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Figure 1: Yarn-level simulation of a knitted sweater with 56K loops (220K contact nodes, 1.1M DoFs), computed at 1.5 minutes per frame.
Our model captures robustly and efficiently both the fine- and large-scale mechanics of knitted cloth.

Abstract

Knitted cloth is made of yarns that are stitched in regular patterns,
and its macroscopic behavior is dictated by the contact interactions
between such yarns. We propose an efficient representation of knit-
ted cloth at the yarn level that treats yarn-yarn contacts as persis-
tent, thereby avoiding expensive contact handling altogether. We
introduce a compact representation of yarn geometry and kinemat-
ics, capturing the essential deformation modes of yarn loops and
stitches with a minimum cost. Based on this representation, we
design force models that reproduce the characteristic macroscopic
behavior of knitted fabrics. We demonstrate the efficiency of our
method on simulations with millions of degrees of freedom (hun-
dreds of thousands of yarn loops), almost one order of magnitude
faster than previous techniques.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling
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1 Introduction

The vast majority of garments are made of a yarn structure, either
knitted or woven, and the macroscopic behavior of cloth is dictated
by the mechanical interactions taking place at the yarn level. How-
ever, most cloth simulation models in computer graphics ignore the
relevance of such yarn structure, represent the cloth surface as an
arbitrary mesh, and compute internal elastic forces either by dis-
cretizing continuum elasticity models [Etzmuss et al. 2003] or us-
ing discrete elastic elements [Breen et al. 1994; Provot 1995].

The seminal work of Kaldor et al. [2008] proposed an alternative
approach for knitted cloth, describing individual yarns using a rod

model, and resolving contact interactions between yarns. A yarn-
based model enables the simulation of complex small-scale effects,
such as yarn-yarn friction and sliding, snags, pulls, frayed edges,
or detailed fracture. Yet Kaldor et al. also showed that, with a
yarn-based model, the macroscopic nonlinear mechanics of gar-
ments arise naturally through aggregation of yarn-level structural
effects. But their method is hindered by a major challenge: efficient
and robust detection and resolution of all yarn contacts. They later
improved the performance of their approach by reusing linearized
contact information whenever possible [Kaldor et al. 2010].

In this paper, we propose a representation of knitted cloth using
persistent contacts with yarn sliding. With this representation, we
achieve robust and efficient simulations, as we avoid the detec-
tion and resolution of yarn-yarn contacts altogether. On garments
of similar complexity to those simulated by Kaldor et al. [2010],
such as the sweater shown in Fig. 1, with over 56K stitch loops,
we achieve a 7x speed-up (without accounting for hardware differ-
ences). But with our method we are also able to simulate much
denser fabrics, up to common real-world gauges, such as the shirt
in Fig. 8, with 325K loops.

Recently, Cirio et al. [2014] also proposed a yarn-level model for
woven cloth based on persistent contacts. Indeed, our mathemat-
ical formulation of the dynamics equations builds strongly on the
formulation of Cirio et al., but there are important differences too.
There are fundamental structural differences in the arrangement of
yarns in woven and knitted cloth, which produce different inter-
yarn contact mechanics as well as different yarn-level deformation
modes. Then, the persistent contact representation and force mod-
els of woven cloth are not directly applicable to knitted cloth. For
Cirio et al., the placement of such persistent contacts and hence the
discretization of the fabric could be naturally inferred from the wo-
ven structure. In our case, designing an effective discretization of
knitted yarns using persistent contacts while retaining all the im-
portant degrees of freedom of the knitted structure was not straight-
forward. Defining yarn-level force models that capture the macro-
scopic behavior of knitted cloth was not trivial either.

We introduce a compact yarn-level representation of knitted fabrics,
based on the placement of four persistent contacts with yarn sliding
on each stitch. Following this representation, we design force mod-
els for inter-yarn friction, yarn bending, and stitch wrapping. We



Figure 2: Images of a knit and its discretization. From left to right: loops of a knit in 3D, zoom on a stitch in 3D, discretization of the knit,
and zoom on a discretized stitch with two persistent contacts.

have carried out experiments that evaluate the influence of yarn-
level mechanical and geometric parameters on macroscopic me-
chanical behavior, and we observe the characteristic stretch, shear,
and bending behavior of knitted fabrics, with manifest anisotropy,
nonlinear stretch behavior, and plasticity.

2 Related Work

Yarn-level models of knitted and woven fabrics have a long his-
tory, dating back to 1937 when Peirce [1937] proposed a geometric
model to represent the crossing of yarns in woven fabric. Yarn-level
models have been thoroughly studied in the field of textile research,
initially using analytical yarn models [Hearle et al. 1969] to predict
the mechanical behavior of fabric under specific modes of deforma-
tion [Peirce 1937; Kawabata et al. 1973]. Later, textile research re-
lied on continuum models to simulate most yarn deformation modes
and complex yarn-yarn contact interactions [Ng et al. 1998; Page
and Wang 2000; Duan et al. 2006]. A number of techniques have
been developed to alleviate the large computational burden of yarn-
level continuum models, such as using multiscale models that re-
sort to costly yarn-level mechanics only when needed [Nadler et al.
2006], or replacing the complex volumetric yarns by simpler ele-
ments such as beams, trusses and membranes [Reese 2003; Mc-
Glockton et al. 2003].

Knitted fabric has received less attention compared to woven, per-
haps due to the higher geometric complexity, which leads to more
involved yarn contact interactions. Splines are often used to effi-
ciently represent knit yarns, as introduced by Remion et al. [1999].
Splines have also been used to approximate woven fabric in a purely
geometric way (see e.g., [Renkens and Kyosev 2011; Jiang and
Chen 2005]), sometimes combined with thin sheet models in a mul-
tiscale fashion [Nocent et al. 2001].

Often, yarn-level models capture the most relevant deformations
and yarn interactions using specialized force models, such as bend-
ing and crossover springs to capture cross-sectional deformation
and shear at crossover points [King et al. 2005; Xia and Nadler
2011], truss elements acting as contact forces between yarns to cap-
ture shear jamming [King et al. 2005], or a slip velocity to capture
yarn sliding [Parsons et al. 2013]. As a consequence, these models
enable the simulation of realistic macroscopic behaviors of fabric.
However, yarn-level models in textile research focus on small por-
tions of fabric, often in controlled experiments, and cannot simulate
entire garments under free motions, nor single yarn plastic effects
such as snags, pulls and pullouts.

Recently, yarn-level models that address these shortcomings have
emerged in the field of computer graphics. The seminal work of
Kaldor et al. [2008] was the first approach capable of simulating en-
tire garments at the yarn level in tractable time, from loose scarves

and leg warmers to large sweaters. Focusing on knits, they modeled
the mechanics of individual yarns using inextensible rods, and com-
puted yarn-yarn contact through stiff penalty forces and velocity-
filter friction, allowing them to predict the large-scale behavior of
full garments from fundamental yarn mechanics. They extended
their work by using local rotated linearizations of penalty forces to
accelerate yarn-yarn contact handling [Kaldor et al. 2010]. Yuk-
sel et al. [2012], on the other hand, designed geometric methods to
create simulation-ready yarn-level models of many knit patterns.

More recently, Cirio et al. [2014] focused on woven cloth by taking
a different approach. They assume that yarn-yarn contacts are per-
sistent in time, even under moderately large plastic deformations.
This assumption avoids the need of expensive yarn-yarn collision
detection and contact handling, thus greatly reducing simulation
costs. They simulate every yarn in the fabric as a rod, and introduce
additional sliding degrees of freedom at yarn crossings to allow
yarns to slide along each other and thus generate complex plastic
effects such as snags, pulls, fracture and frayed edges. Other yarn-
level models (mainly geometric and analytical ones) also assumed
persistent contact, but they did not incorporate sliding coordinates.
Our work leverages the concept of persistent contact with sliding
degrees of freedom and extends it to the other large family of fab-
rics, knitted cloth. Contacts in knitted fabric are more complex than
in woven, hence it is not sufficient to represent each contact as one
crossing node with sliding coordinates. Through observation of the
deformation modes present in knit loops, we concluded that repre-
senting each stitch using four persistent contacts with yarn sliding
would suffice to capture all the interesting deformation modes. This
approach leads to a much more compact and efficient representation
than previous work for knitted cloth, while still enabling all yarn-
level interactions that produce interesting and realistic small- and
large-scale behaviors.

Sueda et al. [2011] introduced a general formulation of Lagrangian
mechanics to simulate efficiently the dynamics of highly con-
strained rods, through an optimal set of generalized coordinates that
combine absolute motion with sliding on constraint manifolds. The
model of persistent contacts designed by Cirio et al. [2014] consti-
tutes an application of Sueda’s framework to the case of two rods
in sliding contact.

3 Yarn Discretization

We propose a representation of knitted cloth using persistent con-
tacts that is compact yet aims to capture the mechanically relevant
characteristics of the yarn structure. We begin this section by sum-
marizing this structure, with a focus on its influence on the macro-
scopic behavior of garments.



Figure 3: Curling behavior due to stitch unwrapping. Left: stock-
inette pattern. Right: rib pattern.

3.1 Structure of Knitted Fabrics

Kaldor et al. [2008] provide an excellent description of how yarns
are stitched together to produce a knitted fabric and its behavior. We
repeat only the most basic concepts before introducing our model.

A single yarn is laid out in a chain of loops along a row of the so-
called course direction. These loops are pulled either up or down
through the loops of the previous row, in a knit or purl stitch re-
spectively. Loops appear stacked in columns on the wale direction.
When the yarn reaches the end of a row, it is typically bent back
to form the next row. The first and last row are stitched in a dif-
ferent way to avoid unraveling, while the beginning and end of a
yarn are simply tied to the fabric. Fig. 2-left shows several loops
of a fabric knitted in stockinette pattern, which is the simplest pat-
tern, with all knit stitches. In the paper, we also show simulated
examples of other patterns: garter, which alternates rows of knit
and purl stitches, and rib, which repeats two knit stitches followed
by two purl stitches. We refer the reader to the paper by Kaldor et
al. [2008] for representative images of each knit pattern.

Yarns of a knitted fabric undergo multiple different forces, both
internal due to their own deformation, and external due to yarn-
yarn contact. The macroscopic mechanical behavior of knitted gar-
ments is largely determined by yarn-yarn contact, with three dom-
inating effects: (i) contact at stitches, with yarns wrapped around
each other, (ii) contact between adjacent loops when a stitch tight-
ens, and (iii) friction under inter-yarn sliding or shear. Macroscopic
in-plane deformation (i.e., stretch and shear) of a garment is domi-
nated first by the bending resistance of yarns as loops deform, then
adjacent loops may enter into contact, and finally additional defor-
mation requires stretching the yarns themselves. When a knitted
fabric is laid flat, elastic energy is present due to yarn bending and
yarn wrapping. When the fabric is allowed to relax, it will undergo
some macroscopic deformation. With a garter pattern, the bending
deformation produced by stitch unwrapping is compensated on al-
ternate rows and columns of loops. On a stockinette pattern, rows
and columns curl in opposite directions (See Fig. 3-left). On a rib
pattern, each pair of stitches curls in opposite direction, leading to
a significant natural compression of the fabric (See Fig. 3-right).

In Section 4, we present force models that capture these essential
yarn contact mechanics under our compact yarn representation, and
we demonstrate how they reproduce the expected nonlinearity and
anisotropy of knitted fabrics.

3.2 Discretization Using Contact Nodes

Our strategy to discretize yarns in a knitted fabric is to identify the
minimum set of persistent contacts that allow representing all rele-
vant deformation modes. Cirio et al. [2014] applied this strategy to
woven fabrics, which they discretized by placing crossing nodes at
the crossings of warp and weft yarns. At a crossing node, the two
yarns in contact are represented as a single 3D point, thereby elim-

inating the need to detect and resolve contact. The crossing node
is augmented with sliding coordinates that allow the yarns to slide
tangent to the contact. We extend crossing nodes to other persistent
contact configurations, and refer to them as contact nodes.

In a stitch, a loop from one row is passed through two loops of
the previous row. This arrangement produces two stitch contacts,
as shown in Fig. 2. During normal operation of the fabric, i.e.,
unless a stitch is pulled out, the two yarns at each stitch contact are
wrapped around each other persistently. Based on this observation,
we discretize knitted fabrics by placing two contact nodes at the
two end points of each stitch contact, as shown in Fig. 2-right. This
discretization captures the most important degrees of freedom in a
loop, and allows us to represent any knit pattern based on purl and
knit stitches between two yarns. Using a single contact node per
stitch contact would miss important loop deformation modes, such
as the stretching of fabric due to loop deformation.

For simulation purposes, we consider the yarn to be formed by
straight segments between contact nodes. For rendering purposes,
on each contact node we fit a plane to the incident segments, offset
the yarns along the normal of this plane, and interpolate the result-
ing points using smooth splines.

Same as Cirio et al., we allow yarns to slide at persistent contacts,
hence each contact node q = (x, u, v) constitutes a 5-DoF node,
with x the 3D position of the node, and u and v the arc lengths
of the two yarns in contact, which act as sliding coordinates. Each
loop has typically 4 stitch contacts, hence it shares 8 contact nodes
with other loops. As a result, a garment with N loops has approxi-
mately 4N contact nodes and 20N DoFs. We follow the framework
of Sueda et al. [2011] to derive the equations of motion, linearly in-
terpolating kinematic magnitudes along yarn segments and apply-
ing the Lagrange-Euler equations. We omit the full derivation here,
which differs from Cirio’s only w.r.t. the force model.

4 Force Model

We now describe the forces applied on the knit model, which in-
clude gravity, internal elastic forces of yarns, non-penetration con-
tact forces between yarns, friction, and damping. In our design
of the specific force models, we have identified key deformation
modes of the yarn structure that suffer resistance. In some cases,
particularly for yarn bending, our force model groups the effect of
both internal and contact forces. This is a crucial aspect in the de-
sign of force models with persistent contacts, because the lack of
degrees of freedom in the normal direction of contacts prevents the
use of typical penalty potentials or non-penetration constraints.

For gravity, yarn stretch (governed by the Elastic modulus Y ), and
contact between adjacent loops we use exactly the same formula-
tions as Cirio et al. [2014]; therefore, we refer the reader to their
paper for details. In our force model, we include elastic potentials
for two major deformation modes, which we describe first: yarn
bending and stitch wrapping. Next, we discuss details of sliding
friction forces, although similar forces are added to all deformation
modes. We conclude with the description of an elastic force for the
preservation of the lengths of stitch contacts. For damping, we use
the Rayleigh model.

According to textile literature [Duhovic and Bhattacharyya 2006],
the contribution of dynamic yarn twisting is minor, especially com-
pared to dominant forces such as stretch and bending. Therefore,
following the general approach, we do not include yarn twist in our
force model. Yarn pre-twisting, on the other hand, has an influence
on other yarn parameters [Pan and Brookstein 2002]. We capture
this effect by varying bending stiffness and yarn radius accordingly.



Figure 4: A knit shirt with (left) and without (right) rest-shape
bending compensation. Without compensation, the garment shrinks
and exhibits unnatural wrinkles.

The formulations of forces and their Jacobians, except for stitch
wrapping, are equivalent to the ones derived by Cirio et al. for
woven cloth. We provide full derivations of forces and Jacobians of
stitch wrapping in the Appendix.

4.1 Yarn Bending

Given two consecutive yarn segments, we define an elastic potential
based on the angle θ between them:

V = kb
θ2

∆u
. (1)

Here ∆u is the summed arc length of both segments. For small
angles, the bending stiffness is due to internal forces during yarn
bending, and can be defined as kb = BπR2, with B the bending
modulus and R the yarn radius. This is identical to the bending
model implemented by Cirio et al. for woven cloth. Our bending
model differs, however, for large bending angles. Under this situ-
ation, the deformation of loops leads to contact between loops of
different rows, or bending jamming. We model this effect after the
shear jamming of Cirio et al., by increasing the bending stiffness
after a certain threshold (θ = π/2 in our examples).

To initialize the yarn layout for a garment, we set the desired loop
density in the course and wale directions, the yarn radius, and the
geometric shape of a loop (i.e., the relative position of the nodes
within a loop). The resulting layout may not be at rest in this ini-
tial configuration due to unbalanced bending energies, and the gar-
ment may compress and wrinkle when relaxed. We compensate for
the rest-shape bending by redefining loop densities in the follow-
ing way. We first relax a rectangular sample of 5 × 5 cm with the
same mechanical and geometric parameters, and record the average
shape of loops after relaxation. Then, we apply this loop shape in
the initialization of the yarn layout for the garment, by redefining
the loop density accordingly. Fig. 4 compares a piece of fabric with
and without rest-shape bending compensation.

4.2 Stitch Wrapping

At each stitch contact, two yarn segments are wrapped around each
other, as shown in Fig. 2, producing a deformation energy. Fig. 6
shows the wrapping in more detail, along with the notation we fol-
low. We measure the amount of wrapping as the relative angle be-
tween opposite yarn segments around the central axis of the stitch

Figure 5: Knit garment with a stockinette pattern, with its charac-
teristic curling behavior at the edges.

contact. Given the two contact nodes of the stitch contact, q0 and
q1, the unit vector e between them defines the central axis. We de-
fine a wrapping angle ψ between the blue yarn segment from q0 to
q4 and its opposite pink yarn segment from q1 to q3, and similarly
for the other two segments. Specifically, we compute the angle be-
tween the normals of the triangles (shown in light blue and light
pink in the figure) formed by such yarn segments and the central
axis, which acts as a hinge.

For each pair of opposite yarn segments, we define an elastic po-
tential based on the deviation between the wrapping angle ψ and a
rest angle ψ0:

V =
1

2
kw L (ψ − ψ0)2 , (2)

where kw is an empirically set stiffness, and L is the rest length of
the stitch contact. After testing different values for ψ0, we chose
π/2 for a visually realistic wrapping effect.

The yarn segments at stitch contacts have the natural tendency to
unwrap. In the garter pattern, adjacent rows of loops unwrap in
opposite directions. However, in the stockinette pattern, where they
unwrap in the same direction, a characteristic behavior emerges:
the fabric has a tendency to curl both in wale and course directions.
This effect is particularly noticeable at the boundaries of the fabric,
as shown in Fig. 3-left and Fig. 5. In the rib pattern, on the other
hand, each pair of stitches curls in opposite direction, leading to a
natural compression of the fabric, as shown in Fig. 3-right.

q5

q4

q2

q1 q3

Ã

e
na

nb

v
u

q0

Figure 6: Representation of a stitch contact. q0 and q1 are the
contact nodes of the stitch contact, with the blue and pink segments
belonging to two different loops. We measure stitch wrapping as
the angle ψ between the light blue and light pink triangles, with the
central axis e acting as a hinge.



Figure 7: A small piece of fabric (left) is overly stretched to the point where inter-yarn friction cannot prevent yarn sliding (middle), and
plastic deformations are evident when forces are released and the fabric goes back to rest (right).

Example Loop width Yarn radius Elastic mod. Bend. mod. Wrap mod. Sliding Fric. Rayleigh
(mm) R (mm) Y (Pa) B (Pa) kw (Pa) Coef. µ damping (α, β)

Sweater (Fig. 1) 3 0.75 1e7 1e-3 1e-2 0.3 10, 0.01
Sleeveless Shirt (Fig. 8) 1 0.25 1e7 3e-4 1e-2 0.3 2, 0.1

Sleeveless Pullover (Fig. 5) 6 1.5 1e7 3e-4 1e-2 0.3 5, 0.01

Table 1: Parameter values used in our examples.

4.3 Sliding Friction and Stitch Length

The ability to model inter-yarn sliding with friction forces is one
of the cornerstones of our method. For sliding friction, we fol-
low the approach of Cirio et al. [2014], and model Coulomb fric-
tion on sliding coordinates using anchored springs. According to
Coulomb’s model, friction force is limited by the amount of normal
compression at inter-yarn contact, which Cirio et al. estimated by
assuming static equilibrium of stretch and bending forces. For knit-
ted cloth, we incorporate stitch wrapping forces in the estimation of
inter-yarn normal compression. To estimate the normal force due
to bending and stitch wrapping, we simply project the forces onto
the estimated normal at each contact node. To estimate the nor-
mal force due to stretch, on the other hand, we offset nodes along
the contact normal to account for yarn volume. Sliding friction is
governed by the friction coefficient µ.

When the end node of one stitch contact slides, the other node
should slide too to preserve the material length of the contact stitch
and avoid artificial creation or deletion of material. We assume that
the material length of stitch contacts remains constant, and we en-
force this using a penalty energy. For a stitch contact between nodes
q0 and q1 as shown in Fig. 6, with arc length l = u1 − u0 and rest
length L, we define the energy as:

V =
1

2
kl L

(
l

L
− 1

)2

, (3)

where kl is the stiffness of the length constraint.

Yarn sliding is negligible under small forces, because friction keeps
the yarns in place. However, sliding may indeed take place under
moderate forces, such as extensive stretch. In that case, sliding pro-
duces plastic deformations that remain when forces are released.
Fig. 7 shows an example where a small piece of fabric (left) is
overly stretched to the point where yarns slide (middle), and plastic
deformation is present when the fabric is released (right).

5 Results

We have integrated our model in the simulation algorithm proposed
by Cirio et al. [2014]. With implicit integration, the regularity of the
patterns produces a sparse system matrix with at most 11 non-zero
5x5 blocks per block-row. We handle blocks produced by collisions

and seams in a tail matrix. All our examples were executed on a 3.4
GHz Quad-core Intel Core i7-3770 CPU with 32GB of memory,
with an NVIDIA Tesla K40 graphics card with 12GB of memory.
Simulations were executed with a time step of 1ms, and the param-
eter values used in the large-scale examples are listed in Table 1.
Please see our accompanying video for all animation results.

Sweater We dressed a dancing female mannequin (Fig. 1) with
a sweater made of 56K loops (224353 stitch contact nodes). The
sweater is knit in Garter style, with seams on the sides of the body,
the shoulders, the sleeve-body junctions, and along the sleeves. In
the textile industry, stitch density is measured as the number of
stitches per inch, and is called Gauge (GG). Our sweater has 6.5
stitches per inch, a gauge commonly found in real sweaters. The
simulation took 96 seconds per visual frame (at 30fps), roughly 7x
faster than the approach by Kaldor et al. [2010] for a model of sim-
ilar characteristics (without accounting for hardware differences).

Sleeveless T-shirt We used a sleeveless T-shirt model to dress
a male mannequin performing highly dynamic karate motions
(Fig. 8). The T-shirt has 325K loops (1.25M stitch contact nodes),
20 stitches per inch, and is knit in Garter style. This gauge (20
GG) is commonly found in off-the-shelf T-shirts made of carded
cotton. The simulation took an average of 7.4 minutes per visual
frame (at 30fps), showing how garments with life-like resolutions
can be computed in tractable time with our approach.

Stockinette Curl The stockinette pattern produces a curl behav-
ior in the fabric, and in our model this effect is captured by the stitch
wrapping forces introduced in Section 4.2. We show the effect of
curl in a stockinette garment in Fig. 5. The garment is a sleeveless
wool pullover, with 8750 loops (34416 stitch contact nodes). As in
real cloth, the curl effect is particularly visible at the edges of the
fabric. Here, the lower edge and the collar wrap around themselves.

Rib Stretch Nonlinearities One of the main advantages of yarn-
level models is the ability to naturally capture complex nonlinear
deformations. Fig. 9 shows an example nonlinear behavior ob-
served when stretching a piece of rib fabric, which appears com-
pressed at rest, and with the characteristic ridges of the rib pattern.
The plot shows the force applied to one side of the fabric vs. the
side-to-side distance, and highlights the existence of 3 regimes dur-



Figure 8: Simulation of a high-resolution shirt with 325K loops (1.25M contact nodes, 6.25M DoFs), computed at 7.4 minutes per frame.

ing the deformation. First, the ridges are flattened, and stretch is
opposed mainly by stitch wrapping forces. Second, the loops are
deformed, and stretch is opposed mainly by yarn bending. And
third, the yarns themselves are stretched. The nonlinear stretch be-
havior emerges naturally when using our yarn-level model thanks
to the low-level structural representation and force models, but is
difficult to capture using traditional mesh-based approaches.

6 Conclusions and Future Work

In this paper, we have presented an efficient method to simulate
knitted cloth at the yarn level. We propose an efficient represen-
tation of knitted cloth that treats yarn-yarn contacts as persistent,
thereby avoiding expensive contact handling altogether. Our com-
pact discretization of stitch contacts allows us to capture the rele-
vant yarn-level deformation modes, achieving complex, nonlinear
and plastic effects at a macroscopic scale.

Although our model could handle any knit pattern based on purl and
knit stitches between two yarns, there are many other patterns that
exhibit more complex configurations [Yuksel et al. 2012]. These
include yarn-overs, requiring a special treatment of friction forces,
and increases and decreases, requiring loops with different numbers
of stitch contacts. As for stitches involving multiple yarns, we be-
lieve that the persistent contact metaphor could also be extended to
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Figure 9: Force plot of a stretched rib fabric. The highly nonlin-
ear behavior is evident, with three different regimes corresponding
mainly to opposing wrapping, bending and stretching forces.

those cases, perhaps in a pair-wise manner.

In addition, our model omits twist, following observations from the
textile literature, and our results seem to validate that it does not
contribute to the main macroscopic effects. However, it would be
interesting to analyze its actual effect, both in pre-twisted yarn as-
semblies, as well as during deformations that induce dynamic twist.

Finally, in our examples, model parameters are artist-tuned. In fu-
ture work, we would like to estimate these parameters from exam-
ple deformations, or derive them from more complex simulations
with contact mechanics and physically based parameters.
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A Stitch Wrapping Forces and Jacobians

The central axis of the stitch is defined by a vector

e =
x1 − x0

‖x1 − x0‖
, (4)

with derivatives
∂e

∂x0
= − 1

‖x1 − x0‖

(
I− e eT

)
and

∂e

∂x1
= − ∂e

∂x0
. (5)

The triangles (q0,q1,q4) and (q0,q3,q1) have normal vectors

na =
va

‖va‖
, with va = (x4 − x1)× (x0 − x1). (6)

nb =
vb

‖vb‖
, with vb = (x0 − x1)× (x3 − x1). (7)

It is convenient to define the auxiliary vectors

xa0 = x4 − x1, xa1 = x0 − x4, and xa4 = x1 − x0. (8)
xb0 = x1 − x3, xb1 = x3 − x0, and xb3 = x0 − x1. (9)

Their derivatives, ∂xai
∂xj

and ∂xbi
∂xj

, can take the values {I,−I,0}.

The wrapping angle between the triangles is

ψ = arccos(nT
a nb), (10)

and its derivatives take the form
∂ψ

∂xi
=

1

‖vb‖
nT
b eT xbi −

1

‖va‖
nT
a eT xai. (11)

From the potential energy in (2), forces on contact nodes (i ∈
{0, 1, 3, 4}) are computed as:

Fxi = −kw L (ψ − ψ0)

(
xT
bi

‖vb‖
enb −

xT
ai

‖va‖
ena

)
. (12)

And their Jacobians take the form:
∂Fxi

∂xj

= −kw L

 xTbi

‖vb‖
e nb −

xTai

‖va‖
e na

  xTbj

‖vb‖
e nb −

xTaj

‖va‖
e na

T (13)

−
kw L (ψ − ψ0)

‖vb‖

 xTbi

‖vb‖
e
(
I − 2nb n

T
b

)
x
∗
bj + nb x

T
bi

∂e

∂xj

+ nb e
T ∂xbi

∂xj


+
kw L (ψ − ψ0)

‖va‖

 xTai

‖va‖
e
(
I − 2na n

T
a

)
x
∗
aj + na x

T
ai

∂e

∂xj

+ na e
T ∂xai

∂xj

 ,
where u∗ denotes the cross product matrix for vector u.


