generic_pkg
 generic map (
 fixed_round_style =>
 IEEE.math_utility_pkg.fixed_round,
 fixed_overflow_style =>
 IEEE.math_utility_pkg.fixed_saturate,
 fixed_guard_bits => 3, -- # of guard bits
 no_warning => false -- show warnings
);

package ZZZ_fixed_pkg is
 new ieee.fixed_generic_pkg
 generic map (
 fixed_round_style =>
 IEEE.math_utility_pkg.fixed_round,
 fixed_overflow_style =>
 IEEE.math_utility_pkg.fixed_saturate,
 fixed_guard_bits => 3, -- # of guard bits
 no_warning => false -- show warnings
);

SynthWorks

4 Copyright © SynthWorks 2007

Fixed Point Types

type ufixed is array (integer range <>) of std_logic;type ufixed is array (integer range <>) of std_logic;

sfixed = signed fixed point

ufixed = unsigned fixed point

type sfixed is array (integer range <>) of std_logic;type sfixed is array (integer range <>) of std_logic;

Library YYY_math_lib ;
use YYY_math_lib.ZZZ_fixed_pkg.all ;
Library YYY_math_lib ;
use YYY_math_lib.ZZZ_fixed_pkg.all ;

SynthWorks

5 Copyright © SynthWorks 2007

Fixed Point Format

Range is required to be downto
Whole number is on the left and includes 0 index (3 downto 0)
Fraction is to the right of the 0 index (-1 downto -3)
Ok to be only a integer or only a fraction

constant A : ufixed(3 downto -3) := "0110100";
 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5

constant A : ufixed(3 downto -3) := "0110100";
 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5
IIII
0110

FFF
100

SynthWorks

6 Copyright © SynthWorks 2007

Fixed Point is Full Precision Math

signal A4_3, B4_3 : ufixed (3 downto -3) ;
signal Y5_3 : ufixed (4 downto -3) ;
. . .
Y5_3 <= A4_3 + B4_3 ;

signal A4_3, B4_3 : ufixed (3 downto -3) ;
signal Y5_3 : ufixed (4 downto -3) ;
. . .
Y5_3 <= A4_3 + B4_3 ;

4 downto -3

Integer portion of the result is one bit bigger than largest argument
Note that in numeric_std, addition/subtraction is modulo math

SynthWorks

7 Copyright © SynthWorks 2007

Fixed Point Sizing Rules

Signed mod

Max(A'left, B'left)+1 downto Min(A'right, B'right)A + B, A - B

Signed Reciprocal

A'left - B'right downto A'right - B'left -1Unsigned /, divide

-A'right + 1 downto - A'leftUnsigned Reciprocal

A'left + B'left+1 downto A'right + B'rightA * B

Result RangeOperation

Min(A'left, B’left) downto Min(A'right, B’right)A rem B

Unsigned mod

A'left - B'right+1 downto A'right - B'leftSigned /, divide

Signed Abs(A)

Signed -A

A’left + 1 downto A’right

A’left + 1 downto A’right

Min(A'left, B'left) downto Min(A'right, B'right)

-A'right downto -A'left -1

B'left downto Min(A'right, B'right)

SynthWorks

8 Copyright © SynthWorks 2007

Overloading

ufixed op ufixed
ufixed op real
real op ufixed
ufixed op natural
natural op ufixed

Arithmetic
+ - * / rem mod
abs = /= > < >=
<=

Ufixed ResultOperation

Notes:
Size rules for integer assume that it is fixed'left downto 0
Size rules for real assume that it is fixed'range

ufixed op integerShift
sll srl sla srl rol ror

sfixed op integer

sfixed op sfixed
sfixed op real
real op sfixed
sfixed op integer
integer op sfixed

Sfixed Result

Logic
and or xor nand nor xnor

ufixed op ufixed sfixed op sfixed

SynthWorks

9 Copyright © SynthWorks 2007

signal A4 : ufixed (3 downto -3) ;
. . .
-- String Literal
A4 <= "0110100" ; -- 6.5

signal A4 : ufixed (3 downto -3) ;
. . .
-- String Literal
A4 <= "0110100" ; -- 6.5

Literals in Assignments

To_ufixed
Size of result based on range of an argument (such as A4) or
by passing the indicies (3, -3)
Overloaded to accept either real or integer numbers
Type real and integer limited the precision of the literal

-- Real and/or Integer Literal
A4 <= to_ufixed(6.5, A4) ; -- sized by A4
A4 <= to_ufixed(6.5, 3, -3) ; -- pass indicies

SynthWorks

10 Copyright © SynthWorks 2007

signal A4 : ufixed (3 downto -3) ;
signal Y5 : ufixed (4 downto -3) ;
. . .
-- Y5 <= A4 + "0110100" ; -- illegal,
-- ^^indicies are integer'low to …

signal A4 : ufixed (3 downto -3) ;
signal Y5 : ufixed (4 downto -3) ;
. . .
-- Y5 <= A4 + "0110100" ; -- illegal,
-- ^^indicies are integer'low to …

Issue: a string literal used in an expression has range based on the
direction of the base type and left index (integer'low)

Literals in Expressions

Solutions

subtype ufixed4_3 is ufixed (3 downto -3) ;
signal A4, B4 : ufixed4_3 ;
signal Y5 : ufixed (4 downto -3) ;
. . .
Y5 <= A4 + ufixed4_3'("0110100") ;

subtype ufixed4_3 is ufixed (3 downto -3) ;
signal A4, B4 : ufixed4_3 ;
signal Y5 : ufixed (4 downto -3) ;
. . .
Y5 <= A4 + ufixed4_3'("0110100") ;

subtype ufixed4_3 is ufixed (3 downto -3) ;

ufixed4_3'
Y5 <= A4 + 6.5 ; -- overloading
Y5 <= A4 + 6 ;

SynthWorks

11 Copyright © SynthWorks 2007

Quirks: Accumulator

signal A4 : ufixed (3 downto -3) ;
signal Y7 : ufixed (6 downto -3) ;
. . .
-- Y7 <= Y7 + A4 ; -- illegal, result too big

signal A4 : ufixed (3 downto -3) ;
signal Y7 : ufixed (6 downto -3) ;
. . .
-- Y7 <= Y7 + A4 ; -- illegal, result too big

Size of result needs to match size of one of the inputs

-- Solution, resize the result
Y7 <= resize (
 arg => Y7 + A4,
 size_res => Y7,
 overflow_style => fixed_saturate,
 -- fixed_wrap
 round_style => fixed_round
 -- fixed_truncate
);

SynthWorks

12 Copyright © SynthWorks 2007

Fixed Point Conversions

To_ufixed integer, real, unsigned, sfixed, std_logic_vector to ufixed

To_sfixed integer, real, signed, ufixed, std_logic_vector to sfixed

Resize ufixed to ufixed or sfixed to sfixed
both with potential rounding

to_real ufixed or sfixed to real (scalar)

to_integer ufixed or sfixed to integer (scalar)

to_unsigned ufixed to unsigned (array)

to_signed sfixed to signed (array)

to_slv ufixed or sfixed to slv (array)
for top level ports

To_ufixed integer, real, unsigned, sfixed, std_logic_vector to ufixed

To_sfixed integer, real, signed, ufixed, std_logic_vector to sfixed

Resize ufixed to ufixed or sfixed to sfixed
both with potential rounding

to_real ufixed or sfixed to real (scalar)

to_integer ufixed or sfixed to integer (scalar)

to_unsigned ufixed to unsigned (array)

to_signed sfixed to signed (array)

to_slv ufixed or sfixed to slv (array)
for top level ports

SynthWorks

13 Copyright © SynthWorks 2007

Floating Point Package

package ZZZ_float_pkg is
 new ieee.fixed_generic_pkg
 generic map (
 float_exponent_width => 8, -- default 'high
 float_fraction_width => 23, -- default 'low
 float_round_style =>
 IEEE.math_utility_pkg.round_nearest,
 float_denormalize => true, -- IEEE extended fp
 float_check_error => true, -- NAN & overflow
 float_guard_bits => 3, -- # of guard bits
 no_warning => false -- show warnings
);

package ZZZ_float_pkg is
 new ieee.fixed_generic_pkg
 generic map (
 float_exponent_width => 8, -- default 'high
 float_fraction_width => 23, -- default 'low
 float_round_style =>
 IEEE.math_utility_pkg.round_nearest,
 float_denormalize => true, -- IEEE extended fp
 float_check_error => true, -- NAN & overflow
 float_guard_bits => 3, -- # of guard bits
 no_warning => false -- show warnings
);

In the mean time, there is a temporary package float_pkg_c.vhd that
uses constants and can be edited to be ZZZ_float_pkg.

With floating point, there are parameters that need to be specified.
In Accellera VHDL-2006-D3.0 they are specified using generics:

SynthWorks

14 Copyright © SynthWorks 2007

Floating Point Types

type float is array (integer range <>) of std_logic;type float is array (integer range <>) of std_logic;
Main type is unconstrained:

IEEE 754 Single Precision

subtype float128 is float(15 downto -112);subtype float128 is float(15 downto -112);

subtype float64 is float(11 downto -52);subtype float64 is float(11 downto -52);

subtype float32 is float(8 downto -23);subtype float32 is float(8 downto -23);

IEEE 754 Double Precision

IEEE 854 Extended Precision

Package also defines subtypes:

Library YYY_math_lib ;
use YYY_math_lib.ZZZ_float_pkg.all ;
Library YYY_math_lib ;
use YYY_math_lib.ZZZ_float_pkg.all ;

SynthWorks

15 Copyright © SynthWorks 2007

Floating Point Format
signal A, B, Y : float (8 downto -23) ;
 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
E = Exponent is biased by 127
F = Fraction with implied 1 left of the binary point
value = 2**(E-127) * (1 + F)
0 10000001 10100000000000000000000
= +1 * 2**(129 - 127) * (1.0 + 0.5 + 0.125)
= +1 * 2**2 * (1.625) = 6.5

signal A, B, Y : float (8 downto -23) ;
 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
E = Exponent is biased by 127
F = Fraction with implied 1 left of the binary point
value = 2**(E-127) * (1 + F)
0 10000001 10100000000000000000000
= +1 * 2**(129 - 127) * (1.0 + 0.5 + 0.125)
= +1 * 2**2 * (1.625) = 6.5

8
S

76543210
EEEEEEEE

12345678901234567890123
FFFFFFFFFFFFFFFFFFFFFFF

Range is required to be downto
Sign Bit = A'left = bit 8 (0 = positive, 1 = negative)
Exponent = range A'left - 1 downto 0 = 7 downto 0
Mantissa = range -1 downto A'right = -1 downto -23
Sign, Exponent and Mantissa are always present

2**(E-127) (1 + F)

2**(129 - 127) (1.0 + 0.5 + 0.125)

SynthWorks

16 Copyright © SynthWorks 2007

Special Numbers

0 00000000 00000000000000000000000 -- Positive
1 00000000 00000000000000000000000 -- Negative
0 00000000 00000000000000000000000 -- Positive
1 00000000 00000000000000000000000 -- Negative

Zero (Positive 0 = Negative 0)

0 11111111 00000000000000000000000 -- Positive
1 11111111 00000000000000000000000 -- Negative
0 11111111 00000000000000000000000 -- Positive
1 11111111 00000000000000000000000 -- Negative

Infinity

1 11111111 000000000000000000000011 11111111 00000000000000000000001
NAN - Not A Number

Exponent with all 0 is reserved for zero and denormal numbers
Exponent with all 1 is reserved for infinity and NAN

SynthWorks

17 Copyright © SynthWorks 2007

Range of Values

0 00000001 00000000000000000000000
= +1 * 2**(1 - 127) * (1.0 + 0)
= 2**(-126)

0 00000001 00000000000000000000000
= +1 * 2**(1 - 127) * (1.0 + 0)
= 2**(-126)

Smallest positive number without denormals

0 11111110 00000000000000000000000
= +1 * 2**(254 - 127) * (1.0 + 0)
= 2**(127)

0 11111110 00000000000000000000000
= +1 * 2**(254 - 127) * (1.0 + 0)
= 2**(127)

Large positive number (Exponent of all 1 is reserved)

0 00000000 10000000000000000000000
= +1 * 2**(1 - 127) * (0 + 0.5)
= +1 * 2**(-126) * 2**(-1)
= 2 **(-127)

0 00000000 10000000000000000000000
= +1 * 2**(1 - 127) * (0 + 0.5)
= +1 * 2**(-126) * 2**(-1)
= 2 **(-127)

Extended small numbers = Denormals, but only when enabled

2**(254 - 127)

2**(1 - 127)

2**(1 - 127)

SynthWorks

18 Copyright © SynthWorks 2007

Floating Point Types
signal A32, B32, Y32 : float (8 downto -23) ;
. . .
Y32 <= A32 + B32 ;

signal A32, B32, Y32 : float (8 downto -23) ;
. . .
Y32 <= A32 + B32 ;

Floating point result will have the maximum exponent and maximum
mantissa of its input arguments.

Also need to specify:
Rounding Default = round_nearest

round_nearest, round_zero, round_inf, round_neginf
Denormals: On / Off Default = on = true
Check NAN and Overflow Default = on = true
Guard Bits: Extra bits for rounding. Default = 3

SynthWorks

19 Copyright © SynthWorks 2007

Overloading

float op float
float op real
real op float
float op integer
integer op float

Arithmetic
+ - * / rem mod abs
= /= > < >= <=

Float ResultOperation

Logic
and or xor nand nor xnor

float op float

Notes:
Integers and reals are converted to a float that is the same size as
the float argument

SynthWorks

20 Copyright © SynthWorks 2007

Literals in Assignments
signal A_fp32 : float32 ;
. . .
-- String Literal
A_fp32 <= "01000000110100000000000000000000" ; -- 6.5

signal A_fp32 : float32 ;
. . .
-- String Literal
A_fp32 <= "01000000110100000000000000000000" ; -- 6.5

To_float
Needs to size the result based on range of an argument (such as
A_fp32) or by passing the indicies (8, -32)
Overloaded to accept either integers or real numbers
Note the required precision of type real and integer is
limited by the language

-- Real and/or Integer Literal
A_fp32 <= to_float(6.5, A_fp32); -- size using A_fp32
A_fp32 <= to_float(6.5, 8, -32); -- pass indicies

SynthWorks

21 Copyright © SynthWorks 2007

Literals in Expressions

signal A, Y : float32 ;
. . .
-- Y <= A + "01000000110100000000000000000000"; -- ill
-- ^^ range integer'low to ...

signal A, Y : float32 ;
. . .
-- Y <= A + "01000000110100000000000000000000"; -- ill
-- ^^ range integer'low to ...

Issue: a string literal used in an expression has range based on the
direction of the base type and left index (integer'low)

signal A, Y : float32 ;
. . .
Y <= A + float32'("01000000110100000000000000000000");

signal A, Y : float32 ;
. . .
Y <= A + float32'("01000000110100000000000000000000");

Solutions

float32'
Y <= A + 6.5 ; -- overloading
Y <= A + 6 ; -- overloading

SynthWorks

22 Copyright © SynthWorks 2007

Floating Point Conversions

To_float integer, real, ufixed, sfixed, signed, unsigned, and
std_logic_vector to float

Resize float to float with potential rounding, …

to_real float to real (scalar)

to_integer float to integer (scalar)

to_sfixed float to sfixed (array)

to_ufixed float to ufixed (array)

to_unsigned float to unsigned (array)

to_signed float to signed (array)

to_slv float to slv (array)
for top level ports

To_float integer, real, ufixed, sfixed, signed, unsigned, and
std_logic_vector to float

Resize float to float with potential rounding, …

to_real float to real (scalar)

to_integer float to integer (scalar)

to_sfixed float to sfixed (array)

to_ufixed float to ufixed (array)

to_unsigned float to unsigned (array)

to_signed float to signed (array)

to_slv float to slv (array)
for top level ports

SynthWorks

23 Copyright © SynthWorks 2007

Going Further

Current methodology
Create a library named, YYY_math_lib,
where YYY = project or company
Copy fixed_pkg_c to ZZZ_fixed_pkg and
float_pkg_c to ZZZ_float_pkg
Set the constants to appropriate values
Compile into the library
For different settings, make additional copies of the packages

With package generics (see Accellera VHDL-2006-D3.0 standard),
package instantiations replace copies of a package with constants

http://vhdl.org/vhdl-200x/vhdl-200x-ft/packages/files.html

Until vendors implement Accellera VHDL-2006-D3.0, download
math_utility_pkg.vhd, fixed_pkg_c.vhd, and float_pkg_c.vhd from:

What's Next in VHDL

By
Jim Lewis, SynthWorks VHDL Training

SynthWorks

2 Copyright © SynthWorks 2007

What's Next in VHDL

VHDL = Verification & Hardware Description Language

Verification focused
OO/Classes
Verification Data Structures
Randomization
Functional Coverage
Incorporate the good things from SystemVerilog, SystemC,
IEEE 1850/E, Vera

RTL: items to do, but verification is higher priority

Caution: Changes presented here are a work in progressCaution: Changes presented here are a work in progress

SynthWorks

3 Copyright © SynthWorks 2007

OO / Classes
Classes are the foundation for both data structures and
randomization of transactions

Since classes extend protected types, can do some
prototyping with the current language.

Proposal extends protected types into classes
Similar to other programming languages (particularly Java).
Adds shared variable ports

Status: Have proposal from Peter Ashenden

SynthWorks

4 Copyright © SynthWorks 2007

OO / Classes
type BoundedFIFO is protected class

 procedure put (e : in element_type); -- methods
 procedure get (e : out element_type);

end protected class BoundedFIFO;

type BoundedFIFO is protected class

 procedure put (e : in element_type); -- methods
 procedure get (e : out element_type);

end protected class BoundedFIFO;

type BoundedFIFO is protected class body
 constant size : positive := 20;
 type element_array is array (0 to size-1) of element_type;

 variable elements : element_array;
 variable head, tail : natural range 0 to size-1 := 0;
 variable count : natural range 0 to size := 0;

 procedure put (e : in element_type) is begin
 if count = size then wait until count < size; end if;
 elements(head) := e;
 head := (head + 1) mod size; count := count + 1;
 end procedure put;

 procedure get (e : out element_type) is begin . . .

end protected class body BoundedFIFO;

type BoundedFIFO is protected class body
 constant size : positive := 20;
 type element_array is array (0 to size-1) of element_type;

 variable elements : element_array;
 variable head, tail : natural range 0 to size-1 := 0;
 variable count : natural range 0 to size := 0;

 procedure put (e : in element_type) is begin
 if count = size then wait until count < size; end if;
 elements(head) := e;
 head := (head + 1) mod size; count := count + 1;
 end procedure put;

 procedure get (e : out element_type) is begin . . .

end protected class body BoundedFIFO;

SynthWorks

5 Copyright © SynthWorks 2007

Verification Data Structures
Basic Requirements

Linked-Lists
FIFOs
Mailboxes (Put, Get)
Transaction Interfaces (Put, Get)
Scoreboards (PutValue, CheckValue, ErrCount)
Memories (MemInit, MemRead, MemWrite)

The current plan is to make these class based.

SynthWorks

6 Copyright © SynthWorks 2007

A 1 Item MailBox
An interface specifies contracts on a class (like in Java):
type putable is interface

 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);

end protected interface putable;

type getable is interface . . . -- see proposal

type putable is interface

 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);

end protected interface putable;

type getable is interface . . . -- see proposal

procedure put (e : in element_type);
procedure try_put (e : in element_type; ok : out boolean);

type mailboxPCType is protected class implements putable,
getable
 function flag_up return boolean;
 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);
 procedure get (e : out element_type);
 procedure try_get (e : out element_type; ok : out boolean);
end protected class mailbox;

type mailboxPCType is protected class implements putable,
getable
 function flag_up return boolean;
 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);
 procedure get (e : out element_type);
 procedure try_get (e : out element_type; ok : out boolean);
end protected class mailbox;

Mailbox class implements putable and getable:

procedure put (e : in element_type);
procedure try_put (e : in element_type; ok : out boolean);

implements putable,

SynthWorks

7 Copyright © SynthWorks 2007

A 1 Item MailBox
Producer port is "putable".
Consumer port is "getable"
Any type that implements these can be used

entity tlm is
end tlm ;

architecture structural of tlm is
 component producer is
 port (shared variable data_source : inout putable);
 end component producer;

 component consumer is
 port (shared variable data_sink : inout getable);
 end component consumer;

 shared variable MailBox : mailboxPCType;

begin

 u_producer : producer port map (data_source => MailBox);
 u_consumer : consumer port map (data_sink => MailBox);

end architecture tlm;

entity tlm is
end tlm ;

architecture structural of tlm is
 component producer is
 port (shared variable data_source : inout putable);
 end component producer;

 component consumer is
 port (shared variable data_sink : inout getable);
 end component consumer;

 shared variable MailBox : mailboxPCType;

begin

 u_producer : producer port map (data_source => MailBox);
 u_consumer : consumer port map (data_sink => MailBox);

end architecture tlm; 7

shared variable data_source : inout putable

data_source => MailBox

shared variable MailBox : mailboxPCType;

SynthWorks

8 Copyright © SynthWorks 2007

Randomization
Useful when testing numerous configurable features.

Testing in an isolated features is straightforward
Testing interactions is a large verification space

difficult to simulate completely
difficult to predict corner cases
Randomization can reasonably coverage this space

Use of coverage is important to identify which design
features have been tested.

Status: Have proposal from Jim Lewis

Current proposal is based on SystemVerilog

SynthWorks

9 Copyright © SynthWorks 2007

Randomization
Supporting two forms of randomization:

Class based
Procedural

Class based randomization
Group values of a transaction together
Specify relationships/constraints between them
Randomize as a single item

Procedural Randomization
Randomizing single values
CaseRand
Sequence

SynthWorks

10 Copyright © SynthWorks 2007

Class Based Randomization
A class with constraints:
Type TxPacketCType is class

 Rand Variable BurstLen : integer ; -- Public Variables
 Rand Variable BurstDelay : integer ;

 Constraint BurstPkt is (
 BurstLen in (1 to 10) ;
 BurstDelay in (1 to 6) when BurstLen <= 3 else
 BurstDelay in (3 to 10) ;
) ;

End class TxPacketCType ;

Type TxPacketCType is class

 Rand Variable BurstLen : integer ; -- Public Variables
 Rand Variable BurstDelay : integer ;

 Constraint BurstPkt is (
 BurstLen in (1 to 10) ;
 BurstDelay in (1 to 6) when BurstLen <= 3 else
 BurstDelay in (3 to 10) ;
) ;

End class TxPacketCType ;

SynthWorks

11 Copyright © SynthWorks 2007

Class Based Randomization
A class with constraints:TxProc : process
 variable TxPacket : TxPacketCTType ;
 variable RV : RandomClass ;
begin
 . . .
 TxOuterLoop: loop

 TxPacket.randomize ;

 for i in 1 to TxPacket.BurstLen loop
 DataSent := RV.RandSlv(0, 255, DataSent'length);
 Scoreboard.PutExpectedData(DataSent) ;
 WriteToFifo(DataSent) ;
 end loop ;

 wait for TxPacket.BurstDelay * tperiod_Clk - tpd ;
 wait until Clk = '1' ;

 end loop TxOuterLoop ;
. . .
end process TxProc ;

TxProc : process
 variable TxPacket : TxPacketCTType ;
 variable RV : RandomClass ;
begin
 . . .
 TxOuterLoop: loop

 TxPacket.randomize ;

 for i in 1 to TxPacket.BurstLen loop
 DataSent := RV.RandSlv(0, 255, DataSent'length);
 Scoreboard.PutExpectedData(DataSent) ;
 WriteToFifo(DataSent) ;
 end loop ;

 wait for TxPacket.BurstDelay * tperiod_Clk - tpd ;
 wait until Clk = '1' ;

 end loop TxOuterLoop ;
. . .
end process TxProc ;

TxPacket.randomize ;

TxPacket.BurstLen

TxPacket.BurstDelay

variable TxPacket : TxPacketCTType ;

SynthWorks

12 Copyright © SynthWorks 2007

Procedural Randomization
Randomization within code using individual randomization
calls, RandCase, or Sequence construct

I0 := 1; I1 := 1; I2 := 1;
for i in 1 to 3 loop

 RandCase is
 with I0 =>
 CpuWrite(CpuRec, DMA_WORD_COUNT, DmaWcIn);
 I0 := 0 ; -- modify weight

 with I1 =>
 CpuWrite(CpuRec, DMA_ADDR_HI, DmaAddrHiIn);
 I1 := 0 ; -- modify weight

 with I2 =>
 CpuWrite(CpuRec, DMA_ADDR_LO, DmaAddrLoIn);
 I2 := 0 ; -- modify weight

 end case ;

end loop ;
CpuWrite(CpuRec, DMA_CTRL, START_DMA or DmaCycle);

I0 := 1; I1 := 1; I2 := 1;
for i in 1 to 3 loop

 RandCase is
 with I0 =>
 CpuWrite(CpuRec, DMA_WORD_COUNT, DmaWcIn);
 I0 := 0 ; -- modify weight

 with I1 =>
 CpuWrite(CpuRec, DMA_ADDR_HI, DmaAddrHiIn);
 I1 := 0 ; -- modify weight

 with I2 =>
 CpuWrite(CpuRec, DMA_ADDR_LO, DmaAddrLoIn);
 I2 := 0 ; -- modify weight

 end case ;

end loop ;
CpuWrite(CpuRec, DMA_CTRL, START_DMA or DmaCycle);

RandCase

SynthWorks

13 Copyright © SynthWorks 2007

Functional Coverage

Tool based or structural coverage can tell you:
there was a FIFO read
the FIFO was empty
however, it has no way to tell you both happened.

Functional coverage supplements other forms of coverage

Assertions via PSL can tell you this

Functional coverage constructs provide capability to:
bin values of an object into separate categories
correlate cross coverage between items

Status: proposal is a work in progress
As always, all input welcome.

SynthWorks

14 Copyright © SynthWorks 2007

Summary

Help us with the next revision …
Participate! Don't sit on the bench and wait and watch.

See http://www.accellera.org/activities/vhdl/

Both Standards and Vendors are heavily influenced by users
Make sure to voice your opinion

Ask your colleagues and vendors to participate

Join Accellera and help fund the effort
Corporate membership

VHDL = Verification & Hardware Description LanguageVHDL = Verification & Hardware Description Language

