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Figure 1: Why do animated characters always look sharp in their clothes? We introduce a robust, controllable and efficient bending model to
yarn-level cloth, which allows the simulation of very high-resolution wrinkles. The images compare a simulation with and without rest-shape
wrinkles, which affect the formation of folds.

Abstract
To deploy yarn-level cloth simulations in production environments, it is paramount to design very efficient implementations,
which mitigate the cost of the extremely high resolution. To this end, nodal discretizations aligned with the regularity of the
fabric structure provide an optimal setting for efficient GPU implementations. However, nodal discretizations complicate the
design of robust and controllable bending. In this paper, we address this challenge, and propose a model of bending that is
both robust and controllable, and employs only nodal degrees of freedom. We extract information of yarn and fabric orientation
implicitly from the nodal degrees of freedom, with no need to augment the model explicitly. But most importantly, and unlike
previous formulations that use implicit orientations, the computation of bending forces bears no overhead with respect to other
nodal forces such as stretch. This is possible by tracking optimal orientations efficiently. We demonstrate the impact of our
bending model in examples with controllable anisotropy, as well as ironing, wrinkling, and plasticity.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Yarn-scale cloth simulation inherently captures the structural com-
plexity of fabrics, and hence the rich nonlinearities of fabric me-
chanics arise in a natural manner [KJM08]. However, this richness
comes at an expensive price. The simulation of yarn-scale contacts
and deformation modes requires the discretization of yarns at a
density equal or higher to the crossings of yarns, which can eas-
ily surpass millions on common garments. Then, production-ready
yarn-level simulation code, either for animation or for fashion, must
maximize computation speed and minimize memory usage.

We seek a massively parallel simulation algorithm, which lever-
ages the regularity of common fabrics, for a highly efficient GPU
deployment. We build on the Eulerian-on-Lagrangian (EoL) model
of Cirio et al. [CLMMO14], which sets simulation nodes at yarn
crossings and handles inter-yarn contacts as persistent constraints
with yarn sliding. Their regular nodal discretization simplifies
memory access and favors efficiency on a GPU implementation.

Unfortunately, nodal discretizations of yarns complicate the de-
sign of bending models. The lack of yarn orientation prevents con-
trollable anisotropy, and curved rest shapes challenge robustness
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through undefined gradients and multiple stable configurations. To
avoid these difficulties, yarn and rod models often carry explicit
orientations [Pai02,BWR∗08,ST09]. However, we wish to retain a
purely nodal discretization to maximize implementation efficiency.

In this paper, we introduce a robust and controllable bending
model for yarn-level cloth simulation with nodal discretizations.
As discussed in Section 3, our model defines an orientation on each
yarn crossing, and measures bending of a yarn segment based on its
deviation from the orientation of the crossing. We can easily define
non-zero rest bending, which enables effects such as ironing and
wrinkling, as well as the curved rest shapes of some knit fabrics.
Using the orientation of crossings, we can also model anisotropy
without interference of in-plane and out-of-plane bending.

We define the orientation of a crossing as the minimizer of the
bending energy of the crossing. In Section 4 we describe how to
compute this orientation through a simple optimization. But, most
importantly, in Section 5 we demonstrate that, in contrast to prior
work that uses implicit orientations, the optimality of the orienta-
tion simplifies dramatically the computation of bending forces on
yarn nodes.

We demonstrate the impact of our bending model in examples
with rich yarn-scale effects, such as ironing, wrinkling, and plastic-
ity. As shown in Figure 1, our animated clothing is not sharp and
free of wrinkles. The combination of yarn-level discretization with
robust and controllable bending enables realistic wrinkles.

2. Related Work

Traditionally, computer graphics research has treated fabric as a
continuous elastic material, with a wide variety of bending models
for particle discretizations [Pro95, CK02] and triangle discretiza-
tions [BW98, BMF03, GHDS03]. Yarn-level models, however, fol-
low a fundamentally different approach by explicitly modeling ev-
ery yarn in the fabric. Our work relies mainly on two sub-fields of
computer simulation: rod simulation and yarn-level cloth simula-
tion, that will be covered in the following subsections.

2.1. Simulation of Rods

There is no shortage of models to simulate rods. The simplest ap-
proaches use mass-spring systems [RCTI91,SLF08,IMP∗13], trad-
ing accuracy for speed. Most physically grounded methods, how-
ever, describe rods using adapted frames along a curve. By dis-
cretizing the Cosserat geometry model, early approaches [Pai02,
ST07] benefit from an explicit representation of the centerline us-
ing full coordinates, but need constraints to force the frames to fol-
low the centerline. Reduced coordinate models, on the other hand,
can avoid constraints while retaining a compact representation of
the centerline. An example of this is the discrete elastic rod model
of Bergou et al. [BWR∗08,BAV∗10], whose curve-angle represen-
tation enforces the oriented frame to always follow the centerline.
Since, in addition, the centerline is treated explicitly, the method
has become very popular in the graphics community. Other ap-
proaches use reduced coordinates [BAC∗06], albeit with an implicit
treatment of the centerline.

Since we are interested in modeling bending at yarn crossings,

we seek inspiration from methods that can efficiently simulate
rod junctions. Cosserat Nets [ST09] use Cosserat Rods [ST07]
to model networks of elastic rods linked by elastic joints. To en-
force the constraints inherent to the Cosserat model, the authors
resort to using penalty forces and coordinate projection. Pérez et
al. [PTC∗15] model rod networks using the discrete elastic rod
model [BWR∗08]. For each rod incident to a junction, bending and
twist energies are formulated with respect to all other rods in the
junction after removing any rigid transformation. This rigid trans-
formation is computed by minimizing the deformation of all inci-
dent rods with respect to the rest pose of the junction. Using an im-
plicit solver becomes challenging due to dependencies among inci-
dent rods and the use of junction rotations. Zehnder et al. [ZCT16]
circumvented this problem by defining junction rotations as explicit
degrees of freedom, in contraposition to Pérez et al. [PTC∗15] im-
plicit approach.

2.2. Yarn-Level Simulation of Cloth

The first incursion into yarn-level modeling of fabrics can be
attributed to Peirce [PFF37], who proposed in 1937 a geomet-
ric model of yarns crossing in woven fabric. Since then, tex-
tile research has devoted a lot of attention to yarn-level models
to better understand the behavior of fabric. Ranging from ana-
lytical yarn models [HGB69, KNK73] to continuum models of
yarns [NTL98, PW00, DKBP06], multiscale models [NPS06], or
simple beams and trusses [Ree03,MCM03], these approaches usu-
ally focus on small portions of fabric in controlled experiments,
ignoring the computational complexity of full-size garments.

Addressing this shortcoming, the seminal work of Kaldor et
al. [KJM08, KJM10] emerged as the first to be able to simulate
entire knitted garments at the yarn level, from scarfs to sweaters,
using inextensible rods and stiff penalty forces for resolving con-
tacts between yarns. More recently, Leaf et al. [LWS∗18] used this
work to simulate knit patches at interactive rates, leveraging an ef-
ficient GPU implementation and the periodicity of boundary condi-
tions. The model of Kaldor et al. also has been used in conjunction
with the stitch mesh data structure to define the construction of knit
garments as a tiling procedure [YKJM12].

Instead of explicitly computing yarn-yarn contacts throughout
the fabric, Cirio et al. [CLMMO14, CLMO17] considered contacts
as persistent in time, thus avoiding the expensive treatment of col-
lisions while still capturing yarn-level behavior in full garments.
They modeled yarns as flexible rods, and added sliding degrees of
freedom at yarn crossings, allowing complex plastic effects, such
as snags. Recently, Sánchez-Banderas et al. [SBRBO20] have im-
proved the discretization of persistent contacts, extending the ap-
plicability of the model to more complex fabrics. Earlier, they also
improved the damping behavior of yarn-level models, making it
more controllable [SBO18].

In our work, we seek to achieve a good trade-off between the
efficiency and quality of yarn-level simulation. Other works try to
optimize this trade-off in different ways. Recently, Casafranca et
al. [CCR∗20] have developed a method to mix yarn and triangle
representations on the same simulation, focusing the use of yarns
only at regions of interest. Sperl et al. [SNW20], on the other hand,
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Figure 2: Simulation of a patch of cloth with a crease, flap-
ping under gravity. Top: using the bending model of Cirio et
al. [CLMMO14], the rest shape flips when the crease flattens out.
Bottom: using our bending model, the simulation is robust.

have introduced a homogenization method that estimates thin-shell
deformation models from yarn-scale simulations. Finally, Jiang et
al. [JGT17] use the Material Point Method to track yarn-level de-
tails in a Lagrangian manner, while resolving collisions on an Eu-
lerian grid.

The various yarn-level simulation methods differ in how they
model bending. Kaldor et al. [KJM08] first modeled bending us-
ing the curvature of a non-oriented spline representation of yarns.
They supported only straight rest shapes. Later [KJM10], they
adopted the discrete elastic rod model of Bergou et al. [BWR∗08,
BAV∗10], with non-straight rest shape but isotropic bending. Cirio
et al. [CLMMO14, CLMO17] modeled bending using the angles
between piecewise linear yarn segments, allowing non-zero rest
angles. As discussed in the introduction, we favor a purely nodal
discretization due to its convenience for efficient GPU implemen-
tation. However, with a purely nodal discretization, and due to the
lack of curve orientation, the simulation of non-straight rest shapes
leads to robustness problems in previous models. The bending en-
ergy of Cirio et al. is defined as E = 1

2 k (ψ− ψ̄)2, with ψ the angle
between two adjacent segments, ψ̄ the rest angle, and k the stiff-
ness. The bending force is f =−k (ψ− ψ̄)∇ψ. Unfortunately,∇ψ

is undefined for ψ = 0. For straight yarns, this is not a problem,
as the gradient is multiplied by the zero angle. But for non-straight
yarns, the force is discontinuous. The yarn can pick any of the infi-
nite stable configurations. As shown in Figure 2, this model is not
robust, and a patch with a crease can flip toward a different rest
shape. In contrast, our model, presented next, handles non-straight
rest shapes robustly.

3. Formulation of the Bending Model

In this section, we present our novel bending model for yarn-level
cloth models. The section starts with definitions of the relevant vari-
ables, and it follows with the definitions of bending strains and the
resulting energies.

3.1. Definitions

We model yarns as deformable rods, discretized by a sequence
of nodes. We group all node positions of a yarn-level discretiza-
tion in a large vector x. One important assumption of our model
is that nodes are placed at yarn crossings, as bending is mostly
concentrated at contacts, and yarns can be considered in tension
and straight between crossings. We ignore the twist deformation

Figure 3: A crossing of two yarns in rest shape, showing the main
elements of our bending model. We characterize each yarn segment
by its length vector t, and the crossing by its orientation R. We
rotate a deformed segment to the rest shape, RT t, and we measure
the axis angle φ w.r.t. the rest-shape segment vector t̄. With the rest-
shape normal of the crossing, n̄, we can separate in-plane and out-
of-plane bending.

of yarns, as done by others before [KJM08, CLMMO14], since
the tight packing of yarns prevents any noticeable twist. In our
work, we build on the Eulerian-on-Lagrangian method of Cirio et
al. [CLMMO14] for contact handling, but our method is not limited
to Eulerian-on-Lagrangian discretizations.

For each yarn segment incident on a crossing, let us define a vec-
tor t joining the crossing with the next crossing. This is the differ-
ence vector between adjacent yarn nodes, as depicted in Figure 3.
We denote rest-shape quantities with an overbar, e.g., t̄ denotes the
rest-shape yarn segment. We also characterize a yarn crossing by
its orientation R (a rotation matrix), with the normal n oriented per-
pendicular to the fabric surface. The estimation of the orientation
is discussed in Section 4. We initialize the rest-shape normal n̄ by
fitting a plane to the incident yarn segments {t̄i}. In most fabrics,
the rest shape is flat and the normal is trivially defined. However,
we use non-flat rest shapes to model ironing, plastic wrinkles, or
high-resolution bending of knit fabrics such as rib knits.

3.2. Bending of Yarn Segments

As noted earlier, our yarn bending model is inspired by the model
of rod networks of Pérez et al. [PTC∗15], but we extend their con-
cepts to yarn crossings. The main insight of their model is that yarn
bending is captured in the deviation from the overall orientation of
a connection (a crossing in our case). However, we depart in how
to account for anisotropy (see later in this subsection) and how to
estimate orientations (See Section 4).

Given a deformed yarn configuration, we estimate the overall
orientation R of each yarn crossing. Based on this orientation, one
could define the rotated rest segments Rt̄, and characterize bending
of the corresponding yarn by the axis angle between the rotated rest
segment and the current segment t. In practice, we choose instead
to rotate the current segment to the rest shape of the crossing, RT t,
and measure the axis-angle vector φ with the rest segment:

φ = axis_angle
(

t̄,RT t
)
. (1)
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Figure 4: Control of bending anisotropy with our model. We simulate two hanging cloths (from an edge, cut at 45 degrees, and from a strip)
with a matrix of values of in-plane stiffness (ks, fabric shear stiffness) and out-of-plane stiffness (kb, fabric bending stiffness). As evidenced
in the images and the accompanying video, the stiffness of the two deformation modes can be controlled independently. For better viewing
the shear deformation when the cloth hangs from an edge, we draw the contour of the undeformed shape with a dotted line.

The exact expression of the axis-angle vector is given in the Ap-
pendix.

The axis angle φ can capture bending of the yarn around an-
other yarn (e.g., bending of a warp yarn around a weft yarn), but
it can also capture shear between crossing yarns. Different bend-
ing directions lead to different intensity of contact forces between
the crossing yarns, and this suggests the need for an anisotropic
bending model. We use the orientation of the axis angle φ w.r.t.
the rest-shape normal t̄ of the crossing to distinguish in-plane yarn
bending (i.e., fabric shear) vs. out-of-plane yarn bending (i.e., fab-
ric bending).

We define in-plane bending strain of a yarn segment as the com-
ponent of the axis angle in the direction of the normal of the cross-
ing:

εs =
1
L

n̄T
φ. (2)

Similarly, we define out-of-plane bending strain of a yarn segment
as the component of the axis angle in the null space of the normal
of the crossing:

εb =
1
L

(
I− n̄ n̄T

)
φ. (3)

In both cases, the strain definition includes a division by the seg-
ment length L, as this yields a metric of discrete curvature. This
metric will allow the definition of strain energy densities with
discretization-independent stiffness values, which can be integrated
along the yarn segment.

Pérez et al. [PTC∗15] built their rod network model on top of
the rod model of Bergou et al. [BWR∗08]. In their case, anisotropy
is determined by the shape of the rod cross-section, and captures

different bending resistances in the normal and binormal directions
of the rod. This is different from our notion of anisotropy, which is
determined by the orientation of the crossing, not the yarn itself.

3.3. Bending Energy of a Yarn Crossing

Based on the in-plane (i.e., shear) and out-of-plane (i.e., bending)
strains in (2) and (3) respectively, and with in-plane stiffness ks and
out-of-plane stiffness kb, we define the total bending energy of a
yarn segment as

Esegment =
1
2

Lks ε
2
s +

1
2

Lkb ε
T
b εb. (4)

The energy can be written in a compact way by defining an
anisotropic discrete stiffness matrix K = 1

L kb I+ 1
L (ks− kb) n̄ n̄T :

Esegment =
1
2

φ
T Kφ. (5)

In practice, and to maximize efficiency, we orient the rest configu-
ration such that n̄ = (0,1,0)T is aligned with the Y axis. Then, the

stiffness matrix is diagonal, K = 1
L

 kb 0 0
0 ks 0
0 0 kb

.

Adding together the energies of all segments incident in a cross-
ing, we can define the bending energy of a yarn crossing:

Ecrossing = ∑
i

Esegment,i. (6)

As shown in Figure 4, we succeed to control independently the
stiffness of in-plane and out-of-plane deformations. We simulate
hanging patches of woven cloth in two different setups: (a) cut at 45
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degrees and hanging from an edge with additional weights, to pro-
duce fabric shear deformation, and (b) cut at 0 degrees and hang-
ing from a strip under its own weight, to produce fabric bending
deformation. The shear deformation is dominated by the in-plane
stiffness ks, while the bending deformation is dominated by the out-
of-plane stiffness kb, thus validating correct handling of anisotropy
in our model.

4. Orientation of a Yarn Crossing

The orientation R of a yarn crossing is a key ingredient of our bend-
ing model. In the bending model of Pérez et al. [PTC∗15], the ori-
entation is defined geometrically, following a shape matching pro-
cedure [MHTG05]. This approach decouples the definition of the
orientation from the force model.

We propose, in contrast, to define the orientation as the optimizer
of the bending energy of the yarn crossing (6). At first sight, this
choice increments the computational complexity, since the bending
energy is more complex than the shape matching energy. However,
as discussed in detail in Section 5, our choice simplifies dramati-
cally the computation of bending forces. The savings in force com-
putation largely outweigh the overhead in the estimation of orien-
tations.

On every simulation step, after each node position update, we
recompute the optimal crossing orientations. To this end, we fol-
low a Gauss-Newton scheme with line-search. We express an in-
cremental rotation with axis-angle vector θ, which yields a lin-
ear approximation (I+ skew(θ)) R to the rotation, with skew(θ) = 0 −θz θy

θz 0 −θx
−θy θx 0

. Using this linear approximation, we it-

erate until convergence the optimality condition of the bending en-
ergy with respect to the orientation:

∂Ecrossing

∂θ
= 0. (7)

By substituting (5), (6) and the linear approximation of φ with
respect to θ, the optimality condition (7) translates into:(

∑
i

∂φi

∂θ

T
Ki

∂φi

∂θ

)
θ =−∑

i

∂φi

∂θ

T
Ki φi. (8)

With this equation, we solve for θ, update the rotation R, validate
that the energy of the crossing decreases (and apply line search
otherwise), and execute a new iteration of (8). The derivation of the
Jacobian of the bending axis angle φ is discussed in the Appendix.

An alternative to our Gauss-Newton approach would have
been to first compute a linear transformation and then find the
closest rotation through polar decomposition (or novel alterna-
tives [MBCM16]). However, the computation of the linear transfor-
mation is not well conditioned if the rest configuration is flat, which
requires special treatment. Our Gauss-Newton approach does not
suffer from this problem and converges fast under the typical tem-
poral coherence of dynamic simulations.

Figure 5: Computation stencils for various force models, shown on
a typical woven fabric with nodes at yarn crossings. The colors in-
dicate the stencils of individual forces; the gray patterns indicate
the stencils of the force Jacobians, i.e., their sparsity patterns. Left:
stretch (blue), bending (red) and shear (green) stencils for the force
models of Cirio et al. [CLMMO14]. Middle: bending/shear sten-
cil (yellow) with crossing orientations computed based on shape
matching [PTC∗15]. Right: our bending/shear stencil (magenta).

5. Bending Forces

For each yarn crossing, we must compute bending forces resulting
from (6). This requires the evaluation of the full gradient of the
energy of the crossing w.r.t. nodal positions x. These affect the en-
ergy of the crossing in two ways: directly through the change of
axis angles of the incident yarn segments, and indirectly through
the change of the optimal crossing orientation. Therefore, the full
gradient should be computed taking into account also the implicit
change of the crossing orientation θ:

f =−
∂Ecrossing

∂x

T

− ∂θ

∂x

T
= 0

��
���∂Ecrossing

∂θ

T

. (9)

The Jacobian of the change of orientation, ∂θ

∂x , can be obtained by
applying the implicit function theorem to the optimality condition
of the orientation (8). A similar procedure was followed by Pérez et
al. [PTC∗15] and, while doable, it carries a notable computational
cost. Moreover, the evaluation of bending forces on a yarn node
requires visiting the 2-ring of nodes, due to mutual influence on
optimal crossing orientations. This large computational stencil is
problematic as we seek a highly efficient GPU implementation.

Fortunately, and as highlighted in (9), one can avoid altogether
the Jacobian of the change of orientation. Since the orientations of
crossings are optimal under the same bending energy, the gradi-
ent ∂Ecrossing

∂θ
naturally cancels out. Bending forces can be computed

by evaluating solely the direct gradient w.r.t. nodal positions. We
have tested computing the orientation following a shape matching
procedure, as Pérez et al. [PTC∗15], together with ignoring the Ja-
cobian of the change of orientation. As shown in the accompanying
video, this simplification yields wrong forces that produce a com-
plete mismatch in the simulation.

The simplification of the formulation has also a subtle implica-
tion, which is however important for an efficient GPU implementa-
tion. The bending force can be computed separately for each yarn
segment, and in this way the force computation kernel only needs
to access the two incident nodes:

fi =−
∂Esegment,i

∂x

T

=−∂φi

∂x

T
Ki φi. (10)
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Figure 6: Preservation of angular momentum of a rotating patch of
cloth, with no gravity. With our implicit definition of optimal rota-
tions, this patch satisfies the “tennis racket theorem”, as expected.
Please watch the accompanying video.

The derivation of the Jacobian of the bending axis angle φ is dis-
cussed in the Appendix.

For implicit integration, we approximate the force Jacobian as

∂fi

∂x
=−∂φi

∂x

T
Ki

∂φi

∂x
. (11)

An accurate expression would require the Hessian of the bending
axis angle as well as Jacobians w.r.t. the crossing orientation. How-
ever, in practice we found the expression above to provide a good
search direction in the Newton solve of implicit integration. As
shown in Figure 5, our force model yields both force and Jacobian
stencils that are considerably more compact. Combining the com-
pactness of the bending force stencil with the approximation of its
Jacobian, we manage to reduce the number of non-zero blocks per
node from 13 in the work of Cirio et al. [CLMMO14] to just 5.

We have tested that, with the implicit definition of optimal rota-
tions, our bending model preserves angular momentum correctly.
Figure 6 shows several snapshots of the animation of a rotating
patch of cloth, with no gravity. It satisfies the “tennis racket theo-
rem”, i.e., the rotation around the intermediate principal axis of the
inertia tensor is not stable. Please watch the accompanying video.
After one second of simulation the angular momentum decreases
by just 8%, due to numerical damping of the integration method.

6. Results

We have implemented the proposed bending model in a mas-
sively parallel GPU simulator, following the design of Cirio et
al. [CLMMO14, CLMO17]. This section validates and showcases
the different properties of the model. We refer the reader to the ac-
companying video for the animations discussed in this section. The
section concludes with a summary of performance.

6.1. Control of Bending Properties

As discussed already in Section 3, our bending model allows the in-
dependent control of the fabric’s rest shape and in-plane and out-of-
plane bending properties. For the simulations shown in Figure 4, we
have used as reference material parameters estimated from a patch
of linen fabric. The material has the following properties. For both
weft and warp: 2.3 yarns per mm, with a radius of 0.17 mm, and
40 mg/m. The stretch stiffness is 1.35 in weft and 29.5 in warp. For
shear and bending, we have used the same reference stiffness values
in weft and warp, kb = 10−8 and ks = 3.5 · 10−10. In the hanging
simulations, we compare the results with experimental values of

Figure 7: As a 2x2 rib knit fabric is stretched (left, top to bottom),
first its undulations are flattened, then loops are straightened, and
finally yarns resist stretch. This complex geometric deformation
renders a nonlinear force response to the overall stretch (right). We
achieve this complex behavior thanks to the controllability of our
bending model, setting non-flat rest shapes and anisotropic stiffness
values.

kb = 10−10 and ks = 3.5 ·10−11. To test the bending behavior, we
hang from a strip a small patch of 30 mm×30 mm, with 2200 sim-
ulation nodes, cut at 0 degrees. To test the shear behavior, we hang
from an edge a larger patch of 83 mm ×83 mm, with 36358 sim-
ulation nodes, cut at 45 degrees. We used a larger patch plus extra
weights to induce more evident shear deformations.

Our model also allows accurate simulation of knitted fabrics.
Figure 7 showcases the complex geometric behavior and nonlinear
macroscopic force response of a 2x2 rib knit patch during a stretch-
ing deformation. In the first regime, the patch offers small resis-
tance while the rib undulations are flattened. Then the loop shapes
are deformed by the straightening of the yarns along the stretch
direction, adding more resistance to the motion. Finally yarns are
fully straight, leading to a stiff response caused by the stretch stiff-
ness of the yarns. To simulate this complex nonlinear behavior, we
set a non-planar rest shape following the rib undulations, and we
assign a lower value to the out-of-plane stiffness than the in-plane
stiffness, to favor flattening of undulations prior to straightening
of loops. In the model of Cirio et al. [CLMO17], the forces in the
rib undulations were modeled by adding complex wrapping forces,
which can turn problematic under strong stretch, as the loops de-
form.

With our model, it is easy to control separately the draping and
stretch behavior of a knit fabric, which are dominated by out-of-
plane and in-plane bending stiffness, respectively. This degree of
control is difficult with previous yarn-level models, either derived
from the work of Kaldor et al. [KJM08], where the inter-yarn con-
tact stiffness plays a major role, or derived from the work of Cirio
et al. [CLMMO14], which cannot effectively separate the various
bending modes. Figure 8 shows different drape behaviors by vary-
ing in-plane and out-plane bending stiffness of a knit 2x2 rib patch.
The patch has 34408 simulation nodes, with a loop density of 435
loops/m in the course direction and 555 loops/m in the wale di-
rection. The yarns have a radius of 1 mm and a mass density of
200 mg/m. We have used a stretch stiffness of 10, and the in-plane
and out-of-plane bending stiffness values are shown in the figure.
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Figure 8: A 2x2 rib knit patch draped on a sphere, simulated with
four combinations of in-plane stiffness (ks) and out-of-plane stiff-
ness (kb). With our model, one can control the drape behavior of
a knit fabric (dominated by out-of-plane bending) independently
from its stretch behavior (dominated by in-plane bending).

6.2. Rest-Shape Editing

Our model allows the robust handling of non-zero rest angles,
which are critical to represent several interesting effects present in
cloth and garments, such as wrinkles, ironing or seams. The follow-
ing scenarios showcase the modeling and robust handling of these
effects using our model.

One can introduce ironing creases easily by defining a non-zero
rest angle along a line of the fabric. As a preprocess, we edit the
local segment vectors of the crossings traversed by the crease, and
we estimate the rest orientation of the crossings accordingly. As
shown in Figure 9, the ironing lines are clearly preserved during
the simulation. As shown in the accompanying video, they are also
simulated robustly in the presence of collisions.

By modifying the rest angles dynamically, one can also model
plasticity effects. In Figure 10 a piece of fabric is first compressed
inside a shrinking sphere. When the maximum compression is
reached, we modify the rest angles to match the current deforma-
tion. Later, we pin the fabric at two corners and let it hang, and the
plastic deformations are clearly visible. While we did not explore it
to date, physics-based plastic effects could be added to our model
by modifying the rest angles according to a yield criterion.

Another convenient approach to apply wrinkles, easy to intro-
duce in an artistic production environment, is the use height maps
that can be directly applied to modify the planar rest shape of any
piece of fabric. We use this approach to edit wrinkle maps and cus-
tom printed designs, as shown in Figure 11 Note that the wrin-
kles affect the mechanical behavior, introducing a bias direction to
bending deformations, and they flatten or bend further during the
simulation. These effects cannot be achieved by simply adding a
height map as a postprocess.

Figure 9: A square piece of fabric ironed on one diagonal with a
rest angle of 90 degrees. The crease is preserved during the simu-
lation, and it affects the overall mechanical behavior as expected.

Finally, Figure 1 shows our bending model on a full garment.
The model behaves well under dynamic simulations with fast mo-
tion and collisions. Similar to the example in Figure 11, we add
a wrinkle map to the garment. The wrinkles are preserved during
the full simulation and affect the mechanical behavior of the fabric
material. This example uses a plain weave fabric with the following
settings, for both warp and weft yarns: 746 yarns per meter, with
a radius of 0.26 mm, and 90 mg/m. The stretch stiffness is 10. For
shear and bending, we have used stiffness values of kb = 3.5 ·10−9

and ks = 8 ·10−10. The garment totals 229214 simulation nodes.

6.3. Performance

We have executed our simulations on an AMD Ryzen 7 3700X
CPU with 32 GB of RAM, and a NVIDIA GeForce GTX 1080 Ti
GPU with 11 GB of RAM. For the shirt in Figure 1, we have used
adaptive time stepping. We set a reference time step of 1 ms, which
is maintained during 95% of the simulation. In the remaining 5%,
the time step goes down to 0.5 or 0.25 ms. The small time step
is required by the high stiffness of stretch forces together with the
presence of small yarn segments at seams. The cost of a simulation
step is of 5.8 seconds on average. The complete simulation lasts
8 seconds, which amounts to a total computation time of roughly
14 hours. We have also compared performance with the bending
and shear model of Cirio et al. [CLMMO14], as well as the use of
shape matching for the estimation of rotations [PTC∗15]. With re-
spect to the model of Cirio et al., our approach incurs in an overhead
of 85%, albeit with the improved properties discussed in the paper.
Despite the reduction in the computational stencil discussed in Sec-
tion 5, our approach requires the extra cost of estimating crossing
orientations. With respect to the use of shape matching, we achieve
a performance gain of 2.7×.

7. Conclusions and Future Work

We have presented a novel bending model for yarn-level cloth sim-
ulation, which features controllability and robustness properties
that were missing in previous nodal discretizations. As shown in
the examples, this novel model allows the simulation of wrinkling
effects that were difficult before.

© 2020 The Author(s)
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Figure 10: A hanging piece of cloth (left) is crumpled by a shrink-
ing sphere (middle). Then, we modify the rest angles of our bending
model according to this shape, to produce a plasticity effect. As we
remove the sphere and let the cloth hang, the deformed shape is
largely affected by the crumpling state (right).

Our model suffers some limitations that motivate lines for fu-
ture work. While it supports anisotropy, the differences in bend-
ing stiffness are limited to in-plane vs. out-of-plane behavior. Since
out-of-plane bending captures the effect of yarns bending around
each other, it appears relevant to make this stiffness asymmetric as
well. Similarly, we use a constant stiffness for all bending angles,
but in reality creases exhibit a highly nonlinear stiffness. We have
observed that prescribed wrinkles can momentarily flatten out in
our simulations, but this effect is not present in reality. Altogether,
it appears interesting to make bending forces nonlinear w.r.t. the
bending angle, with the stiffness a function of the rest angle. In
connection with this extension, stiffness functions and rest angles
could be estimated from deformation examples of real fabrics.

In the proposed bending model, forces are a function of the ori-
entation of a crossing and the orientation of each particular yarn
segment. Effectively, this approach projects the full dimensionality
of the bending behavior to a six-dimensional space. This projection
involves inevitable simplifications w.r.t. the full setting. In addition,
as acknowledged in the paper, we ignore yarn twist. However, one
could try to estimate yarn twist from the relative orientations of
adjacent crossings.

In some examples, we have applied plasticity simply by chang-
ing the rest angles of yarn segments. However, plasticity and fric-
tion could be modeled by applying yield and Coulomb models to
the axis angle, respectively. These plasticity and friction effects
would complement the sliding coordinates of the yarn-scale model.

To conclude, we pay attention to numerical approximations
adopted in our solvers. Both in the computation of rotations and in
the implicit integration solve, we discard second derivatives of the
axis angle. We found this approximation to be effective in dynamic
simulations, thanks to the high temporal coherence. However, this
approximation may not be suitable for static simulations that try to
take larger steps.
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Figure 11: Using height maps, one can define non-flat rest shapes.
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achieved by simply adding wrinkles as a postprocess.
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Appendix A: Derivatives of Axis Angle

Given two vectors t̄ and RT t, one can compute the axis-angle vec-
tor representation (1) of their smallest relative rotation using their
cross and dot products, c and d respectively:

φ = arctan
(
‖c‖
d

)
c
‖c‖ , (12)

with c = t̄×
(

RT t
)

and d = t̄T RT t.

Our bending model requires the computation of Jacobians of this
axis angle w.r.t. an incremental change θ of the rotation R, and w.r.t.
the nodal positions x. We can express a generic differential of the
axis angle as

δφ =

((
d c

d2 + cT c
−φ

)
cT

cT c
+

φ
T c

cT c
I
)

δc− c
d2 + cT c

δd. (13)

This differential is not robust for small axis angles (limφ→0). In
that case, we substitute in (12) the approximation limφ→0

tan φ

φ
= 1,

which yields:

lim
φ→0

φ =
c
d
, lim

φ→0
δφ =

1
d
(δc−φδd) . (14)

The necessary Jacobians of the cross and dot products can be
computed as

∂c
∂θ

= skew(t̄)RT skew(t), ∂c
∂x

= skew(t̄)RT ∂t
∂x

, (15)

∂d
∂θ

= t̄T RT skew(t), ∂d
∂x

= t̄T RT ∂t
∂x

. (16)
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