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Yarn-Level Cloth Simulation with
Sliding Persistent Contacts
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Abstract—Cloth is made of yarns that are stitched together forming semi-regular patterns. Due to the complexity of stitches and

patterns, the macroscopic behavior of cloth is dictated by the contact interactions between yarns, not by the mechanical properties of

yarns alone. The computation of cloth mechanics at the yarn level appears as a computationally complex and costly process at first

sight, due to the need to resolve many fine-scale contact interactions. We propose instead an efficient representation of cloth at the

yarn level that treats yarn-yarn contacts as persistent, but with the possibility to slide, thereby avoiding expensive contact handling

altogether. We introduce a compact representation of yarn geometry and kinematics, capturing the essential deformation modes of

yarn crossings, loops, stitches, and stacks, with a minimum cost. Based on this representation, we design force models that reproduce

the characteristic macroscopic behavior of yarn-based fabrics. Our approach is suited for both woven and knitted fabrics. We

demonstrate the efficiency of our method on simulations with millions of degrees of freedom (hundreds of thousands of yarn loops),

almost one order of magnitude faster than previous techniques. We also compare the different macroscopic behavior under woven and

knitted patterns with the same yarn density.

Index Terms—Yarns, Knitted cloth, Woven cloth, Physically based simulation.

✦

1 INTRODUCTION

THE vast majority of garments are made of a yarn
structure, either knitted or woven, and the macroscopic

behavior of cloth is dictated by the mechanical interactions
taking place at the yarn level. However, most cloth sim-
ulation models in computer graphics ignore the relevance
of such yarn structure, represent the cloth surface as an
arbitrary mesh, and compute internal elastic forces either
by discretizing continuum elasticity models [1] or using
discrete elastic elements [2], [3].

The seminal work of Kaldor et al. [4] proposed an
alternative approach for knitted cloth, describing individual
yarns using a rod model, and resolving contact interactions
between yarns. A yarn-based model enables the simulation
of complex small-scale effects, such as yarn-yarn friction and
sliding, snags, pulls, frayed edges, or detailed fracture. Yet
Kaldor et al. also showed that, with a yarn-based model,
the macroscopic nonlinear mechanics of garments arise nat-
urally through aggregation of yarn-level structural effects.
But their method is hindered by a major challenge: efficient
and robust detection and resolution of all yarn contacts.
They later improved performance by reusing linearized
contact information whenever possible [5].

In recent work, Cirio et al. introduced a novel represen-
tation of yarn-yarn interactions as persistent contacts with
yarn sliding. With this representation, they achieved robust
and efficient simulations, as they avoided the detection and
resolution of yarn-yarn contacts altogether. The represen-
tation based on persistent contacts has been demonstrated
on woven cloth [6] and limited types of knitted cloth [7].
In this work, we generalize this representation to handle
more diverse types of knitted cloth, with complex stitches
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formed by multiple yarns. All types of cloth, both woven
and knitted, can be simulated under the same framework.

For woven cloth, we place one persistent contact node at
each crossing of weft and warp yarns. For knitted cloth, we
place two persistent contact nodes at the end points of each
stitch contact. In this work, we augment the representation
for knit stitches, supporting stitches with multiple yarns.
Each persistent contact node is shared by several stacked
yarns, and each yarn contributes one sliding coordinate.
This choice of discretization is compact, yet it succeeds to
capture yarn-level deformation modes that produce relevant
macroscopic nonlinearities.

We inherit the derivation of the dynamics equations and
the simulation algorithm from the original formulation for
woven cloth [6]; therefore, we leave those aspects out in
this paper. In spite of the algorithmic similarities, there are
fundamental structural differences in the arrangement of
yarns in woven and knitted cloth, which produce differ-
ent inter-yarn contact mechanics. We have designed force
models for yarn bending and stitch wrapping in knitted
fabrics. In this paper, we introduce an algorithm to estimate
compression forces at persistent contacts, which seamlessly
handles persistent contacts with an arbitrary number of
stacked yarns. Based on such compressive forces, we also
introduce in this paper a model of sliding friction for multi-
yarn persistent contacts. We have carried out experiments
that evaluate the influence of yarn-level mechanical and
geometric parameters on macroscopic mechanical behavior,
and we observe the characteristic stretch, shear, and bend-
ing behavior of knitted fabrics, with manifest anisotropy,
nonlinear stretch behavior, and plasticity.

We demonstrate the application of our yarn-level fabric
representation to diverse types of knitting patterns, with
both simple and complex stitches. On garments of similar
complexity to those simulated by Kaldor et al. [5], such as
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Fig. 1. Yarn-level simulation of a knitted sweater with 56K loops (220K contact nodes, 1.1M DoFs), computed at 1.5 minutes per frame. Our model
captures robustly and efficiently both the fine- and large-scale mechanics of knitted cloth.

the sweater shown in Fig. 1, with over 56K stitch loops, we
achieve a 7x speed-up (without accounting for hardware dif-
ferences). But with our method we are also able to simulate
much denser fabrics, up to common real-world gauges, such
as the shirt in Fig. 10, with 325K loops.

2 RELATED WORK

Yarn-level models of knitted and woven fabrics have a long
history, dating back to 1937 when Peirce [8] proposed a
geometric model to represent the crossing of yarns in woven
fabric. Yarn-level models have been thoroughly studied in
the field of textile research, initially using analytical yarn
models [9] to predict the mechanical behavior of fabric
under specific modes of deformation [8], [10]. Later, tex-
tile research relied on continuum models to simulate most
yarn deformation modes and complex yarn-yarn contact
interactions [11], [12], [13]. A number of techniques have
been developed to alleviate the large computational burden
of yarn-level continuum models, such as using multiscale
models that resort to costly yarn-level mechanics only when
needed [14], or replacing the complex volumetric yarns
by simpler elements such as beams, trusses and mem-
branes [15], [16].

Knitted fabric has received less attention compared to
woven, perhaps due to the higher geometric complexity,
which leads to more involved yarn contact interactions.
Splines are often used to efficiently represent knit yarns, as
introduced by Remion et al. [17]. Splines have also been
used to approximate woven fabric in a purely geometric
way (see e.g., [18], [19]), sometimes combined with thin
sheet models in a multiscale fashion [20].

Often, yarn-level models capture the most relevant de-
formations and yarn interactions using specialized force
models, such as bending and crossover springs to cap-
ture cross-sectional deformation and shear at crossover
points [21], [22], truss elements acting as contact forces
between yarns to capture shear jamming [21], or a slip
velocity to capture yarn sliding [23]. As a consequence,
these models enable the simulation of realistic macroscopic
behaviors of fabric. However, yarn-level models in textile
research focus on small portions of fabric, often in controlled
experiments, and cannot simulate entire garments under
free motions, nor single-yarn plastic effects such as snags,
pulls and pullouts.

Recently, yarn-level models that address these shortcom-
ings have emerged in the field of computer graphics. The
seminal work of Kaldor et al. [4] was the first approach
capable of simulating entire garments at the yarn level in
tractable time, from loose scarves and leg warmers to large
sweaters. Focusing on knits, they modeled the mechanics
of individual yarns using inextensible rods, and computed
yarn-yarn contact through stiff penalty forces and velocity-
filter friction, allowing them to predict the large-scale behav-
ior of full garments from fundamental yarn mechanics. They
extended their work by using local rotated linearizations of
penalty forces to accelerate yarn-yarn contact handling [5].
Yuksel et al. [24], on the other hand, designed geometric
methods to create simulation-ready yarn-level models of
many knit patterns.

Cirio et al. proposed a different approach, initially for
woven cloth [6]. They assumed that yarn-yarn contacts are
persistent in time, even under moderately large plastic de-
formations. This assumption avoids the need for expensive
yarn-yarn collision detection and contact handling, thus
greatly reducing simulation costs. They simulated every
yarn in the fabric as a flexible rod, and introduced additional
sliding degrees of freedom at yarn crossings to allow yarns
to slide along each other and thus generate complex plastic
effects such as snags, pulls, fracture and frayed edges. Other
yarn-level models (mainly geometric and analytical ones)
also assumed persistent contact, but they did not incorpo-
rate sliding coordinates.

More recently, they leveraged the concept of persistent
contact with sliding degrees of freedom and extended it to
the other large family of fabrics, knitted cloth [7]. Contacts
in knitted fabric are more complex than in woven, hence
it is not sufficient to represent each contact as one crossing
node with sliding coordinates. Through observation of the
deformation modes present in knit loops, they concluded
that representing each stitch contact using two persistent
contacts with yarn sliding on its end points would suffice
to capture all the interesting deformation modes. This ap-
proach leads to a much more compact and efficient repre-
sentation than previous work for knitted cloth, while still
enabling all yarn-level interactions that produce interesting
and realistic small- and large-scale behaviors. In this paper,
we extend the previous work of Cirio et al. on knitted cloth
to handle more complex stitches, and devise a formulation
that is general to many woven and knitted fabrics. We
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Fig. 2. Images of a simple stockinette knit and its discretization. From
left to right: loops of a knit in 3D, zoom on a stitch in 3D, discretization of
the knit, and zoom on a discretized stitch with two persistent contacts.

also design force models for complex stitches involving an
arbitrary number of stacked yarns.

Sueda et al. [25] introduced a general formulation of
Lagrangian mechanics to simulate efficiently the dynam-
ics of highly constrained rods, through an optimal set of
generalized coordinates that combine absolute motion with
sliding on constraint manifolds. We apply this formulation
to stacks of yarns with sliding persistent contacts.

3 YARN DISCRETIZATION

We begin this section by describing the yarn-based structure
of fabrics, both woven and knitted, with a focus on the
influence of this structure on the macroscopic behavior of
garments. Understanding the yarn-based structure and its
effects is important because it defines the requirements for
our model, and it also anticipates many of its insights. Then,
we continue the section by presenting our central idea, a
representation of yarn-based cloth using persistent contacts.
This representation is compact, yet it aims to capture the
mechanically relevant characteristics of the yarn structure.
We also discuss specifics of the application of persistent
contacts for the representation of woven fabrics, simple
knitted fabrics, and complex knitted fabrics.

3.1 Structure of Yarn-Based Fabrics

Both woven and knitted cloth are designed by setting up
a network of yarns, interlaced or stitched. In woven cloth,
typically two sets of orthogonal yarns, called warp and
weft, are interlaced. Interlaced yarns undergo friction forces
at yarn-yarn contacts, and this friction holds together the
woven fabric. A float constitutes a gap between two yarns
of the same type where the other yarn is not interlaced. Dif-
ferent weave patterns, such as plain weave (with no floats),
twill, satin, etc. are obtained by varying the distribution of
floats, thereby affecting the mechanics of the resulting fabric.
Please see [6] for a detailed description of the construction
of yarn-based models of woven cloth.

In knitted cloth, a single yarn is laid out in a chain of
loops along a row of the so-called course direction. In simple
knits, these loops are pulled up or down through the loops
of the previous row, in a knit or purl stitch respectively.
Loops appear aligned in columns on the wale direction.
When the yarn reaches the end of a row, it is typically bent
back to form the next row. The first and last row are stitched
in a different way to avoid unraveling, while the beginning
and end of a yarn are simply tied to the fabric.

Fig. 3. Close-up examples of complex stitches, showing full 3D views
and schematic representations of the corresponding discretizations.
Left: an increase with two knit stitches. Right: a decrease with two
stacked yarns and a purl stitch.

Fig. 2-left shows several loops of a fabric knitted in
stockinette pattern, which is the simplest pattern, with all
knit stitches. Throughout the paper, we also show simulated
examples of other simple patterns: garter, which alternates
rows of knit and purl stitches, and rib, which repeats two
knit stitches followed by two purl stitches. Kaldor et al. [4]
provide an excellent description of how yarns are stitched
together to produce a knitted fabric and its behavior. We
refer the reader to their paper for representative images of
each simple knit pattern.

However, as discussed by Yuksel et al. [24], knitted fab-
rics allow for very diverse types of stitches, which produce
interesting geometric and visual patterns on the overall fab-
ric, and also contribute to diverse macroscopic mechanics.
In addition to knit and purl stitches, we can model:

• yarn-over stitches, which lay the yarn without stitch-
ing it to the previous row, deliberately creating a hole
in the fabric.

• increases that combine knit, purl and yarn-over sitches.
These are stitched to one single loop of the previous
row, effectively increasing the number of stitches in
the current row.

• decreases using knit or purl stitches. Several consec-
utive loops are stacked together and stitched to the
next row using a knit or a purl, effectively reducing
the number of stitches in the next row.

Fig. 3 shows close-up examples of some of these stitches.
They can be combined to produce very diverse patterns,
such as the ones shown in Fig. 4.

Woven and knitted yarns undergo multiple different
forces, both internal due to their own deformation, and
external due to yarn-yarn contact. The macroscopic mechan-
ical behavior is largely determined by yarn-yarn contact,
with three dominating effects: (i) contact at crossings or
stitches, (ii) contact between adjacent yarns or loops when
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Fig. 4. Three different simulated knitting patterns (top) and their corresponding real photographs (bottom). From left to right: Feather and Fan,
Openwork Diamonds, and Flame Chevron. Real photographs courtesy of knittingstitchpatterns.com.

the fabric tightens, and (iii) friction under inter-yarn sliding
or shear. The specific sources of macroscopic force effects in
woven and knitted cloth are rather different though. Woven
cloth is almost inextensible, and its macroscopic shear and
bending behavior is dominated by inter-yarn contact forces.
In knitted cloth, on the other hand, the geometry of stitches
and loops largely affects macroscopic mechanics. Stretch
and shear of a knitted garment are dominated first by the
bending resistance of yarns as loops deform, then adjacent
loops may enter into contact, and finally stretching of the
yarns themselves resists additional deformation. When a
knitted fabric is laid flat, elastic energy is present due to yarn
bending and yarn wrapping. When the fabric is allowed to
relax, it will undergo some macroscopic deformation. With a
garter pattern, the bending deformation produced by stitch
unwrapping is compensated on alternate rows and columns
of loops. On a stockinette pattern, rows and columns curl
in opposite directions (See Fig. 5-left). On a rib pattern,
each pair of stitches curls in opposite direction, leading to a
significant compression of the fabric (See Fig. 5-right).

In Section 4, we present force models that capture the
essential yarn contact mechanics under our compact yarn
representation, and we demonstrate how they reproduce the
expected nonlinearity and anisotropy of knitted fabrics.

Fig. 5. Curling behavior due to stitch unwrapping. Left: stockinette pat-
tern. Right: rib pattern.

3.2 Discretization Using Contact Nodes

Now we introduce our central idea, the representation of
yarn-based fabrics using persistent contacts. Our strategy to
discretize yarn-based fabric is to identify the minimum set
of persistent yarn-yarn contacts that allow representing all
relevant deformation modes. Wherever two or more yarns
exhibit a persistent contact, a single 3D point can be used to
represent all contacting yarns, thereby eliminating the need
to detect and resolve contact.

Each persistent contact node is then augmented with
sliding coordinates that allow the yarns to slide tangent to
the contact. We generalize the initial two-yarn approach [6]
to contact nodes with an arbitrary number of yarns, where
each yarn contributes one sliding coordinate to the contact
node. In a contact node with n yarns, q = (x, u1, ..., un)
constitutes a (3+n)-Degree-of-Freedom (DoF) node, with x

the 3D position of the node, and u1, ..., un the rest arc
lengths of the n yarns in contact, which act as sliding
coordinates.

For simulation purposes, we consider the yarn to be
formed by straight segments between contact nodes. For
rendering purposes, on each contact node we fit a plane to
the incident segments using a standard SVD, offset the yarns
along the normal of this plane, and interpolate the resulting
points using smooth splines. Even high curvature situations,
such as the one in Fig. 5-right, exhibit locally sufficiently
planar configurations, thanks to the high resolution of the
discretization. To move each yarn along the normal, we use
reference directions computed at the rest state, taking into
account the knitting/weaving pattern.

We follow the framework of Sueda et al. [25] to de-
rive the equations of motion, linearly interpolating kine-
matic magnitudes along yarn segments and applying the
Lagrange-Euler equations. We omit the full derivation here,
which differs from the original work for woven cloth [6]
only w.r.t. the force model.
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3.2.1 Yarn Crossings in Woven Cloth

The persistent-contact strategy can be applied to woven fab-
rics by placing one persistent contact node at each crossing
of warp and weft yarns [6]. Sliding coordinates allow the
yarns at a contact node to slide along each other, effectively
producing 5-DoF contact nodes.

3.2.2 Two-Yarn Stitches in Knitted Cloth

In a simple stitch, such as a knit or a purl, a loop from
one row is passed through two loops of the previous row.
This arrangement produces two stitch contacts, as shown
in Fig. 2. During normal operation of the fabric, i.e., unless
a stitch is pulled out, the two yarns at each stitch contact
are wrapped around each other persistently. Based on this
observation, we discretize knitted fabrics by placing two
5-DoF contact nodes at the two end points of each stitch
contact, as shown in Fig. 2-right. This discretization captures
the most important degrees of freedom in a loop, and allows
us to represent any knit pattern based on purl and knit
stitches between two yarns. Using a single contact node
per stitch contact would miss important loop deformation
modes, such as the stretching of fabric due to loop deforma-
tion.

In the case of knit and/or purl stitch configurations, each
loop has typically 4 stitch contacts, hence it shares 8 contact
nodes with other loops. As a result, a garment with N loops
has approximately 4N contact nodes and 20N DoFs.

In the case of increases, a loop can have an arbitrary
number of stitches, depending on the number of loops of the
next row that are knitted together. However, even though
increases involve more than two yarns, stitches are always
made between exactly two yarns, as in standard knits and
purls. Therefore the discretization remains the same, with
two contact nodes per stitch and two sliding coordinates
per contact node (one for each yarn).

3.2.3 Stacked Stitches in Knitted Cloth

In the case of decreases, two or more loops are stacked
together and stitched to the next row, producing stitches
with more than two yarns. Our generic contact node dis-
cretization can accommodate these additional yarns through
contact nodes with an arbitrary number of degrees of free-
dom. A persistent contact is shared by all the yarns involved
in the stitch, and since each yarn contributes one sliding
coordinate, a stitch with n yarns effectively produces a
compact discretization with two persistent contact nodes,
each with 3 + n DoFs. Contact forces are computed in a
pair-wise manner between yarns actually in contact. As a
result, we can conveniently design pairwise force models,
as described in Section 4, and use the same force models for
persistent contacts involving an arbitrary number of yarns.

It is important to note that this discretization is limited
to contact configurations that can be represented by only
one set of spatial coordinates: sliding motions must not lead
to a splitting of the contact node into two or more nodes.
Acceptable configurations boil down to having two groups,
each made of an arbitrary number of parallel stacked yarns.
Thankfully, decreases naturally satisfy this discretization con-
straint, and remain valid as long as the contact is persistent.

4 FORCE MODEL

We now describe the forces computed on yarn-level fab-
rics, which include gravity, internal elastic forces of yarns,
non-penetration contact forces between yarns, friction, and
damping. In our design of the specific force models, we
have identified key deformation modes of the yarn struc-
ture that suffer resistance. In some cases, particularly for
yarn bending, our force model groups the effect of both
internal and contact forces. This is a crucial aspect in the
design of force models with persistent contacts, because
the lack of degrees of freedom in the normal direction of
contacts prevents the use of typical penalty potentials or
non-penetration constraints.

For gravity, yarn stretch (governed by the Elastic modu-
lus Y ), and contact between adjacent loops we use exactly
the original formulations for woven cloth [6]; therefore, we
refer the reader to the original paper for details. In our
force model, we include elastic potentials for two major
deformation modes, which we describe first: yarn bending
and stitch wrapping.

Next, we introduce a model for the computation of
normal compression at inter-yarn contact. We extend the
original method for yarn crossings and two-yarn stitches,
and we propose a general model that supports stacked
stitches with an arbitrary number of yarns. Our model
assumes equilibrium conditions in the direction normal to
contact, to estimate compression forces in a least-squares
manner. Based on such compression forces, we also provide
a model of inter-yarn sliding friction for stacked stitches
with an arbitrary number of yarns.

We conclude the section with the description of an elastic
force for the preservation of the lengths of stitch contacts.
For damping, we use the Rayleigh model, although we
found that, on very high-resolution fabrics, it is difficult to
damp deformations without suffering numerical damping,
and it is worth testing other damping models.

According to textile literature [26], the contribution of
dynamic yarn twisting is minor, especially compared to
dominant forces such as stretch and bending. Therefore,
following the general approach, we do not include yarn
twist in our force model. Yarn pre-twisting, on the other
hand, has an influence on other yarn parameters [27]. We
capture this effect by varying bending stiffness and yarn
radius accordingly.

The formulations of forces and their Jacobians, except
for stitch wrapping, are equivalent to the ones derived for
woven cloth [6]. We provide full derivations of forces and
Jacobians of stitch wrapping in the Appendix.

4.1 Yarn Bending

Given two consecutive yarn segments, we define an elastic
potential based on the angle θ between them:

V = kb
θ2

∆u
. (1)

Here ∆u is the summed arc length of both segments. For
small angles, the bending stiffness is due to internal forces
during yarn bending, and can be defined as kb = BπR2,
with B the bending modulus and R the yarn radius. This
is identical to the bending model implemented for woven
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Fig. 6. A knit shirt with (left) and without (right) rest-shape bending
compensation. Without compensation, the garment shrinks and exhibits
unnatural wrinkles.

cloth [6]. Our bending model differs, however, for large
bending angles. Under this situation, the deformation of
loops leads to contact between loops of different rows (e.g.,
the horizontal pink and blue segments in Fig. 2), or bending
jamming. We model this effect after the shear jamming model
in [6], by smoothly increasing the bending stiffness by three
orders of magnitude after a certain threshold (θ = π/2 in
our examples).

To initialize the yarn layout for a knitted garment, we
first lay the loops and stitches following an input stitch
map. Stitch maps are knitting charts where the resulting
fabric has been relaxed to its rest configuration. These charts
conveniently provide knitting instructions as well as the
post-relaxed shape and position of each loop. Any other
input providing similar information could also be used,
such as the artist drawing of a pattern or the mesh-based
relaxation of Yuksel et al. [24].

The resulting layout, however, may still not be at rest
in this initial configuration due to unbalanced bending
energies, and the garment may compress and wrinkle when
relaxed. In order to compensate for the rest-shape bending,
we first relax a small characteristic rectangle of cloth, by sim-
ulating it without gravity until it reaches static equilibrium.
For complex knits, we choose the smallest rectangle that
contains the full knitting pattern. For simpler regular knits,
we choose a 5 cm ×5 cm rectangle, as we found it sufficient
to capture characteristic shapes of loops in our examples.
After relaxation, we apply the resulting loop shapes in
the initialization of the yarn layout for the entire garment.
Fig. 6 compares a piece of fabric with and without rest-
shape bending compensation. Our bending compensation
is not optimal, as it relies on model parameters that are not
optimal either. This explains differences between real-world
patterns and our simulated patterns in Fig. 4.

4.2 Stitch Wrapping

At each stitch contact, yarn segments are wrapped around
each other, as shown in Fig. 2 for two-yarn stitches and
in Fig. 3 for stacked stitches. This wrapping produces a
deformation energy through contact, which is different from

Fig. 7. Knit garment with a stockinette pattern, with its characteristic
curling behavior at the edges.

the twist energy of the individual yarns. Due to our dis-
cretization, yarn bending does not capture this deformation,
and we therefore require an explicit stitch wrapping energy
term. Fig. 8 shows the wrapping in more detail, along with
the notation we follow.

We measure the amount of wrapping as the relative
angle between opposite yarn segments around the central
axis of the stitch contact. For a stacked contact, this is
done between every pair of yarns, except for pairs where
yarns are parallel to one another. W.l.o.g., we describe the
wrapping computations using a two-yarn stitch as example.

Given the two contact nodes of the stitch contact, q0

and q1, the unit vector e between them defines the central
axis. We define a wrapping angle ψ between the blue yarn
segment from q0 to q4 and its opposite pink yarn segment
from q1 to q3, and similarly for the other two segments.
Specifically, we compute the angle between the normals
of the triangles (shown in light blue and light pink in the
figure) formed by such yarn segments and the central axis,
which acts as a hinge.

For each pair of opposite yarn segments, we define
an elastic potential based on the deviation between the
wrapping angle ψ and a rest angle ψ0:

V =
1

2
kw L (ψ − ψ0)

2
, (2)

where kw is an empirically set stiffness, and L is the rest
length of the stitch contact. After testing different values for

q5

q4

q2

q1 q3

Ã

e
na

nb

v
u

q0

Fig. 8. Representation of a stitch contact. q0 and q1 are the contact
nodes of the stitch contact, with the blue and pink segments belonging to
two different loops. We measure stitch wrapping as the angle ψ between
the blue and pink triangles, with the central axis e acting as a hinge.
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ψ0, we chose π/2 for a visually realistic wrapping effect.

The yarn segments at stitch contacts have the natural
tendency to unwrap. In the garter pattern, adjacent rows of
loops unwrap in opposite directions. However, in the stock-
inette pattern, where they unwrap in the same direction, a
characteristic behavior emerges: the fabric has a tendency
to curl both in wale and course directions. This effect is
particularly noticeable at the boundaries of the fabric, as
shown in Fig. 5-left and Fig. 7. In the rib pattern, on the
other hand, each pair of stitches curls in opposite direction,
leading to a natural compression of the fabric, as shown in
Fig. 5-right.

4.3 Yarn Contact Compression

The ability to model inter-yarn sliding with friction forces
is one of the cornerstones of our method. According to
Coulomb’s model, friction force is limited by the amount of
normal compression at inter-yarn contact. However, due to
the lack of degrees of freedom normal to inter-yarn contact,
we cannot define a compression potential. We propose an
approach to estimate inter-yarn compression forces where
we ignore dynamics in the normal direction and assume
equilibrium conditions. For a stacked contact, we do this in
a least-squares fashion for all yarns together.

Let us assume a contact
node with n stacked yarns
and n − 1 pairwise contacts.
The figure on the side shows
an example with 3 of these
yarns. For yarns i and i + 1,
we compute a normal vector
ni pointing from yarn i to
i + 1, by fitting a plane to the
contact node and the adjacent
nodes along the two yarns. The normal force from yarn i to
yarn i+ 1 is λi ni, with a non-sticking constraint λi ≥ 0.

For each stacked yarn, we define a compression direction
u as the average of its two contact normals. Then, given the
two compressive forces acting on a stacked yarn, together
with all other forces Fi acting on the yarn, we express a net
force fi along the compression direction:

fi = uT
i (Fi + λi−1 ni−1 − λi ni). (3)

For the first and last yarns in a stacked contact, there is only
one compressive force. For woven cloth, in Fi we sum up
stretch and bending forces of yarn i on the contact node.
For knitted cloth, we also add stitch wrapping forces. Due
to yarn volume, the central axes of yarns in contact are
separated by a certain distance, which is not present in our
model. In woven fabric, this distance is called crimp. This
distance produces a misalignment of stretch forces even in
planar configurations. To correctly estimate the normal force
due to stretch, we offset nodes along the contact normal.

To compute the normal forces λ, we perform a least-
squares minimization of net compressive forces, i.e., λ =
argmin 1

2
fT f , subject to non-sticking constraints λ ≥ 0. We

can write the vector of net compressive forces f as a linear
expression of normal forces, f = Aλ + b, stacking expres-
sion (3) for all yarns in contact. We solve the minimization

using the Lagrange multipliers method, which leads to the
solution

λ =
(

ATA
)

−1
·max(0,−ATb). (4)

We reach a compact closed-form expression of normal forces
amenable to efficient GPU implementation. For just two
yarns in contact, the method reduces to the solution de-
scribed in [6] for simple woven cloth.

4.4 Sliding Friction

We model Coulomb friction on sliding coordinates using
anchored springs, as we did earlier for simple woven and
knitted cloth.

In the case of stacked contact nodes, we make a distinc-
tion between pairs of yarns with the same sliding direction
(yarns with parallel stacking) and pairs of yarns with two
different sliding directions (yarns with non-parallel stack-
ing). For non-parallel stacked yarns, friction is modeled
using anchored springs on each yarn’s sliding coordinate
independently [6]. For parallel stacked yarns, however, fric-
tional contact is influenced by both yarns, since both are
constrained to slide along the same axis. Therefore, the
sliding degrees of freedom of both yarns must be involved
in frictional contact computations.

For parallel contact i within the stack, involving yarns i
and i + 1, we use an anchored spring spanning both yarns,
with length ∆ui = ui−ui+1 and rest length ∆ūi = ūii−ū

i
i+1.

The resulting friction force F i due to contact i is:

F i
ui

= −F i
ui+1

=

{

−kf (∆u
i −∆ūi), if stick

−sign(∆ui −∆ūi)µλi, if slip,
(5)

where µ is the friction coefficient and λi is the compression
force for contact i within the stacking as computed in
Section 4.3. During dynamic friction, we adjust each anchor
point according to the deviation of the corresponding slid-
ing coordinate from its maximal stick position.

4.5 Length of Stitch Contacts

When the end node of one stitch contact slides, the other
node should slide too to preserve the material length of
the contact stitch and avoid artificial creation or deletion
of material. We assume that the material length of stitch
contacts remains constant, and we enforce this using a
penalty energy. For a stitch contact between nodes q0 and
q1 as shown in Fig. 8, with arc length l = u1 − u0 and rest
length L, we define the energy as:

V =
1

2
kl L

(

l

L
− 1

)2

, (6)

where kl is the stiffness of the length constraint.
Yarn sliding is negligible under small forces, because

friction keeps the yarns in place. However, sliding may
indeed take place under moderate forces, such as extensive
stretch. In that case, sliding produces plastic deformations
that remain when forces are released. Fig. 9 shows an exam-
ple where a small piece of fabric (left) is overly stretched to
the point where yarns slide (middle), and plastic deforma-
tion is present when the fabric is released (right).
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Fig. 9. A small piece of fabric (left) is overly stretched to the point where inter-yarn friction cannot prevent yarn sliding (middle), and plastic
deformations are evident when forces are released and the fabric goes back to rest (right).

Example Loop width Yarn radius Elastic mod. Bend. mod. Wrap mod. Sliding Fric. Rayleigh
(mm) R (mm) Y (Pa) B (Pa) kw (Pa) Coef. µ damping (α, β)

Sweater (Fig. 1) 3 0.75 1e7 1e-3 1e-2 0.3 10, 0.01
Sleeveless Shirt (Fig. 10) 1 0.25 1e7 3e-4 1e-2 0.3 2, 0.1

Sleeveless Pullover (Fig. 7) 6 1.5 1e7 3e-4 1e-2 0.3 5, 0.01

TABLE 1
Parameter values used in our examples.

5 RESULTS

We have integrated our model in the implicit-integration
algorithm proposed in [6]. For simple knits, the regularity of
the patterns produces a sparse system matrix with at most
11 non-zero 5x5 blocks per block-row. We handle blocks
produced by collisions and seams in a tail matrix. All our
examples were executed on a 3.4 GHz Quad-core Intel Core
i7-3770 CPU with 32GB of memory, with an NVIDIA Tesla
K40 graphics card with 12GB of memory. Simulations were
executed with a time step of 1ms, and the parameter values
used in the large-scale examples are listed in Table 1. Please
see our accompanying video for all animation results.

5.1 High-Resolution Examples

5.1.1 Sweater

We dressed a dancing female mannequin (Fig. 1) with a
sweater made of 56K loops (224353 stitch contact nodes).
The sweater is knit in Garter style, with seams on the sides
of the body, the shoulders, the sleeve-body junctions, and
along the sleeves. In the textile industry, stitch density is
measured as the number of stitches per inch, and is called
Gauge (GG). Our sweater has 6.5 stitches per inch, a gauge
commonly found in real sweaters. The simulation took 96
seconds per visual frame (at 30fps), roughly 7x faster than
the approach by Kaldor et al. [5] for a model of similar char-
acteristics (without accounting for hardware differences).

5.1.2 Sleeveless T-shirt

We used a sleeveless T-shirt model to dress a male man-
nequin performing highly dynamic karate motions (Fig. 10).
The T-shirt has 325K loops (1.25M stitch contact nodes), 20
stitches per inch, and is knit in Garter style. This gauge
(20 GG) is commonly found in off-the-shelf T-shirts made
of carded cotton. The simulation took an average of 7.4
minutes per visual frame (at 30fps), showing how garments
with life-like resolutions can be computed in tractable time
with our approach.

5.2 Macroscopic Nonlinearities

5.2.1 Weaving/Knitting Pattern Comparisons

We replicated several well-known knitting patterns involv-
ing two-yarn and stacked stitches and simulated them using
our model. Figure Fig. 5 compares the Feather and Fan,
the Openwork Diamonds and the Flame Chevron simulated
patterns to real photographs. We can observe how the fabric
naturally realizes the complex shapes prescribed by each
particular sequence of stitches.

In addition, we compared the dynamics of a wider range
of samples to highlight how yarn-level dynamics affect the
macroscopic behavior of fabric. Besides the aformentioned
knitted patterns, we also simulated two standard knitted
patterns (garter and rib), and a standard woven pattern
(plain). All samples use yarns with 1mm radius with the
exact same parameters. The samples are dropped onto a
sphere and are simulated until coming to a rest, as shown
in Fig. 12.

5.2.2 Stockinette Curl

The stockinette pattern produces a curl behavior in the
fabric, and in our model this effect is captured by the stitch
wrapping forces introduced in Section 4.2. We show the
effect of curl in a stockinette garment in Fig. 7. The garment
is a sleeveless wool pullover, with 8750 loops (34416 stitch
contact nodes). As in real cloth, the curl effect is particularly
visible at the edges of the fabric. Here, the lower edge and
the collar wrap around themselves.

5.2.3 Rib Stretch Nonlinearities

One of the main advantages of yarn-level models is the
ability to naturally capture complex nonlinear deformations.
Fig. 11 shows an example nonlinear behavior observed
when stretching a piece of rib fabric, which appears com-
pressed at rest, and with the characteristic ridges of the
rib pattern. The plot shows the force applied to one side
of the fabric vs. the side-to-side distance, and highlights
the existence of 3 regimes during the deformation. First,
the ridges are flattened, and stretch is opposed mainly by
stitch wrapping forces. Second, the loops are deformed, and
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Fig. 10. Simulation of a high-resolution shirt with 325K loops (1.25M contact nodes, 6.25M DoFs), computed at 7.4 minutes per frame.

stretch is opposed mainly by yarn bending. And third, the
yarns themselves are stretched. The nonlinear stretch be-
havior emerges naturally when using our yarn-level model
thanks to the low-level structural representation and force
models, but is difficult to capture using traditional mesh-
based approaches.

5.2.4 Yarn Pullout

The sliding coordinates allow rich and complex non-linear
effects through plastic deformation. We take a garter fabric,
fix its boundaries except on one row, and pull on the yarn
that makes the row. To dynamically adapt the persistent
contacts, we collapse very small segments, and eventually
break the required contacts by turning 5-DoF nodes into two
3-DoF nodes (one for each yarn). As shown in Fig. 13, the
fabric deforms and separates as the yarn slides through the
loops, unraveling the stitches. This effect is different from
tearing since yarns remain intact, and only the structure
of the yarn-level cloth is affected. Producing this type of
deformation using a mesh-based cloth model would be very
complex, but it is easy and natural with our yarn-level
model.
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Fig. 11. Force plot of a stretched rib fabric. The highly nonlinear behavior
is evident, with three different regimes corresponding mainly to opposing
wrapping, bending and stretching forces.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an efficient method to
simulate cloth at the yarn level. We based our method on an
efficient representation of knitted cloth that treats yarn-yarn
contacts as persistent, thereby avoiding expensive contact
handling altogether. We generalized this representation to
model complex knitted cloth stitches involving multiple
stitches per loop as well as stacked yarns. Our compact
discretization allows us to capture the relevant yarn-level
deformation modes, achieving complex, nonlinear and plas-
tic effects at a macroscopic scale.

Although our persistent contact model can accommo-
date a wide variety of patterns, there are some notable
patterns where yarns cannot be assumed to be in a persistent
contact state. An example of such a configuration are cables,
where one group of stitches is crossed over another, creating
interesting relief effects. In this case, contact handling would
be a particular case of self-collision handling, where contact
regions remain almost fixed.

Persistent contacts also ignore three aspects of yarn-yarn
contact:

• Yarn compliance. However, yarn stiffness in the
transverse direction is very high, and the effect of
compliance is minimal. Ignoring this compliance
plays in our advantage, as we avoid the need to solve
very stiff equations.

• The effect of inertial forces on friction. This effect
might translate into milder friction under high ac-
celerations, but it can be compensated by slightly
increasing the coefficient of friction.

• Inter-yarn separation. Stitches may get loose under
cloth compression. In this case, we do not let yarns
separate, but this separation is minimal due to the
interleaved structure of the fabric. At the same time,
we correctly ignore friction forces.

In addition, our model omits twist, following observa-
tions from the textile literature, and our results seem to
validate that it does not contribute to the main macroscopic
effects. However, it would be interesting to analyze its actual
effect, both in pre-twisted yarn assemblies, as well as during
deformations that induce dynamic twist.
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Fig. 12. Six different yarn-level cloth patterns with different macroscopic behaviors. Top row, from left to right: knitted Feather and Fan, knitted
Openwork Diamonds and knitted Flame Chevron. Bottom row, from left to right: knitted Garter, knitted Rib and plain woven.

Finally, in our examples, model parameters are artist-
tuned. In future work, we would like to estimate these
parameters from example deformations, or derive them
from more complex simulations with contact mechanics and
physically based parameters. This would also enable a direct
comparison to models with full yarn-yarn contact.

APPENDIX

STITCH WRAPPING FORCES AND JACOBIANS

The central axis of the stitch is defined by a vector

e =
x1 − x0

‖x1 − x0‖
, (7)

with derivatives
∂e

∂x0

= −
1

‖x1 − x0‖

(

I− e eT
)

and
∂e

∂x1

= −
∂e

∂x0

. (8)

The triangles (q0,q1,q4) and (q0,q3,q1) have normal
vectors

na =
va

‖va‖
, with va = (x4 − x1)× (x0 − x1). (9)

nb =
vb

‖vb‖
, with vb = (x0 − x1)× (x3 − x1). (10)

It is convenient to define the auxiliary vectors

xa0 = x4 − x1, xa1 = x0 − x4, and xa4 = x1 − x0.
(11)

xb0 = x1 − x3, xb1 = x3 − x0, and xb3 = x0 − x1.
(12)

Their derivatives, ∂xai
∂xj

and ∂xbi
∂xj

, can take the values

{I,−I,0}.
The wrapping angle between the triangles is

ψ = arccos(nT
a nb), (13)

and its derivatives take the form

∂ψ

∂xi

=
1

‖vb‖
nT
b eT xbi −

1

‖va‖
nT
a eT xai. (14)

From the potential energy in (2), forces on contact nodes
(i ∈ {0, 1, 3, 4}) are computed as:

Fxi
= −kw L (ψ − ψ0)

(

xT
bi

‖vb‖
enb −

xT
ai

‖va‖
ena

)

. (15)

And their Jacobians take the form:

∂Fxi

∂xj

= −kw L





x
T
bi

‖vb‖
e nb −

x
T
ai

‖va‖
e na









x
T
bj

‖vb‖
e nb −

x
T
aj

‖va‖
e na





T

(16)

−
kw L (ψ − ψ0)

‖vb‖





x
T
bi

‖vb‖
e

(

I − 2nb n
T
b

)

x
∗
bj + nb x

T
bi

∂e

∂xj

+ nb e
T ∂xbi

∂xj





+
kw L (ψ − ψ0)

‖va‖





x
T
ai

‖va‖
e

(

I − 2na n
T
a

)

x
∗
aj + na x

T
ai

∂e

∂xj

+ na e
T ∂xai

∂xj



 ,

where u∗ denotes the cross product matrix for vector u.
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Fig. 13. Yarn pullout. A single row is pulled out of the fabric, unraveling the stitches and creating complex non-linear plastic effects.
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