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Figure 1: Mixing yarns and triangles to efficiently predict fitting details of a shirt. From left to right: simulation result with a full-yarn model,
a triangle-only model, and our method, and mixed discretization with triangles and yarns. The triangle-based model misses all the detailed
wrinkling of the yarn-based model. We select a region of interest on this triangle-based model, we enrich it with yarns, and the mixed result
reproduces the wrinkles of the full model. Wrinkles outside the region of interest are not captured, as expected.

Abstract
This paper presents a method to combine triangle and yarn models in cloth simulation, and hence leverage their best features.
The majority of a garment uses a triangle-based model, which reduces the overall computational and memory cost. Key areas
of the garment use a yarn-based model, which elicits rich effects such as structural nonlinearity and plasticity. To combine
both models in a seamless and robust manner, we solve two major technical challenges. We propose an enriched kinematic
representation that augments triangle-based deformations with yarn-level details. Naïve enrichment suffers from kinematic
redundancy, but we devise an optimal kinematic filter that allows a smooth transition between triangle and yarn models. We
also introduce a preconditioner that resolves the poor conditioning produced by the extremely different inertia of triangle and
yarn nodes. This preconditioner deals effectively with rank deficiency introduced by the kinematic filter. We demonstrate that
mixed yarns and triangles succeed to efficiently capture rich effects in garment fit and drape.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Yarn-level models [KJM08, CLMMO14] have emerged as a tool
for the simulation of cloth with extreme realism and detail. They re-
produce, by construction, the structural nonlinearity and anisotropy
of fabrics, both woven and knitted. However, the benefits of yarn-
level models come at a high price, as their simulation is extremely
computationally expensive, purely due to the high dimensionality
of the models. To capture interesting yarn-level effects, the models
must be discretized at the resolution of yarn crossings, which, for
common garments, are typically in the order of millions.

Instead, the traditional approach to cloth simulation is to con-
sider cloth as a continuous surface, and discretize it using trian-

gles. The power of triangle-based cloth simulation is that the dis-
cretization can be adapted to the computational needs, while retain-
ing the large-scale behavior of cloth. This is particularly true with
remeshing techniques [NSO12], which place degrees of freedom
at regions of interest. However, triangle-based simulation misses
the accuracy and expressiveness of yarn-level models. Nonlinear-
ity, anisotropy, and internal friction require complex constitutive
material models [WOR11, MBT∗12, MTB∗13], which are difficult
to parameterize and hardly reach comparable results. Furthermore,
yarn-level plastic effects, such as snags, are just nearly impossible
with triangle-based discretizations alone.

In this paper, we present a computational solution to mix yarns
and triangles for cloth simulation. Our approach allows us to exploit
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the benefits of both worlds: the computational efficiency of trian-
gles at regions with smooth deformation, and the accuracy and ex-
pressiveness of yarns at regions with high detail. Our mixed repre-
sentation supports efficient triangle-based computations combined
with high-resolution yarn-level effects.

To combine yarns and triangles in a robust and seamless man-
ner, we propose an enriched kinematic representation, described in
Section 3. In this representation, the base triangle-level motion is
augmented with yarn-level displacements. We enforce uniqueness
of the representation thanks to a kinematic filter, which is designed
to provide an optimal coupling between yarns and triangles.

Following the enriched kinematics, we design enriched dynam-
ics that smoothly blend yarn-level and triangle-level mechanics.
The dynamics formulation, described in Section 4, is derived in
a sound manner, and handles efficiently the kinematic constraints
introduced by the filter.

However, the solution to the enriched dynamics problem exhibits
two notable challenges: rank deficiency produced by the kinematic
filter, and very poor conditioning produced by the combination of
radically different discretizations. In Section 5, we describe an ef-
ficient preconditioner that addresses both challenges.

We show multiple examples where we enrich triangle-based
cloth simulations with yarns at the resolution of real-world fabrics.
While the full yarn simulations would be hardly tractable, with our
mixed solution we reproduce yarn-level wrinkles and plasticity. We
demonstrate the effectiveness of our method to simulate the fit and
drape of garments while retaining yarn-level detail at regions of
interest, as shown in Fig. 1.

2. Related Work

Over ten years ago, Kaldor et al. [KJM08] introduced a yarn-level
model for the simulation of full garments in computer graphics.
Their work demonstrated that complex nonlinear and anisotropic
behaviors of garments arise naturally when mechanics are modeled
according to the construction structure of the fabrics. They modeled
yarns as deformable splines in contact, and the cost of the simula-
tion was dominated by inter-yarn contact handling. Later, Kaldor et
al. [KJM10] improved the efficiency of the model, applying care-
ful approximations at contact areas with high temporal coherence.
Despite the improvements, the model was still limited by the high
density of contacts, with the need to impose small time steps to
guarantee robust and accurate contact handling. Due to these limi-
tations, the work was demonstrated on thick-yarn knits.

Cirio et al. [CLMMO14] introduced an alternative yarn-level
model, under the assumption that yarns are in persistent con-
tact. They discretized fabrics at yarn crossings, with a single La-
grangian node representing the position of both crossing yarns,
plus two Eulerian coordinates to capture yarn sliding. Later, Cirio
et al. [CLMO17] extended their model to handle both knitted and
woven fabrics under a common representation. The persistent con-
tact model is more robust and allows larger time steps; as a result,
Cirio et al. demonstrated the model on cloth with as many as one
million crossing nodes. However, this is still far from the density
of real-world garments, which could reach or surpass ten million

yarn crossings. At the same time, it is hard to justify the need for
yarn-scale modeling everywhere on a garment; therefore, simula-
tion cost may be drastically reduced by using a yarn-scale model
only at regions of interest. To date, no work showed this.

Yarn-based models have seen application in computer graphics
for the design of fabrics and fabrication processes, in particular
for knits. Leaf et al. [LWS∗18] extended the model of Kaldor et
al. [KJM08] with support for periodic boundary conditions, and
thus simulate the relaxation of knit patches to aid the design of knit
patterns. Yuksel et al. [YKJM12] created a stitch mesh data struc-
ture that simplifies the generation of knit garments as a tiling proce-
dure, and Wu et al. [WSY19] later extended it to fulfill fabrication
constraints. Narayanan et al. [NWYM19] extended the stitch mesh
data structure even further, to augment it with fabrication opera-
tions, and thus use it in the context of fabrication-oriented editing.

The simulation of cloth at yarn scale could benefit from fast
solvers for high-resolution discretizations. These include GPU-
based [TTN∗13] and multigrid solutions [TJM15]. But yarn-based
models provide two benefits: one is very high resolution and hence
the ability to reproduce high level of detail, and the other is the
inherent ability to capture structural nonlinearity. Adaptive simu-
lation methods offer an alternative to obtain high level of detail
in a cost-effective manner. They are complementary to our work,
and can in principle be adopted in the triangle-based portion of
our method. Extended discussion is provided in a recent survey
on adaptive methods [MWN∗17]. A different approach to achieve
cost-effective simulations is to track geometric details in a La-
grangian manner and resolve complex collisions on an Eulerian
grid, as done following the Material Point Method [JGT17].

In recent last years, the ARCSim adaptive remeshing method
has reached great success [NSO12]. It defines a sizing field based
on local curvature, compression and velocity, and determines the
resolution of mesh edges dynamically based on the local value
of the field. The sizing criterion offers a compelling heuristic,
while remeshing operations take only a fraction of the simulation
cost. ARCSim has been extended to support folding and crum-
pling [NPO13], and tearing and cracking [PNdJO14].

Mesh refinement is one way to increase the resolution of a
model, the other is to enrich the basis functions that guide the dis-
cretization. Grinspun et al. [GKS02] introduced an adaptive sim-
ulation framework using hierarchical basis functions, and applied
it to cloth simulation among other use cases. The concept of en-
richment can also be viewed in more general terms, as defining a
set of coordinates that capture separately coarse motion and local
displacements, and solving a dynamics problem on the combined
representation. In terms of methodology, our work is most similar
to such enrichment simulation methods in computer graphics.

Enrichment has been applied in settings as diverse as adding lo-
cal detail to reduced simulations [HZ13], combining Eulerian sim-
ulations with several Lagrangian modes [FLLP13], or overlapping
arbitrarily different simulation domains [MGL∗15].

One important aspect in enriched representations is uniqueness
of the basis, i.e., a full-space motion should admit only one valid
representation in the basis. In finite element simulation, enrichment
is achieved by enforcing properties on the basis functions, e.g.,
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orthogonality. However, in our setting this is far from trivial, as
we combine two radically different representations. In this regard,
our work shares challenges with Eulerian-on-Lagrangian simula-
tion [FLLP13] and multifarious hierachies [MGL∗15]. In Eulerian-
on-Lagrangian simulation, the basis is not unique by construction,
but uniqueness is enforced on every simulation step, by first solving
an optimization problem on Lagrangian modes, and then solving
the residual problem on Eulerian degrees of freedom. In multifari-
ous hierarchies, uniqueness was enforced by imposing linear con-
straints on the velocities of the detailed simulation domain, and the
authors discussed ways to choose the constraints to decouple the
solution of the coarse and detailed domains. In our representation,
however, it is not possible to decouple the solution of triangle and
yarn degrees of freedom, because we blend energy terms that do
not affect yarn and triangle degrees of freedom equally. Moreover,
we enforce uniqueness thanks to carefully designed constraints, to
optimize the blending of yarn and triangle regions.

3. Enriched Cloth Kinematics

To allow a smooth transition between yarns and triangles in cloth
simulation, we devise an enriched kinematic representation, where
detailed yarn displacements are added to a base triangle motion.
We start this section describing the enriched representation. How-
ever, in its straightforward form, the kinematic representation is not
unique; it requires additional constraints to ensure uniqueness. We
formulate constraints such that the base triangle motion is an op-
timal match to the full yarn motion, and we implement these con-
straints efficiently through a kinematic filter on yarn displacements.

3.1. Mixed Kinematic Representation

Given a patch of cloth made of yarns, either woven or knitted,
we represent its dynamic behavior at the yarn level. Later in Sec-
tion 4, we will address the ability to transition patches represented
at yarn and triangle level, but our kinematic enrichment focuses on
yarn-based patches. To capture the kinematics of yarns, we use an
enriched kinematic representation: a triangle mesh represents the
base motion, while a yarn-based discretization represents detailed
motion. Our representation supports arbitrary methods for both the
triangle and yarn-level models, but for yarns we choose the per-
sistent contact model of Cirio et al. [CLMMO14]. The model of
Cirio et al. combines Lagrangian and Eulerian coordinates, but our
enriched kinematic representation is limited to the Lagrangian part
of the motion. We use Eulerian coordinates in full-yarn patches of
cloth; therefore, they do not require special treatment. As a pre-
process, we mesh the cloth using triangles, and for each yarn node
we detect its container triangle and compute its barycentric coordi-
nates.

We denote as v j ∈ IR3 the position of a triangle vertex, xi ∈ IR3

the displacement of a yarn node relative to its container triangle,
and βi, j the barycentric coordinate of the ith yarn node w.r.t. the jth

triangle vertex. To obtain the world position pi ∈ IR3 of a yarn node,
we simply compute its base position through barycentric interpola-
tion of the vertex positions, and we add the detail displacement:

pi = ∑
j∈tri(i)

βi, j v j +xi. (1)

We make two important observations about the computation of
the world position of a yarn node. First, the representation is not
unique; infinite combinations of triangle and yarn coordinate val-
ues produce the same world position. The kinematic filter presented
in the next section addresses precisely this problem. Second, we
choose to represent detail displacements in the global frame. This
is in contrast to other enrichment representations [MGL∗15], which
choose a local frame defined by the base motion. A local frame has
the advantage that detail displacements are invariant to base mo-
tion. Our choice of global frame, on the other hand, has the advan-
tage that the kinematic filter becomes constant, and this is highly
relevant for the computational efficiency of our method.

3.2. Kinematic Filter

To remove the redundancy in the kinematic representation, we must
add some constraints. One possibility is to define constraint equa-
tions that relate yarn displacements to triangle vertex positions, and
later derive the equations of motion following a constrained dynam-
ics formulation. Instead, we impose constraints through a filter ma-
trix [BW98, AB03], and thus we obtain non-redundant coordinates
and we derive the equations of motion for unconstrained dynamics.
We defer the derivation of the equations of motion to Section 4, and
here we focus on the definition of the kinematic filter.

We group triangle vertex positions in a vector v, detailed yarn
displacements in a vector x, and full yarn positions in a vector p. We
also define a matrix B that represents the basis for the base motion.
It stores barycentric weights, and transforms triangle positions into
the base component of world yarn positions according to (1).

Based on these definitions, we define the full yarn positions of a
patch of cloth as a function of enriched kinematics:

p = Bv+Fx, (2)

where F represents a kinematic filter that removes redundancy and
makes the representation unique. It must be a low-rank matrix that
removes from x as many degrees of freedom as those present in
v. There are infinite choices for F, which result in turn in infinite
combinations of v and x to represent the same p.

We seek one particular filter F, such that enriched cloth patches
can be seamlessly coupled to patches represented using only trian-
gles. To do so, we pose the condition that the base triangle motion
v should match the full yarn-level motion p as closely as possible.
This is achieved by making Fx orthogonal to Bv. Therefore, the
filter F must be the null-space projection of B:

F = I−B
(

BT B
)−1

BT . (3)

It is evident that BT F = 0.

The filter subtracts from identity a low-rank projection, of size
3× the number of triangle vertices in the enriched patch, in con-
trast to the large number of yarn nodes. Given some (unfiltered)
yarn-level vector, the filter is never explicitly computed, and it acts
as follows: (i) it projects the vector to the triangle domain using
barycentric weights, (ii) computes the best-matching triangle-level
vector by solving a linear system with matrix BT B, (iii) propagates
the result to the yarns using barycentric weights, and (iv) subtracts

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J.J. Casafranca, G. Cirio, A. Rodríguez, E. Miguel & M.A. Otaduy / Mixing Yarns and Triangles in Cloth Simulation

this result from the original vector. As a result, it yields the portion
of the vector that cannot be represented using the triangles. The
matrix BT B is constant, sparse, and small, of size 3× the number
of triangle vertices in the enriched patch, and we precompute its
Cholesky factorization. Moreover, the filter can be applied indepen-
dently for each Cartesian coordinate. By leveraging this property,
in practice we downsize the matrix by a factor of 9.

Our kinematic filter is used for the derivation of the equations of
motion according to unconstrained dynamics, as described next. At
runtime, it is used every time that a yarn-level vector is computed,
to filter out components that can be captured at triangle level.

4. Enriched Dynamics

The enriched kinematic representation described in the previous
section provides a mechanism to smoothly couple yarn and triangle
models in cloth simulation. In this section, we define the yarn and
triangle models and their transition, and we leverage the enriched
representation to derive the equations of motion in a sound manner.

4.1. Coupling Yarns and Triangles

We consider a cloth object divided into three regions. We define
these three regions thanks to a blending field α ∈ [0,1], such that
α = 0 indicates a triangle-only region, α = 1 a full-yarn region, and
otherwise a hybrid region. Our enriched kinematic representation
is applied on the hybrid region, and enables a smooth transition
between yarns and triangles.

Most importantly, we also use the blending field to smoothly
transition between yarn-based and triangle-based mechanics. With-
out loss of generality, at every point on the cloth object, and for
every type of mechanical energy (i.e., kinetic, elastic, and gravita-
tional), we define two energy density functions at different resolu-
tion: a yarn-based energy Ψp is defined on full yarn positions p,
and a triangle-based energy Ψv is defined on triangle positions v,
which, by definition of the kinematic filter, are an optimal match to
full yarn positions. Conceptually, we blend the energies as:

Ψ = αΨp +(1−α)Ψv. (4)

In practice, each energy density function is integrated on its corre-
sponding discretization (yarns or triangles), weighted by its corre-
sponding blending weight.

It follows naturally that, at locations where α = 0, the kinematics
and mechanics of the cloth can be represented using only triangles.
Similarly, at locations where α = 1, the kinematics and mechanics
of the cloth can be represented using only yarns. Elsewhere, we
use our enriched kinematics representation, and triangle and yarn
energies are blended. Note that, in the blending or hybrid region,
and due to the enriched kinematics, yarn energies depend on both
triangle positions and yarn displacements, hence the triangles in the
hybrid region contribute to both energies.

In our implementation, we have chosen the Saint
Venant-Kirchhoff elasticity [Ogd97] and the discrete shells
model [GHDS03] for the in-plane and out-of-plane mechanics
of triangles, respectively. Following the choice of the persistent
contact discretization of yarns, we have chosen corresponding

elastic models for woven and knitted fabrics [CLMO17]. In
practice, we weight the various discrete energy terms by the values
of the blending field α at the corresponding element centroids.

4.2. Equations of Motion

Thanks to the kinematic filter, we can form a set of generalized
coordinates consisting of triangle coordinates v and (filtered) yarn

displacements x, i.e., q =

(
v
x

)
. Then, we can apply the Euler-

Lagrange equations to obtain the equations of motion [GPS01]. The
resulting equations can be regarded as a filtered version of the full
redundant equations.

To apply the Euler-Lagrange equations, we must first compute
the total kinetic and potential energy of a cloth object. We do so
by integrating energy densities over triangles and yarns. In the hy-
brid region, where both triangles and yarns coexist, we compute all
energies at both triangle and yarn level, and we blend the resulting
energies following the coupling scheme described in Section 4.1
above. Recall that triangle-based energies depend only on triangle
kinematics, but yarn-based energies depend on both yarn and trian-
gle kinematics, due to the enriched kinematics in the hybrid region.

To define the total kinetic energy, we consider mass matrices Mv
and Mp, integrated, respectively, on the triangles and the yarns. In
the hybrid region, we compute mass terms as follows. We first de-
fine mass on yarns. For each yarn segment, we split its mass into
a “yarn mass” and a “triangle mass” based on the local value of
the blending weight. We use the “yarn mass” to compute the yarn-
based kinetic energy, and hence the mass terms that contribute to
Mp. We accumulate the “triangle mass” on triangles, and we lump
it on vertices to compute the triangle-based kinetic energy, and
hence the mass terms that contribute to Mv. Based on the mass
matrices Mv and Mp, we express the total kinetic energy as:

T = Tv +Tp =
1
2

v̇T Mv v̇+ 1
2

ṗT Mp ṗ. (5)

We rewrite the kinetic energy as a function of the generalized coor-
dinates, using the kinematic relationship (2), to obtain:

T =
1
2

q̇T SMSq̇, (6)

with generalized filter S =

(
I 0
0 F

)
, (7)

and mass matrix M =

(
Mv +BT Mp B BT Mp

Mp B Mp

)
. (8)

Since the computation of mass and kinetic energy in the hybrid
region starts from well-defined yarn masses, these quantities are
computed correctly.

To define the potential energy, we integrate energy densities on
triangles and yarns, and obtain two added energy terms Vv and
Vp. From the total potential energy, we obtain the conservative
forces on the generalized coordinates. These can be expressed as
a function of triangle-only and full-yarn forces fv = −∇vVv and
fp =−∇pVp:

−∇qV = Sf, with f =
(

fv +BT fp
fp

)
. (9)
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Figure 2: From left to right: (i) Simulation of a swinging cloth with our preconditioner; (ii) with no preconditioner, yarns lag behind triangles,
as they accumulate error; (iii) a naïve mass-diagonal preconditioner does not help, as it ignores the effect of the kinematic filter. In all three
cases, we used 100 iterations per MPCG solve. (iv) Comparison of convergence for one MPCG solve.

We trivially differentiate (2) to obtain the Jacobian of full-yarn
positions with respect to generalized coordinates, and we use the
transpose of this Jacobian to distribute the forces on full yarn po-
sitions, fp, to the generalized coordinates. They are distributed to
the triangles through the barycentric coordinates, and they are dis-
tributed to the yarn displacements after being filtered.

We can now express the Euler-Lagrange equations compactly:

SMq̈ = Sf. (10)

In practice, we add dissipative forces to f using the Rayleigh damp-
ing model. The yarn-level mass matrix Mp varies with time due to
yarn sliding in the model of Cirio et al. [CLMMO14]. However,
we discard its time derivative, which is equivalent to considering
it constant within each time step. Finally, note that the expression
uses filtered generalized accelerations, i.e., Sq̈ = q̈.

4.3. Dynamics Solver

We discretize the equations of motion using backward Euler nu-
merical integration with time step h, and we solve the resulting
nonlinear equations using Newton’s method. Each Newton itera-
tion involves solving a linear system of the form:

S
(

M−h
∂f
∂q̇
−h2 ∂f

∂q

)
∆q̇ = Sb. (11)

Figure 3: Our enriched model represents full yarn dynamics ex-
actly. This validation example shows, on top a full yarn simulation,
and on the bottom an enriched simulation (with coarse triangles in
wireframe). Small differences may appear over time due to differ-
ences in the linear system and the convergence of the solver.

The resulting system matrix is not full-rank, due to the filter
matrix S. However, this type of constrained linear system can be
solved efficiently through a minor modification to the conjugate
gradient solver, by applying the filter to the search direction on each
iteration of the solver [BW98, AB03]. This solver is referred to as
modified preconditioned conjugate gradient (MPCG).

In Fig. 3, we compare simulations of a patch of cloth modeled
with our enriched representation vs. yarns. We shear the patch by
pulling from two opposite sides, producing high tension as well as
wrinkles on the compressed direction. We validate that the enriched
representation captures the same motion as the full-yarn model.
Note that the exact solution to the nonlinear dynamics is the same
in both cases, but the solver of the linear system introduces sub-
tle differences over time. In this example, the enriched representa-
tion imposes an unnecessary computational overhead. The enriched
representation plays its role when mixing yarns and triangles in one
cloth object. However, we found that the straightforward solution
to (11) behaved poorly. In the next section we propose a solution
based on a carefully designed preconditioner.

5. Preconditioner for Enriched Systems

The linear system for the solution of enriched dynamics shown in
the previous section exhibits two notorious challenges. (i) It com-
bines elements of very different resolution (triangles and yarns),
which produces poor conditioning and residuals of very different
scale. (ii) It is rank-deficient, due to the filter that removes the re-
dundancy in the kinematics. We design a preconditioner that ad-
dresses the issues induced by differences in resolution, while re-
sponding to the challenge of rank deficiency. We start this section
providing further insight into the challenges, and we follow with a
detailed description of our preconditioner.

5.1. Problem Statement

To minimize the computational cost of a cloth simulation, triangles
are considerably larger than the inter-yarn distance. In our exam-
ples, we typically mesh one triangle on top of hundreds of yarn
nodes. As a result, the mass density of triangle vertices is several
orders of magnitude larger than the mass density of yarn nodes.
The difference is even more acute if we consider yarn nodes at the
interface of the hybrid region with the triangle-only region. Their
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kinetic energy is scaled by a very low blending weight α, hence
their mass is also scaled down notably. To partially alleviate this
problem, in our implementation we clamp small non-zero weights
α ∈ (0,0.01] to a value of 0.01.

The residual of the linear system (11) scales errors in velocity by
the system matrix. The visual impact of errors in the velocities of
triangle or yarn coordinates is effectively similar; however, errors
in the velocities of triangle coordinates are scaled by much larger
mass values. Consequently, the residual evaluation of the MPCG
solver is strongly biased by the error on triangle velocities, and the
search direction is not effective against visual error.

We have found that the disparity of mass densities has a devastat-
ing effect on the convergence of the MPCG solver, as evidenced in
Fig. 2. Interestingly, this challenge is hardly discussed in the com-
puter graphics simulation community, possibly because computer
graphics simulations do not exhibit elements with radically differ-
ent resolutions. Our solution strategy consists of multiplying the
system matrix in (11) by the inverse of the (filtered) generalized
mass matrix. This constitutes effectively the application of a pre-
conditioner in the MPCG solve. Moreover, an added benefit of this
preconditioner is that the residual evaluates errors in velocities, not
mass-scaled velocities. Unfortunately, the filtered generalized mass
matrix is rank deficient, hence the design of a preconditioner is not
a simple task. As a final remark, note that we have focused our at-
tention on the effect of the mass matrix in (11), discarding other
terms such as the stiffness matrix. We found this to be successful in
practice, but extending the analysis to the full system matrix is an
interesting direction for future work.

5.2. Preconditioner

The type of constrained linear problem in (11) was thoroughly stud-
ied by Boxerman [Box03], with the difference that he limited his
examples to filter matrices resulting from contact constraints. As
he argued, a preconditioner for a constrained matrix SA should not
be designed by approximating the unconstrained system matrix A,
as this approach ignores the effect of the filter, and then the inverse
of the preconditioner fails to improve the conditioning of the con-
strained system. Boxerman showed that the preconditioner should
approximate the augmented system SA+I−S instead. Effectively,
the added term makes the system full rank, by extending it to the
complementary subspace of the filter.

As discussed earlier, we wish to precondition (11) by removing
the mass-scaling of the problem, and thereby evaluate the prob-
lem’s residual using velocity changes. Then, we design our precon-
ditioner as

P = SM+ I−S. (12)

The inverse of the preconditioner is applied on every iteration of
the MPCG solver; therefore, it must be efficiently computed. We
demonstrate that P can be expressed as a low-rank update (with
rank determined by the triangles in the hybrid region) of an easily
invertible matrix (with size determined by the yarn nodes in the
hybrid region). Then, its inverse can be efficiently computed using
the Sherman-Morrison-Woodbury formula [GVL96].

Let us rewrite the generalized filter in (7) as a low-rank update
of identity:

S = I−US AS UT
S , (13)

with US =

(
0
B

)
and AS =

(
BT B

)−1
.

Similarly, let us rewrite the generalized mass matrix in (8) as a low-
rank update of an easily invertible block-diagonal approximation
M0:

M = M0 +UM AM UT
M , with UM =

(
0 I

Mp B 0

)
, (14)

AM =

(
0 I
I 0

)
and M0 =

(
Mv +BT Mp B 0

0 Mp

)
.

By substituting (13) and (14) into (12), we derive an expression
of the preconditioner as a low-rank update of M0:

P = M0 +UP AP VP, with UP =
(

US UM
)
, (15)

AP =

(
AS 0
0 AM

)
and VP =

(
UT

S (I−M)

UT
M

)
.

We use the Sherman-Morrison-Woodbury formula [GVL96] to
apply the preconditioner efficiently. This requires solving two lin-
ear problems. One is of full size and involves M0, whose structure
can be seen in (14). The yarn-level block is easy to invert, and for
the triangle-level block we compute a Cholesky factorization per
time step. The other problem is of low rank, non-symmetric, and
we compute an LU factorization. Its size is determined by the size
of AP in (15). However, same as for the computation of the kine-
matic filter in Section 3.2, we leverage that the three Cartesian coor-
dinates can be handled independently, and downsize the matrix by
a factor of 9. The effective size is then 3× the number of triangle
vertices in the hybrid region.

In Fig. 2 we show the effect of the preconditioner on a swing-
ing cloth example. Without preconditioner, yarns lag behind trian-
gles as they accumulate error. With our preconditioner, on the other
hand, the residual is correctly weighted on both types of nodes, and
the effect of the filter is correctly addressed. A naïve alternative,
using as preconditioner the diagonal of the mass matrix, has an ad-
verse effect.

6. Experiments and Results

6.1. Implementation Details

We model cloth objects as collections of 2D patches attached to-
gether in 3D, mimicking the sewing process of garments. The rest
shape is planar, except for some seams where we may set a non-
zero rest angle. The 2D patches are triangulated, and we also lay
the yarn structure on the 2D patches. We do this everywhere on
the cloth garment, also in areas that are simulated at triangle level,
for yarn-level rendering purposes. At every seam, we add an ad-
ditional rod aligned with the seam and we connect it to yarns that
reach the seam. As a postprocess to simulation, we subdivide the
triangle mesh on the triangle-only region using Loop subdivision,
and we transform dummy yarns from their 2D layout to 3D. We
generate splines from the resulting network of yarn crossings using
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Figure 4: Simulation of seam puckering, which occurs when two patches of different lengths are sewn together. From left to right: wrinkles of
a full-yarn model, incorrect puckering with a triangle-only model, accurate result with our mixed simulation, and distribution of yarns and
triangles in the scene.

the procedural method of Cirio et al. [CLMMO14], we mesh tubes
along the splines, and we render this geometry with path tracing.

In all our examples, the full-yarn region is predefined. We run
first a triangle-only simulation to identify areas of high stress and/or
high curvature, and label those as full yarn. The selection is manual,
not automated. Then, we define the hybrid region as the triangles
in the 1-ring around the full-yarn region. The blending field α is
linearly interpolated between 1 and 0 on these triangles.

Our runtime simulation method is implemented partly on GPU
and CPU. We carry out the following operations on the GPU: all
force computations (including penalty-based contact forces), sparse
matrix multiplications (including multiplication by the force Jaco-
bian and the sparse portions of the preconditioner within MPCG),
and multiplications by BT and B in the application of the filter (3).
We carry out the following operations on the CPU: collision de-
tection (using spheres for self-collisions and signed distance fields
for characters), and direct solves on small linear problems. As dis-
cussed in Section 3.2 and Section 5.2, the product with the filter and
the preconditioner require, in total, the solution to three small linear
problems on every iteration of MPCG. We fetch the right-hand-side
from the GPU, solve the systems using precomputed Cholesky or
LU factorizations as appropriate on the CPU, and copy the result
to the GPU. We found that, thanks to the small number of triangle
vertices on the hybrid region, these operations are not a bottleneck.

Due to the extremely dense resolution of yarn-level models, the
force Jacobian may simply not fit in video memory. Specific data
are reported in Table 1 and discussed in Section 6.3 below. To cir-
cumvent the memory limitation, our GPU implementation of the
product with the yarn-level force Jacobian is matrix-free. On every
MPCG iteration, we visit all yarn-level energy elements, and we
evaluate the Jacobian matrix terms of their local stencils.

We have executed all our experiments on a AMD Ryzen 7 3700X
8-core 3.60 GHz PC with 32 GB of RAM and a Nvidia GeForce
GTX 1080 Ti GPU with 11 GB of RAM.

6.2. Experiments

We have tested our simulation method on several experiments.
We have picked scenarios where the tension of garments produces
highly detailed wrinkling and plasticity effects, and hence the yarn-
level model becomes imperative. However, such effects are typi-
cally localized, which motivates the combination of yarns and tri-
angles for maximum efficiency.

Some of the experiments employ small patches of fabric to
demonstrate effects that may appear also on full garments. Fig. 5
shows a typical example of a sleeve wrinkling as the elbow bends.
Wrinkles and folds arise, crossing to and from the yarn and trian-
gle regions in the model, and the transition is handled smoothly by
our method. Fig. 4 shows the puckering effect when two patches
of different length are sewn together. One of the patches is pre-
stretched, and it compresses the other patch, producing fine wrin-
kles. We place yarns only at the seam, yet our method succeeds in
capturing puckering accurately. Fig. 7 shows an example of plas-
tic yield on a woven patch. Fine-scale plastic effects are supported
naturally, at structural level, by the yarn-level model. The example
demonstrates that the effect is captured smoothly even if yarns are
placed only close to the high-tension region. Fig. 6 shows an exam-
ple of plastic deformation due to internal friction at the yarn level.
In this case, we use a very small patch; nevertheless, the effect is
well represented with localized yarns.

Other experiments employ full garments to demonstrate effects
that appear in fit and drape simulations. In these experiments, we
initialize the garment by running a triangle-only simulation. Then,
we place yarns at regions of interest, and we execute a simulation to
relax the garment again. Fig. 1 shows a simulation of a cotton knit
shirt of very high resolution (close to 4M yarn crossings), where

Figure 5: A sleeve is simulated with a combination of yarns and tri-
angles. As shown in the inset, we place full yarns at the elbow joint.
As the elbow bends, wrinkles and folds appear around the joint.
These wrinkles and folds extend across both the yarn and triangle
regions, but the transition is handled smoothly by our method.
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Figure 6: Simulation of plastic deformation due to internal friction, resolved naturally at the yarn level. The patch is pulled from two corners
and then released, leading to plastic deformations. The effect is represented well even using yarns on a very thin strip of fabric.

the region of interest is placed at an armpit. The shirt is tight, under
high stress, and produces fine wrinkles in the area. The region of
interest does not cover all the surface where fine wrinkles appear,
but the simulation is sufficient to communicate the wrinkling effect.

Fig. 9 shows a simulation of a linen woven dress, where the re-
gion of interest is placed on the chest. Again, our mixed simula-
tion method succeeds at capturing fine local detail with a smooth
transition between the yarn and triangle models. In this example,
we have also evaluated the simulation result using triangle remesh-
ing [NSO12], on ARCSim. In this particular case, ARCSim fails
to produce the fine wrinkles of our enriched simulation. This lim-
itation of triangle remeshing may be due to two reasons. First, the
continuum elastic energy model may not reach the same accuracy
as the yarn-based model. Second, note that remeshing in ARCSim
is determined based on a heuristic sizing field, not a conservative
error estimation, hence it cannot guarantee a fully accurate result.
Note, however, that triangle remeshing is complementary to our
approach. Triangle remeshing would probably allow even smaller
yarn-based regions, thanks to the gradual transition from fine to
coarse triangles, and hence a lower computational cost. However,
by relying only on remeshing we would miss the extra mechanical
accuracy and yarn-level plasticity effects of our method.

Our examples focus on static cloth drape and fit. Beyond anima-
tion, these static drape simulations are of utter importance to ap-
plications such as fashion. Moreover, the simulations are not static
even if the desired final result is static. The fabric is initialized un-

Figure 7: We pull a woven patch from adjacent yarns in opposite
directions, and produce yarn-level plastic yield. The effect is cap-
tured smoothly with yarns placed only close to the high tension
region.

der high tension, as the yarns are laid on top of a triangle-based
initialization, and this tension induces notable local dynamics. Nev-
ertheless, our method works well for animated scenes. As a valida-
tion, we show the small example in Fig. 8. In dynamic scenes, how-
ever, the locations of wrinkles and detailed deformations are more
difficult to predict, and yarns should be introduced dynamically.

6.3. Performance Comparisons

In Table 1, we report the problem size, memory footprint, and com-
putational cost for the examples shown in the paper. In most cases,
we compare data of full simulations and our mixed simulations. On
the full garments, we achieve speed-ups of 25x (on the dress) and
5.6x (on the shirt). It is also important to pay attention to the mem-
ory footprint. With a full representation, the memory footprint of
the full-matrix implementation is often excessive for full garments,
and we must resort to a less efficient matrix-free implementation.
With the mixed representation, on the other hand, a full-matrix im-
plementation would be possible, which might introduce additional
performance gain.

All simulations were executed with adaptive time stepping, vary-
ing depending on the complexity of the contact configuration, the
stress of the fabric, and hence on the number of iterations of the
Newton solve. We used a reference time step of 0.1 ms for the full-
garment simulations, and 1 ms for the smaller examples.

Figure 8: Example showing dynamic interactions of a small patch
of cloth (5 cm × 5 cm) with a ball. We place yarns on the attach-
ment and collision regions, and the simulation handles smoothly
the transition to and from yarns and triangles.
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Example
Full yarn Hybrid yarn Triangle-only Hybrid Memory (MB) Memory (MB) Time (secs)

nodes nodes vertices vertices (matrix-free) (with matrix) per step

Shirt (mixed) (Fig. 1) 88 388 62 261 2 066 66 371 772 6.54
Shirt (full) (Fig. 1) 3 757 255 - - - 3 419 13 500 36.5

Dress (mixed) (Fig. 9) 83 382 31 460 6 067 124 373 679 2.88
Dress (full) (Fig. 9) 2 662 944 - - - 2 997 10 096 72.2

Elbow (Fig. 5) 14 437 4 002 2 352 115 221 270 4.65
Puckering (mixed) (Fig. 4) 57 808 12 814 1 781 231 293 481 0.41

Puckering (full) (Fig. 4) 245 156 - - - 457 1 110 1.72
Plastic yield (mixed) (Fig. 7) 6 124 18 675 1 031 220 278 476 0.80

Plastic yield (full) (Fig. 7) 44 622 - - - 446 564 2.63

Table 1: Statistics for the experiments shown in the paper. We report the problem size, memory footprint, and computational cost. The
reference time step was 0.1 ms for the full garments, and 1 ms for the smaller examples. As a reference, we also report the estimated memory
footprint with a matrix-based implementation of the force Jacobian.

7. Limitations and Future Work

In this work, we have presented a simulation method that combines
yarn and triangle models on the same cloth object. We obtain high
detail at regions of interest, with a smooth transition to a coarser
but more efficient representation on the overall object. The solu-
tion is possible thanks to a novel enrichment approach that tackles
kinematics, dynamics, and solver efficiency.

Our work demonstrates the potential of mixing yarns and trian-
gles, but it also suffers from limitations, and several further im-
provements are possible. At present, our model supports static but
not dynamic adaptivity of the representation. Dynamic adaptivity
can be approached in two ways. One is to enrich the triangle rep-
resentation with yarns on the fly. The other one is to adopt adap-
tive remeshing [NSO12] on the triangle region. In our method, we
leverage precomputation to use efficient solvers in the filter and the
preconditioner. Frequent and large updates to the discretization of
the hybrid region could hamper this precomputation; therefore, the
design of a solution for adaptivity is not free of challenges.

Since yarn and triangle models are mixed, a smooth transition
also depends on the similarity of their energy models. We esti-
mated parameters for the triangle model to match energies of the
yarn model under uniform stretch and bending. However, the be-
havior of the two models is not identical. For knits, in particular, our
choice of triangle-level energy cannot capture the anisotropy of the
fabrics. More complex energy models, based on strain-dependent
interpolation [WOR11, MBT∗12], might improve the similarity.

As mentioned in Section 3, our enriched representation is limited
to the elastic deformation of the fabric; it does not support plastic
deformation. Plasticity is possible and demonstrated in our exam-
ples, but it is handled only in full-yarn regions. It might be possible
to include a triangle-level plasticity model, and design an enrich-
ment approach for the Eulerian coordinates of the yarn model.

To conclude, our mixed representation succeeds to balance well
the number of degrees of freedom of the overall simulation, and
hence its impact on the simulation cost, by placing yarns only at
regions of interest. However, enriching a triangle-based simulation
with yarns also has a negative effect on the time step, due to the use

of smaller elements. One approach to alleviate this problem might
be the use of a multi-step numerical integration scheme.
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