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Figure 1: Left: Our voxelization algorithm uses as input a cross-section slice of yarns, which stores fiber albedo and density.
The voxelization works by rasterizing slice instances to a sparse, high-resolution 3D texture. Middle: With small changes to the
voxelization pipeline, we obtain simultaneous visualization for interactive preview and parameter setting. Right: The output of
our voxelization is used as input for high-quality rendering with volumetric path tracing.

Abstract
Most popular methods in cloth rendering rely on volumetric data in order to model complex optical phenomena
such as sub-surface scattering. These approaches are able to produce very realistic illumination results, but their
volumetric representations are costly to compute and render, forfeiting any interactive feedback. In this paper, we
introduce a method based on the GPU for simultaneous visualization and voxelization, suitable for both interactive
and offline rendering.
Recent features in the OpenGL model, like the ability to dynamically address arbitrary buffers and allocate bind-
less textures, are combined into our pipeline to interactively voxelize millions of polygons into a set of large 3D
textures (> 109 elements), generating a volume with sub-voxel accuracy which is suitable even for high-density
woven cloth such as linen.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Cloth simulation and rendering is an active research field.
In the last two decades we have witnessed how simulation
models have evolved from mass-spring networks on trian-
gle meshes [BHW94, Pro95] or finite-element discretiza-
tions of continuum models [EKS03], to the computation

of highly detailed physical interactions at the yarn level
[KJM08, MBCN09, KJM10, CLMMO14, CLMO15].

This level of detail has created a demand for render meth-
ods which can leverage the available data and deal with
a volumetric representation of yarns and their constituent
fibers. While the complexity of the cloth reflectance rep-
resentation has increased over the years, even including
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microCT-captured three-dimensional models of the fibers
[ZJMB12], these approaches are limited to surface-based
representations of cloth objects and/or stochastic replication
of texture tiles.

Yarns, as rendering primitives, were introduced by Xu et
al. [XCL∗01]. By partially relying on OpenGL rasteriza-
tion, they obtained very compelling volumetric renderings
in less than an hour of computation. Their representation
was used as input by Jakob et al. [JAM∗10] for more ac-
curate and realistic rendering with volumetric path tracing
and the micro-flakes model. Volumetric yarn-based models
offer high realism, but they come with additional difficulties.
One is that simply selecting the rendering settings is a very
time-consuming task. The artist must iterate several times
the operations of generating the volumetric representation
and rendering the scene, both of which are costly.

In this paper, we present a fast, massively parallel, sparse,
high-resolution voxelization algorithm. It generates the vol-
umetric datasets for full animations in a short time, thereby
enabling agile adjustment of rendering settings, prior to the
actual full-quality offline rendering. Thanks to the sparse
volumetric representation, it also optimizes offline rendering
costs. Our voxelization algorithm performs a fast 3D raster-
ization of millions of yarn slices, as shown in Figure 1-left,
by efficiently managing instantiation and asynchronous ren-
dering. Our algorithm also exploits modern GPU features,
in particular a direct combination of image unit access and
bindless images to handle the maximum memory available
in the card at any time.

In addition, and as a complementary tool to voxelization,
we present an interactive visualization algorithm. This al-
gorithm is designed with just minor modifications to the
voxelization pipeline, as shown in Figure 2, and allows si-
multaneous voxelization and visualization. The visualization
pipeline rasterizes the output to a view-dependent 2D buffer
instead of 3D, thanks to fast, parallel sorting of slices. The
visualization algorithm also incorporates Kajiya-Kay shad-
ing and shadow mapping. Thanks to interactive visualization
of the voxelization results, the artist may quickly adjust ge-
ometric and visual parameters of yarns. Figure 1 compares
output results of interactive preview visualization and offline
high-quality volumetric path tracing.

This paper is an extension of our recently published
work [LMCMO14]. Here, we add the sparse representation,
the use of bindless image textures, more efficient GPU slice
sorting, and higher quality rendering for interactive visual-
ization.

2. Related Work

2.1. Yarn Rendering

Our method relies on a similar representation to Lumislice,
introduced by Xu et al. [XCL∗01], which modeled a single

yarn by a set of cross-section slices. At each slice, fine-scale
phenomena such as occlusion, shadowing and multiple scat-
tering were described at the fiber level. The use of slices as
atomic units brought two major advantages: efficient visibil-
ity computation and data re-use. Instead of ray tracing a full
volumetric model, they pre-computed a 4D BRDF per voxel
(VRF) for a one-voxel-wide slice. They stored the precom-
puted result in a table, and at run-time they used hardware-
based transparency to handle visibility by overlaying all the
slices in alpha-blending mode. In their work, Xu et al. ex-
tended the idea of using repetitive structures in volumet-
ric rendering presented by Meyer and Neyret [MMN98]. In
their approach, slices have access to nearby geometry (yarn
segments) both for VRF pre-computation and slice rendering
on the CPU, and only transparency rasterization is executed
on GPU hardware for the final yarn composition. However,
there are some limitations even in the Lumislice model: first,
the VRF is limited to diffuse reflectance, and second, while
intra-slice light interactions can be pre-computed and stored,
inter-slice interactions are computed by considering a whole
(undefined) stack of surrounding slices in order to account
for attenuation and scattering from all directions. This ap-
proximation is inaccurate at the fine scale of yarns, as the ac-
tual yarns may not obey the shape used for pre-computation.

More recently, Jakob et al. [JAM∗10] introduced a radia-
tive transfer framework to render anisotropic scattering ma-
terials (such as yarns). This model, called micro-flakes, is
composed of two-sided specularly reflecting flakes oriented
according to a known directional distribution (hence requir-
ing per-voxel orientation and density values). The output of
our voxelization algorithm fits the representation used by
Jakob et al. for high-quality rendering. For voxelization, and
inspired by the work of Xu et al. [XCL∗01], we use slices
as atomic primitives, but with a different data structure. Our
yarn representation avoids assumptions regarding the envi-
ronment of the slice, and limits the slice pre-computation to
locally available data: albedo, occlusion in the slice plane
and derivative of fiber orientation (see Section 3.3). This in-
formation is used for both real-time shading and offline ren-
dering.

Hair fibers can be regarded as rough dielectric cylinders,
and present a structure similar to yarn fibers. The seminal
work by Kajiya and Kay [KK89] was further improved by
Goldmand [Gol97] to include translucency. Furthermore, the
physically-based model by Marschner et al. [MJC∗03] and
its energy-conserving version by d’Eon et al. [dFH∗11], set
the basis for the current state of the art in hair and fur ren-
dering.

2.2. Voxelization

Pantaleoni [Pan11] showed the potential of parallel GPU
computation to voxelize complex 3D models in a few
milliseconds with voxelPipe, a CUDA-based voxelization
pipeline. Furthermore, Crassin and Green [CG12] improved
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Figure 2: Overview of our yarn-level cloth voxelization and visualization pipeline. In green, the voxelization workflow, which
instantiates and rasterizes yarn slices to a sparse 3D grid. Rasterization is executed using orthographic projection from three
orthogonal views to eliminate sampling artifacts. The voxelization workflow is fully automatic and generates the files required
for offline rendering. In blue, the interactive visualization workflow, which rasterizes the slices to the frame buffer and incorpo-
rates an efficient slice sorting step for correct view-dependent transparency. The interactive visualization may display shaded
yarns or additional slice and voxel information, to allow artists to interactively adjust geometric and visual settings.

these results by relying exclusively on the OpenGL pipeline,
thanks to the recent Shader Model 5 which allows direct
video memory access and storage from shaders. In their
work they addresed two problems: the accuracy of geome-
try representation due to rasterization issues, and augment-
ing the storage capabilities of voxel grids with sparse oc-
tree representations. Our work addresses additional rasteri-
zation problems and targets models and textures at least one
order of magnitude larger. Moreover, although we rely on
the same OpenGL pipeline, our approach follows a differ-
ent path in the GPU architecture. Instead of vertex shaders
and buffer objects, we use a direct combination of image
units access (imageLoad-Store) and bindless images to han-
dle the maximum memory available in the card at any time.
To our knowledge, this is a novel (if not the first) example of
such coupling. Furthermore, the recent release of OpenGL
4.5 points towards a future of bindless textures and arbitrary
memory access from shaders.

Sparse volume voxelization for data such as fluids, fog,
clouds, or cloth has become a rising trend in the indus-
try. Dreamworks has recently realeased openVDB, a format
which has been quickly adopted by all the major rendering
companies. With openVDB, Museth proposes a sparse hi-
erarchical grid structure for the discretization of sparse, dy-
namic volumes [Mus13]. In a similar spirit, we have imple-
mented a two-level hierarchical grid within our GPU frame-
work which can be easily extended to more complex struc-
tures.

3. Sparse Voxelization Pipeline

The voxelization pipeline, shown in green in Figure 2, takes
as input for each yarn a list of 3D points representing the

centerline of the yarn, plus one cross-section slice storing
the distribution of fiber density. To model the full yarn, we
first compute a smooth centerline using Hermite splines, as
described in detail in Section 3.1. Then, we sweep and twist
instances of the slice along this smooth centerline, as shown
in Figure 3 and described in detail in Section 3.2. The size of
the slice is given by the diameter of the yarn, and the separa-
tion between consecutive slices is set based on requirements
of the scene.

Our yarn voxelization and visualization approach adapts
previous slice models to a massively parallel and GPU-
friendly algorithm, which allows handling millions of slices
efficiently. We do this by instantiating and rendering asyn-
chronously the slices, and the challenge is to rasterize each
slice independently, without sharing any information with its
neighbors, as described in Section 3.3.

The output of the voxelization pipeline is a 3D grid where
each voxel stores the density and orientation of yarn fibers.
To exploit the 2D nature of cloth and avoid using a memory-
intensive 3D regular grid, we perform a sparse voxelization
using a two-level grid as described in Section 3.4. In addi-
tion, we exploit modern OpenGL features to enjoy fast and
arbitrary access to texture memory from fragment shaders.

3.1. Input Data and Smooth Interpolation

Most natural fibers are only a few centimeters long. In or-
der to obtain longer yarns, fibers are interlocked through tor-
sion, with the resulting threads exhibiting different appear-
ances depending on the fiber distribution and torsion degree.
Threads do not bend sharply when they touch other threads;
instead, their shape follows a smooth curve. Most yarn sim-
ulation models [KJM08,CLMMO14] discretize thread posi-
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Figure 3: Top left: Density distribution of fibers at a given
slice, stored as a texture. Top Right: A stack of rotated slices
conform a single thread section. Bottom: A path defines the
position of these slices

tions only at contact points and model boundaries. Our volu-
metric representation requires a dense and smooth sampling
of the yarn’s centerline, and the resulting samples are used
as locations for the placement of slice billboards. Therefore,
given the simulation output, intermediate positions must be
devised in order to reproduce a detailed yarn model.

Among the wide range of strategies for curve parametriza-
tion, we have chosen classic Catmull-Rom splines [CR74]
because of their algorithmic simplicity, low computational
cost, and suitability for our input control points. We resam-
ple the smooth, curved yarn representation each time the
model geometry changes, but not under camera or illumi-
nation modifications. It takes less than two seconds on the
CPU to resample our largest models (with up to 35 million
slices). See Table 1 for initialization times, including mem-
ory copy to the GPU and voxel volume initialization.

Catmull-Rom curves are cubic Hermite splines, so each
portion of the curve traces a third-degree polynomial speci-
fied by its values and first derivatives at the end points of the
corresponding domain interval. For a given yarn, the corre-
sponding sampling points {P1P2 . . .Pn} are organized in se-
quential subsets, each composed of a pair of contact points
(which are the result of the yarn simulation) . These subsets
contain two knots (Pi and Pi+1) and two extra samples (Pi−1
and Pi+2), which are used as a key to compute the curve tan-
gents at knots (see Figure 4). By setting the consecutive yarn
simulation points as control knots, we ensure that the yarn
trajectory will be exact and consistent with the simulation at
those points, while locally interpolating a smooth curve in
between.

The detail within each segment can be tuned by evaluat-
ing more or less t ∈ [0,1] parameter values in the curve func-
tion [Fol96]. For interactive preview visualization, the sam-

pi+ 1
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pi-3
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pi

pi-1 pi+ 3
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Figure 4: Top Row: From left to right, increasing zoom lev-
els of the input representation. Yarns are sampled at cross-
ing points and represented as piecewise linear curves. Bot-
tom row: A classic Catmull-Rom spline (green). The control
points are interpolated to produce a smooth spline, which
passes through each knot in a direction parallel to the line
between the adjacent points (grey). The jagged brown line
represents the input piecewise linear yarn.

pling density can be adjusted to meet the desired frame rate
and/or visual quality. For offline high-quality visualization,
we discuss sampling criteria in Section 5. We do not apply
more sophisticated Catmull-Rom schemes, like chordal or
centripetal implementations [YSK09], because our sampling
does not suffer loops or self-intersections with the classic al-
gorithm.

3.2. Placing Yarn Slices

In our method, the slice is represented by a quad composed
of two triangles and a texture with the albedo values and the
fiber density distribution stored in the alpha channel. In order
to reduce computation costs during voxelization, the differ-
ent slices are implemented as instances of a standard slice,
with the same geometry and textures but different attributes
such as position and orientation. Albedo and fiber density
distribution could be dynamic attributes, but this is left for
future work.

For each sample in the spline centerline, we must compute
the model matrix for the corresponding slice. We define the
forward vector as the difference between the position of the
current slice and the following one. To define the up vector,
we initialize a vector perpendicular to the forward vector at
the beginning of each yarn, and rotate this vector w.r.t. the
forward vector incrementally along the yarn. In this way, we
capture the characteristic twist of the thread, which is set as
an input parameter to the algorithm. We map all the model
matrices to a buffer (GL_ARRAY_BUFFER) so they can be
included in a vertex attribute array for rendering (GL func-
tion glDrawElementsInstanced). In order to rasterize (and
thus voxelize) the yarns, these model matrices are combined
with view and projection matrices to project each slice quad
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onto the screen. For real-time visualization however, a cor-
rect alpha blending rendering is needed and all the slices are
sorted according to their distance to the camera by a CUDA-
based sorting algorithm (see Section 4.1).

3.3. Voxelization of Density and Orientation

In order to fill with density and orientation values a voxel at
a given position in world coordinates, one option is to ac-
cess the point corresponding to those world coordinates in
the geometric model of the yarn, which is composed of mul-
tiple textured quads as seen before. In our method, based on
rasterization, the order is reversed: each fragment-pixel com-
putes its world coordinates and stores the associated texel
data at the corresponding voxel.

With our model, density is voxelized in the following way:
The vertex shader has access to the modelview matrix of the
slice, and it passes down to each fragment shader its inter-
polated position and the global orientation of the slice. The
fragment shader receives subsequently the position in world
coordinates, it can access the fiber density distribution stored
in a texture, and thus writes the density value at the appro-
priate position.

In addition to fiber density, we also voxelize fiber orienta-
tion. Given the position of a fiber in two consecutive slices,
Pi−1 and Pi, fiber orientation can be computed by normal-
izing the difference vector between these two positions. In
previous CPU-based yarn voxelization methods [XCL∗01],
it was possible to access adjacent slices to query for fiber
positions, but in our parallel GPU-based approach slices are
processed out of order. Instead, we compute fiber orienta-
tion procedurally based on the inter-slice twist angle α. Fur-
thermore, assuming a constant twist angle for all yarns, we
precompute fiber position differences in the local reference
system of the standard slice, and use this information during
voxelization to evaluate fiber orientation.

If slices are placed densely along the yarn, we can assume
that the current and previous slices are almost parallel to
each other. Then, we can express fiber positions on the plane
orthogonal to the yarn using a common reference frame as
shown in Figure 5-left. We define as Pi = (Xi,Yi) the posi-
tion of the current voxel in the local reference frame of the
slice. And we define as Pi−1 = (Xi−1,Yi−1) the position in
the previous slice of the same fiber that passes through Pi.
The difference between these two positions, together with
the centerline of the yarn, defines fiber orientation. The posi-
tion in the previous slice, Pi−1, can be computed by rotating
Pi an angle of −α, therefore their difference is based solely
on the yarn twist α, and can be computed as follows:

(
∆X
∆Y

)
= Pi−Pi−1 = Pi−

(
cos(−α) −sin(−α)
sin(−α) cos(−α)

)
Pi(

∆X
∆Y

)
=

(
1− cosα −sinα

sinα 1− cosα

) (
X
Y

)
. (1)

pi

pi-1

α
x

Y

Figure 5: Left: The orientation of fibers is defined by the
position difference Pi−Pi−1 of the same fiber in two con-
secutive slices. If slices are sampled densely, they can be
considered parallel, and we express these positions in the lo-
cal reference frame of the slice. The position difference is a
function of the inter-yarn twist α. Right: For a constant inter-
yarn twist, we precompute fiber position differences for the
standard slice and store them in a texture. Discontinuities
are due to color codification of the orientation vector.

Together with the (constant) ∆Z inter-slice difference
along the yarn’s centerline, we form a 3D vector, normal-
ize it, and store this precomputation result as a texture, as
shown in Figure 5-right. During voxelization, at each voxel
location we simply query this texture and multiply the vec-
tor by the modelview matrix of the slice to obtain the fiber
orientation in world coordinates. When multiple fragments
contribute to the same voxel, we average their orientations.

3.4. Volume Generation on OpenGL

We base the volume generation on the OpenGL rasterization
pipeline. Since version 4.3, GLSL provides direct access to
images at arbitrary positions from any shader by means of
image_load_store instructions. Moreover, since version 4.4,
we can also use bindless textures to hold image data (also
known as surface type) in memory. Bindless textures avoid
the communication bottleneck produced by bind OpenGL
calls and remove the limitation in the number of simultane-
ous textures available to the fragment shaders.

Our volume generation takes as input the positions of the
slices computed in Section 3.2, and executes the following
steps. These steps are also outlined in Figure 6, along with
their corresponding implementation in the voxel fragment
shader:

1. We create a regular grid of blocks at a coarse resolution
determined by the user. This grid is stored as a 2D texture
of unsigned integer pairs (uvec2) bound to a buffer object
(denoted as tex_handles in the shader code sample). This
buffer constitutes the global linear memory available to
all the shaders.

2. We traverse all the slices (on the CPU) to determine
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uniform usamplerBuffer tex_handles;
...
void main(){

int index=  ((z3D * coarseRes) + y3D) * coarseRes + x3D;

uvec4 aux = texelFetch(tex_handles, index);      
uvec2 vol_handle = aux.rg; 
layout(r8) image3D volDensity= layout(r8) image3D volDensity= layout(r8) image3D(vol_handle);
...
x3Dfine=(Position_worldspace.x*coarseRes*fineRes)- x3D*fineRes;
...
vec4 color= imageLoad(volDensity,ivec3(x3Dfine,y3Dfine,z3Dfine));
imageStore(volDensity, ivec3(x3Dfine,y3Dfine,z3Dfine), value);
...

 

// VOXEL FRAGMENT SHADER

Input Data Build Blocks Grid List of bindless
3D Image Handles

@1@2

Figure 6: Overview of the OpenGL implementation of the rasterization pipeline, and related commands on the fragment shader.

which blocks are occupied and which are left empty. For
each block containing slices, we create a 3D texture of
fine resolution, store the handle in the buffer and mark
it as resident in memory (or leave a zero if empty). In a
supplementary document, we provide the full implemen-
tation details.
The fine resolution may be either defined by the user
or computed to maximize memory occupancy given the
number of blocks intersected by the geometry. For in-
stance, the shirt model in Figure 13 has only 9023 occu-
pied blocks in a 128x128x128 coarse grid, and we sample
each of those blocks using a 32x32x32 fine grid, for a to-
tal memory occupancy of 845MB (instead of the 163 GB
needed for the same resolution in a single block) .

3. We rasterize the slices. On the fragment shader, we read
the associated block handle from the uniform buffer, cast
it as layout(r8)image3D texture, and fetch the texel cor-
responding to the absolute 3D position of the fragment in
space.

To avoid sampling artifacts due to rasterization, we raster-
ize every slice three times along three orthogonal projection
axes, with Z-rejection disabled. When a slice is parallel to a
projection axis, the fragment shader may incur in large er-
rors in the interpolation of the world coordinates provided
by the vertex shader, thus placing voxels at wrong locations
(See Figure 7). We avoid such artifacts thanks to GPU an-
tialiasing (x8 FXAA in our case), with negligible cost (5%).
Our approach differs from the recent voxelization method of
Crassin and Green [CG12], who rasterize each triangle only
once, after selecting on a geometry shader the axis that pro-
duces the maximum projected area. We avoid the geometry
shader at the cost of three rasterization passes, which can be
executed on a hidden frame buffer and interleaved with the
visualization pass for interactive visualization of the volu-
metric data.

In our method, the user retains full control of both ras-
terization and voxelization resolution, and may change them
dynamically to obtain a desired result. Fragment coordinates
are decoupled from the resolution of the target 3D texture,

and the 3D position of the fragment in its corresponding tex-
ture block is computed as described above. Thanks to this
decoupling, the user may change on the fly the voxel resolu-
tion and the hierarchical structures. This allows for voxeliza-
tion planning via our interactive interface: if the user desires
to focus in a given area of the cloth model, the voxelization
area is adapted to the viewport volume, processing a partic-
ular set of yarn nodes at a higher resolution (See the snag
example in Figure 15).

In general, the combination of image load/store oper-
ations and simultaneous voxel and geometry processing
opens a new range of rendering possibilities. For instance, in
the bottom of Figure 14, we have modified the albedo of sev-
eral slices depending on the value stored at the correspond-
ing voxel (e.g., coloring in white the boundaries of the 3D
voxel block). Other applications, such as global illumination
by voxel cone tracing, might benefit from the flexibility of
this GPU approach.

3.5. Fragment Composition

When several fragments hit the same output voxel, we have
designed heuristics to compose the output density and ori-
entation. Based on our observations, simply averaging den-
sity values yields an output volume that is excessively trans-
parent. Figure 8 shows an example where a single slice is
downsampled to generate a mipmap. The coarsest slice tex-
ture appears more transparent, and we have found that this
transparency reduces the quality of final renderings. Instead,
we have opted to favor actual fiber hits, following a strategy
similar to conservative rasterization [AMA05]. When mul-
tiple fragments hit the same output voxel, we simply keep
the last hit with a positive density. We rely on hardware anti-
aliasing (x8) and high-resolution rasterization to guarantee
multiple samples per output voxel.

Our approach could be improved by adopting a custom
composition method, but this is a non-trivial task, as the
composition policy should account for the visualization al-
gorithm. For instance, Zhao et al. [ZJMB12] capture voxel
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Figure 7: Rasterization of perpendicular triangles is problematic both for visualization and voxelization. Left: OpenGL view of
a single yarn sampled for voxelization. The green fragments on near-perpendicular planes yield wrong 3D world coordinates.
Middle: Volumetric view of the same yarn and XZ projection of the 3D world coordinates computed for each voxel, shown in
red. Position error is most evident for the fragments on near-perpendicular slices. Right: The resulting volumes are noisy as
shown on the path-traced render of the shoulder.

densities with a micro-CT scanner and optimize the optical
properties for a particular rendering model (microflakes) in
order to match the pixels observed in real photographs. Xu et
al. [XCL∗01] compute density from a function which can be
analitically averaged to be represented at each level of detail
with custom volumetric mipmaps. Recent work by Heitz et
al. [HDCD15] on volumetric density mipmapping presents a
solution for the automatic creation of multi-level textures for
microflake distributions, and might be a direction for future
research.

For the composition of output orientations, we average in-
coming orientations in the order in which they are rasterized.
Correct averaging would require atomic operations and wait-
ing for all fragment hits before executing the average oper-
ation. However, following this approach we would incur in
high processing and memory costs. We use single byte im-
ages, while atomic math for images is limited to GL_R32I
and GL_R32UI integer types. Our policy for the composi-
tion of orientations might introduce some temporal or inter-
frame incoherence, but we have shown the feasibility of our
approach in animations [CLMMO14, CLMO15].

Figure 8: From left to right: GPU automatic mipmapping
of a fiber density distribution texture, starting at level 0 (no
filtering). Notice how the last map is almost transparent.

3.6. Volume Ray Casting

One possible way to visualize the result of voxelization is to
apply GPU-based ray casting of the 3D texture [SSKE05].
We have implemented this ray casting as a single-pass
shader, encoding density values with a 1D color map. The
ray-casting shader has minimal cost compared to voxeliza-
tion, and can be used, e.g., for the purpose of verifying the
correctness of the voxelization. Volume ray casting is not
to be confused with our preview visualization algorithm to
be described in the next section. Figure 10 compares a ray-
casting visualization of a voxelized yarn (top), with our pre-
view visualization of the slice-based model (bottom). We
use volume ray casting only to check the stored voxel data,
whereas we use interactive visualization to inspect the out-
put of the slice-based representation and refine the voxeliza-
tion process. Both visualization methods allow for interac-
tive rates and could be combined into more sophisticated vi-
sualization schemes.

4. Interactive Visualization Pipeline

Our interactive visualization pipeline shares many steps with
the voxelization algorithm described in the previous section,
as shown in Figure 2. However, it has two major differ-
ences. One is, of course, that volume rasterization is replaced
with frame-buffer rasterization. We accumulate the effect of
multiple semi-transparent slices through alpha-blending, and
this blending calls for the second major difference. Correct
alpha-blending requires sorting of slices, which are then ras-
terized back-to-front according to the camera view.
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Figure 9: Overview of our CUDA pipeline for sorting textured quads for real time visualization. The modelview matrices are
stored in GPU memory as an array in a buffer object.

4.1. GPU-Based Slice Sorting

In the first version of our pipeline [LMCMO14] we relied
on single-CPU sorting (std::sort). For dense models this step
implies sorting a vector with millions of elements, and may
take up to three or four seconds per frame on our examples.
While sorting is not required for voxelization, for interactive
visualization it becomes a bottleneck that might hinder the
user experience. In the present work we introduce a CUDA-
based sorting step in our pipeline, keeping all operations in
the GPU and avoiding memory transfer between the host
(CPU) and the device (GPU). As depicted in Figure 9, the
sorting is divided into four sub-steps:

1. We take the modelview matrices, computed and stored in
GPU memory as described in Section 3.2, and we map

Figure 10: Top: Ray-casting of a voxelized yarn, as de-
scribed in Section 3.6. Bottom: Interactive visualization of
the slice-based model for the same yarn, with the method
described in Section 4.

this memory area for CUDA processing. Then, we give
control to the CUDA context to perform the actual sorting
(For a code example, see the supplementary document).

2. A first kernel goes through the array of matrices, reads the
translation vector of each slice and computes the squared
distance to the camera view (passed as a global variable).
A list of corresponding incremental indices is generated
too.

3. With the indices and distances, we call the sort-by-key
method of the Thrust library to re-order the list of indices,
using the distances as keys.

4. A third kernel takes these re-ordered indices and
copies the data of the modelview matrix array
to a new (re-ordered) array. This implies a sin-
gle device-to-device copy operation; the CPU is
never used and the process finishes when the con-
trol is returned to the OpenGL pipeline via the
unmapGLBu f f erOb ject(m_cuda_vbo_resource) com-
mand.

To summarize, in this fashion there is no memory transfer
between the GPU device and the CPU (modelview matri-
ces are already stored in GPU) and, while sorting, we avoid
moving matrices until the last step, using a distance-based
index sorting instead. We achieve a speed-up of two orders
of magnitude on the sorting operation alone, as shown in
Figure 12. Thanks to this fast sorting method, the impact of
sorting on the frame rate of our visualization becomes neg-
ligible; the millions of fragment executions are the actual
bottleneck of the pipeline.

4.2. Shading and Blending

For preview visualization purposes, we compute local shad-
ing based on the Kajiya-Kay model [KK89], which was orig-
inally created for rendering of hair but equally approximates
the scattering of light in a fiber inside a yarn. As input we
take the albedo colors stored in the texture, the orientation
computed at each fragment pixel and both light source and
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Figure 11: Real-time visualization of a shirt model at different zoom levels. Fibers are noticeable only at the closest distances,
but their local radiance affects the overall aspect of the cloth.

camera directions. Since the radii of fibers are small, we can
safely assume a parallel light model. We also include pre-
computed inter-fiber ambient occlusion already baked in the
albedo texture to improve volume perception.
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Figure 12: Frame rate comparison between a sorting oper-
ation on the CPU (std::sort) and our CUDA-based method.

Figure 13: Left: Interactive rendering (1-2 FPS) of a shirt
model (45.6 million triangles) with Kajiya-Kay shading and
shadow mapping. Right: Visualization of the underlying grid
structure (64x64x64 blocks).

In Figure 11 we show screen captures of our interactive
visualization. Cast shadows, obtained by shadow mapping,
are shown in the left image of Figure 13. Please see the ac-
companying video for additional screen recordings of our
interactive visualization.

In Figure 14 we show an example of visualization based
on a combination of data stored on the voxel grid and the
triangle-based slices. This shading approach can be used
to verify the quality and resolution of the stored volumet-
ric data stored in comparison with the highly detailed slice
model (e.g., the orientations stored on the slices), or even
to improve realism by incorporating volumetric illumination
effects.

Figure 14: Shading example, combining voxel data and tri-
angle rastering. Top row: The slices are colored according to
the orientations stored on the voxel grid. Bottom Row: Dif-
ferent zoom levels focusing on a particular block (blocks are
overlaid in red color), where a set of slices has been colored
in white to verify the resolution of a single voxel row.
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To speed up preview visualization in a view-dependent
manner, we have considered using mipmapping of the slice
textures. However, with standard mipmapping, we suffer the
same transparency problems as discussed for density com-
position in Section 3.5 and shown in Figure 8. We have dis-
abled mipmapping and we leverage hardware anti-aliasing
and high-resolution rasterization to obtain high-quality re-
sults. As also discussed in Section 3.5, custom visualization-
aware mipmapping methods are a possible direction for im-
provement.

5. Experiments and Performance

In this section, we describe statistics of the benchmarks used
for testing, as well as the performance results. We first dis-
cuss performance of the voxelization algorithm, and then the
impact of the sparse voxelization on the performance of of-
fline rendering. In all our tests, we have used an eight-core
i7-3770S processor with 16 GB of memory and a NVIDIA
GeForce GTX TITAN Black graphics card with 6 GB of
memory.

5.1. Voxelization and Interactive Visualization

In terms of memory management, the 3D textures are the
main limitation. We handle up to 6GB in three textures, for a
maximum size of 2GB per texture and 2048 voxels of maxi-
mum size for any axis (limited by the graphic card). We also
keep in memory an array with a 4x4 model view matrix per
slice (up to 2.62GB for 41 million slices). Setting up both
structures implies a warm-up of a few seconds per frame of
voxelization for the biggest models, but it has no impact on
subsequent visualization operations for the geometry.

In terms of computation times, we have compared perfor-
mance with a light and a dense model, both at two different
zoom levels. For the far view, we use 25 slices between yarn
crossings (1mm, 1/40 of the pixel width), and we increase
it to 50 for the close view. We also increase the 3D texture
resolution to the maximum available(6GB). In Table 1, we
show computation times for the two models and zoom lev-
els. First, we show the cost of sampling the yarn splines and
setting up the slice data structures on the GPU. These op-
erations are carried out once per voxelized frame, and they
dominate the cost of voxelization. Second, we show the cost
of executing one rasterization pass, either as part of the three
passes in voxelization, or as part of visualization. Once the
slice data structures are set up, our preview visualization is
interactive.

The data in the table was obtained using a single-block
texture representation. With a sparse representation consist-
ing of a 32x32 two-level grid, the cost of slice generation
grew only by a factor of 4.6% on average. In addition, we
have compared performance and quality using cross-section
slices of two different sizes, 1024x1024 and 32x32, with

no noticeable differences. As discussed earlier, mipmapping
was disabled in both cases.

In comparison to previous voxelization methods, we have
observed similar performance to the one achieved by Crassin
and Green [CG12] on models of the same size. They re-
ported computation times around 1-2ms for direct voxeliza-
tion on models with less than one million polygons. Xu et
al. [XCL∗01], on the other hand, reported over 31 minutes
for the rendering of 368k slices.

5.2. Offline Rendering

Our method can process very dense models (around a mil-
lion yarns), producing the volumetric data used to render the
vest and the sheet shown in Figure 16, or the shirt shown
in Figure 17. Notice how the sheet exhibits a transparency
effect in the top part due to the stretching of yarns, which
would not be possible without a full yarn-level model.

All the offline render results shown in this paper have
been generated with the raytracing engine Mitsuba [Jak10];
in particular, with its volumetric path tracer and the micro-
flakes model [JAM∗10]. Our volumetric textures are trans-
lated into an offline format with one byte for density and
two bytes for orientation (discrete polar coordinates θ and
φ). The animations and videos of our cloth simulation
works [CLMMO14, CLMO15] were also generated in the
same fashion, demonstrating that our method is suitable for
the generation of temporally coherent results.

The advantages of our hierarchical voxel grid structure are
evident both in terms of data management and path tracing
costs. The sparsity of data is characteristic of cloth; the shirt
model (Figure 13) has as few as 0.854% occupied blocks in
a 64x64x64 grid, and only half (0.43%) in a 128x128x128
grid. In the context of volumetric path tracing, by fitting the
boundaries of the volumetric data with more accuracy we
can reduce the marching steps of rays (or even discard them)
when sampling outside the volume. This translates into a
significant reduction of rendering times for the same visual
quality, as shown on the right column images of Figure 15).
Furthermore in several cases, we can render at resolution lev-
els which are not even possible with a single block; for in-
stance, a 64x64x64 grid of 64x64x64 voxel blocks can ren-
der images of up to 4096x4096 pixels with sub-pixel voxel
resolution. Such high resolution would require 68 GB in a
regular single block. Table 2 summarizes the effect of hier-
archical grid configurations on rendering time costs as well
as storage file size, which is not negligible in production en-
vironments. Notice the differences between the first and sec-
ond configurations: File size and rendering times are reduced
to almost 25% of those with the single-block grid, while the
voxel resolution per pixel has been doubled (from 1024 to
32x64 = 2048 voxels). The third and fourth configurations
reach up to 4096 voxels per pixel.
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Low density cloth High density cloth Low density Close-up High density Close-up
Number of slices 2.5M 17.6M 4.08M 35.2M
CPU memory 1.8GB 7.2GB 9GB 12GB
GPU memory 2.06GB 3GB 4GB+2GB(shared) 4GB+2GB(shared)
Slice generation (yarn sampling) 1.43s (0.12s) 8.67s (0.726) 2.09s (0.18s) 17.32s (1.47s)
Single visualization/voxelization pass 71ms 150ms 120ms 400ms

Table 1: Statistics and voxelization performance using a single-block grid for two models at two different zoom levels. Slice
generation consists of yarn spline sampling, volumetric texture initialization, and OpenGL quad instantiation, and is required
only if the geometry of the cloth is changed. The last row reports times for one rasterization pass, either as part of voxelization
or visualization. This is the time needed for preview visualization when camera or illumination, but not geometry, are modified.

Figure 15: Left column: Real time visualizations (Kajija-Kay model with shadow mapping) of a yarn snag. Top Right: Same
model rendered in Mitsuba (stdev = 0.5) with a 32x32x32 grid of 64x64x64 voxel blocks. Bottom Right: Same model but
rendered using a single-block grid (with 2048 voxels along the longest side). No differences, other than stochastic path tracing
noise, are visible, while the rendering time is reduced almost to one third.

6. Conclusions and Future Work

In this work we have introduced a pipeline to voxelize yarn
structures with several advantages over previous approaches.
First, our pipeline is able to handle directly on the GPU
large voxel models, while maximizing the use of video mem-
ory and taking advantage of a sparse structure. This results
jointly in higher voxel resolution and faster offline raytrac-
ing. Second, our simultaneous preview visualization method
allows for efficient interactive parameter setting of both the
voxelized yarn (type, radii, fiber density, color, torsion, etc.)

and voxel structure (resolution, volume to voxelize, etc.).
These parameters have a great impact on the final appear-
ance, and we believe that any tool based on our design cycle
will greatly reduce the time costs for volumetric content pro-
duction.

The GPU pipeline shown in this paper (based on image
unit access and bindless image textures) is very flexible, pro-
viding fast computation times and maximum GPU memory
use. We believe that many applications beyond yarn vox-
elization can benefit from this OpenGL path.
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Figure 16: Left and middle: Very dense model (17.6M slices, 410k yarn crossings), rendered at medium level of detail (25
slices per crossing, 1152 voxels along the maximum axis). Both images were pathtraced with the micro-flakes model (stdev =
0.5 and 0.1 respectively). Right: The densest yarn model voxelized by our method: one million crossings (100 yarns per inch),
represented using 41.3 million slices (82.6 million triangles) and 1625 voxels along the longest axis of a single-block grid.

The real-time shading of fibers in our algorithm uses cur-
rently a local Kajiya-Kay model, however our approach is
a good candidate for techniques such as screen-space sub-
surface scattering [JG10] or any volumetric illumination
model [JSYR14]. Phenomena like translucency could also
be precomputed, given that the distances at each slide are
previously known. In the future we would like to explore the
adaptation of these methods to our framework, combining
deferred shading and 3D texture direct access.

We have not addressed the compression of the 3D tex-
tures. The overhead of decoding the texture for non-coherent
memory access is still a challenge for real-time applications.
However, this is an active field of research [BRGIG∗14], and
recent advances suggest that this should be considered for
future improvements of our pipeline.

A significant improvement to our method would be a
GPU-based approach to the re-sampling of yarn curves, cur-
rently implemented on the CPU (Section 3.1). It would be
faster and it would save memory bandwidth between device
and host, thus reducing the per-frame cost for animations.
Furthermore, such method could be improved with view-
dependent slice allocation to render multiple levels of detail
by sampling adaptively along the yarn center line. Any level-

Model, Grid/Voxels Textures File Size Render Time
Shirt, 1/1024 1.5GB 5 min 10 sec
Shirt, 32/64 391MB 1 min 14.5 sec
Shirt, 64/64 1.52GB 46.1 sec
Shirt, 128/32 554MB 36.9 sec
Snag, 1/2048 6GB 37 min 36 sec
Snag, 32/64 1.6GB 1 hour 26.2 min

Table 2: Statistics and offline rendering performance for the
shirt and snag models of Figures 15 and 13, for a target
image of 1024x768px.

of-detail approach would also benefit from automatic cus-
tomized mipmap representations which will require a non-
trivial re-sampling of the fiber density texture.

Our algorithm has been successfully used to generate all
the renderings in the cloth simulation work by Cirio et al.
[CLMMO14, CLMO15], and from this experience we be-
lieve that it has a great potential to simulate complex visual
aspects of the cloth under deformations.
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