INDATA N.V.
FRANS SMOLDERSSTRAAT 18

1940 ST. STEVENS WOLUWE

TEST

tel. 6g-32 (02~ 721 2099

«//’./,/&O' ~

(INDATA)

bel. 09-32 (0)2—752. 2818 (b~ Halu

MANUAL

DESK COMPUTER

Indate
thy, DOS Vi@

»

COPYRIGHT

Copyright by INDATA N.V. All rights reserved. No part of
this Manual may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any lan-
guage or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual
or otherwise, without the prior written permission of INDATA
N.V. Frans Smoldersstraat 18, 1940 St. Stevens-Woluwe
(Belgium).

DISCLAIMER

INDATA N.V. makes no representations or warranties with
respect to the contents hereof and specifically disclaims
any implied warranties of merchantability or fitness for any
particular purpose. Further, INDATA N.V. reserves the right
to revise this Manual and to make changes from time to time
in the content hereof without obligation of INDATA N.V. to
notify any person of such revision or changes.

First Printing : January 1983

SUMMARY

INTRODUCTION
CHAPTER I : POWER SUPPLY
CHAPTER 1II : PROCESSORT PART; MEMORY MAP

A) Introduction
B) Processor
C) Memory Map

CHAPTER III : DYNAMIC RAM MEMORY

CHAPTER IV : VIDEO TIMING

1) Programmable Graphics Genrator
A) Control Word Format
— Mode Byte
— Colour Type Byte
B) Data Mode
- 4 Colour Mode
- 16 Colour Mode
— Character Mode

2) Hardware Timing

CHAPTER V : INPUT/OUTPUT

1) Keyboard and RS-232
2) The DCE-BUS

3) Sound and Paddle

4) Cassette Interface

CHAPTER VI : PAL AND RGB CARD

CHAPTER VII : TESTING THE DESK COMPUTER

1) PIN CONNECTIONS
2) SMALL FUNCTION CHECK

APPENDIX

INTRODUCTION

The INDATA DC (DESK COMPUTER) is designed to provide the
maximum capability that can economically be provided to an
individual. The design is realised such that programs are
loaded from a low cost audio cassette or a floppy drive. The
result of program execution are output to the user via a PAL
or RGB standard television receiver. The Graphical Sound
Generation also outputs two tracks of separated sound for
left and right stereo combinations, and the sound channel of
the television. ¥ig. 1 is a logical block diagram of the
Desk Computer.

The Desk Computer is also equiped with circuitry required to
connect two game paddles, two cassette recorder interfaces
with motor control, RS5232-interface (printer or VDU
connection) and a DCE-BUS interface (24 bit parallel 1/0
Port.)

The Desk Computer is housed in a attractive cream-coloured
plastic case, light and yet robust. Behind the keyboard,
which has a block metal surround, is a useful well-excellent
for holding cassette tapes, pens or pencils. The back plane
is also black metal, matching the keyboard. The top case may
be removed by popping four plastic plugs.

Inside everything appears neatly laid-out (Fig. 2).
The Desk Computer is partitioned into 6 segments :

- The Power Supply
Processor Part

RAM Memory

Timing

1/0 Section

PAL or RGB colour card

- .[o, ,® - - L) - Com 2 1
e "J"'Ta%é%‘:“’u " "G.”I.' t I'wz' '&;3.' - "::“° ‘e ot .‘4.. ittt i
Loexzt -~ ¢ .
. ’.’ o h A7 ! 000000000000 :
rey e oira {
(5 . ! .
Pz A ws ow: 0 iwernd o é ‘
7 terresss eerees O Eig ‘;.x::.‘.J H 13 .
R ws, ze ¢ JeRLES® | Jue wezcs § | gx9 | reo ¥ P S U
I > 136 Hreseees | ’ od
. . telimcza ¥t

oTT O

o1ty 1o

eseasens o .

e rererore | 0; .
reesere 25 o Telze.zes | Al e—
__‘l‘ 3 beseeset. ‘e IT&|°| css .
be P % vy . e il ;
. : 2 2 o !
Ea0Y - . Tes
eI I o ts o ool eie
PRI -0 ¢ AP 70D Y '
. -'o-‘mrvm. rfoom«{ N hinid -
e S coss o039 2 . 4, *
5 e
P R b * e Lo e oxnTo *
- :.::i—ﬁo TCOQf-0ﬂ1 i ﬁoooo:001~' . ‘,,-c:." . . _"*: .m:m.b
—= i s o g Ler ' ° Otanl ‘¥ + R . S .
.l ey i ues2 Iffllc 3 GG .1 ! | A oxTe
bo3-Id + + 4 o L e 0TS
< s s olmo gmwn 0 St m2
21t : HEH R E s
. o o« N
PR . CRE—— “Lie
. S, 9 00 T e
. - -
2 oK
., o 30 1oe
o '{Lma ...--..-Ed ’Zm; . * Py ..
o MPT = Db aran-iiaud
) b
e I v’
el o o -
e o o .,
L ¥ o » ® ‘
Cie ST 16k o 4 8T /65 el I 0.
9 » (314 - - - -
-— e oo

. 1 . =+ o] LeC
oo oT CFB oo ST LYY S L?* .
.

¢ ¢ r¢ et
“ie STCBl i &;F.:csz-'[:\w,

pa
€86 &y T liceE e

L
LICP6 o* i *
O l. cq;T .A/CQ-? o

-
.

3

i 00e s |, T ol -'1.
4 ec®

2t .
ST i/css 4.7:53..
. .

RISV RS RS
.x% oz e | F . 033

& cf
. Ny et
e ... e
Ly [inial] RIS yosoaes
00_5___‘ Stz RSN ¥ E | tens l“ﬁ” .
pE PRI . . 5 @ esesess IV rooteae °
Bhel e b B3 * ticus | ‘e . *
2 s _g"” €113 R”a so0000y .:' .o ttreed [".“, §
3 B Viens | . . R . . . e =:
-] sooesed ° .
-5 4
00 00 00 00 00 00 00 00 00 00 00-00 00 00
. . . .
L.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
. . .

00 00 00 00 00 00 006 00 00 60 00 00 00 00 00

®
A S

i
{.p3

;}:

KEYBOARD oo -

{7

CHAPTER I. THE POWER SUPPLY

The switch of the Power Supply is a red plastic switch which
lights when the power is on. A small green led on the board
lights also and is a thoughtfull touch since is not always
possible to see the power switch. On the left side of the
power switch is the AC main connector (always set on 220V).

After the trafo we have an AC voltage of 17V (on both coils)
and after the bridge rectifier (BR1) 22V DC (pos. and neg.).
These DC voltages are stabilised by C55 and C56.

The +12V and the -5V are obtained by two voltage regulators
(7812 and 7905) with on the +12 regulator a current driver
(TIP 34B). So the output current of these voltages can be :
+12V:4A and -5V:1A). The +5V is not obtained with a usual
+5V requlator but with a switching regulator circuit.

The basic circuit of a step-down switching regulator circuit
is shown in Fig. 3

. o | T
W,

R

Basic Step-Down Swifching Regulator

The circuit works as follows ;

Q1 is used as a switch which has ON and OFF times controlled
by the pulse width modulator. When Q1 is ON, power is drawn
from Vin and supplied to the load through L1l; VA is at
approximatively Vin. D1 is reverse biased and Co is
charging. When Q1 turns OFF the inductor L1 will force VA
negative to keep the current flowing in it. Dl will start
conducting and the load current.will flow through D1 and L1.
The voltage at VA is smoothed by the L1, Co filter giving a
clean DC output. The current flowing through L1 is equal to
the nominal DC load current plus somed IL which is due to
the changing voltage across it.

an*t Al

I lo \\/\/\/\//\ 40.% o
>V ’
Va " toN tOFF -
S0V m—— L

The DC convertor without losses or the story of the
switching Power Supply

A[L .
12v SW A : Y IDC

PWMIY,]

Voltage Stabilisation

The Switch SW has ON and OFF times controlled by the pulse
with modulator. The frequency of the PWM is cte but the ON
and OFF time can be changed by the error—and comparatore
circuit. To understand the working of the circuit we assume
that Vo cannot change in such a short period (because of the
great LC time cto). Idc is the load current. The time,SW is
ON,is tl and the time ,SWis OFF is t2. The sum of both is the
total period T.

TIME T1
o . P V-V, - *
12V SW Va L)
. - SRnET, e
I ‘C*J_ 'nc |y

When SW is ON, Power is drawn from Vin=12V and supplied to
the load through L1. VA is equal to Vin. D1 is reverse
biasd and Co is charging. The voltage over the coil is
constant (12V-Vo) and so the current through L will be an
increasing sawtooth (di/dt =-elL/L)

The DC part of IL flows through the load while the AC part
charge the capacitor. The current IL also builds a magnetic
field in the coil so it will take a certain energy.

TIME T2

12V

T _ ‘ J.Ic |
| IIL Y

——-
0
3

The energy that was built up during T1 will now be used to
try to keep the same current in the circuit (current in a
coil can't change immediately) so there will be voltage of
self induction that has the opposite polarity of the voltage
during t1 (el = -L di) . So the current will again be a

dt
savetooth but this time decreasing.

What is the value of Vo?

T is very small and LC has a very big time cte it is obvious
that Vo=Vec is the average value of the voltage on A

Vo = 12V x tl'= 12V x tl1 = 12V x duty cycle
tl + t2 T

So when you change the duty cycle you change the output
voltage. The error amplifier measures Vo. When Vo is too
high then the duty cycle will be decreased by the

comparator so Vo will be decreasing until Vo is too low

and the opposite happens. All the control circuity (error
amplifier, oscillator, PWM) is installed in the LM 3524. See
block diagram Fig. 8.

s -
REFERENCE
Vin O - AEGULATOR VRer

v

t SY TO ALL
INV INPUT O _L INTEANAL CIRCUITRY

ERROR
AMPLIFIER

- v

4 v ATOR
4CL SENSE O—1 +
+
12
e SIV p COLLECTOR A
§
~CL SENSE Opng — a L
= R ‘

0w — >t '
SHUTDOWN CramAA\A\ o N = EMITTER A
: 17
1% T COLLECTOR B
- o
= v
| 1
; ‘/\/\/\, ot EMITTER D

o |

[] OSCILLATOR
Ay O

Gnp t.)-j__ _J-__

S osciuiaton
auTeut

Internal voltage requlator

The LM3524 has on chip a 5V,50mA short circuit protected
voltage requlator. This voltage regulator provides a supply
for all internal circuity of the device and can be used as
an external reference.

Oscillator

The LM3524 provides a stable on-board oscillator. Its
-frequency is set by an external resistor Rt and Ct. The
oscillator's output provides the signals for triggering an
internal Flip Flop, which directs the PWM information to the
outputs, and a blanking pulse to turn of both outputs during
transitions to ensure that cross conduction doesn't occur.
The width of the blanking puls, or dead time is controlled
by the value of Ct.

Error amplifier

The error amplifier is a differential input, transconduc-
tance amplifier. The amplifier's inputs have a common-mode
input range of 1,8V-3,4V. The on board regulator is biasing
the inputs in this range.

Output stage

To maintain more power off the +5V (the LM324 gives a
max-current of 100 mA) the switch is made of 2 transistors
(T3 and T4) which can be used for currents till 4A.

The currents drawn from the Power Supply by the computer
(with PAL Color Card) are :

- +12V : 300mA
- + 5V : 2,1A
- - 5V : 50 mA

CHAPTER II. PROCESSOR PART

A) INTRODUCTION

The DESK COMPUTER processor section is designed around the
8080A Microprocessor. The design is based upon the popular
and economical DCE microcomputer architecture. The
microcomputer section consists of the microprocessor and
timing circuity; the ROM and Static RAM memory. Interrupt
control and Internal Timer Logic.

This chapter will introduce certain basic computer concepts.
It provides background information and definitions which
will be useful in later chapters of this manual. Those
already familiar with computers may skip this material at
their option.

A typical digital computer consists of :

a) A central processor unit (CPU)
b) A memory
c) Input/output (I/0) ports

The memory serves as a place to store Instructions, the
coded pieces of information that direct the activities of
the CPU, and Data, the coded pieces of information that

are processed by the CPU. A group of logically related
instructions stored in memory is referred to as a Program.
The CPU "reads" each instruction from memory in a logically
determined sequence, and uses it to initiate processing
actions. If the program sequence is coherent and logical,
processing the program will produce intelligible and useful
results.

The memory is also used to store the data to be manipulated,
as well as the instructions that direct that manipulation.
The program must be organized such that the CPU does not
read a non-instruction word when it expects to see an
instruction. The CPU can rapidly access any data stored in
memory; but often the memory is not large enough to store
the entire data bank required for a particular application.
The problem can be resolved by providing the computer with
one or more Input Ports. The CPU can address these ports
and input the data contained there. The addition of input
ports enables the computer to receive information from
external equipment (such as cassette recorder or floppy-
disk) at high rates of speed and in large volumes.

A computer also requires one or more Output Ports that
permit the CPU to communicate the result of its processing
to the outside world. The output may go to a TV, for use by
a human operator, to a peripheral device that produces
"hard-copy" such as a line-printer, to a peripheral storage
device, such as floppy disk unit, or the output may
constitute process control signals that direct the

oy

operations of another system, such as the DCE Cards. Like
input ports, output ports are addressable. The input and
output ports together permit the processor to communicate
with the outside world.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU must be able to
fetch instructions from memory, decode their binary contents
and execute them. It must also be able to reference memory
and I/0 ports as necessary in the execution of instructions.
In addition, the CPU should be able to recognize and respond
to certain external control signals, such as INTERRUPTand
WAIT requests.

A typical central processor unit (CPU) consists of the
following interconnected functional units :

* Registers
* Arithmetic/Logic Unit (ALU)
* Control Circuitry

Registers are temporary storage units within the CPU. Some
registers, such as the program counter and instruction
register, have dedicated uses. Other registers, such as the
accumulator, are for more general purpose use.

ACCUMULATOR

The accumulator usually stores one of the operands to be
manipulated by the ALU. A typical instruction might direct
the ALU to add the contents of some other register to the
contents of the accumulator and store the result in the
accumulator itself. In general, the accumulator is both a
source (operand) and a destination (result) register.

Often a CPU will include a number of additional general
purpose registers that can be used to store operands or
intermediate data. The availability of general purpose
registers eliminates the need to "shuffle" intermediate
results back and forth between memory and the accumulator,
thus improving processing speed and efficiency.

PROGRAM COUNTER (JUMPS, SUBROUTINES AND THE STACK)

The instructions that make up a program are stored in the
system's memory. The central processor references the
contents of memory, in order to determine what action is
appropriate. This means that the processor must know which
location contains the next instruction.

Each of the locations in memory is numbered, to distinguish
it from all other locations in memory. The number which
identifies a memory location is called its Address.

The processor maintains a counter which contains the address
of the next program instruction. This register is called the
Program Counter. The processor updates the program counter
by adding "1" to the counter each time it fetches an
instruction, so that the program counter is always current
(pointing to the next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the
programmer may violate this sequential rule is when an
instruction in one section of memory is a Jump instruction
to another section of memory.

A jump instruction contains the address of the instruction
which is to follow it. The next instruction may be stored in
any memory location, as long as the programmed jump
specifies the correct address. During the execution of a
jump instruction, the processor replaces the contents of its
program counter with the address embodied in the Jump. Thus,
the logical continuity of the program is maintained.

A special kind of program jump occurs when the stored
program "Calls" a subroutine. In this kind of jump, the
processor is required to "remember" the contents of the
program counter at the time that the jump occurs. This
enables the processor to resume execution of the main
program when it is finished with the last instruction of the
subroutine.

A Subroutine is a program within a program. Usually it is

a general-purpose set of instructions that must be executed
repeatedly in the course of a main program. Routines which
calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often
written as subroutines. Other examples might be programs
designed for inputting or outputting data to a particular
perlpheral device.

The processor has a special way of handling subroutines, in
order to insure an orderly return to the main program. When
the processor receives a Call instruction, it increments the
Program Counter and stores the counter's contents in a
reserved memeory area known as the Stack. The stack thus
saves the address of the instruction to be execute'd after
the subroutine is completed. Then the processor loads the
address specified in the Call into its Program Counter. The
next instruction fetched will therefore be the first step of
the subroutine.

The last instruction in any subroutine is a Return. Such

an instruction need specify no address. When the processor
fetches a Return instruction, it simply replaces the current
contents of the Program Counter with the address on the top
.of the stack. This causes the processor to resume execution
of the calling program at the point immediately following
the original Call Instruction.

Subroutines are often Nested; that is, one subroutine will
sometimes call a second subroutine. The second may call a
third, and so on. This is perfectly acceptable, as long as
the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing se. In
other words, the maximum depth of nesting is determined by
the depth of the stack itself. If the stack has space for

storing three return addresses, then three levels of
subroutines may be accomodated.

Processors have different ways of maintaining stacks. Some
have facilities for the storage of retunr addresses built
into the processor itself. Other processors use a reserved
area of external memory as the stack and simply maintain a
Pointer register which contains the address of the most
recent stack entry. The two static mosRAM'S (IC74x75 ; sheet
1) are used as stack memory in the Desk Computer. IC74 is
the RAM for the low nibble and IC75 is the high nibble RAM).
So these RAM's are selected together (as their memory space
is only 256x4 bit) to form a 8bit memory. The external stack
allows virtually unlimited subroutine nesting. In addition,
if the processor provides instructions that cause the
contents of the accumulator and other general purpose
registers to be "pushed" onto the stack or "popped" off the
stack via the address stored in the stack pointer,
multi-level interrupt processing (described later in this
chapter) is possible.. The status of the processor (i.e. the
contents of all the registers) can be saved in the stack
when an interrupt is accepted and then restored after the
interrupt has been serviced. This ability to save the
processor's status at any given time is possible even if an
interrupt service routine, itself, is interrupted.

INSTRUCTION REGISTER AND DECODER

Every computer has a Word Length that is characteristic of
that machine. A computer's word length is usually determined
by the size of its internal storage elements and
interconnecting paths (referred to as Busses); for

example, a computer whose registers and busses can store and
transfer 8 bits of information has a characteristic word
length of 8-bits and is referred to as an 8-bit parallel
processor. An eight-bit parallel processor generally finds
it most efficient to deal with eight-bit binary fields, and
the memory associated whith such a processor is therefore
organized to store eight bits in each addressable memory
location. Data and instructions are stored in memory as
eight-bit binary numbers, or as numbers that are integral
multiples of eight bits : 16 bits, 24 bits, and so on. This
characteristic eight-bit field is often referred to as a
Byte.

Fach operation that the processor can perform is identified
by a unique byte of data known as an Instruction Code or
Operation Code. An eight-bit word used as an instruction
code can distinguish between 256 alternative actions, more
than adequate for most processors.

The processor fetches an instruction in two distinct
operations. First, the processor transmits the address in
its Program Counter to the memory . Then the memory returns
the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction
Register, and uses it to direct activities during the
remainder of the instruction execution.

The mechanism by which the processor translates an

instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, should be intuitively clear to any logic designer.
The eight bits stored in the instruction register can be

.decoded and used to selectively activate one of a number
of output lines, in this case up to 256 lines. Each line
represents a set of activities associated with execution of
a particular instruction code. The enabled line can be
combined with selected timing pulses, to develop electrical
signals that can then be used to initiate specific actions.
This translation of code into action is performed by the
Instruction Decoder and by the associated control
circuitry. :

An eight-bit instruction code is often sufficient to specify
a particular processing action. There are times, however,
when execution of the instruction requires more information
than eight bits can convey.

One example of this is when the instruction references a
memory location. The basic instruction code identifies the
operation to be performed, but cannot specify the object
address as well. In a case like this, a two-or three-byte
instruction must be used. Successive instruction bytes are
stored in sequentially adjacent memory locations , and the
processor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved from
memory is placed in the processor's instruction register,
and subsequent bytes are placed in temporary storage; the
processor then proceeds with the execution phase. Such an
instruction is referred to as Variable Length.

ADDRESS REGISTER(S)

A CPU may use a register or register-pair to hold the
address of a memory location that is to be accessed for
data. If the address register is Programmable, (i.e. if
there are instructions that allow the programmer to alter
the contents of the register) the program can "build" an
address in the address register prior to executing a Memory
Reference instruction (i.eW. an instruction that reads data
from memory, writes data to memory or operates on data
stored in memory).

ARITHMETIC/LOGIC UNIT (ALU)

All processors contain an arithmetic/legic unit, which is
often referred to simply as the ALU. The ALU as its name
implies, is that portiom of the CPU hardware which performs
the arithmetic and logical operations on the binary data.

The ALU must contain an Adder which is capable of

comb’ining the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits the
processor to perform arithmetic manipulations on the data it
obtains from memory and from its other inputs.

. Using only the basic adder a capable programmer can write

routines which will subtract, multiply and divide, giving
the machine complete arithmetic capabilities. In practice,

A0

however, most ALU's provide other built-in functions,
including hardware subtraction, boolean logic operations,
and shift capabilities.

The ALU contains Flag Bits which specify certain

conditions that arise in the course of arithmetic and
logical manipulations. Flags typically include Carry, Zero,
5ign, and Parity. It is possible to program Jumps which

are conditionally dependent on the status of one or more
flags. Thus, for example, the program may be designed to
Jump to a special routine if the carry bit is set following
an addition instruction.

CONTROL CIRCUITRY

The control circuitry is the primary functional unit within
a CPU. Using clock inputs, the control circuitry maintains
the proper sequence of events required for any processing
task. After an instruction is fetched and decoded, the
control circuitry issues the appropriate signals (to units
both internal and external to the CPU) for initiating the
proper processing action. Often the control circuitry will
be capable of responding to external signals, such as an
interrupt or wait request. An Interrupt request will cause
the control circuitry to temporarily interrupt main program
execution, jump to a special routine to service the inter-
rupting device, then automatically return to the main
program. A Wait request is often issued by a memory or I/0
element that operates slower than the CPU (for example the
9511 Math Chip Processor). The control circuitry will idle
the CPU until the memory or I/0 port is ready with the data.

COMPUTER OPERATIONS

There are certain operations that are basic to almost any
computer. A sound undestanding of these basic operations is
a necessary prerequisite to examining the specific
operations of a particular computer.

TIMING :

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, and so on. This
orderly sequence of events requires precise timing, and the
CPU therefore requires a free running oscillator clock which
furnishes the reference for all processor actions. The
combined fetch and execution of a single instruction is
refered * to as an Instruction Cycle. The portion of a

cycle identified with a clearly defined activity is called a
State. And the interval between pulses of the timing
oscillator is referred to as a CLock Period. As a general
rule, one or more clock periods are necessary for the
completion of a state, and there are several states in a
cycle.

INSTRUCTION FETCH

The first state(s) of any instruction cycle will be dedi-
cated to fetching the next instruction. The CPU issues a

read signal and the contents of the program counter are sent
to memory, which responds by returning the next instruction
word. The first byte of the instruction is placed in the
instruction register. If the instruction consist of more
than one byte, additional states are required to fetch each
byte of the instruction. When the entire instruction is
present in the CPU, the program counter is incremented (in
preparation for the next instruction fetch) and the
instruction is decoded. The operation specified in the
instruction will be executed in the remaining states of the
instruction cycle. The instruction may call for a memory
read or write, an input or output and/or an internal CPU
operation, such as a register-to-register transfer or an
add-registers operation.

MEMORY READ

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU's
instruction register. The instruction fetched may then call
for data to be read from memory into the CPU. The CPU again
issues a read signal and sends the proper memory address;
memory responds by returning the requested word. The data
received is placed in the accumulator or one of the other
general purpose registers (not the instruction register).

MEMORY WRITE

A memory write operation is similar to a read except for the
direction of data flow. The CPU issues a write signal, send
the proper memory address, then sends the data word to be
written into the addressed memory location.

WAIT (MEMORY SYNCHRONIZATION)

As previously stated, the activities of the processor are
timed by a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited by
the memory's Access Time Once the processor has sent a

read address to memory, it cannot proceed until the memory
has had time to respond. Most memories are capable of
responding much faster than the processing cycle requires. A
few, however, cannot supply the addressed byte within the
minimum time established by the processor's clock.

Therefore a processor should contain a synchronization
provision, which permits the memory to request a Wait
State. When the memory receives a read or write enable
signal, it places a request signal on the processor's
READY line, causing the CPU to idle temporarily. After the
memory has had time to respond, it frees the processor's
READY line and the instruction cycle proceeds.

INPUT/OUTPUT

Input and Output operations are similar to memory read and
write operations with the exception that a peripheral I/0
device is addressed instead of a memory location. The CPU

issues the appropriate input or output control signal, sends
the proper device address and either receives the data being
input or sends the data to be output.

Data can be input/output in either parallel or serial form.
All data within a digital computer is represented in binary
coded form. A binary data word consists of a group of bits;
each bit is either a one or a zero. Parallel I/0 consists

of transferring all bits in the word at the same time, one
bit per line (8255). Serial I/0 consists of transferring

one bit at a time on a single line (5501). Naturally serial
I/0 is much slower, but it requires considerably less
hardware than does parallel I/0.

INTERRUPTS

Interrupt provisions are included on many central
processors, as a means of improving the processor's
efficiency. Consider the case of a computer that is
processing a large volume of data, portions of which are to
be output to a printer. The CPU can output a byte of data
within a single machine cycle but it may take the printer
the equivalent of many machine cycles to actually print the
character specified by the data byte. The CPU could then
remain idle waiting until the printer can accept the next
data byte. If an interrupt capability is implemented on the
computer, the CPU can output a data byte then return to data
processing. When the printer is ready to accept the next
data byte, it can request an interrupt. When the CPU
acknowledges the interrupt, it suspends main program
execution and automatically branches to a routine that will
output the next data byte. After the byte is output, the CPU
continues with main program execution. Note that this is, in
principle, quite similar to a subroutine call, except that
the jump is initiated externally rather than by the program.

More complex interrrupt structures are possible, in which
several interrupting devices share the same processor but
have different priority levels. Interruptive processing is
an important feature that enables maximum untilization of a
processor's capacity for high system throughput.

HOLD (Used for DCE-BUS CONNECTION;PIN 49; SHEET 1)

Another important feature that improves the throughput of a
processor is the Hold. The hold provision enables Direct
Memory Access (DMA) operations.

In ordinary input and output operations, the processor
itself supervises the entire data transfer. Information to
be placed in memory is transferred from the input device to
the processor, and then from the processor to the designated
memory location. In similar fashion, information that goes
from memory to output devices goes by way of the processor.

Some peripheral devices, however, are capable of
transferring information to and from memory much faster than
the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput will be increased by

having the device accomplish the transfer directly. The
processor must temporarily suspend its operation during such
a transferr, to prevent conflicts that would arise if
processor and peripheral device attempted to access memory
simultaneously. It is for this reason that a hold

provision is included on some processors.

AL

B) THE 8080 CENTRAL PROCESSOR UNIT

The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer
systems. It is fabricated on a single LSI chip using Intel's
n-channel silicon gate MOS process. The 8080 transfers data
and internal state information via an 8-bit, bidirectional
3-state Data Bus (Do-D7). Memory and peripheral device
addresses are transmitted over a separate 16-bit 3-state
Address Bus (Ao-Al5). Six timing and control outputs
(SYNC,DBIN,WAIT,WR,HLDA and INTE) emanate from the 8080,
while four control inputs (READY,HOLD,INT and RESET), four
power inputs (+12V, +5V, -5V, and GND) and two clock inputs
(f1 and @2) are accepted by the 8080

\ 4
A1O O<+— 1 40 —=0 AH
GND 0— 2 39 —=0 Ay
D, O3 38 [—=0 A3
DS O=—={ 4 37 F—=0 Alz
Dg O+—=|5 36 [—=0 Ais
D, O=—={ 6 35 0 Ag
D3 O 7 B 34 —=0 Ag
o, o~—s |NTEL® =|—o#
D, O=—>{9 32 —=0 Ag
D, O=—={ 10 8080 a1 |—onxs
—-5v o— 11 30 0 Ay
RESET O—= 12 29 0 A3
HOLD o0— 13 28 0 +12V
| A °
INT O—={ 14 27 —=0 A; Flg. 2.1
%2 o0—={ 15 26 f—=0 A4
INTE O=— 16 25 0 Ag
DBIN O<— 17 24 f—=0 WAIT
WR O<=—1 18 23 f=—0 READY
SYNC O=— 19 22 0 ¢4
+5v 0——— 20 21 O HLDA
D,-D, BI-DIRECTIONAL
DATA BUS
(8 BIT) (8 BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
1
I ~ AN
E Z .
INSTRUCTION
UMULATOR TEMP. REG. PLEXER
IACC lﬂ)l [(BJ REGISTER (8) MULTIFL _
‘ \ w (8) z (8)
= TEWMP REG. TEMP REG.
(8) o] (8)
ACCUMULATOR . B
LATCH (8)) ‘.5 REG. REG.
INSTRUCTION 2) @ E 8
Aoec el 0 REG. REG.
UNIT w H (8) L (8) | _REGISTER
Mé\\%'i'gs % REG. REG. ARRAY
[&]
(16)
< ENCODING T STACK POINTER
‘ 16)
PROGRAM COUNTER
DECIMAL INCREMENTER/DECREMENTER
ADJUST ADDRESS LATCH (16)
B TIMING
< AND
CONTROL |]
— (16)
,POWER +12v I ADDRESS BUFFER I
SUPPLIES | — 45V DATA BUS INTERRUPT HOLD WAIT i ol
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
—_— -5V
=& T LTI T T T] 1Tl
WR DBIN INTE INT HOLD HOLDWAIT SYNC ¢1 ¢2 RESET By Flg, 2.2
ACK READY

ADDRESS BUS

ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional units :

Register array and address logic
Arithmetic and logic unit (ALU)
Instruction register and control section
Bi-directional, 3-state data bus buffer

® ok ok ok

Figure 2.2 illustrates the functional blocks within the
8080 CPU.

REGISTERS

The register section consists of a static RAM array
organized into six 16-bit registers :

* Program counter (PC)

Stack pointer (SP)

Six 8-bit general purpose registers arranged in pairs,
referred to as B,C; D,E; and H,L

* A temporary register pair called W,Z

* K

The program counter maintains the memory address of the
current program instruction and is incremented automatically
during every instruction fetch. The stack pointer maintains
the address of the next available stack location in memory.
The stack pointer can be initialized to use any portion of
read-write memory as a stack. The stack pointer is
decremented when data is "pushed" onto the stack and
incremented when data is "popped" off the stack (i.e. the
stack grows "downward").

The six general purpose registers can be used either as
single registers (8-bit) or as register (16-bit). The
temporary register pair, W,Z, is not program addressable and
is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the internal
bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the
incrementer/decrementer circuit. The address latch receives
data from any of the three register pairs and drives the 16
address output buffers (Ao-Al5), as well as the
incrementer/decrementer circuit. The incrementer/decrementer
circuit receives data from the address latch and sends it to
the register array. The 16-bit data can be incremented or
decremented or simply transferred between registers.

A3

ARITHMETIC AND LOGIC UNIT (ALU) -

The ALU contains the following registers :

*

An 8-bit accumulator

An 8-bit temporary accumulator (ACT)

A 5-bit flag register : zero, carry, sign, parity and
auxiliary carry

* An 8-bit temporary register (TMP)

* 3k

Arithmetic, logical and rotate operations are performed in
the ALU. The ALU is fed by the temporary register (TMP) and
the temporary accumulator (ACT) and carry flip-flop. The
result of the operation can be transferred to the internal
bus or to the accumulator; the ALU also feeds the flag
register.

The temporary register (TMP) receives information from the
internal bus and can send all or portions of it to the ALU,
the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU and the
internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of the
accumulator (ACC) and the auxiliary carry flip-flop can be
tested for decimal correction during the execution of the
DAA instruction.

INSTRUCTION REGISTER AND CONTROL

During an instruction fetch, the first byte of an
instruction (containing the OP code) is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides the
control signals for the register array, ALU and data buffer
blocks. In addition, the outputs from the instruction
decoder and external control signals feed the timing and
state control section which generates the state and cycle
timing signals.

DATA BUS BUFFER

The 8-bit bidirectional 3-state buffer is used to isolate
the CPU's internal bus from the external data bus. (DO
through D7). In the output mode, the internal bus content is
loaded into a 8-bit latch that, in turn, drives the data bus
output buffers. The output buffers are switched off during
input or non-transfer operations.

During the input mode, data from the external data bus is
transferred to the internal bus. The internal bus is
precharged at the beginning of each internal state, except
for the transfer state (T3-described later in this chapter).

THE PROCESSOR CYCLE

An instruction cycle is defined as the time required to
fetch and execute an instruction. During the fetch, a
selected instruction (one, two or three bytes) is extracted
from memory and deposited in the CPU's instruction register.
During the execution phase, the instruction is decoded and
transleted into specific processing activities.

Every instruction cycle consists of one, two, three, four or
five machine cycles. A machine cycle is required each time
the CPU accesses memory or an I1/0 port. The fetch portion

of an instruction cycle requires one machine cycle for each
byte to be fetched. The duration of the execution portion of
the instruction cycle depends on the kind of instruction
that has been fetched. Some instructions do not require any
machine cycles other than those necessary to fetch the
instruction; other instructions, however, require additional
machine cycles to write or read data to/from memory or 1/0
devices. The DAD instruction is an exception in that it
requires two additional machine cycles to complete an
internal register-pair add.

Each machine cycle consists of three, four or five states. A
state is the smallest unit of processing activity and is
defined as the interval bewteen two successive
positive-going transitions of the @1 driven clock pulse.

The 8080 is driven by a two-phase clock oscillator.

All processing activities are referred to the period of this
clock. The two non-overlapping clock pulses, labeled @1

and @2, are furnished by the 8224.

The 8224 (IC 94) is a single chip Clock Generator/Driver for
the 8080 CPU. It contains a crystal-controlled oscillator,

a "divide by nine" counter, two high-level drivers and
several auxiliary logic functions.

The oscillator circuit derives its basic operating frequency
from an external, series resonant, fundamental mode crystal.
Two inputs are povided for the crystal connections
(XTALL,XTAL2).
The selection of the external crystal frequency depends
mainly on the speed at which the 8080A is to be run at.
Basically, the oscillator operates at 9 times the desired
procecssor speed.
A simple formula to guide the crystal selection is :

Crystal frequency = 1 times 9

tCy

(500ns tCY)
2mHz times 9 = 18mHz*

4G

The output of the oscillator is buffered and brought out on
0SC (pin 12) so that other system timing signals can be
derived from this stable, crystal-controlled source.

* When using crystals above 10mHz a small amount of
frequency "trimming" may be necessary to produce the exact
desired frequency. The addition of a small selected
capacitance (10pF)(Cl118) in series with the crystal will
accomplish this function.

The Clock Generator consists of a synchronous "divide by
nine" counter and the associated decode gating to create the
waveforms of the two 8080A clocks and auxiliary timing
signals.

The waveforms generated by the decode gating follow a simple
2-5-2 digital pattern. See Fig. 2-4. The clocks generated;
phase 1 and phase 2, can best be thought of as consisting of
"units" based on the oscillator frequency. Assume that one
"unit" equals the period of the oscillator frequency. By
multiplying the number of "units" that are contained in a
pulse width or delay, times the period of the oscillator
frequency, the approximate time in nanoseconds can be
derived.

The outputs of the clock generator are connected to two high
level drivers for direct interface to the 8080A CPU. A TTL
level phase 2 is also brought out @2 (TTL) for external
timing purposes.

Several other signals are also generated internally so that
optimum timing of the auxiliary flip-flops and status strobe
(STSTB) is achieved.

OSCILLATOR IV\ osc [i>
AR 1uNIT =]
1 ~ "OsC.
(3> Tank FREQ.
D 112
2] [D 0, |
cLocK |
GEN. L—D———oz | :
=9 1 1 1
| 3l ais 1121
0,0 01 A 0, (TTL[E> P 112 : O L_‘__‘___I-_‘
2
{8080 t¢y = 500ns)
STSTB |: > 0SC = 18mHz/55ns
@ e $1 = 110ns (2 x 55ns)
N $2 = 275ns (5 x 56ns)
[Z> rEsm > D #2-61 = 110ns (2 x 55ns)
SCHMITT
Ut (e @ RESET [1>
Fig. 2.4
[Z> rovin D Q READY [4>
c

Fig. 2.3

At the beginning of each machine cycle the 8080A CPU issues
status information on its data bus. This information tells
what type of action will take place during that machine
cycle. By bringing in the SYNC signal from the CPU, and
gating it with an internal timing signal, (#1A) an active
low strobe can be derived that occurs at the start of each
machine cycle at the earliest possible moment that status
data is stable on the bus.

The power-on Reset also generates STSTB but of course for a
longer period of time.

A common function in B8080A Microcomputer systems is the
generation of an automatic system reset and start-up upon
initial power-on. The 8224 has a built in feature to
accomplish this feature.

THE POWER ON RESET CIRCUIT

45 45 LI
R133 Ri% R126
D13 100K 27 3K3 Fig. 2.5
NV IAN

2N3704

Cl2z2 | ¢] Fy
2,2 FI —_— tswz
] 1 - -

ﬂ = OQP , = RESET :
When power is supplied initially to the 8080 the processor
begins operating immediately. The contents of its program
counter, stack pointer, and the other working registers are
naturally subject to random factors and cannot be
specified. For this reason, it will be necessary to begin
the Power-up sequence with Reset. An external reset signal
of three clock period duration (minimum) restore the
processor's internal program counter to zero Program
execution thus begins with memory location zero, following a
reset. Note, however, that the reset has no effect on status
flags, or on any of the processor's working registers
(accumulator, registers, or stack pointer). The contents of
these registers remain indeterminate until initialized
explicitely by the Program. '

T+l Tn+2 Tn+3 Tn+(i-1) Tn+i Ty T2

Tn
4 J-\ \ yr\
sa| [\ I\ T\l 1\ [\ [\ J_'Lj
—_— = === P——— S
Arso \-L: FLOATING R E
- — oatG | v |
bl [o NI i
ReseT | (1) - \ \
INTERNAL 3 A
RESET |
SYNC) _/ |
) 1
DBIN 2 _/
s]
erarus (G
INFORMATION

BE RESET IMMEDIATELY OR SOME
o N RESET SIGNAL IS ACTIVE, ALL OF CONTROL OUTPUT SIGNALS WILL
IVZUEOECK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN
THE ABOVE DIAGRAM N AND | MAY IBE ANY INTEGERL.
1 L

| L —

" NOTE: ® Refer io Status Word Chart

Fig. 2.6

The circuit (Fig. 2.5)

When Power is applied, the voltage of C122 can't change
immediately. At the beginning is the voltage zero volts
because Cl122 is discharged via D13 and the small resistance
between the +5V and ground.

T11 is OFF so T10 is ON and the RESIN (PIN2) off the 8224 is
low. The 8080 gets its reset from PIN1 of the 8224. When the
charge of C122 (via R133:100K) gets above 3,3V then T11
turns ON; T10 runs OFF and the RESET off the CPU becomes
low. The capacitor (C145) takes care that there is no bounce
of the circuit during Power on.

The READY input to the 8080A CPU has certain timing
specifications such as "set-up and hold" thus, an external
synchronizing flip-flop is required. The 8224 has this
feature built-in. The RDYIN input presents the asynchronous
"wait request" to the "D" type flip-flop. By clocking the
flip-flop with @2D, a synchronized READY signal at the
correct input level, can be connected directly to the 8080A.

The reason for requiring an external flip-flop to
synchronize the '"wait request" rather than internally in the
8080 CPU is that due to the relatively long delays of MOS
logic such an implementation would "rob" the designer of
about 200ns during the time his logic is determining if a
"wait" is necessary. An external bipolar circuit built into
the clock generator eliminates most of this delay and has no
effect on component count.

The @1 clock pulse divides each machine cycle into states.
Timing logic within the 8080 uses the clock inputs to
produce a SYNC pulse, which identifies the beginning of
every machine cycle. The SYNC pulse is triggered by the
low-to-high transition of @2, as shown in Fig. 2.7

FIRST STATE OF
*EVERY MACHINE
CYCLE

o Y\ / N\
e |/ N/ __
SYNC | . / \

*SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE
CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES
ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

There are three exceptions to the defined duration of a
state. They are the WAIT state, the hold (HLDA) state and
the halt (HLTA) state, described later in this chapter.
Because the WAIT, the HLDA, and the HLTA states depend upon
external events, they are by their nature of indeterminate
length. Even these exceptional states, however, must be
synchronized with the pulses of the driving clock. Thus, the
duration of all states are integral multiples of the clock
period.

To summarize then, each clock period marks a state,

three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A

full instruction cycle requires anywhere from four to
eighteen states for its completion, depending on the kind of
instruction involved.

MACHINE CYCLE IDENTIFICATION

With the exception of the DAD instruction, there is just one
consideration that determines how many machine cycles are
required in any given instruction cycle; the number of times
that the processor must reference a memory address or an
addressable peripheral device, in order to fetch and execute
the instruction. Like many processors, the 8080 is so
constructed that it can transmit only one address per
machine cycle. Thus, if the fetch and execution of an
instruction requires two memory references, then the
instruction cycle associated with that instruction consists
of two machine cycles. If five such references are called
for, then the instruction cycle contains five machine
cycles. '

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An
instruction cycle must always have a fetch, even if the
execution of the instruction requires no further references
to memory. The first machine cycle in every instruction
cycle is therefore a FETCH. Beyond that, there are no fast
rules. It depends on the kind of instruction that is fetched.

/Zé

Consider some examples. The add-register (ADD r) instruction
is an instruction that requires only a single machine cycle
(FETCH) for its completion. In this one-byte instruction,
the contents of one of the CPU's six general purpose
registers is added to the existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the
instruction code, only one memory reference is necessary.
Three states are used to extract the instruction from
memory, and one additional state is used to accomplish the
desired addition. The entire instruction cycle thus requires
only one machine cycle that consists of four states, or four
periods of the external clock.

Suppose now, however, that we wish to add the contents of a
specific memory location to the existing contents of the
accumulator (ADD M). Although this is quite similar in
principe to the example just cited, several additional steps
will be used. An extra machine cycle will be used, in order
to address the desired memory location.

The actual sequence is as follows. First the processor
extracts from memory the one-byte instruction word addressed
by its program counter. This takes three states. The
eight-bit instruction word obtained during the FETCH machine
cycle is deposited in the CPU's instruction register and
used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out, as an
address, the contents of its H and L registers. The
eight-bit data word returned during this MEMORY READ machine
cycle is placed in a temporary register inside the 8080 CPU.
By now three more clock periods (states) have elapsed. In
the seventh and final state, the contents of the temporary
register are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the "ADD
M" instruction cycle.

At the opposite extreme is the save H and L registers (SHLD)
instruction, which requires five machine cycles. During an
"SHLD" instruction cycle, the contents of the processor's H
and L registers are deposited in two sequentially adjacent
memory lcations, the destination is indicated by two address
bytes which are stored in the two memory locations
immediately following the operation code byte. The following
sequence of events occurs :

1) A FETCH machine cycle, consisting of four states. During
the first three states of this machine cycle, the processor
fetches the instruction indicated by its program counter.
The program counter is then incremented. The fourth state is
used for internal instruction decoding.

2) A MEMORY READ machine cycle, consisting of three

states. During this machine cycle, the byte indicated by the
program counter is read from memory and placed in the
processor's Z register. The program counter is incremented
again.

3) Another MEMORY READ machine cycle, consisting of three
states, in which the byte indicated by the processor's
program counter is read from memory and placed in the W
register. The program counter is incremented, in
anticipation of the next instruction fetch.

4) A MEMORY WRITE machine cycle, of three states, in which
the contents of the L register are transferred to the memory
location pointed to by the present contents of the W and Z
registers. The state following the transfer is used to
increment the W,Z register pair so that it indicates the
next memory location to receive data.

5) A MEMORY WRITE machine cycle, of three states, in which
the contents of the H register are transferred to the new
memory location pointed to by the W,Z register pair.

In summary, the "SHLD" instruction cycle contains five
machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the extremes
typified by the "ADD r" and the "SHLD" instructions. The
input (INP) and the output (OUT) instructions, for example,
require three machine cycles :

* a FETCH to obtain the instruction

* a MEMORY READ to obtain the address of the object
peripheral

* an INPUT or an OUTPUT machine cycle, to complete the
transfer

While no one instruction cycle will consist of more then -
five machine cycles, the following ten different types of
machine cycles may occur within an instruction cycle :

(1) FETCH (M1)
(2) MEMORY READ
(3) MEMORY WRITE
(4) STACK READ
(5) STACK WRITE

(6) INPUT

(7) OUTPUT
(8) INTERRUPT
(9) HALT

(10) HALT . INTERRUPT

The machine cycles that actually do occur in a particular

instruction cycle depend upon the kind of instruction with
the overriding stipulation that the first machine cycle in
any instruction cycle is always a FETCH.

The processor identifies the machine cycle in progress by
transmitting an eight-bit status word during the first state
of every machine cycle. Updated statuts information is
presented on the 8080's data lines (D0-D7) during the SYNC
interval. This data should be saved in latches, and used to
develop control signals for external circuitry. Table 1
shows how the positive-true status information is
distributed on the processor's data bus.

Status signals are provided principally for the control of
external circuitry. Simplicity of interface, rather than
machine cycle identification, dictates the logical
definition of individual status bits. You will therefore
observe that certain processor machine cycles are uniquely
identified by a single status bit, but that others are not.
The M1 status bit (D6) for example, unambiguously identifies
a FETCH machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR signals.
Machine cycle identification data is also valuable in the
test and de-bugging phases of system development. Table 1
lists the status bit outputs for each type of machine cycle.

STATUS INFORMATION DEF INITION

Data Bus

Symbols Bit Definition

INTA Do Acknowledge signal for INTERRUPT
request. Signal should be used to gate
a restart instruction onto the data
bus when DBIN is active.

Wwo D1 Indicates that the operation in the
current machine cycle will be a WRITE
memory or OUTPUT function (WO = 0).
Otherwise a READ memory or INPUT
operation will be executed.

STACK D2 Indicates that the address bus holds
the pushdown stack address from the
Stack Pointer.

HLTA D3 Acknowledge signal for HALT
instruction.

out D4 Indicates that the address bus
contains the address of an output
device and the data bus will contain
the output data when WR is active.

M1 D5 Provides a signal to indicate that the
CPU is in the fetch cycle for the first
byte of an instruction.

INP D6 Indicates that the address bus
contains the address of an input device
and the input data should be placed on
the data bus when DBIN is active.

MEMR - D7 Designates that the data bus will be
used for memory read data.

T T §TATUS WORD CHART

TYPE OF MAICHINE CYCLE
| |
& &
& 3
. N S/s/8
> e S &/ /& & G
v/ &8 /E/s/e /s /S/ /8 /T8)T
s/ ¥ //S/S/ S/ S/ S/ E/ S/ T/ES
§)E/8/8)8/8/S/$/8/ & /83
&/ /&
N N
/® STATUS WORD
DIPIB|I®G|®|®|®|@] 4
Do INTA 0 0 0 0 0 0] 0 1 C 1
Dy | WO 1 1o 1ol 1}]0]1 1 1
D2 STACK 0 0 0 1 1 0 0 0 0 0
D3 HLTA 0 0 0 0 0 0 0 0 1 1
D4 ouT 0 0 0 0 0 0 1 0 0 0
Ds M1 1 0 0 0 0 0 0 1 0 1
De INP 0 0 0 0 0 1 0 0 0 0
D7 MEMR 1 1 0 1 0 0 0 0 1 0
Table 1. 8080 Status Bit Definitions

A

STATE TRANSITION SEQUENCE

Every machine cycle within an instruction cycle consists of
three to five active states (referred to as T1,72,T3,T4,T5
or TW). The actual number of states depends upon the
instruction being executed, and on the particular machine
cycle within the greater instruction cycle. The state
transition diagram in Figure 2.10 shows how the 8080
proceeds from state to state in the course of a machine
cycle. The diagram also shows how the READY, HOLD and
INTERRUPT lines are sampled during the machine cycle, and
how the conditions on these lines may modify the basic
transition sequence. In the present discussion, we are
concerned only with the basic sequence and with the READY
function. The HOLD and INTERRUPT functions will be discussed
later.

The 8080 CPU does not directly indicate its internal state
by transmitting a "state control" output during each state;
instead, the 8080 supplies direct control output (INTE,
HLDA, DBIN, WR and WAIT) for use by external circuitry.

Recall that the 8080 passes through at least three states in
every machine cycle , with each state defined by successive
low-to-high transitions of the @1 clock. Figure shows the
timing relationships in a typical FETCH machine cycle.
Events that occur in each state are referenced to
transitions of the @1 and @2 clock pulses.

The SYNC signal identifies the first state (T1) in every
machine cycle. As shown in Figure 2.11, the SYNC signal is
related to the leading edge of the @2 clock. There is a
delay (tDC) between the low-to-high transition of @2 and

the positive-going edge of the SYNC pulse. There also is a
corresponding delay (also tDC) between the next @2 pulse

and the falling edge of the SYNCH signal. Status information
is displayed on DO-D7 during the same @2 to @2 interval.
Switching of the status signals is likewise controlled by

@2.

The rising edge of @2 during T1 also leads the processor's
address lines (A0-Al5). These lines become stable within a
brief delay (tDA) of the @2 clocking pulse and they remain
stable until the first @2 pulse after state T3. This gives
the processor ample time to read the data returned from
memory.

Once the processor has sent an address to memory, there is
an opportunity for the memory to request a WAIT. This it
does by pulling the processor's READY line low, prior to the
"Ready set-up" interval (tRS) which occurs during the @2
pulse within state T2 or TW. As long as the READY line
remains low, the processor will idle, giving the memory time
to respond to the addressed data request. Refer to Figure
2.11.

The processor responds to a wait request by entering an
alternative state (TW) at the end of T2, rather than
proceeding directly to the T3 state. Entry into the TW state

RESET

READY + HLTA

o0

j

YES
HLTA
READY « HLTA
) NO
4
READY -
READY
\ SET INTERNAL
HOLD HOLD F/F
<:;:>
. 1
1
1
° ‘
'voLp
:MODE
‘ :;) I
. 1
l
? ______ J
INTERNAL YES
HOLD F/F
SET?
NO
INST.
EXECUTION HOLD
COMPLETED MODE HOLD
' AOLD

INT « INTE KT-

HOLD

SET INTERNAL
HOLD F/F

HOLD

RESET INTERNAL
HOLD F/F

RESET HLTA

NO RESET INTERNAL
HOLD F/F
YES
SET INTERNAL
INT F/F
fig 2.10

)

SYNC

READY

WAIT

DBIN

is indicated by a WAIT signal from the processor,

acknowledging the memory's request. A low-to-high transition
on the WAIT line is triggered by the rising edge of the g1

clock and occurs within a brief delay (tDC) of the actual

entry into the TW state.

Ty T2 Tw Ta Ta Ts
/ X UNKNOWN
/ ® X L WRITE MODE FLOATING
————— - -
I
DATA T READ MODE
STABLE
/ DATA \
STATUS
INFORMATION
DATA
Aso SAMPLE READY OPTIONAL FETCH DATA OPTIONAL
MEMORY ADDRESS HOLD AND HALT OR
OR HALT S:STRUCT'ON INSTRUCTION
1/0 DEVICE NUMBER OR EXECUTION
D70 MEMORY WRITE DATA IF REQUIRED

STATUS INFORMATION ACCESS TIME

INTA ouTt ADJUST

HLTA wo

MEMR My

NP STACK

NOTE: @ Refer to Status Word Chart

f[g. 21{ !

When the 9511 is selected it needs a certain time (4x@2)

to send the asked information outside. The chip select
signal off the 9511 is connected with ready on the positieve
edge of the STSTB so the CPU will respond to that with some
WAIT cycli (Fig. 2.8)

o—READY ROVIN 8224
r3
APR. APR
WAIT :
D ___Cr—lo 4
8080 CS %M Q2
Ol —_
ors & FIG 28.°
o—cL} _
1IC N9 STSB|ic 19
- XCLR
+ 5V

The Pause is low so (1=PR2 and CLR2 are high. Q2 stays low.
When the Pause gets back high again then on the pos. edge of
A1 will QT get zero (because WAIT was high).

As result is PR2=f and Q2=1 and the processor can start to
take the information off the 9511 inside and work further in
its program.

The ready line is also used when the CPU reads the dynamic
RAM memory. As clock we use the STSTB but only when there is
no interrupt (Fig. 2.9) .

FIG 29.
- veLLow— RFSHCTRL
Lo FSHCTRL pawE [EN
P3 YELLOW 0 02 Latch READ
c- STsna:DD— CL RAM
ic3s | €38 | _
ik K 02 READY
= L£cr F——o
220
RESET 1 pB:-15RAM
o= —K + (3= 0-NOT RAM

PIN 1(p) off the bleu PROM says when the processor is
working with the dynamic RAM or not. Also on a reset must
the ready line be high so the CPU can work out the routines

for initialisation.

The refreshing of the dynamic RAM is build up with external
hardware so this must also be synchronised with the
ready-line of the CPU.

A wait period may be of indefinite duration. The processor
remains in the waiting condition until its READY line again
goes high. A READY indication must precede the falling

edge of the 12 clock by a specified interval (tRS) in

order to guarantee an exit from the TW state. The cycle may
then proceed, beginning with the rising edge of the next

f1 clock. A WAIT interval will therefore consist of an
integral number of TW states and will always be a multiple
of the clock period.

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. In a
FETCH machine cycle, the processor interprets the data on
its data bus as an instruction. During a MEMORY READ or a
STACK READ, data on this bus is interpreted as a data word.
The processor outputs data on this bus during a MEMORY WRITE
machine cycle. Durting I/0 operations, the processor may
either transmit or receive data, depending on whether an
OUTPUT or on INPUT operation is involved.

Fig. 2.12 illustrates the timing that is characteristic of a
data input operation. As shown, the low-to-high transition
of P2 during T2 clears status information from the
processor's data lines, preparing these lines for the
receipt of incoming data. The data presented to the
processor must have stabilized prior to both the "@l-data
set-up" interval (tDS1) that precedes the falling edge of
the @1 pulse defining state T3, and the "@2-data set-up"
interval (tDS2), that precedes the rising edge in state T3.
This same data must remain stable during the '"data hold"
interval (tDH) that occurs following the rising edge of the
@2 pulse. Data placed on these lines by memory or by other
external devices will be sampled during T3.

-M1 B M3z M3
T T2 T3 Ta T T2 T3 T T2 T3
L4 r\ '\
% | RV R RV VY B ' '
’ L . — 1/0 DEVICE NUMBER
T OWN | T
Aso | f UNKNOWN X INPUT DATA TO
i 3}'4755 %1(;5 - cccuw:ut.Aton_
o0 | [\|. _ 4 |[FLoaTiNG / VLS / (I P
swe | T\ T\ T
DBIN / AN J \ / A
READY :?:
WAIT f“
o5 o
STATUS ;
INFORMATION @ @ @
)

NOTE: @) Refer to Status Word Chart FIG. 2.12

During the input of data to the processor, the 8080
generates a DBIN signal which should be used externally to
enable the transfer. Machine cycles in which DBIN is
available include : FETCH, MEMORY READ, STACK READ, and
INTERRUPT. DBIN is initiated by the rising edge of @2
during state T2 and terminated by the corresponding edge of
@2 during T3. Any TW phases intervening between T2 and T3
will therefore extend DBIN by one or more clock periods.

Mq » Mz Mj
T T2 T3 Ta Ty T2 T3 T 12 T3
2 A N\
o /RN RV RV VY VI B 'O A VO I VO B N |
N — 1/0 DEVICE NUMBER
mso L[BYTE MKM/ BYTE X INPUT DATA TO
. ONE wo__ | _ ACCUMULATOR
D70 Yl Ne o J [FLOATING / YLt S / “_ 4
SYNC _ / \ / \ / \
i
DBIN J \ _/ \ I / \
READY =t
WAIT "0, [
WA : : -
STATUS ‘ ;
INFORMATION @ @ @ |
‘ |
|

NOTE: @ Refer to Status Word Chart

Figure 2.13 shows the timing of a machine cycle in which the
processor outputs data. Output data may be destined either
for memory of for peripherals. The rising edge of @2

within state T2 clears status information from the CPU's
data lines, and loads in the data which is to be output to
external devices. This substitution takes place within the
"data output delay" interval (tDD) following the @2

clock's leading edge. Data on the bus remains stable
throughout the remainder of the machine cycle, until
replaced by updated status information in the subsequent T1
state. Observe that a READY signal is necessary for
completion of an OUTPUT machine cycle. Unless such an
indication is present, the processor enters the TW state,
following the T2 state. Data on the output lines remains
stable in the interim, and the processing cycle will not
proceed until the READY line again goes high.

My M M3 My

¢1_r\ \ ‘
N 10 VI U e VA o VIO o V0 o Vi 1

Ags. Ul ¥ 1/0 DEVICE
0 BYTE \UNKNOWN BYTE A NUMBER \
ONE TWO

—
Bel "L __) |Froamine / (A Y X |AccumuLaTor \
1
0

SYNC

T\ [T L VAR
[T L "R

DBIN

READY

WAIT

STATUS ® ©) @

INFORMATION

NOTE: @ Refer to Status Word Chart

Fig. 2.13

The 8080 CPU generates a WR output for the synchronization
of external transfers, during those machine cycles in which
the processor outputs data. These include MEMORY WRITE,
STACK WRITE, and OUTPUT. The negative-going leading edge of
WR is referenced to the rising edge of the first @1 clock
pulse following T2, and occurs within a brief delay (TDC) of
that event. WR remains low until re-triggered by the leading
edge of @1 during the state following T3. Note that any TW
state intervening between T2 and T3 of the output machine
cuycle will necessarily extend WR, in much the same way that
DBIN is affected during data input operations.

All processor machine cycles consist of at least three
states : Tl, T2 and T3 as just described. If the processor
has to wait for a response from the peripherals or memory
with which it is communicating, then the machine cycle may
also contain one or more TW states. During the three basic
states, data is transferred to or from the processor.

After tr.we T3 state, however, it becomes difficult to
generalize. T4 and T5 states are available, if the execution
of a particular instruction requires them. But not all

machine cycles make use of these states. It depend upon the -

kind of instruction being executed, and on the particular
machine cycle within the instruction cycle. The processor
will terminate any machine cylce as soon as its processing
activities are completed, rather than proceeding through the
T4 and T5 states every time. Thus the 8080 may exit a
machine cycle following the T3, the T4, or the T5 state and
proieed directly ,to the Tl state of the next machine

cycle.

STATE ASSOCIATED ACTIVITIES

T A memory address or 1/O device number is
placed on the Address Bus {A15.0); status
information is placed on Data Bus {D7.0).

To The CPU samples the READY and HOLD in-
puts and checks for halt instruction.

T™W Processor enters wait state if READY is low
(optional) or if HALT instruction has been executed.
T3 An instruction byte (FETCH machine cycle),

data byte (MEMORY READ, STACK READ)
or interrupt instruction (INTERRUPT machine
cycle) is input to the CPU from the Data Bus;
or a data byte (MEMORY WRITE, STACK
WRITE or OUTPUT machine cycle) is output
onto the data bus.

T4 States T4 and Tg are available if the execu-
T5 tion of a particular instruction requires them;
{optional) if not, the CPU may skip one or both of

them. T4 and Ts are only used for internal
processor operations.

Table 2. State Definitions

=

wl T T UL AL Ly
o |_ren B — T X
M Bl BT T T =] X =
r . Vam m\
™
e / |
INTERNAL) —f _ |
INTE T\
w | f \
(INTEANAL) —
PO (INTERNAL) \
o / o) o)

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an
interrupt simply by driving the processor's interrupt (INT)
line high.

The interrupt (INT) input is asynchronous and a request may
therefore originate at any time during any instruction
cycle. Internal logic re-clocks the external request, so
that a proper correspondence with the driving clock is
established. As Figure 2.14 shows, an interrupt request
(INT) arriving during the time that the interrupt enable
line (INTE) is high, acts in coicidence with the @2 clock
to set the internal interrupt latch. This event takes place
during the last state of the instruction cycle in which the
request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be
procecssed.

The INTERRUPT machine cycle which follows the arrival of an
enabled interrupt request resembles an ordinary FETCH
machine cycle in most respects. The M1 status bit is

My Mz

M3

T3 T T2 T3 Ta Ts T T2 T3 T

T2

T3

¢1,—\ F\\

NOTE: () Refer to Status Word Chart -

Fig. 2.14

transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (Do) which
acknowledges the external request.

The task of IC107 (sheet 1) is the following .

When an interrupt occurs (from the 5501) then the CPU sends
a status bit out via D@. This bit can be memorized with

the status strobe of the 8224.

Fig. 2.15

DO o % 19 oA
T e NTE | 1108 |
X L —
STSTE . ?LS%B Q 1 ::::. _RD
1C107 DBIN _
| Ei
+V

Port 1 of ICl08 takes care that there will be no read of the
system during an interrupt acknowledge. Because the system
is build up in memory map, the DBIN can be used (inWerted)
as the read.

The contents of the program counter is latched onto the
CPU's address lines during Tl but the counter itself is not
incremented during the INTERRUPT machine cycle, as it
otherwise would be.

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has

been processed.

The interrupt cycle is otherwise indistinguishable from an
ordinary FETCH machine cyle. The processor itself takes no
further special action. It is the responsability of the
peripheral logic to see that an eight-bit interrupt
instruction is "jammed" onto the processor's data bus during
state T3. In a typical system, this means that the data-in
bus from memory must be temporarily disconnected from the
processor's main data bus, so that the interrupting device
can command the main bus without interference.

The 8080's instruction set provides a special one-byte call
which facilitates the processing of interrupts (the ordinary
program Call takes three bytes). This is the RESTART
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting
device to direct a Call to one of eight fixed memory
locations. The decimal addresses of these dedicated
locations are : 0,8,16,24,32,40,48 and 56. Any of these
addresses may be used to store the first instruction(s) of a
routine designed to service the requirements of an
interrupting device. Since the (RST) is a call, completion
of the instruction also stores the old program counter
contents on the STACK.

RESTART ROUTINES IN THE DESK COMPUTER

The 8080 microprocessor in the Desk Computer knows 8
instruction codes that are one-byte CALL instructions : RST
0 through RST 7. In many computer systems, these
instructions are used in combination with interrupts.

RST 1, RST 4, RST 5

These 3 restart instructions are used for bank switching.
In the memory area EOOO-EFFF the DAI uses 4 banks of each 4K
ROM "in parallel". Via bits 6 and 7 of output port FD06, one

of these banks is selected. (see later i this chapter)

Normally, bank 0 is switched on, but via software
instructions one of the other banks can be activated.
Therefore, the RST 1, RST 4 and RST 5 instruction codes are
used. These instructions are followed by one date byte.

When the program counter encounters one of these RST
instructions, it goes to the interrupt vector routines in

the area 0000-003F. The interrupt vector address from the
area 0062-0071 is loaded, and the program counter is set to
this address.

The routines which are found on the vector addresses prepare
the selection of the required ROM bank :

RST 1 : ROM bank 3 (encode - utility)
RST 4 : ROM bank 1 (math. package)
RST 5 : ROM bank 2 (screen package)

Via the general ROM bank switching routine on address C6CWF
the selected ROM bank is activated.

The data byte after the RST instruction indicates which
address in the particular ROM bank has to be jumped to. It
is an offset to the startaddress EQOOC.

Example : RST 5, data 18 : ROM bank 2, address E018.
There a jump to the screen mode changing
routine can be found.

When switching to another ROM bank, the previous selection
is saved in memory. On return from the switched bank, the
old bank select is restored again.

THE OTHER RESTART INSTRUCTIONS

All other RST instructions are used on interrupt base. The
interrupts are generated by the timers in the 5501 Timer and
Interrupt controller (see Chapter V).

RST 7 — CLOCK INTERRUPT

The 20 ms page blanking signal for the TV is used as clock
signal. Each time this clock interrupt is present, the
program counter is set on 0038. Via the interrupt vector
routine, the program counter is set on address D9A9.

The RST 7 routine on this address enables only stack

interrupts and checks the contents of timer 01BE/F. Each
time when a RST 7 interrupt is present, this counter is
decremented. As long as it is not zero, nothing happens.

When this timer is zero, then on each RST 7 interrupt the
clock timer 01CO is decremented. Again, nothing happens when
it is not zero.

But when the clock timer is also zero, a RST 5, data 12
routine is activated.

This routine flashes the cursor according the information
in the pointers 0074-0077 (see memory map). After changing
the contents of the screen location pointed by the cursor,
the old interrupt mask is restored and the program returns
from interrupt to its normal sequence.

RST 6 - KEYBOARD INTERRUPT SERVICE

Each time an interrupt from timer 4 is present, the program

A

counter is set to D578 via the interrupt vector routine
address 0030.

The RST 6 routine reloads timer 4 and enables only clock and
stack interrupts.

The keyboard counter 01C1 is decremented on each RST 6
interrupt. When the result is not zero, the routine is
aborted. Else, the keyboard counter is reloaded and a
keyboard scan is performed (the GETC routine).

On exit, the original interrupt mask is restored again.

RST 3 - SOUND INTERRUPT

On an interrupt from timer 3, the interrupt vector routine
on address 0018 load D755 into the program counter.

The RST 3 routine enables clock and sound interrupts only.
Timer 3 is reloaded and ROM bank 1 is selected.

Now the program continues on address EE6E in bank 1, which
is the Sound program. On exit, the old ROM bank and the old
interrupt mask is restored again.

RST 2 - STACK INTERRUPT

When Stack Overflow occurs, an RST 2 interrupt is the
result. Via address 0010 in the interrupt vector routine
area, the program counter is loaded with D9E2.

The RST 2 routine resets the stackpointer on F900. The
running of inputs and the encoding of stored lines is
disabled. The input is returned to the keyboard and the
timers for sound and keyboard interrupts are reloaded.

Then the error messages "STACK OVERFLOW" is printed.

RST 0 - UTILITY

The RST O interrupf is used only by the Utility Program. On
this interrupt, the program counter is set on 0000.

The vector address required in this interrupt vector
routine, is only present after a 72 or a Z3 command in
utility. Then location 0062/63 is loaded with EB5D the
startaddress of the RST 0 routine in ROM bank 3.

The RST O interrupt is caused by timer 0; it is used in the
LOOK routine in utility.

On a RST O interrupt, all CPU registers are saved in the RAM
area 0053-005E. Then the program continues on a address
which is given by the LOOK routine and indicates the next
instruction to be performed.

The program checks this instruction. If it is a CALL or a
RST instruction, then the next address is saved too.

Then a check is performed to see if the next instruction

address is within the frame given by the LOOK window. When
the result is positive, the contents of all registers,
including stack pointer, flogs: and program counter, is
displayed on the screen.

On exit, the timer 0 is reloaded, the interrupt mask set and
- among other instructions - the CPU registers are restored
again.

Because the program runs now under RST O interrupts, it runs
much slower than in normal runtime.

HOLD SEQUENCES

The B8080A CPU contains provisions for Direct Memory Access
(DMA) operations. By applying a HOLD to the appropriate
control pin on the processor, an external device can cause
the CPU to suspend its normal operations and relinquish
control of the address and data busses. The processor
responds to a request of this kind by floating its address
to other devices sharing the busses. At the same time, the
processor acknowledges the HOLD by placing a high on its
HLDA outpin pin. During an acknowledged HOLD, the address
and data busses are under control of the peripheral which
originated the request, enabling it to conduct memory
transfers without processor intervention.

Like the interrupt, the HOLD input is synchronized
internally. A HOLD signal must be stable prior to the "HOLD
SET-UP" interval (tHS) that precedes the rising edge of

g2.

Figures 2.16 and 2.17 illustrate the timing involved in HOLD
operations. Note the delay between the asynchronous HOLD
REQUEST and the re-clocked HOLD. As shown in the diagram, a
coincidence of the READY, the HOLD, and the @2 clocks sets
the internal hold latch. Setting the latch enables the
subsequent rising edge of the @1’ clock pulse to trigger

the HLDA output.

Acknowledgment of the HOLD REQUEST precedes slightly the
actual floating of the processor's address and data lines;
The processor acknowledges a HOLD at the beginning of T3 if
a read or an input machine cycle is in progress (see Fig.
2, 16). Otherwise, acknowledgement is deferred until the
beginning of the state following T3 (see Fig.2.17). In both
cases, however,, the HLDA goes high within a specified delay
(tDC) of the rising edge of the selected @1 clock pulse.
Address and data lines are floated within a brief delay
after the rising edge of the next @2 clock pulse. This
relationship is also shown in the diagrams.

To all outward appearances, the processor has suspended its
operations once the address and data busses are floated.
Internally, however, certain functions - may continue. If a
HOLD REQUEST is acknowledged at T3, and if the processor is
in the middle of a machine cycle which requires four or more
states to complete, the CPU proceeds through T4 and T5
before coming to a rest. Not until the end of the machine
cycle is reached will processing activities cease. Internal

Ly

Mn Mn+1

T T2 [Tw T3 (Ta)* (Ts)* h g T T2
~~oR
~
. N
! |
! ' i |
S VA VY R e N e W e VY m U W U B
! ; !
| | |
I} —— — ———————— _— e e e e | e - - 1
e) !\k FLOATING /]
' ’ N N R e e e .
0| T /
! |
HOLD |
request o/ (1) I : \
HOLD \
READY Vi
HOLD F/F -
INTERNAL / \
HLDA
(1) SEE ATTACHED ELECTRICAL CHARACTERISTICS. e B SIS ATION B
|
Fig. 2.16
Mn M n+1 . M n+2
T3 T T T T T
o L |
' @
2 ;o\ /oW 0\ /W J \ [\ [\
][Se L g B L ot S
sy LS i\ FLOATING J
23 N A R . X (S e —
L \ r
HOLD - :
request \
HOLD _| / \ |
READY :
HOLD F/F
INTERNAL ’ / _ .
HLDA /
WRITE DATA

Fig. 2.17

processing is thus permitted to overlap the external DMA
transfer, improving both the efficiency and the speed of the
entire system.

The processor exits the holding state through a sequence
similar to that by which it entered. A HOLD REQUEST is
terminated asynchronously when the external device has
completed its data transfer. The HLDA output returns to a
low level following the leading edge of the next @1 clock
pulse. Normal processing resumes with the machine cycle
‘following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HLT) is executed, the CPU enters
the halt state (TWH) after state T2 of the next machine
cycle, as shown in Fig. 2.18 . There are only three ways in
which the 8080 can exit the halt state :

* A high on the RESET line will always reset the 8080 to
state Tl; RESET also clears the program counter.

* A HOLD input will cause the 8080 to enter the hold state,
as previously described. When the " HOLD line' goes low,
the 8080 re-enters the halt state on the rising edge of
the next @1 clock pulse.

* An interrupt (i.e. INT goes high while INTE is enabled)
will cause the 8080 to exit the Halt state and enter
state Tl on the rising edge! of the next @1 clock pulse.
NOTE : The interrupt enable (INTE) flag must be set when
the halt state is entered; otherwise, the 8080 will only
be able to exit via a RESET signal.

Figure 2.19 illustrates halt sequencing in flow chart
form

My M

T T2 T3 Ts Tt T2 TwH

TwH

01

L
3

el MU/ U/

L

T

Ao | [P [
oo | f [e By A E N A T
'sYNC 1 /1T | /| \
DBIN [1 \
WAIT
INFORMATION © ®

NOTE: @ Refer to Status Word Chart

Fig. 2.18

b

T2

NO
TO STATE HALT
Twor T3
YES
HALT STATE
TO STATE YES

T

HOLD STATE

TO STATE Ty NO

Fig. 2.19

K3

INSTRUCTION
MOVE GROUP

MOV 4,
MOV B,
MOV C,
MOV D,
MOV E,
MOV H,
MOV 1L,
MOV M,

reg
reg
reg
reg
reg
reg
reg
reg

FUNCTION

Te
reg
reg
reg,
reg
Teg
reg
reg
M)w—(Teg

e OW b

ACCUMULATOR GROUP

ADD reg
ADC reg
SUB reg
SEB reg
ANA reg
XRA reg
ORA Teg
CMP reg

A)w={A)+(rog

A A)+(reg)+{CY)

A Aj~{reg

A A)-(reg)-(CY)

A A} (reg

A AW reg

A)—{(AN(reg
A)-(reg

INCREMENT/DECREMENT REGISTER

gA B C
7F 78 79
47 40 41
4F 48 49
57 50 51
5F 58 59
67 60 61
6F 68 69
77 70 71

» 87 80 81
* GF 88 89
* 97 90 91
* 9F 98 98
* A7 A0 A1
A8 19

54 5
62 63 64 65 66
64 6B 6C 6D 6E
72 73 74 75 -

82 83 84 85 86

8A 8B 8C 8D 8B

92 93 94 95 96

94 9B 9C 9D 9E
3

gRER

INSTRUCTION FUNCTION HEX
JUMP_GROUP

J¥P addr PC)e-addr C3 al
JNZ addr If 2Z<0, pc).-addr c2 al
JZ addr If Z=1, addr CA al
ING addr If CY=0, addr D2 al
JC addr If CY=1 addr DA al
JPO addr If P_o, ddr E2 al
JPE addr If P=1, addr EA al
JP addr If s—o, PC add:c F2 al
JM addr If S=1, FA al
PCHL (PCh)<—(H) (Pcl)-u.) B9
CALL GROUP)

CALL addr T0S }a~(PC) , {PC)a—addr CD al
CNZ addr If %=0, (7T0S)e(PC),(PC)w-addr C4 al
CZ addr If %=1, (T0S)}e-(PC),(PC)e-addr CC al
CNC addr If CY=0,(TOS)e~{PC),{PC)e~addr D4 al
CC addr If CY=1,(70S}e=(PC),(PC)e-addr C al
CPO addr If P=0, (70S)e(PC),(PC)eaddr E4 al
CPE addr If P=1, (T0S)e—(PC),(PC)waddr EC al
CP addr If 8=0, (TOS)e—(PC),(PC)e-addr F4 2l
M addr If So1, (T0S)=-(PC),(PC)eaddr FC al

EEESEEELE

EEELEEERE

: N.B. (T0S)w-(PC) designates the following:-
e, rog)+t %% 3C 04 OC 14 1C 24 2C g
A BN oo ow i AV B B S ((SB)- 1)) (()-2)2Cn), (521 (5P)-2
REGISTER PAIR GROUP RETURN GROUP
T —— rp B D H SPPSW RET PC)a{T0S
c9
INK 1P ?Pg:)+ 03 13 23 33 ~ RNZ If 20, (PCe- Tosg o
DeX rp ’g TP)1 OB 18 2B 3B -~ RZ If 7=, (PCYe{T0S c8
y
LDAX xp a)==((=p ; 04 14 —= — — RNC If CY=0,(PC)e-(T0S D0
© STAX zp (xp)=(2 02 12 — — — RC If CY=1,(Pc)=={T0S 8
DAD xp E,L)w=(H,L)+(rp) * 09 19 29 39 — RPO If P=0, (PC)e-(T0S Eo
PUSH xp ()~ >-;(rh) ((SP) 2)e—(xl), C5 D5 B5 — F5 RPE Tr p1, (PCe{T0S B
RP If 8=0, (PC)e(TOS FO
POP xp Eg(SP)) (zh)e-((sP)+1), ©1 D1 Bl ~ F1 * R It s=1, {Pcle(TOS 78
SP SP)+2 ¥.B. grc)«('ros deaignates the following:—
DIRECT ADDRESS GROUP PC1)==((SP)), (PCp)=-((SP)+1), (SP)=~(5SP)+2
IDA addr (A)e-(addr 34 al ah RESTART GROUP
STA addr addr je-(A 32 al ah RST O T0S }u-(PC), (PC)w-016 o7
1ALD addr L)w{addr), H)-—(add.'rng 24 al ah RST 1 TOS Ju—(PC), (PC)u-81¢ cP
SHLD addr addr)e=(L), (addr+ 1)e={B 22 al ah ggg g ggg I;g ' llzg 1316 D7
1] 16 DF
IMMEDIATE GROUP RST 4 TOS }a—(EC) , (PC)}a—2014 B
BST 5 TOS Je=(PC) , (PC)-281¢ EF
MVI 4, data (A)s-data 3B 44 RST 6 T0S }w=(PC) , (PCe~3015 ¥7
MVI B, data (B)e-data 06 ad §ST 7 7055 a(2C) | (B0 I35
MVI C, data (C)w-data OE dd ! 16 F
MVI D, data (D}e-data 16 dd ROTATE/CONTROL/SPECIAL GROUP
MVI E, data (E)edata 1B dd RLC A). (4 A7), (CY)am(A7) #5%
WVI i, data (H)e-data 26 ad RRC A AT TRl o
MVI L, data (L)edata 2E da RAL Any1)e{An), (A0} e=(CY), (CY}u-(A7) *%x 17
MVI M, data (M)wdata 36 dd RAR An)e-(Any1), (A7)e=(CY), (CY)w=(ag) *¥* 1F
ADI data A)e~(A)+data * c6 dad NOP No operation 00
ACI data A)w(A)+data+(CY) = CE dd HLT Processor stopped until interrupt or reset 76
SUI data A)w-(A)-data * D6 dd DI Interrupts disabled F3
SBI data A A)-data-(CY) DE ad EI Interrupts enabled after next inatruction ¥B
ANI data A)e(A)Adata * E6 dd XTHL, LM(SPg) (H)«(gSP)n) E3
XRI data A}e—(h)vdata * EE dd SPHL SPh)e{)‘_% 9
XCHG Yeu{D}, (L)welE EB
ORI data A)w(4)vdata * F6 dd
. DAA Decima.l adjust accnmulator * 27
CPI data A)-data * FE dd o A)o—(A)
IXI B, addr (B)e-ah,{C)e-al 0t al ah e - z
1XI D, addr (D}w=ah,{E)=-al 11 al eh o (c‘f) o g
1LXI H, addr (H)we=ah,(L)eal 2t al ah 0UT port D3 pozt
LXI §P,addr (SPy)e-sh, (5P }eal 31 al ah IV port ; Not “‘.’“‘ in DOE Systeus DB port
INSTRUCTION FUNCTION HEX
TICC GROUP ICE 1/2 DOE-X
STXMT Pransmit buffer)e-(A) 3206 98 32 16 FP
LDRCV A)e-(Receive buffer) 34 00 98 3A 10 FF
STOUT output port)e-(A) 32 07 98 32 17 FF
LDIN A)e(input port) 3401 98 34 11 FF
STTIM 1 Timer 1)—(A 32 09 98 32 19 FF
STTIM 2 Timer 2)e—(A 32 0A 98 32 1A FF
STTIM 3 Timer 3)=—(A 32 0B 98 32 1B FF
STTIM 4 Timer 4)a-(A 32 00 98 32 1C FF
STTIM 5 Timer 5)e(4 320D 98 32 1D FF
LDSTA A)e—{TICC status reg.) 34 03 98 3A 13 FF
STTCH PICC Command reg.)=-(A) 32 04 98 32 14 FF
STCRR Rate register)e=(A) 32 05 98 32 15 FF
LDIPR A)e(Interrupt pending Teg.) 3A 02 98 3A 12 FF
STIMR Interrupt Mask reg. }e—(A) 32 08 98 32 18 FF
GIC .GROUP
GICC am,bm (GICC Cmd reg.)e-cd 3B cd + 32 03 1Cor32 03 FF
BCIR n PZBn 0 3B ‘cc + 32 03 1Cor 32 03 FF
BSET n 1 38 cs + 32 03 1Cor 32 03 FF
IGI m A)<—(Port m 34 Om 1Cor 3A Om FF
SIGI m Port m)w(A 32 Om 1C or 32 Om FF
LDGIS O A)e(Port 0O 34 00 5Cor 3A 08 FF
STGIS 0 Port O--(4) 32 00 5Cor 32 08 FF
N.B. «cd = 8016+ (810 xam)16+ bm.
eg. for am=3, bm=3; cd= 8015+(B1ox3)16+3
= 8016+ 1816+ 3 =
co = 2xn
ca = (2xn)+1
n = 0, 1or2
reg)/(xp) = contents of reg. or reg. pair.
(zp)) = contents of memory location whose
address is held in reg. pair.
M memory location whose address is
held in reg. pair HL.
dd = 2 digit hex. data.
addr = 4 digit hex. address or data.
ah = high order address byte.
al = low oxder address byte.
* = All flags affected.
b = All flags except CY affected.
I =

Only CY flags affected.

For modification of flags, and execution times for each
instruction, refer to section 5.5 of DCE Systems Designers

_ Handbook.

11

DCX

STAX

STA

DCR
MVI
STC

DAD
LDA
DCX

bUUUUP QQaowWww
[
¥

=9
oY

HEHEHUOUOUY

cMe
MOV
MoV
MoV
MOV
MoV
MOV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MOV
MoV
MoV
MoV
MoV
MoV
MOV
MoV
MoV
MoV
MoV
MOV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MoV
MOV
MoV
MoV
MoV
MOV
MoV
MOV
MoV
MoV
MoV
HLT
MoV
MoV
MoV
MoV
MoV

=%
a

Hoab> FhEVoWFRFENRUOWRRREEPaWFrEFNEUOWFRE DRV PRt Eb o REHER OB

R RRRXRERRC PO bdNObdnmbNEEEEEEEEOODUODUb OB =

MOV
Mov
MoV
MoV
ADD

ADD
ADD
ADD
ADD
ADD
ADD

ADC
ADC

ADC
SUB
SUB
SUB

SUB

SUB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB

CMP D D2 JNC addr EA JPE addr
CMP E D3 OUT dd EB XCHG
cMP H D4 CNC eaddr EC CPE addr
CMP L D5 PUSH D ED -—
CMP M D6 SUI dd EE XRI dd
CMP A D7 RST 2 EF BST 5
-RNZ D8 RC FO RP
POP B 9 — M POP PSW
JNZ addr DA JC addr ¥2 JP addr
JMP addr DB IN ad ¥3 DI
CNZ addr IC CC addr F4 CP addr
PUSH B D — F5 PUSH PSW
ADI ad DE SBI dd F6 ORI dd
RST 0O DF RST 3 F7 RST 6
RZ EO RPO F8 RM
RET E1l POP H F9 SPHL
Jz E2 JPO addr FA JM addr
— E3 XTHL FB EI
CZ addr E4 CPO addr FC CM addr
CALL addr E5 PUSH H FD —-
ACI addr E6 ANI dd FE CPI dd
RST 1 E7 RST 4 FF RST 7
RNC E8 RPE
POP D E9 PCHL
ASCII - HEX - ASCII CONVERSION TABLE

MSD 0 1 2 3 4 5 6 7
LSD 000 | 001 | o010 | o11 | 100 | 101 | 1107 | 111
0 0000 | NUL | DLE | SP 0 e P « P
1 0001 | SOH | DC1 ! 1 A Q a q
2 0010 | sTx | DC2 | 2 B R b r
3 0011 | Brx [Doz | # | 3 c s c s
4 0100 | BOT | DC4 | £ 4 D T a t
5 0101 | ENG | NAK | % 5 E U e u
6 0110 | Ack [st | & 6 P v £ v
7 0111 | BEL | ETB | « 7 G W g W
8 1000 | BS | can | (8 H X h x
9 1001 | HT hous) 9 I Y i y
A 1010 | LF | sUB | * J Z 3 z
B 1011 | vr | Esc| + ; K [k {
¢ 1100 | FP | Fs ; < | v [\ 1 |
D 1101 [CR | GS - = M] m 3
E 1110 | so | BS . > v | ¢ n | ~
F 111 | s1 | Vs / ? 0 | = o DEL

QurErdEdadRrdEddaud RrdEYQaur ErnEbdQur ERrNEDods ERrmEBUQWE EHHEHUQWE > & =

C) MEMORY MAP HARDWARE

a) GENERAL THEORY

As in any computer based system, the 8080 CPU must be able
to communicate with devices or structures that exist outside
its normal memory array. Devices like keyboards, paper tape,
floppy disks, printers, displays and other control
structures are used to input information into the 8080 CPU
and display or store the results of the computational
activity.

The basic operation of the I/0 structure can best be vieuwed
as an array of single byte memory locations that can be Read
from or WRitten into. The 8080 CPU has special instructions
devoted to managing such transfers (IN, OUT). These
instructions generally isolate memory and I/0 arrays so that
memory address space is not effected by the I/0 structure
and the general concept is that of a simple transfer to or
from the Accumulator with an addressed "PORT". Another
method of I/0 architecture is to treat the I/0 structure as
part of the Memory array. This is generally referred to as
"Memory Mapped I/0" and provides the designer with a
povwerful new "instruction set" devoted to I/0 manipulation.

ISOLATED 1/0

P T T M e e e e e e e e ———— -~
10 o 65K |
! - !
f

| MEMORY :
; 45~ !
1 o 256 :
} i
| /0 |
l !
| |
o m T e :
1 © 32K 65K !
]

| I
| MEMORY 1/0 i
X [
L MEMORY MAPPED 1/0 -:

Figure Q.ZOMemory 1/0 Mapping.

ISOLATED 1/0

In Fig.2.21 the system control signals, previously detailed
in this chapter, are shown. This type of I/0 architecture
separates Jhe memory address space from the I/0 address
space and uses a conceptually simple transfer to or from
Accumulator technique. Such an architecture is easy to

A5

understand because I/0 communicates only with the
Accumulator using the In or OUT instructions. Also because
of the isolation of memory and 1/0, the full address space
(65K) is uneffected by I/0 addressing.

TO MEMORY
DEVICES

j|~ TO 1/0 DEVICES

> WEWR }

O———— MEMW

SYSTEM
_CONTROL
(8228)

|

=

o

o

|

o—————
O—+I

=

(]

Figure 2,21 Isolated I/0

MEMORY MAPPED 1/0

By assigning an area of memory address space as I/0 a
powerful architecture can be developed that can manipulate
1/0 using the same instructions that are used to manipulate
memory locations. Thus, a "new" instruction set is created
that is devoted to I/0 handling.

I/0 devices are still considered addressed "ports" but
instead of the Accumulator as the only transfer medium any
of the internal registers can be used. All instructions that
could be used to operate on memory locations can be used in
1/0.

Examples :

MOVr, M (Input Port to any Register)
MOV M, r (Output any Register to Port)
MVI M (Output immediate data to Port)
LDA (Input to ACC)

STA (Output from ACC to Port)

LHLD (16 Bit input)

SHLD (16 Bit Output)

ADD M (Add Port to ACC)

ANA M ("AND" Port with ACC)

It is easy to see that from the list of possible "new"
instructions that this type of I/0 architecture could have a
drastic effect on increased system throughput. It is
conceptually more difficult to understand than Isolated I/0

and it does limit memory address space, but Memory Mapped
1/0 can mean a significant increase in overall speed and at
the same time reducing required program memory area.

b) MEMORY MAP

The bleu PROM (sheet 2) is the one that selects the biggest
Parts in the computer. That is : input/output; upper or
lower Prom; reading from dynamic memory : bank A/B or C; and
the use of different dynamic memory chips (4027 or 4116).

gaddyg
HEAP
#d400
B350
TEXT
VIDEO
RAM
€000
ROM DFFF
ROM Eggd
. EFFF
Fgg
STACK F8¢¢}
N F8FF
1/0 F gy
FFFF

DYNAMIC RAM

(MODE # TEXT ONLY FOR 48K RAM)

BFFF (FOR 48K RAM,

NON-SWITCHED ROM

4 SWITCHABLE BANKS OF ROM

SYSTEM STACK

1/O DEVICES MEMORY MAP

RAM is build up in 3 blecks of 16K.

bank A (IC 56-100)

Picture (even and odd adresses)

bank B (IC 57-100)

bank C (IC 58-102)

40

Programs + heap

0000

BFFF

A IFFF

16 Bit -

[

for the processor B : even address byte 4000
A : odd address bye 4001

SELECTION ROM

The firmware of the computer is stored in 24K ROM (the
memory space of the ROM is 8Kx8). The address range
(BOO-EFFF) is only 12K so bank switching is used to enable
the use of 24K ROM in this address range.

PUU 1C72

----- A12
FDO6 BIT6

- < ::Ao—Aﬂ
AO-A12 o "~

8K —+4K
.| NoT
gggg SWSfHED —|PU BANK SWITCH
ol _:D- FDOG BT 7
MR
cs From blue

-4K

e

+4K '
<“r_—_IAo—An
IC 71 \

MR PL
From blue

On sheet 5 we find the three ROM's (IC 71,72,73).

The upper PROM's (IC 71 and 72) are selected via the blue
PROM (same as the lower PROM) but also with the bank switch
bit (via latch address FD@6 bit 7) so IC 72 is the upper
upper ROM (PUu) and IC 71 is the upper lower ROM (PUL) but
it is only one of the two ROM's which is selected. The
pseudo A12 (via latch address FD@6 bit 6) split IC71 and

72 ROM's in 2 banks of 4K each. So we use only 4K in the
memory map (EO00 - EFFF)

BAN
UL ANKD oy Bank 0 = OEOO0-OEFFF
PSEUDO Al?2 Bank I = lEUOO—lEFFF
—— Bank II = 2E000-2EFFF
BANK | BANKI Bank III = 3E000-3EFFF
SWITCH BANK?2
1 PULU The switching of these
PSEUDO A12 banks is done under
i——pULL software control via the
BANK3 RST commands to the CPU

The complete memory map is given below

HMEMORY MAF

INTERRUPT VECTOR ROUTINES: 0000 — 0OO03F

0000—-07

0008-0F

0010-17
0018-1F

QO20-27
0028-2F

0Q30-37

00ZB-3F

Interrupt vector
routines:

Interrupt vector routine O:

Used by Utility (LOOK).
Interrupt vector routine 1:

Used by Utility and encoding Basic.

RST 1 + data: Switch to ROM-bank 3.
Interrupt vector routine 2:

Used by stack interrupt.
Interrupt vector routine 3:

Used by sound interrupt.
Interrupt vector routine 4:

Used for math. routines.

RST 4 + data: Switch to ROM-bank 1.
Interrupt vector routine 5:

Used for screen handling routines.

RST 5 + data: Switch to ROM-bank 2.
Interrupt vector routine 6:

Used for keyboard service routines.
Interrupt vector routine 7:

Used to flash the cursor.

00 NOP
ES PUSH H
2A LHLD:

.=) vector address location
-) see (#0062-#0071).

E? PCHL
00 NOP
00 NOP

UTILITY WORK AREA: 0040 - 0061

0040 'POROM:z
'POR1M:
POROM:
0041/42 RSHWK1:
0043/44 RSWKZ2:
0045/46

) Memory of last outputs to output ports.
) Duplicate of (#FDOS4).

)

Save (psw) during ROM bank switching
Save (H,L) during ROM bank switching
Spare.

0047

0048749
004A/4B
004C

004D—-4F

0030

0051/52
0053
00354,
00355
0056
0037
0058
0039
003A
005B/3C
QO3D/5E

O05F

Used by LOOK:

Store EI/DI instructions after using LOOK

the first time (No clear occurs).

High address trace window.

Low address trace window.

Store EI/DI when LOOK is used.

Store current instruction of traced

program.

Flag for Look initialisation:

#FF: init. Look, else: #00.

IADR: I: Address current instruction.
AFSAV: A: Contents A after execution of I.

F: Idem status flags.

BCSAV: B: Idem B register.
C: Idem C register.
DESAV: D: Idem D register.
E: Idem E register.
HLSAV: H: Idem H register.
L: Idem L register.

SFS5AV: S: Idem stackpointer.
FCSAV: P: Address next instruction to be
executed.
TICIM: M: Current interrupt mask.
Duplicate of (#FFF8)
T: Value TICC control word.
(#FC aftter 1Z2).
G: Value GIC control word.
(#1B after Z2).

INTERRUFPT VECTOR ADDRESSES: 0062 — 0071

0062/63
0064/65
0066767
0068/ 69
Q06A/ 6B
00&6C/6D
Q0&E/&6F
0070/71

IoUSA: Vector address RST 0O:

I11USA: Vector address RST 1: utility/encode: #C70E. -
I2USA: Vector address RST 2: stack interrupt: #D9EZ.
I3USA: Vector address RST 3: sound interrupt: #D75S5.
I14USA: Vector address RST 4: math. restart: #C6CO.
ISUSA: Vector address RST 5: screen restart: #C6FD.
16USA: Vector address RST 6: keyb. int. serv: #D3578.
17USA: Vector address RST 7: clock interrupt: #D9A%.

set by UT (Z2): 3#EBS3D.

By changing the vector addresses, other
interrupt routines can be used.

SCREEN VARIABLES: 0072 — OQO0CF

0072/73
Q074

0073

Character mode variables:

CURSOR: Cursor position address.
CURTY: Cursor type:
#00: cursor flashes in colour.
#01: cursor alternates between actual
character and contents #0075.
CURIN: Cursor information: o
If type = 0: Mask which is EXOR’ed with
the colour byte for that
character to flash it.”
If type = 1: Cursor alterates between
actual character and this
information.

Q076777

0078779
0074

0078
o07C
007D
007E
007F

0080/81
0082/83
0084/85
0086787

0088/89
00B8A/8B
0o08C/8D

008E/8BF
0090/91
Q092/93

0094/95
0096
Q097
0098
0099/9A
009B/9C

009D

00%E
00FF
L00A0

00A1
00AZ
00AZ—AA

OOAR

00AC
O0OAD-B4

CURSV:

LNSTR:
LNEND:

LCONT:
COLMT:

Contents screen RAM location indicated by
the cursor:

#0076 contains the colour byte.

#0077 contains the data.
Address line mode byte of currently used
line of the screen RAM. .
Lsbyte of end of cursor line.
Used to check if end of line is reached..
Number of extended lines. :

) colours for colour #80+X3
}) registers COLORT #90+X2
) #A0+X1
) #BO+X0

VYariables set to describe the current state of
the screen:

SCREEN:
SCTOP:
FFB:
GRR:

GRE:
CHS:
GAE:
CHE:
SCE:
GTE:
GAS:
GTS:
GRC:
GRL =
GAL:
GXBs:
GREQ:
CHSO0:

SMODE =

Points to first byte of screen RAM (#BFFF).
Points after header (#BFEF).

First free byte in this mode.

Foints to top of rolled area. Contains the
line mode byte of the line where split mode starts.
Points after end of graphics area.

FPoints to start of character area.

Ungsplit: End archive area.

Split: After end of character area.

End of screen (after trailer).

End area used splitting mode.

Unsplit: start archive area.

Split: start temporary save area.

Number of blobs horizontally in mode.
Number of lines of graphics in mode.

Number saved lines of graphics.

Number of bytes/line this mode.

Frevious end of graphics.

Previous start characters:

Was split: previous mode byte of 1st text line.
Was graphics: Previous last COLORT-byte.
Current screen mode (updated after mode
changed) :

#00 mode 1 #08 mode S

#01 mode 1A #0977 mode SA

#02 mode 2 #0A made &6

#03X made 2/ #0B mode 6&6A

#04 mode 3 .

#0535 mode 3A #10 during init.
#0646 mode 4

#07 mode 44 #FF mode O

bits 4-7 are ignored;
#0C,0D,0E,OF are inhibited.

Graphics mode variables (From #00A2-#00B5 also
used by the EDIT mode):

COLMG:

SCVR:
SCXBUF =

SRGOU:

SBGOC:
COLS:

) colows for colour #80+X3
) registers COLORG HP0+X2
) #A0+X1
) #RO+XO

Buffer used to hold contents of an 8 bit
field during 146 colour updates.

Flags when colour is being carried out to
next field.

Colour being carried out.

Buffer for impossible requests.

O

O0AZ/AZ
00A4/AS
O0AL/AT
00A8
O0AY/AA
OO0AR

OOAC/AD

O0AE/AF
O0OBRO/R1
OOBZ/B3
QOR4/BS

OOBS5/R6
OOR7 /B8
OORY/BA
OOBR/RC
QGRD
OORE
QORF
00CO
00C1
O0C2/C=
00C4/CS

0O0C&/C7

00C8-CF

MATH.

'Edit variables:

'EBUFR:
'EBUFN:
'ERUFS:
'EWINX:
'EWINY:
'ECURX:

'ECURY:

' CURPT:
' CURLS:
' CURLB:
' TAEBTP:

Address start EDIT buffer.

Address end of text in EDIT buffer.

End available space in EDIT buffer.

Offset of left side of window.

Offset of top of window from start buffer.
X—offset of cursor in document (current
cursor position in text line).
Y—offset of cursor in document
current cursor line).

Fointer to cursor position in buffer.
Fointer
Pointer
Address

(count of

to line mode byte of cursor line in
tab position table.

Line drawing variables:

DELTA:
-RT:
COR:
SECT:
SECTC:
TRIM:
DIRN1:
DIRNZ2:
ANIM:
FCOLR:
ASMKRM:=

AESTOF:

WORKING AREA:

Amount to add into count.

Count.

Adjustments for long sectors.

Lower of 2 possible sector lengths.

Number of sectors.

Amount to trim off last s=ctor.

Set if Y-direction is negative.

Set if swap X.,Y directions.

Set if animate in 4 colour mode.

Details of colour required.

Address memory management routine (#CAO01).
Checks available RAM space.

Address emergency stop routine (#CAZ25).
Return- ﬁput1ne §0r.’Dqt of space for mode’.
Spare. [(pr 7 sposdy @bl Polh e

QODO — OOFF

QODO/D1
00D2/DX
00D4

00DS-D8
OOD9?-FF =

OODE
OODF-EZ2
QOE3
O0E4
Q0E4—-FO
Q0E7-EA
OQEB-EE
OOEF-F2
O0F1

MVECA:

FPAC:

EXFDF:

XNz

FTWRK =

Fointer to table with error routines (#C7F2).
Pointer to input routine (#DDEOQ).
Math. chip flag: offset of start HW/SW vectors
(offset for RST 4 restart routines):

#00 No math. chip.

#7B math. chip present.
Arlthmetlc accumul ator.
Used as scratch pad memory for math.
package. Used in single and double byte
configurations.

Also used for data save during stack operations.
Length output string in #00E4-FO.

Sign output string.

Used for output conversion.

Digit count in output conversions.

to line mode byte of cursor line on screen.
buffer.

BASIC VARIABLES:

0100 - OZEB

0100/01
0102703
0104/05

0106

0O107-0A
010B—-0E
010F-10
0111/12
0113714

0115

0116
0117
0118

0119/1A

011B/1C

011D/1E
O11F-21
0122

0123
0124725

0126
0127/28

0129-2C

012D-30

‘User state:

Following are saved by soft break:

SYSBOT:
CURRNT =
BRKFT:
LOPVAR:

LSTPF:

LSTEP:
LCOUNT:
LOPPT:
LOPLN:
STKGOS:

SYSTOF:
(STRFL:
TRAFL:
STEPF:
RDIPF:
RUNF =

Runtime

GSNWIK:

LISW1:
COLWK:

LISW2:

(SFRAME = SYSTOP — SYSBOT)
) Btart of current line. Points to first
} byte of line number.
Start of current command.
Points to curvrent loop variable. Points to
position of variable in symbol table.
#00 i1+ no running loop.
Flag for integer/fpt loop and
implicit/explicit step.

bit 0z 0 = implicit step.
1 = expicit step.

bit 7: 0 = FPT loop variable.
1 = INT laop variable.

Step value if explicit.
Loop iteration count.
Pointer to start address loop.
Pointer to start loop line.
Stack level at last GOSUB.
#00 if no active call.
)
} Trace/step flag together)
) Trace flag (#FF when set).
Step flag (#FF when set).
Flag set while running input (set:
Flag set while running program.
(Previous 2 bytes must be consecutive)

#FF).

scratch area:

Scratch area for GOSUB/NEXT (2 bytes).

- Points to destination address last GOSUB.

Startaddress of listed area.

Scratch area for SCOLG, SCOLT (4 bytes).
Contains last selected COLORT/COLORG values.
End address listed area.

Save area for restart on error:

ERSSP:

ERSFL:

Stack pointer.

Set if encoding a stored line (set: #01).

Data/read variables:

DATAC:
DATAP:
'DATAB:
CONFL =
STACK:

Scratch

WORKE :

Random

RNUM:z
TRNDLY:

Offset of next character to encode.
Pointer to current data line.

-Pointer after current data line.

Set if there is a suspended program (set: #01).

Current base stack level.
location for expression/function evaluation.

Scratch area. Contains also the arqument A of
the last software random RND(A).

number kernel:

Random number kernel,

Random number delay count (1 byte).

0131

0132/33

0134
0135

0136

0138
0139/3A

013B/3C

013D

013E-BD

0O1BE/BF
01Co

01C1

Output switchin

OTSW: #00 ou
#01 ou
#02 ou
#03 ou

Encoding input
EFEFT: Encodin
address
Encoded
Encoded
#00
#01
#02

EFECT:
EFSW:

Variables used
(could overlap

gs

tput to screen + RS232.
tput to screen only.
tput to edit buffer.
tput via DOUTC.

source switchings

g input pointer. Points to start-
of Basic-line just being encoded.
input count. Counts length of line.
input switching:

Input from keyboard/DINC.
Input from string.
From edit buffer to program area.

during expression encoding
with runtime variables):

latest expression or item:
FPT
INT
STR
priority operator:

no operation #56A I0R
AND #6C IXOR
OR #8D SHL
>= #BE SHR
> #A0 +
L #A1 -
<= #C2 7/

< #C3 X

= ' #CF MOD
IAND #E4 ~
ority operator.

to place in encoded input buffer

t operator.

TYFE: Type of
#00
#01
#02

RGTOP: Latest
#00
#38
#39
#50
#51
#52
#53
#54
#5355
#69

OLDOP: 0Old pri

HOPPT: Pointer

for nex

RGTPT:

Mask to

CASSL =

Encoded

EBUF =

Pointer to place in encoded
of operand latest operator.

select cassette 1 or 2:

1 activated.
2 activated.

#10 Cassette
#20 Cassette

input buffer:

128 bytes buffer. Also used

utility.

Interrupt handler variables:

TIMER:
CTIMR:

KBXCT:=

Timer location.

Cursor clock.
CTIMV: #OF:
When #00,

input buffer

by

Also used in WAIT TIME.
Used for cursor flashing.
Flash time in 20 ms units.
cursor flashes.
‘Extend keyboard scan time counter.

When #00,

keyboard scan will be performed.

KBXCK= #02:

kKeyboard scan time (16 ms

units). Also used by RAND routine.

01C2—CF:

01€C2
.01C3/Ca

01C5/C6
01C7
o1cs

o1C9
01CaA

O1CE

- 01CC/CD
O1CE/CF
01DO-DB
O1DE-EB
QlEC-F4

01F5-
0274

0275-
—28E

028F

0291/92
0293
0294
0293
0296

0297-9A

Sound control block storage:

Sound control block 0.
SCBL: Length of a sound block (14 bytes).
SCBO: Duration count of present volume.
FPointer to present envelope volume/duration
in envelope table.
Pointer to start envelope table.
Sound—volume %8. -
Volume, calculated from sound-volume and
present envelope volume.
Counter for tremolo.
Final volume, calculated from volume and
tremolo fluctuations.
Glissando flag:
#00 Endperiod reached.
#02 Endperiod not reached.
Present period.
Final period (glissando).
SCBi: Sound contral block 1 (see S5CRBQ).
SCR2: Sound control block Z (idem).
NCB: Noise control block.
NCBL: Length of noise block (2 bytes).
The noise control block is identical to the sound
control block, but without period-values and
tremolo.

Envelope storage:

ENVST: Envelope storage (128 bytes).
ENVLL: #40: Number of bytes/envelope
NUMENV: #02: Number of envelopes.
Two envelope tables of each 64 bytes:
#O1F5—#0234 and #0235-#0274.
IMPTAR: Implicit type table.

#0275 A #027C H #0283 0O #0O28A V
#0276 B #027D X #0284 F #OL2BR W
#0277 C #027E J #0285 @ #028C X
#0278 D #O27F K #0286 R #028D0 VY
#0279 E #0280 L #0287 S #OZ8E Z
#0274 F #0281 M #0288 T
#0270 G #0282 N #0289 U

IMPFTYP: Default number type. Selected by IMF command.
#00 FPT
#10 INT
#20 STR

REQTYP: Required number type for present operation.
#00 FPT
#10 INT
#20 §STR

#40 Array without arguments
Spare variable space:

DATAR: Fointer to begin current data line. .
RNDLY:
POROM: Duplicate of (#FD04).
POR1M: Duplicate of (#FDOS).
INSH: Input switching:
. I+ #00, input from keyboard.
I+ <>#00, input from DINC.
Spare. '

73

029R/9C
029D/9E

Q29F /A0
02A1/A2

02A3/A4
02A5/A6

0Z2A7 /A8
02A9-BO

O2AF

0Z2BO

2B1-B8
02R%

0ZBA-BD

QZBE/BF
02Co/Ci1
02C2

0Z2C3

02C5-EB

Heap/text buffer/symbol table pointers:

HEAP:
HSIZE:

TXTBGN:
TXTUSE:

- STBBGN:

STRUSE:
SCRROT =

Start address of HEAP.
Size of HEAP.

HSIZD: #100: Default size.
Start address of text buffer.
End text buffer and.

Start symbol table.
End of symbol table.
Bottom screen RAM area (48K):

mode Os #B3ISO
mode 1/2(A): #B7A0
mode 3/4(A): #ALSC
mode S/6(A): #43ZR8

Keyboard variables + constants:

KBRTPT:
MAP1:

RPLOC:

SHLOC:

MAPZ:
KNSCAN:=

KLIND:

KLIIN:
KLIOU:=
RPCNT:

SHLK:

KBRFL:=

Fointer to table with ASCII-codes.
Latest scan of keys (key—codes).
(row 0 in #02A9, row 7 in #02B0)
Byte containing REPT key.
RPMSK: #20: Rept key bit.
BRSEL: #40: Column select mask for BREAK.
BRMSK: #40: Break key bit.
Byte containing SHIFT.
SHMSK: #40: Shift key bit.
Previous scanning of keyboard.
Set to scan for BREAK only. When (#02B%9)
is #FF: scan for BREAK only.
4 byte circular buffer to store the ASCII
values for keys pressed.
KBLEN/KEYL: #04: length rollover buffer.
Next position for input to KLIND.
NMext position for output from KLIND.
Count for REFT. #01 when REPT is not
pressed. Else it is used as timer for the
repeat function.
Set to #FF when CTRL is pressed to
invert SHIFT. Else #00. Used to
calculate the offset for the ASCII code
table..
Break flag. #FF indicates BREAK pressed
(Only if suspended program). When BREAK is pressed,
#02C4 counts from 00 to #OF before stopping
the program.

Data/cassette switching'vectors:

Copy of

ROM (#D7A4 — #D7CA) for cassette and RS232.

Can be loaded with other I/0 vectors.

I0OVEC:

02CS WOPEN: C3I B8 D2 JMP: D2BS8

02C8 WBLK: C3 F1 D2 JMP: D2F1

O2CB WCLOSE: C3 27 D4 JMP: D427

02CE * ROPEN: C3 25 D3I JMP: D325

02D1 RBLK: C3 40 D3I JMP: D340

02D4 RCLOSE: C3 45 D4 JMP: D44S

02D7 MBLK:= C3 AZ D3I JMP: D3A2

02DA RESET: C? 00 00 RET

0Z2DD DOUTC: C% 00 00 RET

Q2E0 DINC: C3 B4 DD JMP: DDBR4

02E3 C? 00 00 RET

OZE6 TAPSL: 24 24 Tape speed leader.

02E8 TAPSD: 24 3C Tape speed data.
2EA TAPST: 24 18 Tape speed trailer.

HEAP, PROGRAM AREA, SCREEN RAM: OZEC — BFFF

02EC—

{RAM: HEAP (Strings + arrays) - See (#029B/9C).

-BFFF (VAREND: Program (compiled Basic) — See (#029F/A0).
(VARLAST: Symbol table — See (#02A/1/A82).

Not used RAM -~ See (#02A3/A4).

Screen RAM i - See (#02A5/A6).

ROM AND CPU AREA: CO00 —~ FBFF

CO00—
—EFFF

FQOO—

~F7FF

FB0O~
~-F8FF

24K ROM:
#COO00O-#DFFF: 8K non-switched ROM.
VECA: $EOQOO—#EFFF: 4 banks of each 4K ROM.

(switchable).

Can be used for ROM extension (reading only).
Is already completely used by Memocom MDCR-D.

Microcomputer stack. R

Incl. vector for MDS jump instructions.
#F800 SRBOT Bottom of stack RAM.
#9200 STTOP Top of stack RAM.

1/0 DEVICE ADDRESSES: F900 — FFFF

F00~
—FAFF

FBOO

FROZ2

Spare I/0 device addresses.
(Not wired on pC board).

MATH. CHIFP AMD 9511: FBOO - FBFF

MTHAD:) Data math.chip.
MDATA:)
MCOMD:) Command + status.

- MSTATUS:)

AMD?3511 operator and status bytes:
ODADD: #2C Int addition OFADD: #10 Fpt addition
ODSUB: #2D Int subtract OFSUB: #11 Fpt subtract
ODMUL: #2E Int multiply OFMUL: #12 Fpt multiply

ODDIV: #2F Int division OFDIV: #13 Fpt division
0SERT: #01 Sgquare root OFIXD: #1E Fix

OSIN: #02 Sine OFLTD: #1C Float

0cos: #03 Cosine OCHSD: #34 Change sign int
OTAN: #04 Tangent OCHSF: #15 Change sign fpt
OASIN: #05 Arc sine ‘ OPTAOD: #37 Push int/fpt
0ACOS: #06 Arc cosine OFOPD: #38 Pop int/fpt
OATAN: #07 Arc tangent

OLO0G: #08 Log base 10

OLN: #09 Log base e MBUSY: #B80 Busy status bit
OEXF: #0A Expotential MERRB: #1E All error bits
OPWR: #OB XY MZERO: #20 Top of stack

Eal

FROGRAMMABLE INTERVAL TIMER 8253: FCO0O - FCFF

-

Used for sound generator. 3 independent 14 bits
down counters with programmable counter modes.

FCo0O/01 SNDAD:)
SNDO:) Counter 0 (oscillator channel 0).
'PDLCH: Used as counter for paddle operations.
FC02/03 SND1: Counter 1 (oscillator channel 1).
FC04/05 SNDZ2: Counter 2 (oscillator channel 2).
(16 bit data; LSB first)
FCO& SNDC: Command 8253. To be loaded prior to freq.
selection with resp. #36, #76 and #Ré6.
Command word format:
bit O : O binairy counter 16 digits.
1 BCD counter (4 decades).
3.25,1z 000 mode 0: Int. on end count.
001 mode 1: Progr. one shot.
®x10 mode Z2: Rate generator.
x11 mode 3: Sg.wave rate gen.
1060 mode 4: SW trig. strobe.
101 mode 5: HW trig. strobe.
S,4 = 00 Counter latch operation.
01 Read/load MSB only.
10 Read/load LSE only.
11 Read/load LSBR first, then
MSB.
7,6 = 00 Select counter 0.
01 Select counter 1.
10 Select counter 2.
11 Illegal.
Several control words:
COFIX: #00 Fix count on channel O.

COM0Q: #30 Chan.0, mode 0, 2 byte op.
COM1: #32 Chan.0O, mode 1., 2 byte op.
COM3: #3I6 Chan.0, mode 3, 2 byte op.
CiM3: #7&6 Chan.l, mode 3, 2 byte op.
CZM3: #B&6 Chan.2, mode 3, 2 byte op.

DISCRETE I/0 DEVICE ADDRESSES: FDOO — FDFF

FDOO PORI: IN (1) bit 0z -

i: -

2: PIPGE: Page signal

3: PIDTR: Serial output ready

4: PIBUl1: Button on paddle 1
(1 = closed)

S: PIBUZ2: Button on paddle 2
(1 = closed)

‘6: PIRFI: Random data

7: PICAI: Cassette input data

FDO1 PDLST: 0OUT (3) Single pulse used to trigger
paddle timer circuit.

FDO4

FDOS

FDO6

FEOO
FEGQ1
FEOZ2
FEO3

PORO:

POR1:

PORO:

PROGR.

ouT (2) bit O

4

ouT (2) bit ©

4

1,

ouT (3) bit O:

2z
Iz
4:

volume osc. channel 0
volume osc. channel 1
volume osc. channel 2
volume random noise
generator.

POCAS: Cassette data output
PDLMSK = ’
POFPNA:
POCM1:

POCM2Z:

Paddle select
Paddle enable
Cassette 1 motor
control. (O = run)
Cassette 2 motor

control. (O = run)
'ROM bank switching:
- 00 bank O
01 bank 1
10 bank 2
i1 bank 3

PERIPHERAL INTERFACE 8255 : FEOQ — FEFF

Used for DCE-bus (GIC Controller).

GIC:

(1) I/0 port A

(1) I/0 port B
(1) I/0 port C
(6) Command word
Contr. PA FCH
#80 out out
#81 out out
#82 out out
#83 out out
#88 out in
#89 out in
#8A out in
#8R out in
#20 in out
#21 in out
#92 in out
#93Z in out
#98 in in
#99 in ‘in
#2A in in
#9B in in

8255:
PCL
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in

PB (mode 0)
out RWMOP
out

in

in

out

aout

in

in

out RWHMIF
out

in

in

out

out

in

in

23

TICC: TIMER + INTERRUPT CONTROLLER 5501: FFQO-FFFF

FFFO (4) Serial input buffer. Contains the last
character received on the RS232 interface.
FFF1 (4) Keyboard input port. Bottom 7 bits are data

input from the keyboard. Bit 7 is the IN7
line from the DCE-bus and is attached to
the page-blanking signal for the TV. Every
20 ms. an impulse is present.
FFF2 (3) Interrupt address register:
bits 5,4,3: Number of pending
interrupt.

A -
2,1,0:) always 717
FFF3 (4) Status register:

bit O0: Frame error. Set by a BREAK on the
RS232 input.

1: Overrun error. Set if a character
has been received but not taken by
the CPU. . .

Serial input. Set if no data is
received.

3: Receive buffer loaded. Set if a
character has been received.

4: Transmit buffer empty. Set if RS232
output is ready to accept another
character.

S: Interrupt pending. Set if one or more
of the enabled interrupts has
occured.

6: Full bit detected. Set if the first
data bit of an incoming character
has been detected.

7: Start bit detected. Set if the start
bit of an incoming character has been
detected.

FFF4 (5) Command register:
bit 0z TICC reset.

1: Send Break. If set, the serial output
is high impedance.

2: Interrupt 7 select. A 17 selects IN7
of the DCE-bus, a 0’ selects Timer 5.

3z Interrupt acknowledge enable.

A 717 enables TICC to accept a INTA
signal from the CFU.

4 — 7: Always O.

FFFS (6) Communications rate register:
bit 0: 110 baud

1: 150 baud

: 300 baud

3: 1200 baud

4: 2400 baud

S: 4800 baud

6: 9600 baud

7: 1 — one stop bit
0 - two stop bits

™

FFF& (&) Serial output buffer. Write byte to this
: location to send it on the RS232 output.
Use only when #FFF3-bit 4 is high.

FFF7 (7) Keyboard output port. Data output to scan
keyboard.
FFF8 - (5) Interrupt mask register:

bit Q: timer 1 has expired (UTIM).
1: timer 2 has expired.
External interrupt (STKIM).
Timer 3 has expired (SNDIM).
Serial receiver loaded.
Serial transmitter empty.
Timer 4 has expired (KBIM).
Timer 5 has expired or IN7 (CLKIM).
(react only on low-high transition)

NO DD R

FFF9 (5) UTIAD: Timer 1 address (UT).

FFFA (5) Timer 2 address.

FFFRB (S5) SNDIAD: Timer 3 address (sound).
FFFC (3) KBIAD: Timer 4 address (keyboard).
FFFD (5) Timer 5 address.

FFFE not used.

FFFF . not used.

NOTES: (1) Read and write allowed.

(2) Reading allowed. Writing too, but may be
aoverwritten by BASIC program.

(3) No writing allowed.

(4) Reading allowed, writing not.

(5) Should not be accessed.

(6) Writing allowed, reading not.

(7) Reading not allowed, writing is harmless but
useless; keyboard scanner will overwrite it.

REMARKS:
ADDRESSES FBOO — FFFF:

The 2 highest bytes of the address are used for the chip
select signal CS of the peripheral equipment B233, 8235,
5501 etc. The lowest byte is used to address the several
registers of the peripheral. The 2nd LSB does not have any
value. So addresses in this range can be read as FBxO —
FFxF, in which % is a don’t care.

STARTING ON ADDRESS Cggg

When resetting the computer, the program counter in the CPU
starts from address @@pP@. We can change the start

address outside the processor by putting some external
hardware on the highest address lines.

+5V
P
CLR
390n o—iD
RESET +5V
IC93
1C107
470pF o)
I ck t 8
PR
Oy
-——-—-41 N
O
o ’E::::> P A1S
ATS 1C%3 1C83
cPU r\
Al4 ’i) O Al
O- 7 l/

When resetting is the RESET pin 13»CLR IC}D7 is ﬂ#ﬁ is 1
and Al4 and Al5 are zero. So Al4’and Al5 are high and the
system starts from address C@gg.

Al4 and Al5 Al4 and A15'
after RESET O 0 1 1

0 1 0 1

1 0 1 0

CHAPTER III DYNAMIC RAM MEMORY

The concept of dynamic memory storage can be seen as follow

You can store a digital "0" or "1" by a low or high voltage
storing on a capacitor in a 3-transistor-cell. However, this
can cause a problem since the charge will eventually leak of
any capacitor. If data is to be retained for longer than the
self discharge time of a cell storage capacitor, typically
two milliseconds, the data must be sensed before it is lost
and then restored to its original voltage level. The
operation of restoring the cell voltages to good levels is
called a refresh operation. This simultaneously occurs in
all cells of the externally addressed row of the memory
matrix. To refresh the entire memory array, it is necessary
to perform a refresh cycle to each of the 128 rows of the
memory array at least once every two milliseconds.

MK 4116 FUNCTIONAL DIAGRAM
Figure 1.

A memory chip is physically arranged as a two dimentional
array of cells. The address inputs are used for row and for
column selection so their must be a multiplexing of the
addresses (multiplexers are IC66367;68;69 : 4 to 1
multiplexers). The multiplex part requires two timing
signals. The first signal RAS initiates a cycle and strobes
in the address and the second signal CAS strobes in the
column address.

Although address multiplexing provides some very
substantial system benefits, it complicated system timing.
It requires that both row and column addresses get into the
chip in a short time using the same address pins. This
establishes a rather tight timing window during which the
individual events must occur. The sequence of events
required to address the chip is as follows :

1) establish row adresses

2) bring RAS low

3) maintain row addresses valid for some minimum hold time
4) establish column adresses

74

5) bring CAS low
6) hold column addresses valid for some minimum time.

To achieve specified access time from RAS, it is necessary
to bring CAS low within some specified maximum delay after
RAS.

The 14 addresses of a 16K memory are strobed into the memory
chip in two groups of 7. When an address becomes available
for a memory operation, the row -address must first be
presented to the chip address pins. As soon as the row
address inputs are valid, the first of two timing signals to
the chip initiates a cycle. This signal strobes or latches
the row address into the chip and is appropriately called
ROW ADDRESS STROBE or RAS. With no further commands to

the chip, the latched addresses are converted to MOS voltage
levels, decoded, and the selected row is enabled. Data is
thereby destructively read from each cell in the selected
row by dumping its charge onto its respective column sense
line. A sense aplifier for,each column detects the change in
voltage level on the column line resulting from this
deposited charge, and amplifies this signal. The amplified
signals from the sense aplifiers are then impressed back
onto the column sense lines, returning the cells to their
original voltages. A cell whose voltage had decayed is
restored to its original voltage in the process. At this
time the sense amplifiers contain the same data or
information contained in the selected row, and the
destructively-read cells in the row are restored

(refreshed) to their proper voltage.

The Column Address Strobe (CAS) on the other hand,

controls column selection circuitry and the transfer of data
from the selected sense amplifier to the output circuitry.
After RAS strobes the row address_information from the
multiplexed address input pins, CAS strobes the column
address from the same pins. When CAS goes active (low) the
column address is strobed or latched into the circuit. This
addess is then decoded to select the proper column. Data
from the selected sense amplifier is then transferred to the

output buffer, completing read access.

During a write operation, the same sequence of events occurs
as in a read cycle, with identically the same timing as in a
read cycle except that the write enable signal, WRITE, is
brought active (low). This causes the data at the data input
to be strobed into the chip, buffered, and written into the
selected sense amplifier and, thereby, into the selected

zell. “WRITE CYCLE
READ CYCLE Bo =
B e READ CYCLE S —\rWNTE CYCLEH
o ——\

tRCD(man) = e s h‘F

[T

LRCD(min) -~
CA3 E \

tran-~ ADDRESSES I/I/IEI’I// cowwmn X777 TTTTTITTTTD
ADDRESSES /I//m////’/I//////I/////I//I/

'-wcs
WRITE LTI,

WRITE TN UL
Din I ST YA

ow LT T T 7 T

I

‘ |

b "CAC

‘ —:{:‘ﬁ " o

Dour VALID DATA NOTE: If, WRITE command occurs before TAS,

NOTE: Dgy¢ occurs at access time and remains valid while SAS is active.

than Dy remains high impedanca,

Refresh of the dynamic cell matrix is accomplished by
performing a memory cycle at each of the 128 row addresses
within each 2.milllisecond time interval. Although any
normal memory cycle will perform the refresh operation, this
function is most easily accomplished with "RAS-only" cycles.

If refresh takes place after a read cycle it may be required
that the read data be held while refresh takes place. The
4116 requires that CAS is held low to maintain the output
data which means that no cycle may start while the data is
being held. The only way to accomplish this is by adding
data latches (IC49;50;51).

In the memory systems it is difficult to guarantee that hte
normal order of events will cause all the rows within a
memory to be accessed within the specified refresh
interval. For this reason, the memory system has special
circuitry that will cause extra memeory cycles in an ordered
manner such that all rows of memory devices are accessed
within the 2 ms interval. :

The refresh cycles are periodically generated for the
refresh but they are introduced at a time when the memory is
not being accessed (when RAM ENABLE is high no refresh
control out of IC112 pin 13 : sheet 2) so the CPU is not

affected by refresh..

Every time the RAM has been accessed (by the 8080 or the
timing circuit) the refresh counter (IC 104 sheet 3) will
add 1 to its address count and comes available when RFSH is
low (RAM ENABLE is the opposite of RFSH : see sheet 2 IC
43). When S8 is active (low) the CPU has the possibility to
access RAM because the read and write signals of the 3 RAM
banks are programmed in the green PROM (IC44 sheet 2).

Pin 14 : RD

Pin 12 : WR (when S8 is law). -
Pin 2-5 : RD & WR of the RAM
Pin 10 :)
) Bank A/B or C
Pin 11 ¢) :

Pin 13 : Af is used to work with 4027 through Pin 1

When reading the RAM the ready line goes low. For this time
the EN (bottom left sheet 2) will be high to enable the
output latches (IC49; 50; 51) during CPU READ. The read
pulses (actif low) are connected to the output control of
these latches. When the ready line goes high again there
will be a clear for IC38 (sheet 2; FF1) and the refresh
control is enabled again.

97

The timing of RAS and CAS signals is controlled with IC 111;

1125 113 (sheet 2)

[]
. - trag .
< Lar
— Vine- 3
RAS i ﬂr 1 N
‘-csu: tap —
treo tRsH terp —o .,
" teas
o Vie - /
s el N /
L Ran
taspef 4--1 '-uc-i [t CAH o

Ving Ik
ROW COLUMN
ADDRESSES VIL-m ADDRESS W ADDRESS 1

tRAS : RAS pulse width : 250 ns (IC
tCAS : CAS pulse width : 200 ns
tRCD : 90 ns

111 : 74123)

I

The CAS signal for the RAM's is a delayed pulse from the
column address switching signal (via IC112).

IC113 is used for the RAS only refresh. During the refresh
we need only a RAS signal because RAM is refreshed ROW by

ROW and not bit by bit.
“RAS—ONLY" REFRESH CYCLE
NOTE: CAS = V|H4c, WRITE = Don’t Care

Vine- R
Vie -

LRAH

ko

= g

Y

N

Lpp

ADDRESSES ::::7/////////////&“51032255

KL,

Vo
D OH

ouT

VoL~

OPEN

As result we can say that 3 circuits need the dynamic RAM

1) The CPU for reading and writing of data
2) The refresh circuit with a "RAS only" cycle
3) The timing circuit for reading data out of RAM to build

up the picture.

The maestro which is conducting this Timing for CPU; refresh
and picture access, is the Yellow Prom.

The layout (grid system) and the decoupling of the dynamic
RAM is done with much care to keep the larg current
transients and the noise (due to high switching speed) as

low as possible.

The resistors (474%) in the TAS, RAS and data lines are used
as a prevention for negative spikes on the inputs of the
4116. Negative spikes more than 1V could mean the end of
some dynamic RAM chips.

CHAPTER 1V

VIDEOQ TIMING

1) PROGRAMMABLE GRAPHICS GENERATOR

The programmable video graphics + character system makes use
of a scheme of variable length data to give efficient use of
memory when creating pictures. A few definitions are
necessary before further examination of the scheme.

A "SCAN" is :

One traverse of the screen by the electron beam drawing the
picture.(there are 625 in a European television picture).

A "LINE" is :

A number of scans all of which are controlled by the same
information in the RAM.

A "MODE" is:

One of the different ways information may be displayed on
the screen. For instance, in "character mode" bytes in

memory are shown as characters on the screen, in "4 colour
graphics" mode, bytes describe the colour of blobs on the

screen.
A "BLOB" is :

The smallest area on the screen whose color can be set (The
Physical size of a blob is different in different screen
modes).

w

A "FIELD" is :

A set of 8 blobs whose colour is controlled by a pair of
bytes from memory.

The picture is defined by a number of lines, one after
another down the screen. Each line is independent of all
others and may be in any of the possible modes.

At the start of each line two bytes are taken from memory
which define the mode for that line, and may update the
colour RAM two bytes. These are called respectively the
Control and Colour Control bytes. The rest of each line is
colour or character information, and the number of bytes
used for it is a characteristic of the particular mode.

Mode Graphics size Text size Colours

0 - 24x60 any 2 of 16
1 72 X 65 - 16
1A 72 X 65 L x 60 16
2 72 X 65 - any 4 of 16
2A 72 X 65 4L x 60 any 4 of 16
3 160 X 130 - 16
3A 160 X 130 L x 60 16
L 160 X 130 = any 4 of 16
La 160 X 130 4 x 60 any 4 of 16
5 336 X 256 - ‘16
5A 336 X 256 4 x 60 16
6 336 X 256 - any 4 of 16
6A 336 X 256 L x 60 any 4 of 16

In an "all-graphic mode" the screen consists of :
Al. Header

A2 Screen Colour Data
A3 Trailer

The header and trailer areas are blanking lines at the
beginning and the end of the screen.

A1 .0

Aeactea
A2 {0
130 tlo/o Oreéa /'O//to/ [t o
* rroate /4 /ﬁ
GRS /e 5
A3 4 I 628 Cno Qrophices
tra.ler |
» ' 638 Cno’ screers
{C/"/’ Jave |
area |
@o/unqy I
ch®g¢l e iy
?‘/0 Ar Orchrve Oreq
|
y 778 Cro’ Lewp. save Orea
860 eno’ Orchive Orea

Examples Moos A

Oo®o

(=754

o086

008K
[=2=Y-2.4

ooy
=2-Y. /-2

vogt

acva

co&C

]

In "Split-Graphics" modes, the screen organisation is as

follows :

Bl Header

B2 Picture area corresponding to the bottom part of A2
B3 Middle

B4 Character area

B5 Trailer

B6 Archive area, containing the upper part of A2, which

is not displayed in B2

When changing from split-mode to all-graphic-mode and
visa-versa, the archive area is temporarily moved to the
temporary save area, which starts at A3.

When changing from all-graphics to split :

Top of screen into temporary save area

Bottom part graphics shifted upwards

Top part graphics from temporary save area into
archive area.

Set up character screen

When changing from split to all-graphics :

1-24

3z

33
By

55

B¢

Archive area into temporary save area
Bottom part graphics shifted downwards
Temporary save area into top of screen

o ocoo
Aeaclea
I 10 oosZ
130 g‘fa,o o/ arec © | o086
@ S/://ed Sower
Paré Graphies
508 Ero Grapdics coss
Pkl fn,
518 Sta- £ chsracter> LY. 24
. 628 sAard Yemp. save area co9z
choracexs t
1
@dk’/;jl
6407.' 1
: ?30 ena Ooharaclers 008C
z[ro//oc |
t : Fvo Ensl Screes o0&
L 4 ?'/‘ Cna O/em/’ Jave area cago
Sovec wpoe '
@ par Grapdircs
/ Orckrve drea }
fbo /"’D/rcc RAm by re cod¥
Sxgmpler r oD E ’//?J

The numbers at the right side of the lines area offsets from
the address of the top of the screen (//BFFF for 48K). These
values are stored in RAM pointers (addresses in separate
columns) during the set-up of a particular screen mode.

For each mode, these constants are retrieved from ROM. The
annexed table gives all the constants as they can be found
in ROM-bank 2 on the addresses 2E030 - 2EQ0C2. Vectors to
these constant tables are located on addresses 2FE59A -
2E5A5.

These constant tables are moved into the screen variable
(see memory map) when the appropriate mode is entered.

SCREEN CONSTANTS GRAFHIC MODES

RAN POINTER MODE O MODE 1/2 MODE 1A/ZA MODE 3/4 MODE 3A/43 MODE S/6 MODE IR/ BA
0080/81 Ist byte screen RAM 0 0 0 U Q 0 0
0082/83 Foints after header 10 10 {0 10 10 10 1o
0084/83 Ist free RAM byte Caao 438 860 177¢€ 19R4 3h20 ac48
(086/87 Top rolled area @ 130 130 460 460 FE8 Faa
(088/39 End graphics area 0 628 508 176C 1310 SAL0 4478
008A/BR Start character area 10 428 518 176C 132 SA1Q 4448
008C/8D End character area CAQ 860 730 194 1534 5C48 4CC0

End archive area
G0BE/BF End screen CEO 638 749 177C 1554 SA20 4CDO

0090/91 End area used 0 748 748 {EBC {REC 6984 6988
changing sode

0092/93 Start archive area a 740 628 1554 176C 4cpe - SALG
Start temp.save area

(094/95 Number of hor. blobs 0 48 48 AQ AQ 130 150

0074 Nuaber of gragh. lines 3| 41 82 82 0 0

0097 Nuaber of saved Q 0C 0C 18 18 2C 2C
graphic lines

(098 Nuasber bytes/line 0 18 18 2E 2E 1] oA

All constants given are offset of top of screen address
(#BFFF) except the last 4 data blocks (0094-0098)

The screen can operate at a number of different definitions
horizontally (e.g. blobs/scan). In the highest definition
graphics mode there are 352 visible blobs across the screen.
The two lower definitions have respectively 1/2 and 1/4 of
this number. There are about 520 scans visible on a "625
line" television, and the screen hardware can only draw (at
minimum) 2 scans per line, due to the interlacing. This
gives a maximum definition of 260 by 352 which is close to
the 3:4 ratio of the screen sides. Thus circles come out
round .

Characters are fitted onto this grid by using 8 columns of
blobs per character, the dot positions being defined for
each character by a ROM. This allows 44 characters per line
maximum (or 22/11 in lower definition modes).

A fourth horizontal definition provides for a "high density"
character mode with 66 characters/line.

A total of 16 different colours, including white and black
can be displayed by the system. Whenever a 4 bit code is
used to describe a colour, it selects from this range of
possibilities. In some modes (characters + or four colour
graphics) a set of 4 of these colours (not necessarily
distinct) are loaded into a set of "colour registers". Any 2
bit code describing a colour selects an entry from these
registers.

Vertical definition is set by a 4 bit field in the control
byte. In graphics modes this simply allows repetition of
the information to fill any even number at scans from 2 to
32. In character mode it defines the number of scans
occupied by each line of characters; thus the vertical
spacing on the screen can be changed to allow anything
between an 8 x 7 (the sensible minimum) and 8 x 16
character matrix, giving between 35 and 15 lines of
characters on the screen.

The first byte of information for the screen is located at
the top of a 32K block of memory. Successive bytes follow at
descending addresses. The screen takes memory and displays a
picture on the screen accordingly until the whole screen

has been filled. It then starts again at the first byte.

At the beginning of the data for each line, two bytes of
data represent the lines control word. The control word

defines the raster scan depth of the line, the horizontal
graphical resolution of the line and selects the display

mode of that particular line. Subsequent to this control
word a number of data words are stored that represent the
colour of pixels, or definition and colour of characters

b2

according to the selected display mode.

A) CONTROL WORD FORMAT

MC [RIC | LRC T JeSE¥JsCR] st

a.) Mode Byte

LRC : Line Repeat Count (bit 0-4)

The line repeat count controls the number of horizontal
raster scans for which the same data will be displayed.
Since interlace of the TV scan is ignored a minimum of two
raster scans correspond to a line repeat count of zero.
Thereafter, each additional repeat adds two scans to the
line. The maximum programmable depth of any horizontal
display segment is thus 32 scans. (European TV sets will
show approximatively 520 scans total for a full picture).

RC : Resolution Control (bit 4/5)
The resolution control bits allow selection of one of four
different horizontal definitions for display of data on the

TV screen for each individual line.

Code (Bit 5,Bit 4) Definition(pixels per screen width

00 88 (Low definition graphics) 24 bytes
01 176 (Medium definition graphics)46byt.
10 352 (High definition graphics) 90 byt.
11 528 (Text with 66 characters per line)
134 bytes
(Screendriver uses 60 characters
for text)

(Could be used for a very high
definition graphics mode)

The number of bytes per screen width can be obtained by
multiplying the number of characters by two and add two for
the mode byte and the colour byte. There is an exception for
the characters in low and medium resolution (resp. 26 and 48
byte per line).

MC :Mode Control (bit 6/7)

Code Display Mode

(Bit 7, Bit 6)
00 Four colour graphics

01 . Four colour characters

10 - Sixteen colour graphics

11 Sixteen colour characters

b) Colour Type Byte

The Low address control byte is used to store colours into a
set of 4 "colour registers" for the four colour mode. Any
one of the four colours in the registers can be changed at
the beginning of any line of display data. Only the colours
in these registers can be displayed in any 4 colour mode.
The four colours are freely selectable from the sixteen
colours defined in Colour Select Table.

516C : Selection of one of 16 colours (bit 0-4)

SCR : Select one of 4 colour registers to update (bit 4/5)
which colour register is used for the COLORG command.

VCM : if unset, forces "unit colour mode (bit 6)
The two data bytes are repeated as many times as the
resolution control bits indicate.

CS : Set to enable colour change/if unset, bits @ to 5
are ignored.

Code Code
0 Black

1 Dark Blue

2 Purple Red

3 Red

4 Purple Brown
5 Emerand Green
6 Kakhi Brown

7 Mustard Brown
8 Grey

9 Middle Blue
10 Orange

11 Pink

12 Light Blue

13 Light Green
14 Light Yellow

15 White

B) DATA MODE

a) 4 Colour Mode

In this mode only two bits of data are required to define
the colour of a pixel. These data bits are obtained in
parallel from the upper and lower bytes of each data word
using the high order bits first. The 2 bytes in a field are
considered as 8 pairs of bits. Each pair sets the colour for
one spot.

HIGH

ADDREss| B7 Bd | al .

BYTE pairs of bits used
to address colour
RAM.

LOW

ADDRESS| B7 Boq =B

BYTE 1 T

Leftmost spot Rightmost spot

The 2 bits for each spot select one of the four colours
which have been loaded into the colour RAM by previous
Colour Control bytes. So on any line 4 colours are
available. On the next line any one of these may be changed
for another, and so on.

b) Sixteen Colour Mode

This graphics mode is designed to allow multi-colour high
definition pictures in half the memory requirement of other
systems.

The basic organization is that the low address byte selects
two of the sixteen possible colours.

Bits 0 - 3 "Background" colour
Bitsd 4 - 7 "Foreground" colour

The high address byte than defines by each successive bit
whether a colour blob should be foreground or background.

NB

The two bytes in the field serve different purposes, one
being used to define two available colours for use in the
field, and the other to choose one of these for each spot.

THIGH =
ADDRESS B7 B0
BYTE
leftmost 1 0 rightmost
blob /bit bit \ blob
LOW
ADDRESS B7 130
BYTE
[N |\ J
"Foreground "Background

The bit for each spot can select either the "foreground" or

the "background" colour. However, what these colours are is
totally independent of the preceding or following fields. So
any line may use any and all of the total 16 colours. The
contents of the colour RAM are irrelevant in this mode.

One additional feature is added to eliminate restrictions of
the scheme. After each eight bit field of colour the
background is extended into a new area, even if a new
background is specified, until the new foreground is first
used. It is therefore possible to create a required picture
by suitable combination of foreground and background.

¢) Character Mode

In this mode, characters are generated using a character
generator ROM in conjunction with the four colour registers
or using any 2 colours for each in the 16 colour character
mode .

The usual character matrix is 6 x 9 bits out of a possible 8
x 16. Therefore the line repeat count should be at least
eleven, to guarantee full character display plus line
spacing.

Four colour characters are produced on the screen in a way
similar to the four colour graphic mode, but with the
character ASCII data replacing the high address data byte
used for four colours. The result is that characters are
displayed using colours from the four colour registers. The
data from the character generator ROM control the lower
address bit and bits from the low-address byte determine the
other. This allows characters on a single horizontal display
segment to be in one of two colour combinations of
character/background, or even with a vertical striped
pattern controlled by the low address byte.

However, note that as compared with four colour mode
information (but not the low-address byte)is subject to a
one character position delay before appearing on the
screen.

In character mode the height of the characters is a set
number of horizontal scans. The character width is
determined by the definition selection in the control byte.
A definition of 352 yields 44 characters per line, 528
yields the normal 66 characters per line. Other definitions
in applications such as the power-on message. However, this
feature is not supported by the resident BASIC.

There is a very important difference between the character
and the graphic mode : the place of the colour byte.

graphics : address colourbyte = address databyte-1
characters : address colourbyte = address databyte-3

This means that the colour information for the last
character of a line is defined by the colour byte of the
next line.

Example Mode # :

Line 1 Control byte is located at address BFEF and line 1
Color Control byte address at BFEE. The first character byte
of line 1 is located at line 1 Control byte address minus 2,
and the character Colour Control byte at line 1 Control byte
address minus 3. Each of the 66 positions of the screen is
located at line Control byte - (2 * position of character on
the line) for the character and at line Coltrol byte - (2 *
position of character on the line) for the Colour Control
byte of the character.

Remember that there are 66 character positions on the screen
but that the first and last three characters are kept blank
for the margins. Therefore, the Control byte for the next
line is located at Control byte of previous line (i.e. BFEF)
less 134 bytes (%A 86. So if the Control byte ofline 1 is at
BFEF, the Control byte of line 2 will be at % BFEF - Z 86
= ## BF69).

l l | | |

~ | 7 \= l 7 \.—r__d
Control first (Character 66 may not be
2 eha FaEtiE fully transmitted by

Examples: hardware)

Control Byte Line 1 # BFEF

Control Byte Line 5 #* BFEF - (A 86*5) = A# BDD7
Colour Control Byte Line 5 = /4 BDD6
Character No.6 on Line 5 ## BDD7 - 6%2 = £# BDCC
Colour Character 6 of Line 5 = 7% BDCB

Use the POKE in your program for changing line background,
letter colour, or letter, and Utility 3 for checking the
location you intend to POKE (when you return to BASIC the
colour changes you made in Utility mode aree erased of you
enter MODE 1, RETURN, MODE O.

C) UNIT COLOUR MODE

This mode is available for space saving during uniform scans
of the picture. A horizontal band of constant colour (or
repeated pattern) can be drawn using only one control word
and one data word. The data for this mode should be in high
speed format. Using the mode a full screen of data need be
no more than 40 bytes of ram.

The hardware for the unit colour mode knows two different
ways to read out the picture : Medium/low and high/super
resolution. In both ways we use 4 bytes per line : The line

mode and the colour type byte + data + colour byte.

In low/medium resolution is the gap between the line mode
bytes two bytes, in the high/super is the distance 4 bytes.
So in the low/medium resolution is the data and colour byte
of the first line also line mode and colour type byte of the
second line. In the high/super resolution can data and
colour byte be filled in by choice.

D) EXAMPLE

18 Mode @ : PRINT CHR $(12) : COLORT @14¢d

20 CURSOR #,17 : PRINT" INDATA DESK COMPUTER™

3@ POKE #£ BCCB,#£Z5F : POKE #££BCYB,7#5F : POKE
##BCIA A4

BCCB : Mode byte line 7: S5F

LRC = 1111 number of horizontal scans for which
the same data will be displayed

RC = g1 medium definition 23 characters per line

MC = g1 four colour characters

Mode byte for next line is on BCCB-48=BC9B
Place the same mode byte on this address + place the colour
type byte on next address = 4§

BC9A : colour type byte : 44

CS =¢ no colour change enable
VCM = 1 no unit colour mode
Bits @ -~ 5 are ignored (no colour change enable)

2) HARDWARE TIMING

The idea of the hardware is as follows :

First a counter is loaded with the highest RAM address and
the two instructions are read (line mode-and colour type
byte). These two bytes determine the number of bytes till
the next instruction (line). Also is the colour mode,
character graphical mode, speed control and short line
control available. When the counter comes to zero
(TOPRAM-line length) the next instruction bytes are read.

4 COLOUR PICTURE GENERATION

A spot on a four colour picture is generated using two data
bits (note that one of the four colours could be changed at
each control byte so that a "4 colour" picture can use all
16 colours, though this is not supported by software). Each
bit is obtained from an eight bit shift register, either
IC39 for low order or IC40 for high order. The data for the
two shift registers is obtained in parallel from RAM as 16

bits labelled V0-V15.

The two bits pass through IC27 and select one of four
colours from the RAM chip IC37. The 4 bit colour code is
then latched by IC22 to synchronise information. Information
is loaded from memory to the shift registers by the signal
VL from IC20. This is a very short pulse timed to overside
one clock pulse to the shift registers.

LINE REPEAT CONTROL IC47; IC34

To control vertical definition, and for characters, data
from memory may be scanned several times to create a band of
graphics or text on the picture.

At the start of each line the line repeat count is latched
by IC48. At the end of each line the counter IC34 is
incremented. After a number of lines the four bit

comparator IC47 generates and EQ output. This allows both
memory counts to count in parallel with the result that on
the next line different information is obtained from memory.
At the same time the EQ signal causes the line counter IC34
to be reloaded with zero ready for the next count at a clock
pulse LINEQ.

Signal Pinout

Pin Signal Use
1C47 pin 6 EQ Allow both memory counters
Reset line counter (IC34)
IC34 pin 2 LINEQ Clocks line counter
IC34 pin 1 PAGE Clears counter at start of a new

page. (Otherwise picture jumping
can happen)

IC34 pins 14 LINE COUNT To select the correct horizontal
13,12,11 scan for character generation.

CONTROL WORD LATCH 1C48; IC37; IC3 (HALF)

At the start of each line control information is read from
memory and stored for use during a line scan, or for colour
information, during the remainder of the picture scan.

The storage strobe (CTRL BYTE)(Pin 11IC48) is a clock pulse
gated by LINEC from IC2, P1 from the phase information, and
the spot clock pulse from IC12.

IC48 latches the line repeat count, spot feed control bits,
graphic/characters mode selection bit and 16/4 colour
selector bit.

IC37 latches one of four colours per 4 colour mode.
IC3 latches the short line control, SLC, for ICll pin 15.

:Pin
1C48
1C48
1C48
IC48
1C37
1C32
1C37
IC 3

IC 3

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Signal Pinout

9,5,12,16 LINE REPEAT COUNT Vertical definition control
6,2 SPOT SPEED CONTROL. Horizontal definition control
15 GRAPHIC/CHARACTER Switches picture data

19 16/4 COLOUR Switches colour mode

15,1,2,3 NEW COLOUR INPUT)

13,14 NEW COLOUR ADDRESS g Define one of four colours
12 COLOUR WRITE STROBE g

12 SLC INPUT

8 SLC OUTPUT Controls short line logic

MEMORY ADDRESS COUNTERS IC105, 106, 89, 90, 91, 92

Memory is addressed in two stages to allow for line
repetition according to definition, or for character
generation.

The first stage IC105, 106 is a slow counter and is active
counting only during the last line scan of a particular
Memory area.

The second stage IC89, 80, 91, 92 is a high speed counter
which is loaded at the start of every line and counts
throughout the line, except for short lines where the same
memory data is read throughout a line scan. On the last line
of any scan of a memory area the gating signal LEQ (line
count equal) from IC47 allows the counters to count in
parallel.

The page signal resets the first stage counters.

SIGNAL PINOUT

1C89,90,91,92 Pin 2 CLOCK IN

Pin Signal Use
IC105 2 X 12) PAGE Memory address reset
. IC106 2 x 12)
| IC165 Pin 1 CLOCK 1IN First stage clock, requires correct gate

and P3 to be active.
Thus counts each eight BORROW of IC12

Second stage clock, requires correct gate

44

and P3 to be active.
Thus counts each eight BORROW of IC12

1C89,90,91,92 MEMORY ADDRESS
Pins 14,13,12,11 out. MVD-15

PHASE GENERATE IC85

This IC is a standard binary divide by eight used to
generate basic phase signal to drive dynamic ram and to
synchronise memory access for the picture. It is driven by
the divided spot oscillator SDIV, and by the synchronised
line sync. LINEQ.

SIGNAL PINOUT

Pin Signal Use

1 LINEQ Holds IC85 cleared during LINEQ
2 SDIV Input clock

14,13,12 OuUTPUT Phase signals for memory control

SPOT OSCILLATOR IC1l, IC3 (half) IC18 (half)

The basic spot oscillator is a standard TTL oscillator
controlled by the LINEQ signal. The circuit oscillatos only
during the active part of each line scan. Start and stop
should be clean with no spurious pulses which may cause loos
of dynamic ram information.

Note carefully the operation of IC3. When LINEQ stops the
oscillator, the last oscillator cycle clocks IC3 to povide a
reset signal to IC12. The additional delay so introduced
after LINEQ is to prevent IC12 from generating spurious
output pulses.The IC18 provides a divide by two
(IC18=togglefF) to enable the counters IC4,6 to be
sufficient for a full line scan.

SIGNAL PINOUT

Pin Signal Use
IC1 Pin 4 LINEQ Oscillator control

IC1 Pin 11 CLOCK OUTPUT All spot + control timing:

IC3 Pin

5

 IC18 Pin 9

RESET FOR IC12

1/2 CLOCK TO LINE CONTROL

SPOT_CONTROL SIGNAL GENERATOR 1C4,6,11,2

Control signals for internal (not TV) line control are
generated by a counter IC4,6 driven from the spot
oscillator, and reset by LINEQR.

To enable the use of a single decoder ICll, two signals are
combined via a gate of IC24. This introduces a non-standard
count sequence at the input pins of IC11.

IC11 also uses the GRAPHIC signal to modify control output
for character/graphic mode and the short lines LINE signal
for short line mode (Unit Colour Mode. Minimum memory use).

IC2 latches IC11 output to eliminate spikes, using a
convenient signal from IC4 (spot clock/8). During design
much care was necessary to ensure that clock strobes from
IC12 came correctly within gate signals from IC2, since the
gate logic is independant of the count division of ICl12.

v SIGNAL PINOUT

Pin
IC4 Pin
IC2 Pin

IC2 Pin

IC2 Pin

IC2 Pin

1

15

10

7

Signal Purpose

CLOCK DRIVE

MEMC Gates counting of the memory address

LINEC : A line control gate for latching of control
signals

LORDC A control to load a new line start memory
address

IBLANK An internal blank .to control ICS, therefore the

the spot count divider IC12

SPOT_SPEED DIVIDER 1IC12

The basic spot oscillator has a fixed frequency which must
be divided to achieve lower definition pictures. The divide
count comes from IC5 and is counted down. The combined
BORROW and LOAD signals are a very important feature of this
circuit as is the reset signal on pinl4. The general timing
in this area has been optimised to avoid double pulses at
the moment that the spot oscillator is at the end of a line.
The BORROW output of IC12 drives all picture data

%7

IC12 SIGNAL PINOUT

Pin Signal
15,1,10,9 . COUNT INPUT
13 BORROW 0UT
11 LOAD IN
14 RESET IN

SPOT_SPEED CONTROL ICS5

The spot speed control provides a count to IC12 which is
used as a spot clock divider to determine the ultimate spot
rate for the picture. IC5 is a fuse-link Rom with outputs
determined by the speed control signals from RAM picture
data, the blank signal (CBLANK) and the LINE signal after
synchronisation, LINEQ.

Note that the blank signal is not a true picture blanking
and does not directly affect the picture. IC5 outputs a
fixed standard count during CBLANK.

IC5 SIGNAL PINOUT

13

2,1,5,6

Signal Use

LOW ORDER SPEED)

HIGH ORDER SPEED) Spot speed control

LINEQ | Fixes output count

OUTPUT COUNT Used to reset the divider IC12

LINE/SPOT SYNCHRONISATION 1IC18 (Half)

During normal line activity the spot clock (ICl) drives a
counter to generate an 8 stage cycle corresponding to the 8
bits of each byte of information. The stages are called Po
to P7.

At the end of each line we must reach the state Po and
because the picture controller IC25 is not directly
synchronised to the spot oscillator an additional
synchronising cricuit is needed. This is provided by one
half of IC18.

As soon as Po becomes true after LINE the synchronising FF

changes and stops the spot clock. It also resets the spot

counter IC4, IC6.

' 1C18 LINE/SPOT SYNC.

Pin,
2

3

5Q, 6Q

Signal
LINE INPUT

PO CLOCK IN

SYNCHRONISED LINE 0UT

FRAME TIMING 1IC25

Use

Stop spot clock. Reset spot counter
Lock phase counter to Po

The line and frame timing and standard picture timings are
provided by a single logic IC25 (ZNA134J) custom built for
the purpose. A jumper is available for European or USA

standard but the' software supports only the European form.

IC25 incorporates a Xtal oscillator and this controls all
picture timings except dot speed, hence picture width.
Dynamic ram timing is directly driven from the picture

timing.

IC25 SIGNAL PINOUT

8,9
13
14

16

SYNC

BLANK

LINE

XTAL DRIVE
CATHODE BLANKING
EVEN FIELD

PAGE

Used only for TV Card
Used only for TV Card

Generates synchronised line , reset IC18

Used only for TV Card
Used only for TV Card

Resets all picture counters together with LINE

>

CHAPTER V

INPUT/OUTPUT CIRCUITS

1) KEYBOARD CONTROL + RS232 BUS

KEYBOARD

The Desk Computer contains a software keyboard scan and
encoder. This can be used by other programs which may use
the standard key encoding tables, or supply their own.

All keys are scanned periodically, and action is taken when
a key is noticed to have been newly pressed. Alternatively,
if the repeat key is pressed, then periodically all
currently pressed down keys are acted on. The repeat speed
is fixed.

The actual code for the key is obtained from a table.

The "shift" system selects which of two possible tables of
use. By setting a flag byte the keyboard handler can be made
to scan only for the "BREAK" key which obviously takes

less time.

The ASCI! keyboard is scanned as a matrix of switches.

Encoding, debouncing and roll-over are realized via a
sof tware routine.

KEYBOARD LAYOUT

The keys are assigned to rows and columns.

0 1 2 3 4 5

olols {¥Jluijr |x
turn

6
A
119VAI QY*
-
-

Z
ROWS 2 2 B |J
S
Output 3 3 ¢ K (
lines
(FFo7) 4 14 , D LI]T |\N]Tab
s pace] |
5 5 - E M1lU bar ctrl
6 |6 . F N } V jreptprak
, dar| .
7 7 / G oW del khift

COLUMNS
Input lines (FFO1)

7]

1} n :H= $ % & ' () * =
i lz2]3 Ja]s{elrls oo |- [FABF=Y
% ~
Aé 0 W{E R TlY (U |1 O | P |/ |[RETURN
// ;] lchar
oy ctrlf A | s Di{FiGlH|J KL |~ (rept
i del
% i
SHIFT | Z X|lc v BN M|, . / SHIFT

The hardware control of the keyboard is done by one
multifunction input/output circuit : the TMS 5501

The I/0 section of the TMS 5501 contains an: eight bit.
parallel input port and a separate eight-bit parallel output
port with storage register. Five programmable interval
timers provide time intervals from 64 us to 16.32 ms.

The interrupt systems allows the processor to effectively
communicate with the interval timers, external signals, and
the communication interface by providing 8080 compatible
interrupt logic with masking capability.

Data transfers between the TMS 5501 and the CPU are :carried
by the data bus and controlled by the interrupt, chip
enable, sync, and address lines. The 8080 uses four of its
memory-address lines Ao-A3 to select one of 14 commands to
which the TMS 5501 will respond. These commands allow the
CPU to : v

read the receiver buffer
read the input port

read the interrupt address
read TMS 5501 status

issue discrete commands
load baud rate register
load the transmitter buffer
load the output port

load the mask register

load and interval timer

* Xk 3k sk ok %k ok ok sk 3k

The commands are generated by executing memory referencing
instructions such as MOV (register to memory) with the
memory address being the TMS 5501 command. (for addresses
see memory map; interrupt sections 0-7 and addresses
FFFB-FFFD) .

The TMS 5501 moves data between the CPU and the keyboard
through its internal data bus, input port, and output port.
When data is present on the bus that is to be sent to the
keyboard, a Load Output Port (LOP) command from the CPU puts
the data on the X0 pins of the TMS 5501 by latching it in
the output port. The data remains in the port until another
LOP command is received. When the CPU requires data that is
present on the External Input (XI) lines(when you touch a
key),it issues a command that gates the data onto the
internal data bus of the TMS 5501 and consequently onto

the CPU's data bus at the correct time during the CPU cycles.

SYNC ce X xo

B
l £ i %' TMS 5501

INT 4 e oure
CONTAOL STATUS I’ORUTT %n?’ Vg [
A0 A3 ;,‘h VCC C
8 i] Voo [
DOD7QBA BUFFER : 4 Vs g
X RcV]

INTERRUPT L
ADDRESS 1

RN WN =

Y
ER89
O

8

8 .
L
4

INTERVAL PRIORITY RECEIVER RATE MITTER
TIMERS LoGic BUFFER REGISTER BUFFER

288
o Vo ¥ o |
I
N O

@

=}
228
[
- -t
oW

B 4 a
Le 8 P

4 1

15

INTERRUPT B mask RECEIVER ACVIXMT Mialis
REGISTER 8| recister REGISTER [+ conTRaL [~

i j e

SENS = A

Q
ERg
L

To start a countdown by any of the five interval timers, the
program selects the particular timer by an address to the
TMS 5501 and loads the required interval into the timer via
the data bus. Loading the timer activates it and it counts
down in increments of 64 microseconds. The 8-bit counter
provide intervals that vary in duration from 64 to 16,320
microseconds. Much longer intervals can be generated by
cascading the timers through software. When a timer reaches
zero, it generates an interrupt that typically will be used
to point to a subroutine that performs a servicing function
as scanning the keyboard. Loading an interval value of zero
causes an immediate interrupt. A new value loaded while the
interval timer is counting overrides the previous value and
the interval timer starts counting down the new interval.
When an interval timer reaches zero it remains inactive
until a new interval is loaded.

The TMS 5501 provides the system with several interrupt
control functions by receiving external interrupt signals,
generating interrupt signals, masking out undersired
interrupts, establishing the priority of interrupts, and
generating RST instructions for the 8080. An external
interrupt is received on pin 22, SENS to send stack overflow
message interrupt vector routine 2. An additional external
interrupt is received on pin 32, XI17. It is connected to
the page signal (20 ms) to flash the cursor on the screen ,
(see also restart routines chapter II). The TMS 5501
generates an interrupt when any of the five interval timers
count to zero. Interrupts are also generated when the
receiver buffer is loaded and when the transmitter buffer is
empty.

The highest priority interrupt passes through to the
interrupt address logic, which generates the RST instruction
to be read by the CPU. See table 5.lifor relationship of
interrupt sources to RST instruction.. '

The INT signal of the TMS 5501 is tied to the INT input of
the 8080. The sequence of events will be :

1) The TMS 5501 receives (or generates) an interrupt signal
and readies the appropriate RST instruction.

2) The TMS 5501 INT output, tied to the 8080 INT input, goes
high signaling the CPU that an interrupt has occured.

3) If the 8080 is enabled to accept interrupts, it sets the
INTA (interrupt acknowledge) status bit high at SYNC time
of the next machine cycle.

4) If the TMS 5501 has previously received an
interrupt-acknowledge-enable command from the CPU, the
RST instruction is transferred to the data bus.

RST INSTRUCTIONS
TABLE 51
DATA BUS BIT INTERRUPT CAUSED BY

0 1 2 3 4 5 6 7

H H H L L L H H Interval Timer 1 C7 = RST O 0
H H H H L L H H Interval Timer 2 CF = RST 1 8
H HH L HL H H External Sensor D7 = RST 2 10
H HH H H L H H Interval Timer 3 DF = RST 3 18
H H H L L H H H Receiver Buffer E7 = RST 4 20
H H H H L H H H Transmitter Buffer EF = RST 5 28
H HHL HH HH Interval Timer 4 F7 = RST 6 30
H H H H H H H H Interval Timer 5 FF = RST 7 38

or X17
RS5232 BUS

The Desk Computer has an RS232 compatible interface giving a
serial input line, serial output line and a status line to
halt output (DTR). These are available on@ CCITT standard
connector at the rear of the machine. The DTR signal allows
synchronisation of the output with a printer. If unused,
then output will be unimpeded.

The communciations section of TMS 5501 is an asynchronous
transmitter and receiver for serial communications and
provides the following functions :

* Programmable baud rate - A CPU command ,selects a baud
rate of 110,150,300,1200,2400,4800, or 9600 baud.

* Incoming character detection - The receiver detects the
start and stop bits of an incoming character and places

FFFO
FFF1
FFF2
FFF3
FFF4
FFF5

FFF6
FFF7
FFF8
FFF9
FFFA
FFFB
FFFC
FFFD
FFFE

FFFF

the character in the receive buffer (via the circuit
around T12).

* Character transmission - The transmmitter generates start
and stop bits for a character received from the CPU and
shifts it out via T13.

* Status and command signals - Via the data bus, the TMS
5501 signals the status of : framing error and overrun
error flags; data in the receiver and transmitter buffers;
start and data bit detectors; and end=of-transmission
(break) signals from external equipment.

The TMS 5501 operates as memory device for the CPU.
Functions are initiated via the 8080 address bus and the TMS
5501 address inputs. Address decoding to determine the
command function being issued is defined below.

COMMAND ADDRESS DECODING
When CHIP Enable Is High

A3 A2 Al AD - COMMAND FUNCTION

L L L Read receiver buffer RBn— Dn

L L. H Read external inputs XIn— Dn

L H L Read interrupt address RST = Dn

L H H Read TMS 5501 status (Status)=Dn
L L L Issue discrete commands

L L H Load rate register

L H L Load transmitter buffer Dn - TBn

L H H Load output port Dn - XOn

H L L Load mask register Dn’ = MRn

H L H Load interval timer 1 Dn = Timer 1
H H L Load interval timer 2 Dn - Timer 2
H H H Load interval timer 3 Dn — Timer 3
H L L Load interval timer 4 Dn — Timer 4
H L H Load interval timer 5 Dn — Timer 5
H H L No function

H H H No function

Receiver buffer bit n
Data bus I/0 terminal n

RBn
Dn

XIn External input terminal n

RST = 11 (IA2) (IA1l) (IAD) 1 11 (see table 5.1)
TBn = Transmit buffer bit n

XOn = Output register bit n

MRn = Mask register bit n

For detailed functions of the 5501 commands see memory
management (Chapter I).

2) THE DCE-BUS *

The DCE-BUS is a way to connect the computer with other
peripherals e.g. floppy disks, printer with parallel input,
the DAI real world cards, or self designed circuitry, etc.

There are two methods to use the DCE-BUS

1) Use it as a usual 3x8 bit parallel I1/0 port.
You are free in the use of the I/0 port and the software.

2) Use it as the DCE-BUS standard with the real word cards
or compatible circuitry.

DESCRIPTION OF THE DCE-BUS

The DCE-BUS exists in the Desk Computer off the Intel 8255
(programmable peripheral interface). This IC is also named
GIC (general interface contrql). It has two 8-bit Ports

(P# and P1) and two 4-bit Ports (P2H and P2L). These

Ports can be used as in-or output. We do this by sending a
control byte to the internal register in the GIC. The 8255
is connected with the CPU through the data addresses control
bus.

The addresses of the GIC are :

* FEQO : Port O
* FEOL : Port 1
* FEO2 : Port 2H + 2L
* FEO3 : control byte

A port, programmed as output, acts the same as a latch,
this means when we write certain data into it, the data will
stay stable until we write new data into it. This data can
also be read by means of a PEEK. As far as now we have only
described the mode @ of the 8255. (Mode 1 provides a mean
for transferring I/0 data to or from a specified port in
conjuction with strobes or "handshaking signals". In mode 1
Port A and B use the lines on Port C to generate or accept
these "handshaking" signals. When you change from one mode
to another then the output latches are reset. All ports will
be set as input port after a hand reset. The list of these
control bytes is displayed in the memory management (in mode
@). For the numbers of the connector see Desk Computer
Manual.

Mode 2 of the 8255 provides communication with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data (bi-directional 1/0).
Handshaking signals are provided to maintain proper bus flow
discipline in a similar manner to mode 1. Interrupt
generation and enable/disable functions are also available.

» the 2% dok 'G(o'o‘oy controller DOS VVLO (s controlled
as a DAI Real World Card.

The Input signals (A and Al) in conjunction with the RD
and WR inputs, control the selection of one of the 3 ports
or the control word register. The are connected to the
least significant bits of the address Bus (AD and Al).

A1 | Ag| RD | WR | CS | INPUT OPERATION (READ)

0 0 0 1 0 | PORT A=DATABUS

0 1 0 1 0 | PORTB=DATA BUS

1 0 0 1 0 | PORT C=DATA BUS
OUTPUT OPERATION
(WRITE)

0 0 1 0 0 | DATABUS=PORT A

0 1 1 0 0 | DATABUS=PORT B

1 o | 1 0 0 | DATABUS=PORTC

1 1] . 0 0 | DATABUS= CONTROL

‘ DISABLE FUNCTION
X | x| x X 1 | DATA BUS= 3-STATE
1 1 0 1 0 | ILLEGAL CONDITION

{ ADDRESS BUS B
11
CONTROL BUS
] | [
DATA BUS
RD, WR D,-D, Ag-Aq
cs

8255

S
T8 30 G J0

PB,PB, PC,4-PC, pC,PC, PA;-PA,

Cc

MODE1 —=] B e — A

35 00 10

B,-PB; CONTROL CONTROL PA,-PA,
OR I/0 OR 1/0

c

mooez —T_ M LRECT.ONAL

CONTROL

Basic Mode Definitions and Bus Interface

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers,
including the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their

functional definition can be "tailored" to almost any I/0
structure.

CONTROL WORD

o, |0 |05 |0 [Dy |0, |D |0,
BIT SET/RESET
X x x 1=SET
0= RESET
DONT
CARE
BIT SELECT
o[1[2[3]4[5[6]7
o[1/0[1[0[1]0[1]Bq
ofo[1[1]0]o[1]1]B,
o[ofoJo[1[1]3[1]B,
BIT SET/RESET FLAG
0= ACTIVE
Rit Set/Reset Format
CONTROL WORD
D, [D {05 | D | Dy| D, || 0
GROUP B

PORT C {LOWER}
1= INPUT
0= QUTPUT

PORT B
1= INPUT
0=0UTPUT

MODE SELECTION
0=MODEQ
1=MODE1

GROUP A

PORT C (UPPER)
1= 1INPUT
0=0UTPUT

PORT A
1= INPUT
0= 0UTPUT

MODE SELECTION
00 = MODE 0
01 = MODE 1
1X = MODE 2

MODE SET FLAG
1= ACTIVE

Mode Definition Format

N

..

THE DCE-BUS MODE

In this mode we use the Ports from the 8255 according to certain
tules . The meaning is to build a universal system where a
lot ot I/D cards are connected simultaneously.

Signals :
DATA ¢ bi-directional channel to and from the cards
RD : Puls (P2 bit 2) to read data from cards
WR : (P2 bit 1) to write data to cards
BUS EXP ¢ Bus expand (P2 bit @) used as BUS ON/OFF
1 = OFF # = ON
CARD ADDRESS : selection of one card + register selection
on card

The basic instructions OUT and INP are used to
communicate with these cards

8255

PO DATA

P2H| NOT USED

Qv
AR
RN
(VI
0 i
I
D

CONTROL | |P2L
BYTE —

e
N

P CARD
oy ADDRES

3) SOUND & PADDLE (sheet 7 & 8)

The sound generator of the Desk Computer has considerable
flexibility because every frequency is generated by digital
oscillators that yield precise results. Additional random

noise generation and digital volume controls complete the
system.

The Programmable Graphical Sound Generator is realised via
three independent programmable oscillators and a random
noise generator. Each oscillator is connected as an 1/0
device to the microprocessor and is programmable to any
frequency within the range 33HZ to 0,5MHZ. Obviously the
higher frequencies are not interesting for audio work but
since the three oscillators are added together before
modulation of the audio channgel of the TV interesting
effects can be obtained by beating together various
possibilities. The programmable oscillators (IC28:8253) are
used for sound generation and game paddle interfaces.

The 8553 is organized as three independent 16-bit counters.
All modes of operation are softwarre programmable by the
8080. The inputs Ao,Al are connected to the address lines Al
and A2. Their function is to select one of the three
counters to be operated on and to address control word
register for mode selection. The information stored in the
control word register controls the operational mode of

each counter, selection of binary or BCD counting and the
loading of each count register. The control word register

can only be written into, no read operation of its contents
is available.

e cLxo
AT <‘;:"> <:> COUNTER catED
BUFFER
———-ouTe CS {RD | WR | Ay | Ao
0 1 ot 0 0 Load Counter No. 0
' 0 1 0 0 1 Load Counter No. 1
: No. 2
e CLK 1 0 1 Q 1 0 Lo.ad Counter No
READ/ COUNTER 0 1 0 1 1 Write Mode Word
WRITE E . =1 |e——— GATE
roste 0o | o | 1 | o | 0 | ReadCounter No.0
: ouT 1 .
o 0 0 1 0 1 Read Counter No. 1
|- A 0 0 1 1 0 Read Counter No. 2
& 1 0 0 1 1 1 No-Operation 3-State
1 X X | X X Disable 3-State
f+——o CLK 2 N
1 1 X X No-Operation 3-State
conTROL Y 1— <:::> COUNTER carez 0
REGISTER |N\— =2
j—— OUT 2

INTERNAL BUS /

I~

The three functional (counter @; 1 and 2) blocks are
identical in operation so only a signle Counter will be
described. Each Counter consists of a single, 16-bit,
pre-settable, DOWN counter. The counter can operate in
either binary or BCD and its input, gate and output are
configured by the selection of MODES stored in the Control
Word Register.

The Counters are fully independent and each can have
separate Mode configuration and counting operation, binary
or BCD. Also, there are special features in the control word
that handle the loading of the count value so that

software overhead can be minimized for these functions.

The reading of the contents of each counter is available to
the programmer with simple READ operations for event
counting applications and special commands and logic are
included in the 8253 so that the contents of each counter
can be read "on the fly" without having to inhibit the clock
input.

All of the modes for each counter are programmed by the
systems software by simple memory operations.

The control word format of the 8253 is as follows :

D; Dg Ds Dy D3 Dy Dy Do
[sc1 | sco | Rt [RLo [m2] M1 | mo | Beo |
; - M-MODE
Deinition of Control Fields ' M2 M1 Mo
SC-Select Counter 0| 0| O | ModeO
0 0 1 Mode 1
- SC1 Sco
X 1 0 | Mode 2
0 0 Select Counter O R
0 1 Select Counter 1 X] 1 o
1 0 Select Counter 2 1 0 | Mode4
1 1 Illegal 1 1 | Mode 5
RL-Read/Load BCD
B il 0 Binary Counter 16-bits
g g Gounter Latshing uperation fsee Binary Coded Decimal (BCD) Counter
READ/WRITE Procedure Section) 1 (4 Decades)

0 Read/Load most significant byte only.

Read/Load least significant byte only.

1 Read/Load least significant byte first,
then most significant byte.

In the initialisation of the sound generator is the Control
Word of the 3 timers programmed in Mode 3; a binary counter
16-bits and read/load,least significant byte first; then
most significant byte (CW = %% 36;%* 76; 3= 136).

So the sound generators are in Mode 3 , this means that the
8253 is programmed as a square wave generator. The 3 gates
are high, thus enabling counting and the output will remain
high until one half of the count has been completed and go
low for the other half of the count. If the counter register
is reloaded with a new value during counting, this new value
"will be reflected immediately after the output transition of
the current count.

MODE 3
cLocK
Ol 3 2 104 3 2 3 0 3 2 1
OUTPUT tn=4) J 1 I 1 f 1
O5) 4 3 2 1 054 3 2 1 055 4 3
OUTPUT in=5]___ T 1 I -1 I
4 3 2 tow 3 2 1
OUTPUT tn=d) L] L S

| S CATL

If the count is odd, the output will be high for (N+1)/2
counts and low for (N-1)/2 counts (see Fig.) The addresses
for reading and loading the counters are

FC@@/FCP2/FCA4) and the control word can be

programmed on address FC@6.

When the frequencies are programmed (with the sound command)
their volume can be changed with an ENVELOPE. This facility
is obtained by setting or resetting levels in a resistance
network (see sheet 7). These levels can be programmed by
making the corresponding bits of IC29 and IC30 (sheet
5/address FD@4 and FD@5) high or low.

IC15 (LM324) is used as a buffer (gain=1) and all the sound
channels as well as the output of the nocise generator are
added together before modulation of the audio channel.
Channels 1 and 2 and 2 and 3 are added together for left and
right stereo output. Noise is also inserted in channels 1
and 3.

A noise generator is included within the sound generation
circuitry. It is generated with white noise created in the
base/emitter junction of a transistor (T6).

The purpose of this device is to simulate complex sound
generation and to prqovide a time random sequence for random
number generation (IC16 - RPI). Random events generated by
this circuit provide the basis for information input on IC31
(sheet 5) to generate a true random number.

The Desk Computer is also equiped with circuitry required to
connect two game paddles as input devices. Each paddle
contains three variable resistors whose positions are read
as values and one on-off event (single contact switch
address FD@@, bit 4 and 5).

The position of any paddle resistor is found by putting its
binary address onto the 3 bits in port FDO6 (IC32;sheet 5)
and IClDQﬂUltiplexeri'sheet 8) will select one paddle.

The channel @ of the sound generator is programmed in mode
B (# 30 to address FC@6), this means it is used as an
interrupt on terminal count and we can read while counting.

The OUTput will be initially low after the Mode Set
operation. After the count is loaded into the selected count
register, the OUTput will remain low and the counter will
count. When terminal count is reached,the OUTput -

will go high and remain high until the selected count
register is reloaded with the Mode.

The GATE input will enable the counting when high and
inhibit counting when low.

MODE 0

ecook UMMM ML
i 1

Wﬂ'n—l__l_:‘—i_
1
4 3 2
ouTPUT re \ —_—
(n=4) |<+n—>|
I
II |
WAm ™ | | =
I' [l
GATE —1 —
5 4 32 1 0
OUTPUT $iNTERRURT)) 1 —
{m=5) —— ——
A 8

A+B=m

The counter @ is set to FFFF and the read of the positions
is triggered by reading location FD@1

To read the contents of the counter without effecting or
disturbing the counting operation the 8253 has special
internal logic that can be accessed using simple WR commands
to the MODE register. Basically, when you wish to read the
contents of a selected counter "on the fly" he loads the
MODE register with a special code which latches the present
count value into a storage register so that its contents
contain an accurate, stable quantity. The programmer then
issues a normal read command to the selected counter and the
contents of the latched register is available.

MODE Register for Latching Count

AD, Al = 11

D7 D6 D5 D4 D3 D2 D1 DO

SC1 | SCO 0 0 X X X X

SC1,SC0 - specify counter to be latched.
D5,D4 - 00 designates counter latching operation.
X - - don't care.

The enabling of the counters (gate @) is connected with
the paddle pulses coming from IC7;IC8 or ICY9 (sheet 8).
These timers (556) are used as one-shot circuits. The
external capacitor is initially held discharged by a
transistor inside the timer.

When a negative trigger pulse is applied to lead 6, the
flip~-flop is set, releasing the short circuit across the

external capacitor and drives the output HIGH. The voltage
across the capacitor increases exponentially with the time

constant T = R1Cl. When the voltage across the capacitor

equals 2/3 VCC, the comparator resets the flip-flop which
then discharges the capacitor rapidly and drives the output

to its LOW state.

The circuit triggers on a negative-going input signal when

the level reaches 1/3 VCC. Once triggered, the circuit

remains in this state until the set time has elapsed, even

if it is triggered again during this interval.

Weees - —

=01 m/DIV

T T
INPUT - 30 VIDIV

uESETI——-- m
b
: Q

4 "

\
TRIGGER OO} 6 1 i
A - OUTPUT VOLTAGE ~ § 0 VDIV -
- 2 =41
. +)

. OUTAUT O 8 E] /
l CONTROL A Y.

| f—of~

VOLTAGE .
0.01 yF L=/ /
1

-

CAPACITOR VOLYAGE ~ 2.0 V/DIV.

AT=31R0,CHe0014F, Ry = 1080

When the paddle count is done the value is rnépped onto an

8-bit range (0-255) for a result.

L

4) CASSETTE INTERFACE

The Desk Computer contains the entire logic and interface
circuits needed to connect a low cost adudio cassette for
the input and output of data and programs.

The Computer input from the cassette should be made via the

crystal ear phone outlet or the external speaker outlet. In

these cassettes that have no such outputs simply connect the
speaker wires to the Computer input.

The data to the cassette is outputted by IC32 (address
##FDf6 bit @) and is level adjusted with R11/R13 (output
+1V p.p.) CH2 and C19 are placed to make the signal more
like a sinus.

The way a program is put on a cassette is as follows s
1) Start cassette motor

2) Save program
3) Stop motor

LEADER DATA TRAILER

i | N 4 |
1 v T T ‘_] L I
| b INAME
| | INAME_LENGTH
[: IFILE_TYPE_BYTE .
I FLAG BYTE FIG.a

Before and after the data comes a leader and a trailer on
the tape (see Fig.a) The whole cassette interface is build
up under software control.

The pulse lenght of the leader can be found on address Z#
f2E6 (# 2424) so the duty cycle is 0,5.

To end the file leader there is written a "1" bit (see Fig.
b) . The write file type byte is @ (for BASIC programs).
The two last items written in the leader are the length of
the name and the name itself.

The data consists of the block length a checksum on the
length and the block of data itself. The data is closed with
the length and the contents of the symbol table and to end
the saving there is written a trailer. This consist of a
number of zero's written with a different speed.

The input signal from the cassette (address F@@@ bit
7) comes through an OPAMP circuit (IC14) so the signal is
level matched to the computer.

The load routine clears the heap and all variables. It
evaluates the name of the program and looks for the required
file type. When a file has been found, the text buffer and
symboltable are loaded and the pointers will be updated.
When loading during program run, the program continous with
the program just loaded.

So the load routine is build up as follows :

Switch on cassette motor
Read header and name
Load textbuffer

Load symboltable

Stop cassette motor
Enable interrupts

* Kk ok ok k X

.58 ms

LEADER 1,25V

TAPE SPEED: 24 24

A"0"BIT
: TAPE SPEED: 243C
A™1" BIT
|) TAPE SPEED: 3C 24 -
TRAILER

TAPE SPEED: 2418

FIG b

CHAPTER VI PAL & RGB CARD

The television interface is realised such that a separate
adaptor module plugs into the fundamental logic to realise a
normal standard PAL or RGB signal.

A picture of the TV screen is defined by number of scans
(625 for Europe). They are not written one after another but
first one raster (312,5 scans) and then the other half.
There are written 25 pictures (of 625 scans) per sec., but
the eye has a certain slowness so you can see a steady
picture.

312/, O
T T———— . T ——
Ry e S S o - SO
\\ ~~~~~~~ = - ———
—_—N - et = S eve—
A NP opnny— P SR =S
=SS S e—
N e ——
— T T
——— oo T e ST -
N e ——
R — - — - S
—— — T

vertical
7‘-‘ T
20ms

f— T
——— " e
- ________E:_ﬁ.___giﬁ___::_—_“_
________ - -
L TS e ST
s o e T e e e e el R -
_______ ‘-*~
T ity .
-__—_'—_—-'——————-—-a—..__.‘;-—._._____:—_-.._
i e
. k. 1=V - :\:;,_
~— - ——
— —_g75 B NN < 1774
horizontal
64us

9800-1

One scan is written in 64us and the scansynchronisation
pulse is 5,8us. This pulse is necessary to keep the movement
of the scan in the TV synchronically with the signal in the
computer. It is obvious that the elektronbeam must be
blanked when going from right to left of the screen.

There is also a rastersynchronisation pulse which is used
every time a picture is written. The equilising pulses are
needed to get a good synchronisation of the picture durlng
the writing of the even and od fields.

All the signals are generated by IC25 (ZNA134F;sheet 4) and
are necessary to form a picture on the TV set.

QUTPUT WAVEFORMS IC25

625 line CCIR standard output

Crystal frequency 2.5625 MHz

Line frequency 15.625 kHz, Field frequency = 50 Hz
Line period 64 us, Field period = 20 ms

55

5L— o l—L=64ps —=|

5 - 25L - -
I T TR L LiSlw 11995 '
Mixed ; '
video :) ;
blanking ' ! SuE
' : i T=0] ! '
' ;=0 t=0! ‘
! o435k 1 - 1350 g il e 1
Mixed ! : '
cathode i © i
blanking 1 ' ;
1 vy ! v ' o W 1 i
X =i L . ! : ¥56psere | .
! 1 ¥
e b el ~—e 1102ps |
Field , - e N '
drive : g | . L . : : ‘:
| 25L 1251, 25L , 1251 125U, 25L , ysgcie '
e, 2 e e L 1 Ly ¥ '
Mixed : Linetime |
sync. reference point
pulses S

Equalising, Broad Equaliting:

'
1 pulses | pulses pulses '

'
| ' '

o I T e 1T

1
' . -]
'1:0 * =] VOUsAT. Geaps
1 1 i
Even |] i '
field ! ' o i
e istField(Even) 223 . 2nd Field (0dd) |
. 156p5+] |- S S
Mixed =-- .
sync. . !
pulses '
(Detail} i o o v o =
B3psel 229psel I P—e-05L i k-473ps ~-229ps —1 F=463ps
) =0 .
1

L3241

All the signals, synchronisation, color, information and
supply voltages are available at connector 1 on the PC
Board.

The Pin description is as follows and the signals are shown
in Fig. 1-7.

2 GROUND 1 +12vV

4 Mixes cathode blanking 3 -5V

6 - 5 SOUND

8 Colour signal 3 7 Colour signal #@

10 Colour signal 2 9 Colour Signal 1

12 +5V 11 Clock

14 Page 13 Page

16 Even field 15 Videoblanking (VBL)
18 Sync 17 Line

20 Line 19 VBL

To explain the sheme of the PAL colour card there is made a
picture with colour bars on the screen (16 colours from
black to white) in mode 3.

< _ 1T
P, . HHAHTHH ::::jﬁ::_:rkmﬁn WEERE FRNEE B
4‘3 I
T
¢ ; -
s >
_’L
»
[~ &
A e T
Fig2
i
@ ki
Ffj’j FHTHHHTHHHFH R T
A , —
5”[: f | , "{ 1 l]j]#”"
Wil l ll! L
T
["' 7 r"' i
a |
/:'fjé 258 -L+.==L -3 —
i
Y A e 3 I
-

Conneclor 1
40/6(,*5/0(6]/.

4 V/CZL'V

AR L VBl

Fin 20 Line

Pin 17 Line

Pin 75 V8L

Fon 73 /Darye
SmSllev.

Pen 17 Clock

JTn 9 VAl N4

Fin € ML &

Figs |

Fog 6

E ETR R AR AR
R RERE

Feog ¥

T =
L
-
L
b
>
-
.
11l Tl) o
T LS LA IR >
I ‘
4

Conneclor 1

40/“-5/6(6\/

.ZV/c/c'y

Pl.h"j /ixed calhode

Pind

Fen 14

blanh Enj/

AL 3

fdje

2 m-S/o([V

Pin 4

Fon o

Pon 48

Even Fieldd

ML

Syne

A) THE LUMINANCE SIGNAL (Y-signal)

The 4 colour signals are synchronized via IC7 to IC10
(741.5164) with the clock (CKD) and the Video blanking signal
(VBL). These IC's are used to have the same delay time as
the color signals.

These signals are added via a resisternetwork (RP2; R20 -
R23; with a different balance) to form the Y-signal (in this
example a step up signal , see Fig. 8).

. =}

-

= S CH 3

ol

-1

=l T] -2[’"//6/(;]/
o 1 ‘ |~
PR HHHT TP 4%5//&»'

] ﬁg-g

bt i
L S B

The Blanking signal (is also responsible for the front and
end porch) and the sync signal (adjustable with PT2) are
added together with the Y-signal (Fig.9)

,.—'-""'J——g: | Icz2 FPin 3 TVodin.
el T \ o -
‘ :: . bl
[RN il binl [Em)

'Ft.gﬂ mma H:' - xnx::Tu T HH
L—F Ic’2 Poné TV el

]\ F/‘ I /“/

4
i - >

The emitter follower (T1l) or buffer (impedance match) to IC1
(LM 1889) pin 12 (Fig. 10).

=1
r’—_“-r"'ﬂ.: : . -
-~ P :
1] P I~ 7CL pin 72
fllﬂ fo A m:i:'::: -L* -H— SO mliey

Y
LI o

$
T T

B) THE COLOR SIGNALS (R-Y and B-Y signals)

The 4 information signals (KOL-K3L) are also connected with
IC5 (PROM 745288) which is selected by the video blanking
signal. The 3 state outputs of IC5 are high or low when VBL
is actif, because RP1;R36 and R4l are used as pull up or
pull down resistors. These signals are shown in Fig. 11; 12

and 13.
:F
I
LZCE Prn 2
=]
M |
] |
Al T
P PSS IS T | n
Vi B bl) TP T (it ISR o
/'?j 171 F
7 1.(:15 //'J; P
|
— 3 I
'f” _] mi
L |
.l; s
i 75 0, 3
i M ;f TS
C I P BT
Lo : i P
; - - ' { }
byl F N
i O |- L |
thﬁ AR RARNTARAR LAREE b idsnmnxas iuoas nuu IR IS I
1 IC5 Pom &
]
= Jl _L F —, o
I
. Ires “en O
Fiq13 | BidN
R R Eam = RS = T:_I"l:;JI TN d ey
B LI 30 I o T T P
£ L T o
’ T — LTS Foaf
1R T
; : !
£l | |
.

:' IC2 joes 73
FURLINTR FPPE VPR FRY “VOE P IR vt P Fere pen T2
I //I/’-;/.
;} : sy, ;{5-‘{4“‘
;. I—— _ Line Con z
- /Oo-h 20
With IC3 (74LS374) these signals from the PROM are
synchronised with the clock. The R-Y and B-Y signals are
y g
formed by the resistornetwork R26-R30; R39 and R40.
The place of the burstsignal is a delay from the
sync-signal through two monostabel multivibrators. The
signal is replaced in time and in pulswidth so it comes on
the back porch of the video signal (Fig. 14).
1000
WHIE
12.05 us +0.25 us LEVEL
: LINE BLANKING INTERVAL
FRONT
800 PORCH
1.55 us
.25 us
600 BURST DELAY ‘
fe————5.6 us +0.1 us- 22 i
BURST |
LINE SYNC T
w0 S s | !{;i,]lg
.llr;;h
2 | il
” W“ BLANKING
'4‘ LEVEL
3 Qb
Fig 146
0 SYNCLEVEL J/. BREEZEWAY ‘g
— Le—900 ns +300 ns

So the place of the burst is a delayed signal of the
sync-puls. The switching of the burst signal in the V-signal
is done via a D-FF (IC4 used as toggle-FF- which is
connected with the line signal. So IC2 is used as PAL switch
(Fig. 15)

2 Fn 74

PP b
LI AL L LELERARL]

i
LI L O

H++ ‘“'#I

i

T 4(()7(?'

%fj-43/ by

C) THE VIDEO SIGNAL

IC1 (LM1889) takes care to make the video signal. The
following signals have to be connected to let the IC work
properly : Pin 1; 17 and 18. Clocksignal (4,43 MHZ to form
the Ku and the Kv signal). The chrominance signal K can be
measured on pin 13 (Fig. 16 and 17).

I

! | 3
T e Ic 2z Fp
FLWr H]J_ E M I{ rln,ﬁ ; ’
OO LT O o O e A et
#hi%WHHJM?WiWﬂ,WHW HHH TR
= {1:ijv -ykﬂ.} \! ' {:rbfl. HWJ?—TXJC
LP— -\ s L~f Lﬂ LL +
} | i
fzj 46 (Z:'('n 1) Fog ﬁ(-{'&?h 2)

Pin 4 : B-Y signal (Fig. 18)

i r
-! 1] . q| (B-7) g asuiad
I ' oy
%ﬂ:mu:kuunﬁﬁwnnnmuhHﬁ #in &
N EE: | re 2

i oz 50 mV/itir

: N
S I
\\\\\ B
Burst
Pin 2 : R-Y signal (Fig. 19)

I

Bulrsf—1

/ &=
; ' (R-Y) gemelen

L/ . %
%{r. L - /oin 77
/ij/)? H e-.:E}:': HHH et Icz
Ml 50 mVy,

: =

On the PAL card there are only 3 blocks of the LM1889
(Fig. 20) used :.

The 2 U and V modulators and the modulation of the

crominance and the luminance signal.

% cyAoMA
cHagma ! |
Lean LAG
4 V
U-sngnaal ’ i Ry ? R 77/ Ll CHIOMA M CHIUMA 05C
g : INPUT /e os¢ oUTPYT
N | e
5 ! i tinoma 3 16 Cunuma
: aias ™| T sureLy
'
v D e 4 § FF-T-) V-as R
vK or K “
kristal- U ‘ KU sy ! ” g SOUND ¥ sounn
$ ¢
i INFUIY b 7 S TANK
oscillator
443MHZ s - "
. r.uuunn-—j K 1 surety
+. — B R =
+
5 13 cunoma
90° T 1 . l SUBCARRIER
V-as e cHe 4 ¥
TANK 05 77
= 1 I' f?’dz L L VIDEO 4
aK -1 > 7 / WPUT
vV 2270
K ! v ¥ Mena
V-signaal KV 1 ouTPUT
il il
—6 —————— » . CHA g';ck X
TANK I
L) [' 110 cwa
- QUTPUT

The DC level of the Video signal (which can be measured on
pin 11 (Fig. 21) can be adjusted with PT1.

A d]
bl
M

1- ARy %‘y

The UHF modulator (channel 36) M1 modulates the signal so
the computer can be connected to a normal TV set. M1 is
also equiped with a sub-carrier for the sound so the TV
signal can be seen (in frequencyspectrum) as follows :

N By

I
1
LA
%‘ "c
I 4

L

——
TSI S T B R AP
Ly us 2w O It

f
fa
1,25 443MHz2
5,5MHz
7MHz
fb carrier of the picture
fH carrier of chroninancesignal
fG carrier of the sound

The RGB card is build up in the same way as the PAL color
card and except that we have already the RGB signals after
the Resister network. The PROM is programmed in a different
way to the PAL PROM so when you draw the sixteen color bars
on the screen you will see there is a difference in colours.
The transistors T11 ,T2, T3 and T4 are used to match the
signals to a normal colour monitor.

CHAPTER VII TESTING THE D.C.

CHECK OUT PROCEDURE

1) Plug out IC73 (511)

- Put on EPROM test card V-2 on X-BUS with UTILITY PROM
or stdck TEST PROM and RAM cycle PROM

- Connect terminal to the RS$232 bus

* First check stackjif OK program starts automatically
after reset

* Put in UTILITY PROM

* Memory commands : these commands enable to trace a
program while its running. You can also display
blocks of memory and insert test programs

* Register commands : these commands afford the
facility to examine and modify the 8080 registers and
the vector and intilisation bytes

no UTILITY :

check : Clock IC1l (pin 12)
D@-D7
g1-#2 (pin 2#, 5501)
Ready high (R128 top)
Reset pin 1 & 2 (8224) and pin 12/8080
Serial outpin 40/5501 must be high and have low
going pulses when reset
If not ready see if there is RAM action : check
blue,red,green and yellow PROM.

RAM test GCBOO (second PROM on test card) test

automatically dynamic RAM for reading and writing. When all
RAM's OK all zero's on the terminal.

A 00 00 00 060 00 00 00 00 address O-3FFF
even bank B 00 00 00 00 00 0O 00O 00)
Yaddress 4000-BFFF
odd bank C 00 00 00 00 00 00 00 00)

When RAM Problems : type in Test Program for continuous writing ar

reading (in UT)

writing ¢ SF800 21 00 3E 55 77
reading ¢ SFB0O0 21 00 3E 55 7E

2) If all working plug in 511 and start

C3 03F8
C3 03F8
in basic.

When no BASIC : check Page and stack overflow interrupt.
If OK check Bank Switch (Back to UTILITY)

BANK SWITCHING CHECK

Requirements

1) Running Utility
2) ROMS S14 and S12 in place

SFDO6 FF-00 (if not FF check all data lines,high on RESET held on

DEOOO EOOF

EO0O0O D6 FF 00 C4 DA CE 5S5F 7B AE A2 BA

SFD06 FF-40
DEOOO EOOF

Eoon C3 AA ED C3 B4 ED C3 FE EO C3 08

SFD06 FF-80
DEOOO EOOF

E00D c3C3 EO C3 02 E1 C3 37 E2 C3 79

SFD06 FF-CO
DEOOO EOOF

EO0O0 C3 24 EO C3 2A E7 C3 45 E1 C3 74

c8

£l

E2

EA

CD A5 D6 D2

C3 12 E1 C3

C3 CC E2 C3

C3 90 EF C3

If the above is not correct check bank switching bits, ROM insertion

or data or address open circuits.

BANK SWITCHING CHECK WITH SCOPE :

SFB00 21 06 FD 36 CO 3A 00 EO 3680 3A 00 EO 36 40 3A

00 E0O 36 00 3A 00 EO C3 03 F8

Then GF800 and check IC32 (pin 2 and 19 for toggle)

N T T T T R

, — join 19

|

if not see Red PROM pin 15.

3) if BASIC OK test Picture Timing

GENERAL _TIMING CHECK

Requirements :

1) Running Utility
2) Reasonable dynamic RAM status

1) Syng/scope on LINE at colour card connector
Second probe at pin 1 of IC 105

2) Fill RAM with #£00
There is one positive pulse per line of about 220 n sec.

3) Fill RAM with ##40
There are two pulses about 2 u sec apart, followed by 11 pulses
about 4 u sec apart, per line

4) Fill RAM with ZZ50
There are 24 pulses about 2 p sec apart

5) Fill RAM with #A#60
There are two pulses about 2 y sec apart, followed by 43 pulses
about 1 u sec apart

6) Fill RAM with ZZ70
There are two pulses about 2 p sec apart, followed by 65 pulses
about 1,5 u sec apart

If the above are not correct check through from IC48, ICl12, IC5, IC4,
1c6, I1C11, IC2, 1C17, IC19

P.C. PICTURE ADDRESS TEST

Use the following program to check the correct addressing of memory
for picture display :

F F8oo F387F0 fill ram with zero
S F800 21 FF BF LXI H, OBFFFH

3E 7A MVI A, 07AH

77 MOV M, A

2B DCX H

AF XRA A

S F810 3C INR A

S F84A C2 10 F8 JNZ LOOP 1
C3 03 F8 JMP LOOP 2

To run the program fill dynamic ram with zero. This blanks
the screen. On running the above program the screen must
evenly fill with Z characters. Any departure indicates an
addressing problem.

i
e

RAM TIMING

The following program will provide a RAM access pattern
synchronised to LINE. Waveforms will be similar to the
published phatographs.

F8an 11 00 FF LXZ D,OFFO0OH Data Pattern
F803 21 FO 03 LXZ H,03F0 H Address
F804 72 MOV M,D

F805 7€ MOV A,M

F806 73 MOV M,E

F807 7E MOV A,M

F808 72 MOV M,D

F809 7E ' MOV AM

FBOA 73 MOV M,E

F80B 7E MOV A,M

F8aC 00 NOT

F8aD 00 NOT

F8OE €3 06 F8 IMP OF8O6H

To run the above program

73

F1000-BFFF O

GF800

Sync on LINE

Waveforms for the DC under RAM test conditions
Pin 8 of IC21 to 6ND

Pin 12 of IC 5 to 6ND

20 MH clock USED for CPU

P2 TT 0
D= At
eSS s 20|

Ince AR NN TIELC

\Jd\i @S

SEi2 A ; T A (o .
CrErrd) | A , “\Wm.\uﬁaﬁ &I

Srezedae wid

SPIC 7 Gt QLT L S ; , i TG0 Ll

) nﬁ . .\V\Oﬁ

PNy ﬂ.\.iw.‘ BT e Siapies L i G Okt FLD A
G B e R Y g T e e - N b g 0¥\DH

e

qu\ %
JUI A
P OpEIT

5
..m.\- \)\\L

SO) MA

& A~

SR A

aereie.

e
g

—

e

AN

lvdh‘ﬁ\wn\...
Feprig 0L M\Ww\.
ICT2
O PG

e

Teda pps A4
V;';‘ﬂ/./»ic Poad A4

4) INPUT PORT CHECK

Reguirements :

1) Running Utility

1 SFDOO CF-
Bit Purpose Expected state
0 Not used
1 Not used
2 PAGE Mostly high
3 V24 ready High
4 Paddle event Low
5 Paddle event Low
6 Noise input Variable
7 Cassette input (Usually high)

Note that if Bit 3 is net high then BASIC cannot run.

KEYBOARD CHECK

Requirements
1 Running Utility
1 SFF07 -FF activate all key scan lines
2 SFF01 00- must be zero if BASIC put in
: (i.e. no keys pressed)

8255 TEST

Requirements

Running UTILITY : type in little test program so the
bits of the output port will be 0 or 1 (alternate)

SFBO0 2103FE 36 80 21 00 FE 3655 2101 FE 36 55

2102FE 3655 C3 05 F8

5) Run quick check (see small function check)

APPENDIX

1) PIN CONNECTIONS

1) PAL OR RGB OQUTPUT
=== 2) STEREO OUTPUT
wmoemmme 3) PADDLE INTERFACE
Tecueemcewse 4} CASSETTE RECORDER INTERFACE
R “® 5) RS5232 CONNECTOR
S— 6) DCE-BUS

a) RGB output

O‘Ej' -——— - Sudsc’\ CHrzv)
1« - Audic oubpuk
Lo Greund (ov)

b) STEREQ OUTPUT

(6 PINS DIN PLUG 240° VIEWED FROM INSIDE OF THE PLUG OR
TO THE COMPUTER PLUG)

RIGHT AUDIO

STEREO AUDIO OUTPUT

LEFT AUDIO

GROUND

C) PADDLE I;‘JTERFACE

PADDLE INTERFACE (200KAQ)

" POT 2

POT 3 EVENT
1
SVOLTS POT 1
GROUND

d) CASSETTE RECORDER INTERFACE

CASSETTE RECORDER INTERFACE

MOTOR CONTROL O3
NOT CONNECTED

OUTPUT P.CT INPUT TO PC FROM
TO CASSETTE CASSETTE
+MICRO CASS PLUG (EARPHONE CASS PLUG)

GROUND GROUND
(TO MIC PLUG)) (TO EAR PLUG)

e) RS232 INTERFACE

PIN

16
20
23)

)
24)

PERSONAL COMPUTER R%:E}ZMCQNNECTQR

T
!

1

!
1
i

AN FEMALE CONNECTOR

25

FUNCTION

GND
SERIAL OUT
SERIAN IN

DATA TERMINAL RDY

+12V*

+12v*
GND
+12V* "
-5V

£
via R = 5600 to +5V

RL2 pin 1 & 7

L
* 12V THROUGH 22051/4W

14 (OUTSIDE VIEUW)

OQUTPUT DATA FORM P.C.

INPUT DATA TO P.C

INPUT READY HIGH (5V) NOT READY

LOW (V)

Note : This connector is wired as

for a terminal and signals to pins 2
and 3 may have to be swapped if it is
to send data to a terminal/printer.

44

f) DCE-BUS

NAME DESCRIFPTION F.C. PIN# R.W.C. PIN# DCE FUNCTION
kXXX E2 22228228 & Fokdokokokokokok dekokgokok ook k (122222222828
PORO GIC FORT O RIT Q 16 24 DATA BIT @
POR1 GIC PORT O BIT 1 14 26 DATA BIT 1
FPOB2 GIC PORT O BIT 2 - 12 28 DATA BIT 2
POR3 GIC PORT © RIT = 10 , 30 . DATA RIT 3
FOB4 GIC PORT O RIT 4 ? 29 DATA RIT 4
POBS - GIC PORT © RIT S5 11 27 DATA BRIT S
PORS GIC PORT O RIT 6 13 25 DATA RIT &
POR7 GIC PORT O BIT 7 15 23 DATA RIT 7
P1RO GIC FORT 1 BRIT O 30 12 DEV. ADDR ©
PiR1 GIC PORT™ 1 RIT 1 = 10 DEV. ADDR 1
F1B2 GIC FORT 1 RIT 2 32 8 DEV. ADDR 2
F1EBE3 GIC PORT 1 BIT = 25 7 DEV. ADDR &
FiR4 GIC FORT 1 BIT 4 24 ? CARD ADDR ©
P1BRS GIC FORT 1 RIT 5 23 11 CARD ADDR 1
PiR6 GIC PORT 1 RIT 6 22 13 CARD ADDR 2
P1iR7 GIC PORT 1 BIT 7 21 i5 CARD ADDR 3
2RO GIC PORT 2Z BIT 0O 26 i8 BUS EXPAND
PZR1 GIC PORT 2 BIT 1 2 ’ 17 " WR" (NEG)
P2R2 GIC PORT 2 RIT 2 28 16 RD" (NEG)
Z2B3 GIC PORT 2 BIT 3 29 14 NOT USED
P2R4 GIC PORT 2 BIT 4 20 19 ' NOT USED
FP2RS GIC PORT 2 BIT S 19 20 NOT USED
P2B&6 GIC PORT 2 BRIT 6 18 21 NOT USED
P2B7 GIC PORT 2 BRIT 7 17 22 NOT USED
EXINTR EXTERNAL INTERUPT 6 4 EXINTR
IN7 PARALLEL INPUT BIT 7 5 I IN7
EXRESET" EXTERNAL RESET (NEG) 7 S EXRESET"
+12V +12 V DC 2 2 +12V
+3V +5 V DC 1 31 +3V
-3V -5 V DbC) 1 -5V
GND . GND (OV DC) 4 6 GND
INTR 8080 INTR-PIN 14 33 ' NA NON EXISTENT
IN7 PARALLEL INPUT RIT 7 34 - NA NON EXISTENT

NC NOT CONNECTED 8 NA NON EXISTENT

PIN-OUT OF THE 50-PENS CONNECTOR INSIRE DAlIpc

DO DUTELWN -

GROUND
DO
GROUND
D1
GROUND
D2
GROUND
D3 '
GROUND
D4
GROUND
D5
GROUND
D6
GROUND
D7
GROUND

GROUND
meEmu
GROUND
A10
MEMR

A14
A11

- A12

A13

A9

A15S

A7

AB

AS5--

AG

A3

A4

A1

A2

AD

INTA

€5 LOW ROM
CS LB UPP ROM
PSEUDE A12
CS UB UPP ROM
+5V

+5V
RAMOP

CK?2

HOLD

SYNC

SCREENING LINE
DATA BIT O
-SCREENING LINE
DATA BIT 1
SCREENING LINE
DATA BIT 2
SCREENING LINE
DATA BIT 3
SCREENING LINE
DATA BIT 4
SCREENING LINE
DATA BIT 5
SCREENING LINE
DATA BIT 6
SCREENING LINE
DATA BIT 7
SCREENING LINE

NO CONNECTION

SCREENING LINE

MEMORY WRITE STROBE

SCREENING LINE
NO CONNECTION

ADDRESS LINE 10
MEMORY READ STROBE

ADDRESS LINE 14
1M

12

13

9

-
[8)]

ON=A~UO OO

"INTERRUPT ACKNOWLEDGE
CHIP SELECT LOWER ROM:
CHIP SELECT LOWER BANK™Ul
A12 AFTER START-LOGIC
CHIP SELECT UPPER BANK UPPER
5 vOLT . cL i

5 VOLT _
NOT RAM OPERATION e
TTL LEVEL CLOCK (2MHz) .
HOLD REQUEST .
CPU SYNC SIGNAL

PIN CONNECTIONS ICs

NS
Ay O=—Tq1 40 A
GND O— 2 39 [—=0 Aqq
D, O~—={3 38 —=0 A3
Dy O=—4 37 —=0 Ay
Dg O=—={ 5 36 —=0 A5
07 O<—={ 6 35 ——=0 Ag
D, O=—+{7 34 —=0 Ag
@)
o, 0~—~lo [NTEL® =}|—ow
D, O=—= 9 32 —=0 A
D, O=—={ 10 8080 310~
-5v o— 1 30 —=0 Ay
RESET O———={ 12 29 —=0 A3
HOLD O——{ 13 28 ——0 +12V
INT O—={ 14 27 —=0 A,
92 O——=f 15 26 |—=0 A,
INTE O~— 16 25 j—=0 A
DBIN Q= 17 24 ——=0 WAIT
WR O=—1 18 23 ~—0 READY
SYNC O=— 19 22 f[=—0 0y
+5V O——— 20 21 j—=0 HLDA
o, ~ a0y
iy Az |
0, 2 23 [1WR
o3 22 [JRD Ag 2
0,0 afjcs As 3
o,ds 0 pa, 2y "k
0,06 8253 19[A, 4
0,07 18 [JcLK 2 A3z 5
DoE 8 17 Jout2 Ay 6
cLko(d 9 16 [JGATE2 i 7
outo(] 10 15[JcLK1 !
cateo[] 1 14 [1GATE 1 Ao 8
Gno(] 12 13[Jout1 0 9
02 10
03 I
GND 12
® Ny —
(@no) vss ——{_{ u[}— &0 VBB
(+6V) veC —G 2 n :}—— o DIN
= —{ |2 n [} resar ey
e M WRITE
svmza —{ |5 » :.—— = RAS
(]] 1w { J—— W A
| Y amesi = 0
usg q 7 wli}—=a A2
oee s w{_}— Pamz A
oet ? 16 [}—— voO(s12v) V1
om = 10 18 [}=— os7 DD
08 = |1 4 [= oes
o8s ———G 12 3 :—-— o8s
AMPLIFIER NO. 4 AMPLIFIER NO. 3
A A
& INVERT. NONIN- /NONIN- INVERT- N
ING VERTING VERTING ING
OUTPUT INPUT INPUT GND INPUT INPUT OUTPUT
u 13 12 1 10 9]
DISCHARGE
THRESHOLD
CONTROL
VOLTAGE
D LM324
’ OUTPUT
TRIGGER
GND

1 2 3 4 § 6 7
OUTPUT INVERT- NONIN- Vcc NONIN- INVERT- QUTPUT
ING VERTING VERTING ING

% INPUT INPUT INPUT INPUT

/

v
AMPLIFIER NO. 1

V
AMPLIFIER NO. 2

paa(]1 S 407 Pa4
ra2(]2 39[] ras
pa1(]3 an[]rae
pao (e [rar
Ro(]s 36 [] WR
(s 35 [7 RESET RESET [|1 ~ 16 :Vcc
GNo (7 34[Jo,
ar(]e 1ufJo, RESIN[_|2 15{] XTAL1
ac[]9 12(] o,
ec7 (10 a0, ROYIN[|3 14 XTAL2
pce (] 11 8255A 307 o,
res (12 »[o, READY |4 13 DTANK
pca[]13 28(J o, 8224
pco (14 27:]‘; SYNC[: 5 12 :OSC
pc1(]1s 26{7) Vec
pc2 ()16 25[] pa7 62 (TTL) : 6 1 :’ 9q
pca]n7 24[] P86 -
peo[]18 23[] res STETB E 7 10 : 2
pB1[]19 22(] PB4
82 20 21[pe3 GND 8 & : Voo
TMS 5501
. VBB (1 40() xmT
Qe H 24 Vec Vee (2 U 39[] x1 0
d 023 Ag Voo 3 38| xt1
a 022 A, Vss |4 37|] x12
A Acv (s 36(] x13
g 021 A2 p7 (6 35%XI4
d 020 CE pe (|7 34| X1 5
D5 (|8 330 x16
M
gl M« [P'® Aw o4 o 320 x17
Of 3sooo ({18 A D3 (10 31] X0 7
0 017 o0g D2 (|11 30|] X0 6"
: D1 (]l12 29(] X0 5
g H16 o7 po 13 28[] X6 4
O Nis 0g Ao (14 27(] X3
014 o A1(j15 26(] X0 2
g 2 A2 []16 250 X0 1
g 013 04 -
A3 []17 24(] X0 0
ce[j|18 23(] INT
syNc jf19 22/ SENS
o1 (|20 21|] ¢2
V] Ay E E Vee
1 e 116 sS :
=2 A [[17] &,
20 115 CAS \ G Fe) e
30 014 Doyt o 2111an B &
4 013 Ag x] 7] vo.
5 012 Ag x] (3] 1o,
7 12] 0.
6 O 011 A, » O) v
7 [:: 3 0 GND E E 0,
1 A5 oo 2] (0] e,
8 19 Ve
MIXED
FICLO VLRTICAL EVEN CATHODE LINC LINE REFERENCE CRYSTAL
ORIVE RCSCT FIELD BLANKING ADO SUBTRACT CLOCK 0SC.
_fgl (3] _fid 3l 7l [fiol 9
14 SYNCHRONOUS SYNCHRONOUS
Dl vee +625/525 +ul
13 CRYSTAL
[] DISCHARGE 0sc.
l:zlmassuow)
L contRoL oagzonmL]
— VOLTAGE 0£00E
[1RESET e
9 ADOITIO
?ouwur
[] TRIGGER]
‘ 1} 2]]] 3]
ov MOOE MIXED MIXED LINC HORIZONTAL Vee CRYSTAL
SYNC VIDEO DRIVEL - RESEY (s5v) 2
BLANKING

ZNA 134J

ea

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS

PIN ASSIGNMENTS (TOP VIEWS)

[y

SN5400 {4}
SNS4AHOO (3}
SN54L00 (3)

SN54L500 (J, W)

SN54500 (J, W)

SN7400 (4, N)
SN74HK00 (J, N}
SN741.00 {J, N)
SN741560 (J, N)

SN5402 (J)
SNS4L02 {J)

SN74S00 {J, N}

W@ ¥ 2A 28 ¥ GRO

SN5432 {J, W) SN7432 {4, N)

SN54L532 (J, W}

SN54832 (J, W) SN74832 (4, N}

ERg

IS IR RIRRIR IR N

TG JE T U

[

W 1Y 24 28 2Y GND

SN5486 {4, W) SN7486 (J, N)
SN54LS86 {J, W) SN74LSB6 (J, N)
SN54S86 (J, W) SN74S86 {4, N}

W 2 2A 2Y GNO

SN54LS02 (4, W)
SN54502 (J, W)

SN74L532 {4, N}

Wy ZA ¥ 1A 3 GND

SN7402 {4, N SNS404 () SN7404 {d, N} SN5408 (J, W)
SN74L0Z (4, N) sNS4HO4 (U) SN74HO4 (s, N} SNS4LS08 U, W)
SN74LS02 (4, N} sNS4L04) SN74L04 (4, N} SNBAS0B U W)
SN74502 (4, N) SN54LS04 {J, W) SN7ALS04 (J, N}

SN54S04 (J,W) SN74504 (4, N)

SNB474 (5} SN7474 (4, N) 5wz e
SNEIHT4 () SNTAHT4 (4, N)
SNBALT4 (4) EN74LT4 (4, N) SN5475 4, W) SN7
SNBALST4A [J, W) SNTALSTHA (4, N) SNSAL7S5 () SN7
SN54574 (J, W) SN74574 (J, M) SNSALSTS [, W) SN7
L
vee Cant NG Cyur NC R,

AT A7 8t

SN54122 {J, W)

220 20 GND

SN7408 {4, N)
SN74LS08 {J,

475 {J, N}
4L75 (4, N)
4LS75 (4, N)

82 ClR

4 Gno

SN74122 (4, N)

SN
N} SN
SN74S08 (4, N) SN

%

S4H15 (J, W) SN74H15 (4, N)
S4LS15 {J, W} SN74LS15 (J, N)
54515 (J, W) SN74815 (U, N)

OATA INFITS

BRI rngeg

[T T T 11T

o 0

AL B AsD ASBAE Ax
N N

8 A
N OUT QuT_our

[L1 11

B3
DATA

ey

IRIRRIER IR 1A IREIL
A0 A D A-BA B A3 A8 GND

1 CASCALE INPUTS DUTPUTS

SN5485 {J, W} SN7485 (J, N}
SN54LS85 (J, W) SN74L585 {J, N}
SN54S8S (J, W) SN74s85 {J, N)

vee

TRyl 2
Coat Cae 10 20 CR 28 24

w1 M 20 7 2Rea! GNO

CLR Coxt Cant
SN54123 (3, W) SN74123 (4, N)
SNS4L123 {4} SN74L123 U, N}
SN54LS123 (J, W) SN74LS123 {J, N}

PARALLEL INPUTS -

CLOCK SERIALOUTPUT
T M

Vg INHY

8T D ¢ 8 AT INPU

INMI
SHIF

CLOCK D

LoaD Qy
€K

BT
U

SNS4107 () SN74107 {4, N) SNBAL12Z {4, T) SN74L122 {4, N)
SN54LS107A1J) SN74LS107A(J, N) SNS54LS122 (J, W) SNTALST22 {4, N)
RUPFLE uGtPUES
o
oata ““lfNL:‘C" ouTruTS Vi ouTrut ta U O O MM gan
Vi Ei G A f2¥1 0 avr vy %0 % ‘-'). " n n” 1t 10 q
%) [is [[u}[ul[2]}[n]]e]]s T T T T
-4 WPPLE 15 Dy Ty (I TNABLE]
' CARRY t
ouTPUT
1t an (0an
hhBiDkhD s
CEFAH LALGEX A 3 [3 O INABLE GND
DA’ Y2 1Yl 1Y0 DA1A INPIHIS ¢

TA st i3
116 et
[

E ¥ K
ERiL §
SHIFT/CLOCK € F_ G _H,OUTPUT GND
L0AD M
PARALLEL INPUTS
SN54165 (4, W) SN74165 {J,N)

SN54L5165 {4, W) SN74L§165 (J, N}

Yoo 36

LI T R R TR LT W TV R T S T

E T T T e S B L el
SN54LS241 (J) SN74LS241 (4, N)
SN545241 {J) SN74s2at (J, N}

Vec apr ¥z §1 001 002 DO DO4

Spfwflisjlueiin|ivlls

outruts SN54160 (4, W) SN74160 (4, N}
SN54125 (4, W) SN74125{J, N} SNSALSTG0A {J, W) SNT4LST60A (J, N)
SNSALS125A(3, W) SN74LS125A(J, N} SNSA4155 (1, W} SN74185 (4, N) SN54161 (J, W) SN74161 (J, N)

SNSALS1S5 (4, W) SN74LS155 (J, N) SNSALS161A {3, W) SN74LS161A (J,N)
SN54156 (J,W) SN74156 (4, N)
SNSALS156 {J, W' SN74LS156 (4, N) M o o
AWRITESELECT tNARLE QUTRUTS . mmm
vee B R R R RTD ST 6 o w0 @ @ w4 o o o e P T e [
% i[sifulful[n]fnlin]{® IR EME T T] 1
TITILLT I -
T 7 (] D
o2 az
P
. n o o (U‘c C) 3 *eid thy n, el ‘: o O
IS N c
T T T 1 = S LT 1 [
2 vl fIsTafIssf[]s
! 1 3 4 L '] ! ? 3 4 $ § ! ! GATa By N, Couwl COuNI O Ty
s W i ciam @ 18 W® ™ A W Awe N G
DATA ALAD SELLCT OUTRUTS " OIrty Wty Quireey
SNB4175 {J, W) SN74176 {4, N) SN54193 (J, W) SN74193 (4, N}
' ' SNS4S175 {J, W) SN745175 {4, N} SN54LS193 (J, W) SN74LS193 (4, N)
gty s
Baiamuny vatamtet S [R—— o v &mxﬁw‘:‘"ﬁ Mad
P g s Vs e " O O W [_Lalm[_“_.”_.]r
w| [l [l fo] Ju] fu] fn] i !..uuun‘q Iﬁullllﬂm
T LI T T e] P T T I T
73) ™ o7 [y 0 70 A o5 ay »n E]
] € 5 g
| 'i' T T ! i ? A1 1Y 24 I QY
a
PR T T 1 111
djonpnanpnyuiog l T2 affafsAs s

T 7

[N

SN54251(

J4, Wi

SN541.8251 {(J, W)

SN54S251 (J, W}

SN74251(J, N}
SN74LS251 {J, N}
SN745251 (J, N}

BELECT TA_ 10
OUTRIT GO
" ——

W 3Am, 7Y
e
outrur e auTeut

SNB4LS257A (4, W)
(J, Wi

SNBALS253 (4, W) SNT4LS253 (J, N} SN545257

GHD.

SN74LS257A (J,
$N748257 {J, N)

Vor ¥ A€ 00 ADC A08 aDA DO
wl fw] fu] fol fuf n] {wils
T AT AT T ABF Ok
bat L4
Doy ©OJ D04 008 DOS DOY
2 s le[7] 00
7 57 61 6% By 591 BT om

SNB54288 (J, W)
{Redesignated TBP18S030}

SN745288 (J, N}

SNS4LS373 (J) SN74LS373 {4, N) SN54L5374 (J)
SN54S373 (J) SN74S373 (4, N) SN545374 J)

SN7
SN7

41.5374 {4, N}
45374 (3, N}

IERKRIERIRRIRAIE

ADG ADF ADE ADD ADA AD® AOC OND

SNB4S287 (J, W) SN745287 (4, N}

{Redesignated TBP14510}

outryts

Y —
vee 1a cuar ‘0. my. jac | e

R L N o, o
cuan

outruty

SN54333 (J, W) SN74393 {J, 0
SN541.S393 {J, W} SN74LS393 (.

4

N

1
INV INPUT =i

PIN ASSIGNMENTS

U hivnu

2 [
HIINPUT — LA

14
osc oureut = — EMITTER §
| LM35244 n
+ CL SENSE —] +— COLLECTOR §
1
~cu sense =] 2 coutecton a
] il
Ry — — EMITTER A
7 10
cr — — SHUTOOWN
[] 9
GND — COMPENSATION

Emittar T
1 ©
g s
N
E
Lo !
g | : =1
H 250 o —— 375 e
| manx ¥
S e is3AmN e - o . B D1 40
T0-220 Package
Order Numbers:
ouTPuT LM7305CT
Pt — O il LM7912CT
LM7915CT
[——— o See NS Packaga T03B

TOP VIEW

°ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE

+0.005
—{ = 0.050 (NOTE A) —0«‘ o100 10002
+0.005
0.100 100 +0.0038
] ' —oam0 0100 75 020
0.200
0135
=
o4
Y g R
i 0100 J
=005] 2
0.200 : \
‘fgg‘n? 00 0.030 2D.m!J

NOTES: A. Lead diameter is not controlled in this area.

B. All dimensions are in inches.

LEADS
DEVICE
EVIC 1 2 3
2N3702, 2N3703 Emitter Collector Base
ABT3702, A8T3703 Emitter Base Collector

“ALL JEDEC T0O-92 DIMENSIONS AND NOTES ARE APPLICABLE

0.050 (NOTE A)
1 +0.005
— 0.100 70000
0.200
40005 QM=
0025 MM
o e
0.200 J
1880 U800 MIN: 0.050 = 0.005

L EAN 2

+0.005
*’I 0160 _g.035
100 +0.005
0190 T o020

El

1
1 1zas 0017 ¥ $:397

NOTES: A. Lead diameter is not controlled in this area.
B. All dimensions are in inches.

LEAD
DEVICE 5 2 3
2N3704, 2N3705, 2N3706 - Emitter Collector Base
A8T3704, A8T3705, ABT3706 Emitter Base Collector

TIP34A— 35y

OULCToN —e :

IR — e
13
-

Plastic Package
T0-220 (T)

ToPVItW

Order Numbers:
LM7805CT
LM7812CT
LM7815CT

See Package T03B

2N3702
2N3703

2N3704
2N3705
2N3706

2) SMALL FUNCTION CHECK

% MODE TEST
1% DRAW @,@ YMAX,YMAX 15
2¢ GOTO 1¢
RUN this program in the modes 1 to 6
* COLOUR TEST (RUN in mode 3)
1 FOR A=@TO15:FILL A*1g,# A*1@+9,YMAX A:NEXT
* SOUND TEST (first ENVELOPE # 15)
1;21 FOR A =7l to 15:SOUND @)@Agd FREQ(}BJ) WAIT TIME S5:NEXT
20 GOTO 1¢ 1) > channel select
2)
* NOISE TEST
NOISE @ 15
* PADDLE TEST
+ PADDLE 1

174 FORA=@T02: ?PDL(A)s NEXT:?
20 GOTO 14

+ PADDLE 2
Change in line 1@:FORA=3T05:...

* CASSETTE LOAD : put first on the cassette a little program (10 times the
same program)

theﬁkor cassette 1 : LOAD:RUN
for cassette 2 : POKE £413D,#£20
LLOAD:RUN
* KEYBOARD CHECK : (touch each key 2 times)
for the keys ’, <+, v s ™ and TAB go to EDIT mode.
* If you have a FDC or digital cassette recorder : check for correct loading.

* Adjust the sound on the PAL card :

type : * ENVELOPE @ 15
* SOUND ¢ @ @ @ 2E3 0

first adjust the picture on the TV then adjust the sound on the UHF

modulator.
/ ,/////
O

— 7

* LABEL: UM1286
| ”

COIL SOUND ADJUSTMENT

i

0sC
8224

l

— - = |
3
RAM DRIVE TIMING I/0
STACK ROM 24K el | - RFSH -
TIMING RAM ¢ sl

RESET
IN

RESET

CPU

8080

/N

X BUS
CON
—

CONTROL _BUS

DATA

8US

AVA

KEYBOARD RS 232

KEYBOARD

ADDRESS BUS

AVAY

i

\VAV,

DCE BUS DRIVE

PROGRAM SQUND GENER.
8253

INTERFACE 5501 8255
RS 232
[———} [——]
Z FDC
7~
RINTER
P E) MODEM

1
TERMINAL

DCR

RACK

i

|

AMPLIFIER

* TIMING PADDLE CASSETTE
SCREEN INTERFACE INTERFACE
SCREEN

PAL |NTERRACE.

RGB

(m—

il

TV. OR

MONITOR.

	20190225142054044
	20190225142118593

