In December 1973 Intel shipped the first 8-bit, N-channe! microprocessor,
the 8080. Since then it has beceme the most widely used Microprocessor in
the industry. Applications of the 8080 span from large, intelligent systems
terminals to decompression computers for deep sea divers.

This 8080 Microcomputer Systerns User's Manual presents all of the
8080 systemn compenents. Over twenty-five devices are described in detail.
These new devices further enhance the BOBO system:

8080A — 8-Bit Central Processor Unit

Functionally and Eiectrically Compatible with the 8080.
TTL Drive Capability.
Enhanced Timing.
8224 — Clock Generator for B080A.
Single 16 Pin {DIP} Package.
Auxiliary Timing Functions.
Pawer-On Reset.
8228 — System Controller for BOBOA,
Single 28 Pin (DIP) Package.
Single interrupt Vector {RST 7).
Multi-Byte Interrupt instruction Capability (e.g. CALLI.
Direct Data and Control Bus Connect to all BOBO System /O
and Memory Components.
8251 — Programmabie Communication Interface.
ASYNC or SYNC (inciuding IBM bi-SYNC).
Single 28 Pin Package.
Single +5 Volt Power Supply.
8255 — Programmable Peripheral Interface.
Thrae 8-Bit Ports.
Rit Set/Reset Capability.
interrupt Generation.
Single 40 Pin Package.
Singie +5 Valt Power Supply.

In addition, new memory components include: 8708, 8K Erasable PROM;
831BA, High Density Mask ROM; and 5101, Low Power CMOS RAM.

inter Microcomputers. First from the beginning.

INTRODUCTION
General,
Advantages of Designing with Microcomputers . .
Microcomputer Design Aids
Application Example
Application Table

CHAPTER 1 —

THE FUNCTIONS OF A COMPUTER
A Typical Computer System
The Architecture of a CPLJ
Computer Operations

CHAPTER 2 -
THE 8080 CENTRAL PROCESSING UNIT
General

The Processeor Cycle
interrupt Sequences
Huold Sequences
Halt Seguences
Start-up of the 8080 CPU
CHAPTER 3 —
INTERFACING THE 8080
General .,
Basic System Operation
CPUMeoduteDesign

Interfacing the 8080 to Memory and
1/Q Devices

CONTENTS

iii
ifi

1-1
11
13

24
22
2-3
211
212
213
213

31
31
32

CHAPTER 4.—

INSTRUCTION SET
General
Data Transier Group
Arithmetic Group
Branch Group
Stack, 1/0 and Machine Control Group
Summary Table

CHAPTER S —
8080 MICROCOMPUTER SYSTEM COMPONENTS
CPU Group
8224 Ciock Generator
Functional Description and
System Applications
DataSheet
8228 System Controller

Functional Description and
Systern Appiications

DataSheet
B0BOA Central Processor

DataSheet .. _....._¢00ueun..
B0B0A-+ Central Processor {1.3us)

Data Sheet,
8080A-2 Central Processor {1.5us}

DataSheetcccucuu..,
MB80B0A Central Processor {(-55° to +125°C}

Data Sheet

Intel Corporstion wme no reszonaioility lor the uis at eny circuitey ather Than circuitry #mbodied in sn {nted product, No other CIFCUN DAtENL lICANTS ATE IMGHIED,

ROMSs
B702A Erasable PROM {256 x 8!

OataSheer 537
8708/8704 Erasable PROM {1K x 8}

DataSheer 545
8302 Mask ROM {2586 x 8)

DataSheet 551
B308 Mask ROM {1K x 8}

DataSheet 559
8316A Mask ROM (2K x 8}

DataSheet 561

RAM:

8101-2 Static RAM (256 x &)

DataSheer 567
8111-2 Static RAM (256 x 4

DataSheet 571
8102-2 Static RAM (1K x 1)

CataSheet _. 575
81024-4 Static RAM [1K x 1}

DataSheet 579
810784 Dynamic RAM (4K x 1)

DataSheet, ..., 583
5101 Static CMOS RAM {256 x 4)

CataSheet 53
8210 Dynamic RAM Driver

DataSheet 595
8222 Dynamic RAM Refresh Controller

New Product Announcement 599

/G

8212 8-Bit /O Part

Functional Deseription 5101

System Applications of the 8212 . . . 5103

DataSheet 5-109

8255 Programmable Perioherai Interface
Basic Functional Description
Detaited Operational Description
System Applications of the 8255
DataSheet
8251 Programmable Communication intertace
Basic Functional Description
Detailed Operational Description
System Appiications of the 8251
Data Sheet

Peripherals

8205 One of 8 Decoder
Functional Descrintion
Systemn Applications of the 8205
DataSheet

8214 Priority Interrupt Control Unit
Interrupts in Microcomputer Systems
Functional Description

B216/8226 4-Bit Bi-Directianal Bus Driver
Functional Description_......
System Applications of the 8216/8226
DataSheet

Coming Soon

CHAPTER 6 —
PACKAGING INFORMATION.,...

Since their inception, digital computers have contin-
uously become more efficient, expanding into new appli-
cations with each major technological improvement. The
advent of minicomputers enabled the inciusion of digital
computers as a permanent part of various process control
systems, Unfortunately, the size and cost of minicomputers
in “dedicated’ applications has limited their use, Ancther
approach has been the use of custom built systems made up
of *random iogic” (i.¢., logic gates, flip-flops, counters, etc.).
However, the huge expense and development time invoived
in the design and debugging of these systems has restricted
their use to large volume applications where the develop-
ment costs could be spread over a {arge number of machines.

Taday, Intal offers the systems designer a new alter-
native .. . the microcomputer. Utilizing the technologies and
experience gained in becorning the world’s fargest supplier
of LSI memory components, Intel has made the power of
the digital computer available at the integrated circuit level,
Using the n-channel silicon gate MOS process, Intel engi-
neers have implemented the fast {2 us. cycle) and powerful
(72 basic instructions) 8080 microprocessor on a single LS|
chip. When this processor is combined with memory and
170 circuits, the computer is complete. intel offers a variety
of random-access memary {RAM), read-only memory (ROM}
and shift register circuits, that combine with the 8080 pro-
cessor to form the MCS-80 microcomputer system, a system
that can directly address and retrieve as many as 65,536
bytes stered in the memery devices.

The 8080 processor is packaged in a40-pin dual in-line
package [DIP) that allows for remarkably easy interfacing.
The 8080 has a 16-bit address bus, a 8-bit bidirectional data
bus and fully decoded, TTL-compatible controt outputs. In
addition to supporting up to 84K bytes of mixed RAM and
ROM memory, the 8080 can address up to 2566 input ports
and 256 output ports; thus allowing for virtually uniimited
system expansion. The 8080 instruction set includes con-
ditional branching, decimai as weil as binary arithmetic,

iogical, register-to-register, stack cantrol and memaory refer-
ence instructions. In fact, the 8080 instruction set is power-
ful enough to rival the perfarmance of many of the much
higher priced minicomputers, yet the 8080 is upward soft-
ware compatible with Intel's eariier 8008 microprocessor
{i.e., programs written for the 8008 can be assembled and
executed on the 8080).

In addition to an exiensive instruction set oriented 10
preblem solving, the 8080 has anather significant feature—
SPEED. in centrast to random logic designs which tend te
work in parallel, the microcomputer warks by sequentially
executing its program, As a result of this sequential execu-
tion, the number of tasks a microcomputer can undertake
in a given period of time is directlty proportional to the
execution speed of the microcomputer. The speed of exe-
cution is the limiting factor of the realm of applications of
the micracomputer. The 8080, with instruction times as
short as 2 psec., is an order of magnitude faster than eariier
generations of microcomputers, and therefore has an ex-
panded field of potential applicatiens.

The architecture of the BOBO also shows a significant
improvement over earlier microcomputer designs. The 8080
contains a t6-bit stack pointer that controls the addressing
of an external stack located in memory, The pointer can be
initialized via the proper instructions such that any portion
of external memory can be used as a last inffirst out stack;
thus enabling aimost unlimited subroutine nesting. The stack
pointer allows the contents of the program counter, the ac-
cumulator, the conditian flags or any of the data registers to
be stored in or retrieved from the external stack. In addi-
tion, multi-level interrupt processing is possible using the
B080’s stack controt instructions. The status of the pro-
cessor can be “pushed” onto the stack when an interrupt is
accepted, then “popped” off the stack after the interrupt has
been serviced, This ability to save the conients of the pro-
cessor's registers is possible even if an interrupt service
routing, itself, is interrupted.

CONVENTIONAL SYSTEM |

PROGRAMMED LOGIC

Product definition
System and logic design

De brug
Lab Instrumentation
PC card tayout
Documentation
Cooling and packaging

Power distribution
Engineering charges

Done with conventionat

Daone with yellow wire

Done with togic diagrams

Simplified because of ease of incorporating features
Can be programmed with design aids

{compilers, assemblers, editors|
Software and hardware aids reduce time

Fewer cards to layout

Less hardware to document

Reduced system size and power consumption
eases job

Less power to distribute

Change pragram

Table G-1. The Advantages of Using Microprocessors

ADVANTAGES OF DESIGNING
WITH MICROCOMPUTERS

Microcomputers simplify almost every phase of pro-
duct development. The first step, as in any product devel-
opment program, is to identify the various functions that
the end system 15 expected to perform. Instead of realizing
these functions with netwarks of gates and flip-flops, the
functions are implemented by encoding suitable sequences
of instructions {programs) in the memory elerments, Data
and certain types of programs are stored in RAM while the
basic program can be stored in ROM. The microprocessar
performs all of the system’s funcuons by fetching the in-
structions in memary, executing them and COMmImunicating
the resuits via the microcomputer's 1/0 parts. An 8080
microprocessor, executing the programmed logic stored in a
single 2048-byte ROM element, can perform the same logical
functions that might have previously required up to 1000
logic gates,

The benefits of designing a micracomputer into your
system go far beyond the advantages of merely simplifying
product development. You will aiso appreciate the profit-
making advantages of using a microcomputer in place of
custom-designed randem logic. The most apparent advantage
is the significant savings in hardware costs, A micrucomputer
chip set replaces dozens of random legic elements, thus re-
ducing the cast as well as the size of your system. In addi-
tien, production costs drop as the number of individual
components to be handled decreases, and the number of
complex printed circuit boards {which are difficult 1o lay-
out, test and correct) is greatly reduced. Praobably the most
profitable advantage of & microcomputer is its flexibility
far change. Ta modify your system, you merely re-program
the memaory elements; you don't have ta redesign the entire
system. You can imagine the savings in time and money
whern you want to upgrade your product. Reliability is
another reason to choose the migrocemputer over random
logic. As the number of components decreases, the prob.
ability of a matfunctioning element likewise decreases. All

of the logicai control functions formerly performed by
numergus hardware components can now be implemented
in 3 few ROM circuits which are non-volatile: that is, tha
contents of ROM will never be iost, even in the avent of a
power failure. Tabla 0-1 summarizes many of the advan-
tages of using microcomputers,

MICROCOMPUTER DESIGN AIDS

{f you're used to fogic design and the idea of designing
with programmed logic seems like too radical a change, re-
gardiess of advantages, there's no need to waorry because
Intel has already done most of the groundwork for you. The
INTELLEC™ 8 Development Systems provide flexible, in-
expensive and simpiified methods for OEM product develop.
ment. The INTELLEC™ 8 prowides RAM program storage
making program loading and modification easier, a display
and contral console for system monitering and debugging,
a standard TTY interface, a PROM programming capabiiity
and a standard software package [System Monitar, Assem.
bler and Test Editor}. In addition to the standard software
package available with the INTELLEC? 8, Intei offers a
PL/M compiler, a cross-assembler and a simulatar written in
FORTRAN 1V and designed to run on any large scale com-
puter. These programs may be procured directly from Intel
or from a number of nationwide computer time-sharing
services. Intel's Micracomputer Systems Group is always
available to provide assistance in every phase of your product
development.

Intel ailso provides complete documentation on all
their hardware and software products. In addition to this
User's Manual, there are the-

. PL{’MI‘Language Reference Manual

» 8080 Assembly Language Programming Manual

+ INTELLEC®8/MOD 8C Operator's Manual

+ INTELLEC®8/MGD 80 Hardware Reference
Manual

s 8080 User's Program Library

APPLICATIONS EXAMPLE

The 8080 can be used as the basis for a wide variety
of calculation and contral systems. The system configura-
tions for particular applications wili differ in the nature of
the peripheral devices used and in the amount and the type
of memory required. The applications and solutions de-
scribed in this section are presented primarily to show how
microcomputers can be used to solve design problems. The
BOBO should not be considered limited either in scope or
performance to those applications listed here.

Consider an B0BO microcomputer used within an auto-
matic computing scale for a supermarket. The basic machine
has two input devices: the weighing unit and a keyboard,
used for function selection and to enter the price per unit
of weight. The only output device is a display showing the
total price, although a ticket printer might be added as an
optional output device.

The control unit must accept weight information from
the weighing unit, function and data inputs fram the key-
board, and generate the display. The only arithmetic func-
tion to be performed is a simple multiplication of weight
times rate,

The control unit could probably be realized with
standard TTL logic. State diagrams for the various portions
could De drawn and a multiplier unit dasigned. The whole
design could then be tied together, and eventually reduced
@ a selection of packages and a printed circuit hoard layout.
In effect, when designing with 2 logic family such as TTL,
the designs are ‘‘customized” by the choice of packages and
the wiring of the logic.

if, however, an 8080 microcomputer is used to realize

the control unit (as shown in Figure 0-1), the only ““custom”
logic will be that of the interface circuits. These circuits are
usually quite simple, providing electrical buffering for the
input and output signais.

instead of drawing state diagrams leading to logic, the
systen designer now prepares a flow chart, indicating which
input signals must be read, what processing and computa
tions are needed, and what output signais must be produced.
A program is written from the flow chart. The program is
then assembled into bit patterns which are |lcaded into the
program memory, Thus, this system is customnized primarily
by the contents of program memory.

Far this automatic scale, the program would probably
reside in read-only memory (ROM], since the micrecom-
puter would always execute the same program, the one
which implements the scale functions. The processor would
constantly monitor the keyboard and weighing unit, and up-
date the display whenever necessary. The unit would require
very little data memory; it would only be needed for rate
starage, intermediate resuits, and for storing a copy of the
display.

When the controf portion of a product is implemented
with a microcomputer chip set, functions can be changed
and features added merely by altering the program in mem-
ary. With a TTL based system, however, alterations may re-
quire extensive rewiring, alteration of PC boards, etc.

The number of applications for microcomputers is
limited only by the depth of the designer’s imagination. We
have listed 2 few potential applications in Table 0-2, along
with the types of peripheral devices usually associzted with
each product.

KEYBOARD PRINTER i
oo
000 ‘ 00 DISPLAY
000
WEIGH NG coo . 22
NIt 00 :
LeRels] | oo |
3 T
1
|
m————— -
|
INRUT INBUT GUTPUT : Ay |
INTERFACE =1 INTEREACE =2 INTERFACE =1 INTERFACE =2 |
r v —————
| ¥
HOAD i ‘ I 1‘[Y }1 |
CPuy B H 1o
BUS
CONTROL !1'
uNIT . I
PROGAAM QATA
MEMORY MEMORY
TFROMI IRAM]

Figura 0-1. Microcomputer Application — Automatic Scala

APPLICATION PERIPHERAL DEVICES ENCOUNTERED

Intelligent Tarminals Cathode Ray Tube Display

Printing Units

Synchronous and Asynchronous data lines
Cassette Tape Unit

Keyboards

Gaming Machines Keyboards, pushbuttons and switches
Various display devices

Cain acceptors

Coin dispensers

Cash Registers Keyboard or input Switch Array
Change Dispenser

Digital Display

Tickat Printer

Magnetic Card reader
Communication interface

Accounting and Billing Machines Keyboard

Printer Unit

Cassette or other magnetic tape unit
“Floppy” disks

Telephone Switching Control Telephone Line Scanner
Analog Switching Network
Dial Registers

Class of Service Parcel

MNumerically Controlied Machines Magnetic or Paper Tape Reader
Stepper Motors
Onptical Shaft Encoders

Process Control Analog-to-Digital Converters
Digitai-to-Analog Converters
Control Switches

Displays

Table 0-2. Microprocaessor Applications

This chapter introduces certain basic computer con-
cepts. It provides background information and definitions
which will be useful in later chapters of this manual. Those
already familiar with computers may skip this material, at
their option.

A TYPICAL COMPUTER SYSTEM
A typical digital computer consists of:

a) A central processor unit {CPL1)
b} A memory
¢t Inputfoutput {1/0} ports

The memory serves as a place to store Instructions,
the coded pieces of information that direct the activities of
the CPU, and Data, the coded pisces of information that are
procassed by the CPU. A group of logically related instrue-
tions stered in memory is refarred to as a Program. The CPU
“reads’” each instruction from memeory in a legically deter-
mined seguence, and uses it to initiate processing actions.
If the program seguence is coherent and logical, processing
the program will produce intelligible and useful results,

The memory is also used to store the data to be manip-
ulated, as well as the instructions that direct that manipu-
lation. The program must ba organized such that the CPU
does not read a non.instruction word when it expects to
see an instruction. The CPU can rapidly access any data
stared in memory; but often the memory is not large enough
to store the entire data bank required for a particular appii-
cation, The problem can be resolved by providing the com-
puter with one ar more input Ports. The CPU can address
these ports and input the data contained there. The addition
of input ports enables the computer to receive information
from external eguipment {such as a paper tape reader or
fleppy disk} 2t high rates of speed and in large volumes.

A computer also reguires one or more Qutput Ports
that parmit the CPU ta cormmunicate the result of its pro-
cessing to the outside world, The output may go to 3 dis-
play, for use by a human operator, to a peripheral device
that produces “hard-copy,” such as a line-printer, to a

peripheral storage device, such as a floppy disk unit, or the
output may constitute process control signals that direct the
aperations of another systemn, such as an automated assembly
line. Like input ports, output ports are addressabie. The
input and output parts together permit the processor to
communicate with the outside worid.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU must be able
to fetch instructions from memory, decode their binary
contents and execute them. tt must also be able to reference
memory and (/O ports as necessary in the execution of in-
structions. {n addition, the CPU should be able to recognize
and respond to certain external control signals, such as
INTERRUPT and WAIT requests. The functional units
within a CPU that enable it to perform these functions are
desceribed below, '

THE ARCHITECTURE OF A CPU

A typicai central processar unit (CPU} consists of the
following interconnected functional units:

» Registers
« Arithmetic/Logic Unit (ALUY
» Control Circuitry

Registers are temporary storage units within the CPU,
Some registers, such as the program counter and instructicn
register, have dedicated uses, Other registers, such as the ac-
cumulator, are for more general purpose use.

Accumulator:

The accumulator usually stores one of the operands
to be manipulated by the ALL. A typical instruction might
direct the AL to add the contents of some ather register 1o
the contents of the accumulator and store the result in the
accumulator itself. In general, the accumulator is both a
source {operand] and a destination {result} register.

Qften a CPU will include a number of additional

general purpase registers that can be used to store operands
or intermediate data. The availability of general purpose

registers eliminates the need to “shuffle” intermediate re-
sults back and forth between memery and the accumulator,
thus imoroving processing speed and efficiency.

Program Counter {Jumps, Subroutines
and the Stack):

The instructions that make up a program are stored
in the system's memary. The central processor references
the contents of memaory, in arder to determine what action
15 appropriate. This means that the processor must Know
which location contains the next instruction.

Each of the locations in memory s numbered, to dis-
tinguish it from ail other locations in memery. The number
which identifies a memory location is called its Agddrass.

The processor mantains a counter which contains the
address of the next program instruction. This register is
calied the Program Counter. The processor updates the pro-
gram caunter by adding 1" to the counter each time it
fetches an instruction, sc that the program counter is always
current {pointing to the next instruction),

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the pro-
drammer may viclate this sequential rule is when an instruc-
tion in one section of memaory is a Jump instruction to
another saction of memory.

A jump instruction contains the address of the instruc.
tion which is to {follow it. The next instruction may be
stared in any mernory location, as long as the programmect
jump specifies the correct address. During the execution of
ajump instruction, the processor replaces the contents of its
program counter with the address embodied in the Jump.
Thus, the logical cantinuity of the Brogram is mamntained,

A special king of program jump oceurs when the stored
program “Cabls” a subroutine. In this kind of jumg, the pro-
cessor is required to ‘remember’’ the contents of the pro-
gram counter at the time that the jurmp accurs. This enables
the processor to resume exsecution of the main pragram
when it s finished with the last instruction of the subroutine.

A Subroutine is a program within a pragram. Usually
it is a geperal-purpose set of instructions that must be exe-
cuted repeatedly in the course of a main program. Reutines
which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often
writter as subroutines, Other examples might be programs
designed for inpuiting or outputting data to a particular
peripheral device.

The processor has a special way of handiing sub-
routines, in order to insure an orderly return to the main
program, When the processor receives a Call instruction, it
increments the Program Counter and stores the counter's
contents in a reserved memory area Known as the Stack.
The Stack thus saves the address of the instruction to be
executed after the subroutine is completed. Then the pro-

cessor loads the address specified in the Call into its Pro-
gram Counter. The next instruction fetched will therefare
be the first step of the subroutine.

The last instruction in any subroutine isa Return. Such
an instruction need specify no address. When the processor
fetches a Return instruction, it simply replaces the current
contents of the Program Counter with the address on the
top of the stack, This causes the processor to resume execu-
tion of the calling program at the point immediately follow-
ing the original Call Instruction,

Subroutines are often Nestad; that is, one subroutine
will sometimes call a second subroutine, The second may
call a third, and so on, This is parfectly acceptable, as long
as the processor has enough capacity to store the necessary
return agdresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itse. If the stack has space far
storing three return addresses, then three leveis of subrou-
tines may be accommodated,

Processors have different ways of maintaining stacks,
Some have facilities for the storage of return addresses built
into the processor itself, Other processors use a reserved
area of external memary as the stack and simply maintain a
Pointer register which contains the address of the most
recent stack entry. The external stack allows virtvally un-
limited subroutine nesting. |n addition, if the processor pro-
vides instructions that cause the contents of the accumulator
and other general purpose registers 1o be "pushed’’ onto the
stack or “popped” off the stack via the address stored in the
stack pointer, muiti-lavel interrupt processing (described
later in this cha;ﬂter} is possible, The status of the processor
[i.e., the contents of all the registers} can be saved in the
stack when an interrupt is accepted and then restored after
the interrupt has been serviced, This ability to save the pro-
cessor's status at any given time is possible even if an inter-
rupt service routine, itself, is interrupted,

Instruction Register and Decoder:

Every computer has a Word Length that is characteris-
tic of that machine. A computer's word length is usuaily
detarmined by the size of its internal storage elements and
imerconnecting paths (referred to as Busses); for example,
a computer whose registers and busses can store and trans-
fer 8 bits of information has a characteristic word length of
8- bits and is referred to as an 8-bit parallel processor. An
eight-bit parailel pracessor generally finds it most efficient
to deal with eight-bit binary fields, and the memory asso-
ciated with such a processor is therefore organized to store
gight bits in each addressable memery ocation. Data and
instructions are stored in memory as eight-bit binary num-
bers, or as numbers that are integral muitiples of eight bits:
1B bits, 24 bits, and so on. This characteristic eight-bit field
is often referred to as a Byte.

Each operation that the processor can perform is
identified by a unigue byte of data known as an Instruction

Code or Operation Code, An eight-bit word used as an in.
struction code can distinguish between 256 alternative
actions, more than adequate for mast processors.

The processor fetches an instruction in twe distinct
operations. First, the processor transmits the aadress in its
Program Counter to the memaory. Then the memory returns
the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction
Register and uses it to direct activities during the remainder
of the instruction execution.

The mechanism by which the processor translates an
instruction code inta specific processing actions reguires
more elaboration than we can here afford. The concept,
however, should be intuitively clear to any lpgic designer.
The eight bits stored in the instruction register can be de-
coded and used to selectively activate one of 3 number of
output tines, in this case up to 266 tines. Each ling repre-
sents a set of activities associated with execution of a par-
ticulgr instruction code, The enabled line can be combined
with selected timing pulses, to develop electrical signals that
can then be used to initiate specific actions, This transla-
tion of code into action is performed by the Instruction
Decoder and by the associated control circuitry,

An eight-hit instruction code is often sufficient to
specify a particular processing action. There are times, how-
ever, when execution of the instruction requires more infor-
mation than gight bits can convey,

One example of this is when the instruction refer-
ences a memoty location. The basic instruction code iden-
tifies the operation 1o be performed, but cannot specify
the object address as well, In a case like this, a two- or three.
byte instruction must be used. Successive instruction bytes
are stored in sequentially adjacent memory locations, and
the processor perfarms two or three fetches in succession to
obtain the full instruction, The first byte retrieved from
memaory is placed in the processor’s instruction register, and
subsequent bytes are placed in temporary storage; the pro-
cessar then proceeds with the execution phase, Such an
imstruction is referred to as Variahle Length.

Address Registeris):

A CPU may use a register or register-pair to hold the
address of a memory location that is to be accessed for
data. |f the address register i¢ Programmahle, {ie., if there
are instructions that allow the programmer o alter the
contents of the register] the program can “‘build™ an ad-
dress in the address register prior to executing 3 Memaory
Refarence instruction {i.e., an instruction that reads data
from memory, writes data to memory or operates on data
stored in memory).

Arithmetic/Logic Unit (ALL):

All processors contain an arithmetic/iogic unit, which
is often referred to simply as the ALU, The ALU, as its
name implies, is that portion of the CPU hardware which

performs the arithmetic and logical operations on the binary
data.

The ALW must contain an Adder which is capatie of
combimng the contents of two registers in accordance with
the logic of binary arsthmetic, This provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memary and from its other inputs.

Using only the basic adder a capable programmer can
write routines which will subtract, multiply and divide, giv-
ing the machine complete arithmetic capabilities. In practice,
howsever, most ALUs provide other bwltan functions, in-
cluding hardware subtraétion, boolean logic operations, and
shift capabilities.

The ALY contains Flag Bits which specify certain
eonditions that arise 1n the course of arithmetic and logical
manipulations. Flags typically include Carry, Zero, Sign, and
Parity. it is possible to program jumps which are condi-
tionally dependent on the status of one or more flags. Thus,
for example, the program may be designed to jump 1o a
special routine if the carry bit is set following an addition
iMstruction.

Control Circuitry:

The control cireuitry is the primary functional umit
within 8 CPU, Using clock inputs, the control cireuitry
maintains the proper sequence of events required for any
processing task. After an instruction is fetched and decoded,
the control circuitry issues the appropriate signals (to units
hath internal and external to the CPU} for imitiating the
proper processing action, Qften the contral aircuitry will be
capable of responding to external signals, such as an inter-
rupt of wait recuest. An Interrupt request will cause the
control circuitry 1o ternporarily interrupt main program
execution, jump 1o a special routine to service the interrupt-
ing device, then automatically return to the main program.
A Wait reguest 1s often issued by a memory or /0 element
that operates slower than the CPU. The contral circuitry
will idle the CPU untii the memory or {/0 port is ready with
the data.

COMPUTER OPERATIONS

There are certain operations that are basic 1o almost
any computer. A sound understanding of these basic cpera-
tions is a necessary prerequisite to examining the specific
operations of a particular camputer.

Timing:

The activities of the central processor are cyclical. The
processar fetches an instruction, performs the operations
required, fetches the next instruction, and so on, This
orderly sequence of events requires precise timing, and the
CPU therefare raquires a free running oscillator clock which
furnishes the reference for all processor actions. The com-
bined fetch and execution of a single instruction is referred
to as an Instruction Cycle. The portion of a cycle identified

with a cleariy defined activity 1s called a State. And the inter-
val between pulses of the timing nscillator is referred to as a
Clock Period. As a generat rute, one ar more clock periods
are necessary for the completion of a state, and there are
several states ina oycle.

Instruction Fetch;

The first statels) of any instruction cycle will be
dedicateo to fetching the nmext instruction. The CPU issues a
read signal and the contents of the progeam counter are sent
o memory, which responds by returning the next instruc
tion word, The first byte of the instruction is placed in the
instructien register, If the instruction consists of mare than
one byte, additional states are required to fetch each byte
of the instruction. When the entire instruction is present in
the CPU, the program counter is incremented [in prepara-
tion for the next instruction fetch) and the instruction is
decoded. The operation specified in the instruction will be
exgcuted in the remaining states of the instruction cycle.
The instruction may call for a memory read or write, an
input of cutput and/or an internal CPU operation, such as
a register-ta-register transter or an add-registers operation,

Memory Read:

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU's instrue-
tion register. The instruction fetched may then call for data
10 be read from memary into the CPU, The CPU again issues
aread signal and sends the proper memory address: memary
responds by returning the requested word, The data re-
ceived is Diaced in the accumulator or one of the other gen-
eral purpose registers {not the instruction register),

Memaory Write:

A memary write operation is similar 1o a read except
for the direction of data flow. The CPU issues a write
signal, senas the proper memory adldress, then sends the data
word to be written into the sddresse memary lacation,

Wait {(memory synchronization):

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock period
determines the timing of ail processing activity.

The speed of the processing cycle, however, is limited
by the memory’s Access Time. Once the processor has sent a
read address 1o memory, it cannot proceed until the memory
has had time to respond. Mast mermories are capable of
responding much faster than the processing cycle requires.
A few, however, cannot supply the addressed byte within
the minimum time established by the processor’s clock.

Therefore a processor should contain a synchroniza-
tion provision, which permits the memory 1o request a Wait
state. When the memory receives a read or write enable sig-
nal, itplacesa reguest signal on the processor's READY line,
causing the CPU to idle temporarily, After the memary has

had time to respond, it frees the processor's READY line,
and the instruction eycle progeeds.

Input/Output:

Input and Qutput operations are simiiar to memory
read and write operations with the exception that a peri-
pheral 1/0 device is addressed instead of a memory location,
The CPU issues the appropriate input or output control
signal, sends the proper device address and either receives
the data being input or sends the data to be output.

Data can be input/output in either parallel or seriai
form, All data within a digital computer is represented in
binary coded form. A binary data word consists of a group
of bits; each bit is either a one or a zero. Parallel 1/O con-
sists of transferring ail bits in the word at the same time,
one bit per line, Serial 1/0 consists of transterring one bit
at g time on single fine. Naturally serial [/Q is much
slower, but it requires considerably less hardware than does
parallel }/Q.

Interrupts:

Interrupt provisions are included an many central
processors, 35 a means of improving the processar’s effi-
ciency. Consider the case of a computer that is processing a
large volume of data, portions of which are to be cutput
to a printer. The CPU can output a byte of data within a
single rmachine cycle but it may take the printer the equiva-
lent of many maching cycles to actually print the character
specified by the data byte. The CPU eould then remain idie
waiting until the printer can accept the next data byte, |f
an interrupt capability is implemented on the computer, the
CPLU can putput a data byte then return to data processing,
When-the printer is ready to accept the next data byte, it
can request an interrupt, When the CPU acknowledges the
interrupt, it suspends main program execution and avto-
maticatly branches to a routine that will output the next
data byte. After the byte is output, the CPU continues
with main program exscotion. Note that this is, in principle,
quite similar to a subroutine cail, except that the jump is
initigted externally rather than by the program.

Maore complex interrupt structures are possible, in
which several interrupting devices share the same processor
but have different priority leveis. Interruptive Processing is
an important feature that enables maximum untilization of
a processor’s capacity for high system throughput.

Hold:

Another important feature that improves the through-
put of a processor is the Hold, The hold provision enables
Direct Memory Access (DMA) operations.

Inardinary input and output operations, the processor
itsetf supervises the entire data transfer. Informaticn to be
placed in memary is transferred from the input device to the
processor, and then from the processor to the designated
memory location. |n similar fashion, information that goes

from memory to output devices goes by way of the
rocessor.

Some peripheral cevices, however, are capable of
transfercing infermation to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then systesm throughput will be increased by

having the device accompiish the transfer directly. The pro-
cessor must temporarily suspend its operation during such a
transfer, to prevent conflicts that would arise if processor
and peripheral device attermpted to access memory simul-
taneously. |t is for this reason that a hold provision is in-
cluded on some processors.

The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer sys-
tems, it is fabricated on a single LS| chip (see Figure 31}
using Intel's n-channal silicon gate MOS process. The 8080
transfers data and internal state information wia an B-bit,
bidirectional 3-state Data Bus (Dg-D7}. Memory and peri-
pheral device addresses ara transmitted over a separate 16-

bit 3-state Address Bus {(Ag-Aqg). Six timing and contros
outputs (SYNC, DBIN, WAIT.W, HLOA and INTE) eman-
ate from the 8080, while four contral inputs {READY,
HOLD, INT and RESET), four power inputs {+12v, +5v,
Bv, and GND) and two clock inputs {¢q and ¢7) are ac-
cepted by the B080.

A l ~ a0 pm—eC Aqq
GHD O——1 2 390 Ay
D, Q{1 38 0 f13
D5 O] 4 17 i &12
Dy O] § 36 —=0 A
D, Ow—el & 35 w0 Ay
0, C—=l? ® D Ay
b, o=—fs INTEL 3f—=o%
O, Ge—=gd 12 f—=0 Ag
o, G=—] 8080 N —=0 Ag
-5 O———qd 1 W —0 Ay
RESET O—=q 12 2% p—e0 Ay
HOLD O—i 13 28 3—0 H12v
INT O——u=] t4 77— 8y
7 D 15 26 =0 Ay
INTE S 16 25— iy
DBIN Q=a—F 17 28 |—=0 WAIT
WA o=—i 13 23 p——0 AEADY
SYNG O=—1 18 2p—0n
+5v O— A 21 =<0 HLDA

Figure 2-1. 8080 Photomicrograph With Pin Designations

21

ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functionat
units:

* Register array and address logic
Arithmetic and legic unit (ALY
Instruction register and control section
s Bidirectional, 3-state data bus bu ffer

Figure 2-2 iilustrates the functional blocks within
the BO8O CPU.

L]

Registers:

The register section consists of g static RAM array
organized into six 16-bit regrsters:

* Program counter (PC)

* Stack pointer {SP}

* Six 8-bit general PUrpese registers arranged in pairs,
referred 10 a3 B,C; D.E; ang H.L
A temporary register pair calied w2

The program counter maintains the memory address
of the current program instruction and is incremented ayto-

matically during every instruction fetch, The stack paointer
maintains the address of the next availakie stack lacation in
memary. The stack pointer can be initialized to use any
portion of read-write memory as a stack. The stack pointer
is decremented when data is “pushed’™ onto the stack and
incremented when data |5 “popped”’ off the stack {i.e., the
stack grows "'downward”'}.

The six general purpose registars can be used either as
single registers (B-bit} or as register pairs (16-hit), The
temporary rtegister pair, W,Z, is not program addressabls
and is oniy used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array wvia the register-selact
multiplexer. Sixteen-bit transfers can proceed between the
register array snd the address fatch or the incrementer/
decrementer circuit. The addrass latch receives data from
any of the three register pairs and drives the 16 address
output buffers (Ag-A4g), as weil as the incrementer/
decrementer circuit. The incrementer /decrementer circuit
receives data from the address latch and sends it to
the register array. The 16-bit data can be incremented or
decremented or simply transferred between registers,

BI-DIRECTIONAL
DATA BUS

18 BIT) gant
INTERMAL DATA BUS INTERNAL DATA BUS
| Dali— —]
(T F+Y + r
iy 4
TEM® FEG. INSTRUCTION
's:l REGISTER) MULTIPLEXER _
\ W 18l 2 [£]
| FLAG & - TEMP REG, TEMP REG,
i FLIF-FLOPS
H - B [A 18]
LATEH Bl :| . b REG. AEQG,
| INSTAUCTION 2 PR E W
DECODER = REG, AEG.
AN —_—
- w Wi LW REGISTER
MaCHINE & KEG. AEQ, [ARAAY
[
ENCODING g T1e1
v | z STACK PGINTER
A
e
PROGAAM COUNTER
DECIMAL INCREMENTER/OECREMENTER
ADJUST —— ADDRESS LATCH 116
e
L4
TIMING
AND
CONTROL
POWER | —w +12v I ADDRESS BUFFER "al
SUPPLIES | — 5y DATAMUS {NTERRUPT HOLD waIT
NRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS)
—Y
bmee L T T T T 00

wn DBIN INTE INT HOLD HOLD WAIT
AC

K

READ

SYNC 1 o2 RESET
L

Ay - Ay
ADDRESS A5

Figure 2.2, 8080 CPUy Funetionai Block Diagram

2-2

Arithmetic and Logic Unit (ALU):

The ALU contamns the following registers:

An B-bit accurnulator
a An B-bit temporary accurmulator {ACT)

e A 5.bit flag register: zero, carry, sign, parity and
auxiliary carry

» An B-bit temporary register {TMP}

Arithmetic, logical and rotate operations are per-
formed in the ALW. The ALU is fed by the temporary
register [TMP} and the temporary accumulater {(ACT) and
carry flip-tlop. The result of the operation can be trans
ferred 1o the internal bus or to the accumulator; the ALU
atso feeds the flag register,

The temporary register {TMP) receives information
frem the internal bus and can send ail or portions of it to
the ALU, the flag register and the internal bus.

The accumulator |ACC) can ke loaded from the ALU
and the internal bus and can transfer data to the temparary
accumulator {ACT) and the internal bus. The contents of
the accumulator {ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
CAMA instruction (see Chapter 4],

instruction Register and Control:

During an instruction fetch, the first byte of an in.
struction {containing the QP code} is transferred from the
internal bus 1o the B-bit instruction register,

The contents of the instruction register are, in turn,
available to the instruction decoder, The output of the
decoder, combined with various timing signals, provides
the control signals for the register array, ALL and gata
buffer bipcks. In addition, the outputs from the instruction
decoder and external controf signals feed the timing ang
state control section which generates the state and cycle
timing signais.

Data Bus Buffer:

This 8-bit budirectional 3-state buffer is used 1o
isolate the CPU's internal bus from the external dats bus
{Dp through D7), In the gutput mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are swotched
off during input or non-transfer operations.

Curing the input mode, data from the externat data bus
is transferred to the internal bus. The internal bus is pre-
charged at the beginning of each internal state, except for
the transfer state {T3—described |ater in this chapter},

2.3

THE PROCESSOR CYCLE

An instruction eyele is defined as the time required
1o fetch and execute an instruction. During the fetch, a
selected instruction {one, two or three hytes) is extracted
from memory and deposited in the CPU's instruction regis-
ter. During the execution phase, the instruction is decoded
and translated into specific processing activities.

Every instruction cycle consists of one, two, three,
four or five machine cycles. A machine cycle is required
each time the CPU accesses memory or an /O port. The
feteh portion of an instruction cycle requires one maching
oycle for each byte to be fetched, The duration of the execu-
tion poruon of the instruction cycle depends on the kind
of instruction that has been fetched. Some instructions do
mot require any machine cycles other than those necessary
1o fetch the instruction; other instructions, however, re-
guire additional machine cycles to write or read data to/
from memory or 1/Q devices. The DAD instruction is an
exception in that it requires two additional machine cycles
to complete an internal register-pair add (see Chapter 4}.

Each machine cycle consists of three, four or five
states, A state is the smallest unit of processing activity and
is defined as the interval between two successive positive-
going transitions of the ¢ driven clock pulsa. The 8080
isdriven by a two-phase clock oscillator, All processing activ-
ities arg referred to the period of this clock. The two non-
overlapping clock pulses, labeled ¢ and ¢9, are furnished
by external circuitry. It is the ¢1 clock pulse which divides
each machine cycle into states. Timing logic within the
BOBO wuses the clock inputs to produce a SYNC pulse,
which identifies the beginning of every machine cycle. The
SYMC puise is triggered by the low-to-high transition of ¢2,
as shown in Figure 2-3.

! FIRST STATE OF
| *EVERY MACHINE
: CYLLE

AR W

=]

&2

SYHNC —_/——\—_

*SYNC DOES NOT QCCUR IN THE SECOND AND THIRD MACHINE
CYCLES OF & DAD INSTRUCTION SINCE THESE MACHINE CYCLES
ARE USED FOR AN INTERNAL REGISTER-FAIR ADD.

Figure 2-3.91, ¢2 And SYNC Timing

There are three exceptions to the defined duration of
2 state. They are the WAIT state, the hold {(HLDA} state
and the halt {HLTA)} state, described later in this chapter.
Because the WAIT, the HLDA, and the HLTA states depend
upon external events, they are by their nature of indeter-
minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock, Thus,
the duration of ail states are integral multipies of the clock
period.

To summarize then, each clock period marks a state;
three to five states canstitute a machine cycle; and ane to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eight-
teen states for its completion, depending on the kird of in-
struction involved.

Machine Cycle Identification:

With the exception of the DAD instruction, there is
just one consideration that determines how many machine
cycles are required in any given instruction cycle: the num.
ber of times that the processor must reference z memoary
address or an addressable peripheral device, in order to
fetch and execute the instruction. Like many Processors,
the B0BG is so constructed that it cap transmit only one
address per machine cycle. Thus, if the fetch and executicn
of an instruction requires twg memary references, then the
instruction cycle associated with that instruction consists of
two machine cycles. If five such references are called for,
then the instruction cycle contains five machine cycles,

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An in.
struction cycle must always have a fetch, even if the execu-
tion of the instruction requires no further references to
memory. The first machine eycle in every instruction cycle
15 therefore s FETCH. Beyond that, there are no fast rules.
It depends an the kind of instruction that is fetched.

Consider some examples. The add-register (ADD r}
instruction is an instruction that requires only a singie
machine cycle (FETCH) for its completion. In this ane-byte
instruction, the contents of one of the CPU's six general
purpose registers is added to the existing contents of the
accumulator. Since all the information nNecessary to execute
the command is contained in the eight bits of the instruction
coda, only one memary reference is necessary. Three states
are used t¢ extract the instruction from memary, and one
additional state is used to accomplish the desired addition,
The entire instruction cycele thus requires only one machine
cycle that consists of four states, or four periads of the ex-
ternal clock .

Suppoase now, however, that we wish to add the con-
tents of a specific memory location to the existing contents
of the accumulator (ADD M). Although this is quite similar
in principle to the example just cited, several additional
steps witl be used. An extra machine cyele will be used, in
order to address the desired memory location.

Tha actuzl sequence is as follows, First the Rrocessor
extracts from memory the one-byte instruction word ag.
dressed by its pregram counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
machine cycle is deposited in the CPU's instruction register
and used to direct activities during the remainder of the
instruction cycle, Next, the Processor sends out, as an address,

2-4

the contents of its H and L registers. The eight-bit data
word returned during this MEMORY READ machine cycie
is placeg in 3 temporary registar inside the 8080 CPU, 8y
now three more clock periods {states! have elapsed, In the
seventh and final state, the contents of the temporary regis-
ter are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the
“ADD M* instruction cycle,

At the opposite extreme is the save H and L registers
{SHLD) instruction, which requires five machine cycles.
During an “SHLD" instruction cycle, the contents of the
processor’s H and L registers are depasited in two sequen-
tially adjacent memory locations; the destination is indi-
cated by two address bytes which are stored in the two
memory locations immediatelvfoilowing the operation code
byte. The foliowing sequence of events occurs:

{1} A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycie, the processor fetches the instruc-
tion indicated by its program counter. The pro-
gram counter is than incremented. The fourth

state is used for internal instruction decoding.

A MEMQRY READ machine cycle, consisting
of three states, During this machine cyele, the
byte indicated by the program counter is read
from memory and placed in the Rrocessor’s
Z register. The program counter is intremented
again.

Another MEMORY READ machine cycle, con-
sisting of three states, in which the byte indica-
ted by the processor's pragram counter is read
from memory and placed in the W register. The
pragram counter is incremented, in anticipation
of the next instruction fetgh,

(2

{3}

{41 A MEMORY WRITE machine cycle, of three
states, in which the contents of the L register
are transferred to the memory location pointed
to by the present centents of the W and Z regis-
ters. The state following the transfer is used to
increment the W Z register pair so that it indi-
cates the next memary locatien to receive data,

A MEMORY WRITE machine cycle, of three
states, in which the contents of tha H register
are transferred to the new memory location
painted to by the W, Z register pair.

{5}

In summary, the "SHLD" instruction cycle contains
five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex-
tremes typified by the “ADD r” and the “SHLD"' instruc-
ttons. The input (INP) and the output ({OUT) instructians,
for example, require three machine cyeles: a FETCH, to
obtain the instruction; a MEMORY READ, to obtain the
address of the object peripherai: and an {NPUT or an CuUT-
PUT machine cycle, to compiete the transfer.

While no one instruction cycle wiil consist of more
then five machine ¢ycles, the followina ten different types
of machine cycles may ocour within an instruction cycle:

{11 FETCH (M1

{2} MEMORY READ

{3} MEMORY WRITE

{4} STACK READ

(6] STACK WRITE

6] INPUT

{1 QUTPUT

{8) INTERRUPT

{9l HALT
{10} HALT «INTERRUPT

The machine cycigs that actually do acocur in a par-
ticular instructicn cycle depend upon the kind of instrue-
tion, with the averriding stipulation that the first machine
cycle in any instruction cycle is always a FETCH,

The processor identifies the machine cycle in prog-
ress by transmitting an eight-bit status word during the first
state of every machine cycle. Updated status information is
presented on the 8080's data tines {DgD 7], during the
SYMNC interval. This data should be saved in latches, and
used 1o develop control signals far external circuitry. Table
2-1 shows how the positive-true status information is dis-
trihuted an the processor's data bus,

Status signals are provided princially for the control
of external circuitry. S.mplicity of interface, rather than
machine cycle identification, dictates the loaical definition
of individual status bits. You will therefore observe that
certain processor machine cycles are uriguely identified by
a single status bit, but that others are not. The M1 status
bit [Dgl, for example, unambiguousty identifies 8 FETCH
machine cycle. & STACK READ, on ihe ather hand, is
indicated by the coinciaence of STACK and MEMWR sig-
nats. Machine cycle identification data is also valuable in
the test and de-bugging phases of system develcpment.
Table 2-1 lists the status bit outputs for each type of
machine cycle,

State Transition Sequance:

Every machine cycte within an instruction cycle con-
sists of three to five active states (referred to as Tq, T2, T3,
T4, Ts or Tyl. The actual number of siates depends upon
the instruction being executed, and on the particular ma-
chine cycle within the greater instruction cycle. The state
transition diagram in Figure 2-4 shows now the 8080 pro-
ceeds from state to state in the course of a machine cycle.
The diagram also shows how the READY, HOLD, and
INTERRUPT lines are sampled during the machine cycle,
and hew the conditions on these lines may modify the

25

basic transition sequence. In the present discussian, we are
concerned only with the basic sequence and with the
AEADY function. The HOLD znd INTERRUPT functians
will be discussed later,

The BOBD CPU does not directly indicate its internal
state by transmitting a “state conirol” output during
sach state: instead, the 8080 supplies direct control output
{INTE, HLDA, DBIN, WR and WAIT) for use by external
circuitry.

Recall that the 8080 passes through at least three
states in every machine cycie, with each state defined by
successive low-to-high transitions of the ¢y clock, Figurs
25 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referenced
to transitions of the &1 and o2 clock pulses.

The SYNC signal identifies the first state {Tq} in
every machine cycle. As shown in Figure 2-5, the SYNC
signal is reiated to the leading edge of the ¢ clock. There is
a delay (tpC) between the low-to-high transition of $2 and
the positive-going edge of the SYNC pulse. There also i5 a
corresponding defay {also tpc} between the next &2 pulse
and the falling edge of the SYNC signal, Status information
is displayed on Dp-D7 during the same ¢2 to ¢z interval.
Switching of the status signals is likewise controlled by ¢32.

The rising edge of ¢ during T also loads the pro-
cessar’'s address lines {Ap-A15). These lines become stable
within a brief delay liga) of the ¢ clocking pulse, and
they remain stable until the first 92 pulse after state T3,
This gives the processar ample time to read the data re-
turned from memory.

Cnce the processor has sent an address to memory,
there is an opportunity for the memory to request a WAIT,
This it does by pulling the processor's READY line low,
prior to the “Ready set-up’’ interval (‘RS} which ccours
during the g2 pulse within state T2 or Ty, As long as the
READY line remains low, the progessor will idle, giving the
memory time to respond to the addressed data request,
Refer to Figure 2-6.

The processor responds to a wait request by entering
an alternative state {Tyy} at the end of T9, rather than pro-
ceeding directly to the T3 state. Entry into the Ty state is
indicated by a WAIT signal from the processor, acknowledg-
ing the memory's reguest. A low-to-high transition an the
WAIT line is triggered by the rising edge of the ¢ clock and
oceurs within a brief delay (ipcl of the actual entry inta
the Ty state.

A, wait periad may be of indefinite duration. The pro-
cessor remains in the waiting condition until its READY line
again goes high. A READY indication must precede the fali-
ing edge of the g2 clock by a specified interval {tpg), in
order to guarantee an exit from the Ty state. The cycle
may then proceed, beginning with the rising edge of the
next ¢q clock. A WAIT interval will therefore consist of an
integral number of Tyy states and wiil atways be a multiple
of the clock period,

Instructions for the BOBO require from ore to five machine
cycles far complete executran. The BOBO sends out 8 bit of
status information o0 the data bus at the beginning of sach
machine cycle (during SYNC time), The following table defines
the status infarmation,

STATUS INFORMATION DEFINITION

[ata Bus
Symbots Bit Definition
INTA*® Do Acknowledge signat for INTERRUPT re-
guest, Signal should be used to gate are-
start instruction onto the data bus when
CBIN is active,
WO D, Indicates that the uperation in the current

machine cycle will be a WRITE memory
or QUTRUT function (WO = 0).Otherwise,
a READ memory or INPUT gperation will
be executed.

STACK Bs Indicates that the address bus holds the
pushdown stack address from the Stack

Painter.
HLTA Ds Acknowledge signal for HALT instruction.
ouT D, Indicates that the address bus contains the

address of an output device and the data
bus will contain the output data when
WR is active,

My D, Provides 2 signal to indicate that the CFU
is in the fetch cycle for tha first byte of
an instruction.

IMP* Dg Indicates that the address bus contains the
address of an input device and the input
data shouid be placed on the data bus
when D2IN is active,

MEMR * [n Designates that the data bus will be vsed
far memery read data.

“Thewe three status ts can te ysed to control
the low ot data onto the BOBO data bus

STATUS WORD CHART

BOBC STATUS LATCH

PR N1 2 wo
[h;!;o_ SEack
I 5] o ntre
| =— our
B2
; ! ? —:; w1
_ l b el
CLOSK GEN 17T & H1— MEMR
& ORIVER H A CLR
14| D5, wo 05,
ENEEE
i PEIN
Yog
T H T2
AN
o] AN Y e W
S¥NC ____/_—__
nata — 5:—-.-

-
ST

A S
& 3 F/E
s/ &5 &/ 8
?.@Y
N &o& & /s
ol ;,9 ‘S‘é-’
& & & /8
/
/ / s
Cl@IROe eIz 12T | @
Do | INTA O jocjoflo;o0j0|0o 1|0 1
Dy wo 1 | 1] o 1 0 1 I 1 1
D2 | sTack | 0y olo |t v] oreloe o 0
D3 | HLTA 0 Jololoofolo "ot 1
bajour :ojJoiofofoflo]tT o]0 | o
Ds | My tJjojoliolololoit o 1
[Ds | INP 0 Jolololoj1]lo 00 0
o7 MeMR [1 {1 ol 1]o o0 oTo 1 [o

STaTUS
LATCH
L"] T nTa

Table 2-1. BOBO Status Bit Definitions

€
\ﬁl}

AEADY + HLTA
¥z ‘
(k2]
YES
HLTA
READY « HLTA
WO
AEADY
4 Tw -
: ™ Geiov

YES SET INTERNAL
HOLD F/6
SET INTERNAL
NO HOLD £:F
T3 .
1

I
I
- HOLD
: MODE HOLD
; HOLD
! MoDE
@ I ROLD
1
: J
I

15
INTERNAL
HOLD FiF
SET?

AESET INTERNAL
______ o HOLDF F

YES

RESET HLTA

INST

EXECUTION HOLD
COMPLETED MODE HOLD
AOLD
NG RESET INTERNAL
INT « INTE MOLD FIF
YES

SET INTERMAL
INT F/F

"INTE F/F IS RESET IF INTERNSL INT FI/F 15 56T,
ITYNTEANAL INT F/F 1§ RESET |5 FNTE F/F IS BESET.
MSEE PAGE 213

Figure 2-4. CPU State Transition Diagram

2-F

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. tn a
FETCH machine cycle, the pracessor interprets the data on
its data bus as an instruction. During a MEMORY READ or
a STACK READ, data an this bus is interpreted as a data
word, The processor outputs dats on this bus during a
MEMORY WRITE machine cycle. During 1/0 operations,
the processor may either transmit or receive data, de-
pending on whether an QUTPUT or an INPUT oparation
is involved.,

Figure 2-6 illustrates the timing that is characteristic
of a data input speraticn, As shown, the low-to-high transi-
tion of 2 during T2 clears status information from the pro-
cessor’s data lines, preparing these lines ior the receipt of
incoming data. The data presented to the processor must
have stabilized prior to both the “¢1—~data set-up” interval
{(tng1). that precedes the falting edge of the ¢4 pulse defin-
ing state T3, and the “¢o—data set-up’ interval {tpgal.
that precedes the rising edge of ¢9 in state T3. This same

data must remain stable during the “data hold” interval
{(tDH} that occurs following the rising edge of the ¢ pulse.
Data placed on these lines by memory or by other external
devices will be sampled during T3,

During the input of data to the processor, the BO8(Q
generates a DBIN signal which should be used externally to
enahie the transfer. Machine cycles in which DBIN is avail-
able include: FETCH, MEMORY READ, STACK READ,
and tNTERRUPT. DBIN is initiated by the rising edge of ¢7
during state T2 and terminated by the corresponding edge of
¢2 during T3. Any Tyy phases intervening between T3 and
T3 will therefore extend DEBIM by one or more clock
periods.

Figure 2-7 shows the timing of a machine cycle in
which the processor outputs data. Qutput data may be des-
tined either for memory or for peripherals. The rising edge
of ¢2 within state To clears status information from the
CPU’s data lines, and toads in the data which is to be output
to external devices. This substitution takes place within the

: T ! T T T T ! &
r *
| .
S A U |- [— L
. 1
+
Arg g ! i | X UNKNCWN
ore / @ X : —= WRITE MODE FLOATING
- T
- i
P
SYNE / v !
1 : i |
p 1 ']
| 3
PEADY |
i !
i
wWaAIT / \
!
oBiN | / | \ ! :
! DaTa,
* i
wa] \ :
' sTatus i
*INFORMATIDN !
. DaTa .
t
LXTFY SAMFLE READY OPTIQNAL FETCH DATA OFTICMAL
MEMQRY ADOAESS HOLD AND HALT | — aR
[: | HALT INSTRLICTION INSTRUCTION
| 1O DEVICE NUMBER I on oR EXECUTION
D1 MEMOAY WRITE DATA IF REGUIRED .
i OSTATUS iWFORMATION | ACCESS TIME |
i INTa aur &DJUST !
HLTA Wi
| memn ",
| INP BTaCK
|

NOTE: (M) Refer to Status Ward Chart on Page 26,

Figure 2-5. Basic 8080 Instruction Cycle

-8

T M i M3

RO W WY o VY WY o VO o VN WY W o W

a2 H
— U
L . I
tso BYTE \unxnows / BYTE X INPUT DATA TO
OMNE TWO ACCUMULATOR
D"“'_/_ o roarme [L. 7 L
SYNC __/—'——_ i /___ f \

ow | T\ | /o U s W

READY =
WAaIT
WR

W | [0 | X@| e
I N B

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-6. Input Instruction Cycla

My

T] T W T [T T T3 T

S o W A W A\ n nn . n e

: = e : —
_ . ity ' V0 DEVICE .
S ; BYTE onnawnf i BeTe A NUMBER I \
: ONE | TWD :
T

o0/ ‘;4.__;1 FLoaTING:f N d ! X [accumuaton \
e L LT —
oaIN [I =\

READY

walT

R ! _ \ i."

: DY
ot [O -1 1@

NOTE. (N} Reter to Status Word Chart on Page 2.6,

Figure 2-7. Output Instruction Cycle

29

“data output delay” intervai (tpp) following the ®9 clock’s
leadting ecige. Data on the bus remains stabie throughaut
the remainder of the machine cycle, until replaced by up.
dated status information in the subsequent T4 state. Qbserve
that a READY signal is necessary for completion of an
QUTPUT machine eycle. Unless such an indication is pres-
ent, the processor erters the Tw state, following the Ta
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until
the READY line again goes high.

The B0B0 CPU gensrates a WR ocutput for the syn-
chronization of external transfers, during those machine
cycles in which the processor outputs data. These inciude
MEMORY WRITE, STACK WRITE, and QUTPUT. The
negative-going leading edge of WR s referenced to the rising
edge of the first ¢1 clock pulse following T3, and occurs
within a brief delay {tDc] of that event. WR remains iow
until re-triggered by the leading edge of ¢4 during the
state following T4. Note that any Ty states intervening
betwean Tz and T3 of the output machine cyele will neges-

sarily extend WR, in much the same way that DBIN is af-
fected during data input operations.

All processar machine cycies consist of at least three
states: Tq, T3, and T3 as just described. If the processor has
10 wait for a response fram the peripheral or memory with
which it is communicating, then the machine cycle may
alsa contain one ar more T states. During the three basic
states, data is transferred 1o or from the Rrocessor,

After the T3 state, hawever, it becomes difficult to
generalize. T4 and Tg states are available, if the execution
of a particular instruction reguires them, But nat all machine
cycles make use of these states. It depends upan the kind of
instruction being executed, and an tha particular machine
cycle within the instruction cycle, The processar will termi-
nate any machine cycle as soon as its processing activities
are completed, rather than proceeding through the T4 and
Ts states every time. Thus the 8080 may exit a machine
cycle following the T3, the T4, or the Tg state and pro-
ceed directly to the T1 state of the next machine cycle,

STATE ASSOCIATED ACTIVITIES
T A memory address or 1/0 device number is
Placed an the Address Bus [A1g5.0); status
information is placed on Data Bus {D7.0).
To The CPU samples the READY and HOLD .
puts and checks for hait instruction.
W Processor enters wait state if READY is low
{optional) or if HALT instruction has been executed,
T3 An instruction byte (FETCH machine cycle),
data byte {MEMORY READ, STACK READ)
or intarrupt instruction {INTER RUPT machine
cycie] is input to the CPU fram the Data Bus;
or a data byte (MEMORY WRITE, STACK
WRITE or QUTPUT machine cycle) is sutput
onto the data bus,
T4 States T4 and Tg are available if the execu-
Th tion of a particular instruction requires tham:
{optional} if not, the CPU may skip one or both of
them, T4 and T5 are only used for internat
Processor operations.

Table 2-2. State Definitions

210

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter-
rupt simply by driving the processar’s interrupt (INT} line
high.

The interrupt [INT} input is asynchronous, and a
raquest may therefore originate at any time during any
instruction cycie, Internal logic re-clocks the external re-
quest, so that a proper correspondence with the driving
clack is established, As Figure 2-B shows, an interrupt
request {INT) arriving during the time that the interrupt
enable line {INTE} is high, acts in coincidence with the o3
clock to set the interpal interrupt latch, This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction n
progress is completed before the interrupt can be processed,

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects, The My status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit [Dg) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU’s address lings
during T4, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistingusshable from
an ordinary FETCH machine cycle, The processor itself
takes no further special action, It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is “jammed” onto the processor's data bus during state T3,
In & typical system, this means that the data-in bus from
memoary must be temporarily disconnected from the pro-
cessor’'s main data bus, so that the interrupting device can
command the main bus without interferance.

The BOBO's instruction et provides a special one-byte
cail which facilitates the processing of interrupts (the ordi-
nary program Call takes three bytes). This is the RESTART
instruction {AST). A variable three-bit field embedded in
the eight-bit field of the A5T enables the interrupting device
to direct a Call to one of eight fixed memory locatians, The
decimal addresses of these dedicated |locations are: 0, B, 16,
24, 32, 40, 48, and 5B. Any of these addresses may be used
to store the first instructionis) of a routine designed to
service the requirements of an interrupting devica. Since
the (RST) is a call, completion of the instruction aiso
stores the old program counter contents on the STACK.

]

T T T, T,

M\ F\\[
J

Ao T T |V Y A ,
il e LA
Org | f . n?T"‘['""'"J!""[Y e xf
S¥YNC B : \ ' 1\ T\ ;
oo S e n :

b i , p— LU

b —

Anrennans \

WWTE) \ i

R

MT FIF
JINTERNAL — \—

INHIBAT STORE OF
PC+11INTERNALL

5TATUS
INFORMATION

[o—

2O

NOTE: @ Rafer to Status Ward Chart on Page 2-6,

Figure 2-8. Interrupt Timing

211

. . _Mn [Mo
| T T2 P Tw T Tar Mg 1 T i T T
' ™~on
e ™ h ,
st R n__n n
A e (10 o I oy W o W e W e VA Y A
i | | i
Moo | S i !\“ FLoATNG /
P A N S -
&7 __/ Y ._;i-—-lql ' -: f —I
HOLD :
REDUELST _—/ i It !
1
HOLD 4 f !]
; i
READY f I[: i
HOLD F/F : |
INTERNAL I ! :
I :
HLDA - i

111 8EE ATTACHED ELECTRICAL CHAAACTERISTICS.

"Ts AND Ts OPERATION CAN BE
DONE INTERNALLY.

Figure 2-9. HOLD Qperation (Read Mode)

Mn Mn+1 M n+2
R T T, T Ty T
NN\ N n
N Y s | S A W B VY A U Y e W Y e W
H | P L e '
Amo i : D FLOATING 4
L R A T i T T A
| . AV S |
HoLD : . \
REQUEST i *
HOLD / | Y [.
READY :]'
i : I
RTERNAL ' / \
HLDA | E J \
E | " WRITE DATA .

Figura 2-10. HOLD Operation {Writs Moda)

HOLD SEQUENCES

The BOBOA CPU contains provisions for Direct Mem-
ory Access (DMA) operations. By applying a HOLD to the
appropriate control pin on the processor, an external device
can cause the CPU to suspend its normal operations and re-
linquish control of the address and data busses. The proces-
sor responds to a request of this kind by floating its address
to other devices sharing the busses, At the same time, the
processor acknowledges the HOLD by placing a high on its
HLDA outpin pin, During an acknowledged HOLD, the
address and data busses are under control of the peripheral
which originated the reguest, enabling it to conduct mem-
ary transfers without processor intervention.

Like the interrupt, the HOLD input is synchronized
internaily. A HOLD signal must be stable prior to the “'Hold
set-up” interval {tygl, that precedes the rising edge of ¢.

Figures 2-8 and 2-10 illustrate the timing invoived in
HOLD operations, Note the delay between the asynchronous
HOLDC REQUEST and the re-clocked HOLD, As shown in
the diagram, a coincidence of the READY, the HOLD, and
the g7 clocks sets the internal hold latch. Setting the tatch
gnables the subsequent rising edge of the ¢1 clock pulse to
trigger the HLDA output,

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating of the processor’s address and
data lines. The processor acknowledges a HOLD at the begin-
ning of T3, f aread or an input machine cycle is in progress
tsee Figure 2.8}, Gtherwise, acknowledgement is deferred
untit the beginning of the state following T3 (see Figure
2-10}. In both cases, however, the HLDA goes high within
a specified delay it of the rising edge of the selected ¢
clock pulse. Address and data lines are fioated within a
brief delay after the rising edge of the next ¢7 cloek pulse,
This relationship is also shown in the diagrams.

To ail outward appearances, the processor has suspend-
ed its operations ance the address and data busses are floated.
Internally, however, certain functions may continue, If a
HOLD REQUEST is acknowledged at T3, and if the pro-
cessor is in the middle of a machine cycle which requires
four or more states 1o complete, the CPU proceeds through
T4 and Tg before coming to a rest. Not until the end of the
machine cycie is reached will processing activities cease.
Internal processing is thus permitted to overlap the external
OMA transfer, improving both the efficiency and the speed
of the entire system,

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously when the external
device has completed its data transfer. The HLDA oputput

213

returns 1o a low level following the leading edge of the next
&t eclock puise. Normal processing resumes with the ma-
chine cycte following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction {HLT) is executed, the CPU
enters the halt state (Tyyy) after state T of the next ma-
chine cycie, as shown in Figure 2-11. There are only three
ways in which the BOBO can exit the halt state:

¢ A high on the RESET line will always reset the
8080 to state Tq; RESET also clears the program
counter.

A HOLD input will cause the 8080 to enter the
hold state, as previcusly described. When the
HOLD line goes low, the BOBO re-enters the halt
state on the rising edge of the next ¢q clock
pulse.

An interrupt (ie., INT goes high while INTE is
enabled) will cause the BOBO to exit the Halt state
and enter state Tq on the rising edge of the next
¢1 clock pulse. NOTE: The interrupt enable (INTE}
flag must be set when the halt state is entered;
otherwise, the 8080 will only be able to exit via s
RESET signal.

Figure 2-12 iliustrates halt sequencing in flow chart
form.

START-UP OF THE 8080 CPU

When power 1s applied initially to the 8080, the pro-
cessor begins operating immediately, The contents of its
program counter, stack painter, and the other working regis-
ters are naturally subject to random factors and cannot be
specified, For this reason, it will be necessary to begin the
power-up seguence with RESET,

An external RESET signai of three clock period dura-
tion {mimimum} restores the processor's internal program
eounter to zero, Program execution thus begins with mem-
ory location zero, following a RESET. Systems which re-
quire the processor to wait for an explicit start-up signai
will store a halt instruction (E), HLT} in the first two loca-
tions, A manual or an automatic INTERRUPT will be used
for starting. In other systems, the processor may begin ex-
ecuting its stored program immediately, Note, however, that
the RESET has no effect on status flags, or on any of the
processor’s working registers (accumulator, registers, orf
stack pointer). The contents of these registers remain inde-
terminate, until initialized explicitly by the program.

Tq [T2 TwH - Tom

S L e A e A S

e e

I | i

ST

L -

STATUS i
INFORMATION / ® ‘

NOTE @ Aater 10 Status Word Chart on Page 2-6

Figure 2-11. HALT Timing

i
1
TOSTATE hati
Twar Ty
YES
HALT STATE

vES

T ETATE
T

Feid

¥
Q ves
HOLD
1
’L
i TES
TG ATATET,

I

HOLD STATE

Figurs 2-12. HALT Sequence Flow Chart.

T Tnel | Tnez) " Taez T Taen-nl Tnet T LT

S SR W . n__ n_ n

n__ [\ | I Y | ™ ~
e ! . i b b Db ey

: o FLOATING !

e T T T W e . —
ouy , *’T R
AEsey @ tnf ' LY

INFERN &L . i
RESET h

SYNE : " { \

CBIN f

i
STATUS :
INFORMATION | ! I s Xo
'T"WHEN RESET SIGNAL |5 ACTIVE, ALL OF CONTADL DUTRUT SIGNALS WILL BE REGET (MMEDIATEL ¥ OR SOME
CLOCK PERIGDS LATER. THE RESET SIOMAL MLUST BE ACTIVE FOR A MINIMUM DF THREE CLOCK CYCLES. 1N
THE ABOVE DIAGAAM M AN | MAY BE ANY INTEGER.
L

NOTE: (N} Fete 10 Shures veims s om Fopn 34

Figure 2-13. Raset.

o M A\ N

a NI) W S ¥

N _i...__--..;.____.____
Ll L FLoaTING

N A e e e - e

Dyg

SYNT |

OBIN 1

HOLD f ;) ; /
HOLD F/F - (
(NTERNAL}

HLD& Fi

INTE . '

INT / INHIRIT INHIET

NT WO
INT KR S ¥ I b
(INTERNAL}

ETATUR
INFORMATION

5 -

WOTE: (N} Rute 1o Stnin mors Chart 3o Fape T4

Figure 2-14, Relation between HOLD and INT in the HALT State.

2-16

MNEMONIC

QF CODE

il

LH
T e
Dy DgD0g Dy |DaﬂzD|Dg T Tzi2 T Ta TE T T2id Ta
MOV F1 12 510D | 035835 | PCOUT |PRC=PCH |INST=TURAR | (ES5I~TMP (TMPI—00D
STATUS | |
! i 3 i I :
MOV 1, M 510D D1 13a H ¥ HLOUT, 24TA —jwDOD
| ! STATUSEI :
RO M T o1 o1 68§ 5 1555 =THP HL OUT, Pl DAt BUS
sTATLSIT ¢ !
SPHL i 11 1 1 1001 . IHL) 4.5P
1
S0 data 90RO oty ' ES FoOUT 32 —gbODDD
I STATUSBI H
"1 M, data R EEER] " K 17 e TMP
. 1
L1 ¢p, cana GO0 RP |oeot ! ! H BC- PO 33)
!
LDA ador o9 1 1o Q ! ® BC = PC a1 332
STA addr oo o010 x PL=RD et 31—
LHLD st a0 10 LI 1 X FCmPC e 27—
T
SHLO wddr oo 10 oD 1Q X) PCe PC + 1 37—
STATUSIE
Loax rpHt Do RF 1 D1D % rp AUT SATA—je-a
N sTaTUSIE
T
STAX rpl4 o0 AP a0 1D X pOUT AY e DATA BUS
sTaTUS! ;
HCHG 1110 1T a1 iHLI—[GE|
ADD ¢ 100 10855 § 15851 =TNIP sk LACTI+HTMP—A
H |Al+ACT |
ADD M Tiboa bo1soa 1AI-ACT HLOUT. SATA—luTMP
STATUSIEl |
AD| aata t1o0 o116 1Al=aET PCOUT _ PC=PC-1 27— TMP
STATYSE i
ape« 14 o I 5 8 8 | I5EEI-TME] IACTHITMPIST Y4
| TA—aLT H
ADS W 1T D00 110 B~ ACT HLauT ZATA —e THMP
, ! STATUSIE |
H N
AC1 dara T1To0 [111 . lAI-ACT PCOUT . PG-PG+1 52w THP
i : ll sTaTUsE |
SUE 1 o0 68 § 8 . . 1S5S TP [| {ACTI-ITHP—4
| 1al=agt :
SuB M 10 a o116 : ! aleacT HL OUT. SATA—m TMP
: ‘ STATUSS!
SUl dana T a1 : (A ACT P OUT PR+ 57 —=THP
1 sTaTUSIE
BB 1 oo 185§ i L85 H=THP E] (ACTI-ITMPCY R
; (AJ-bCT
SEB M frooea 111 18)+RCT HLOUT caTa—lmTHe
STATUSE |
H: M 10 1TE o |AIATT PCOUT PC=PC+1 87 —{m THP
sTATUSHS!
INA ¢ aa 00D En I I 1] IDDCH— TP ALLU—-O0D
ITMPY + 1—&LU
IhFL W a8 a1 oo * HL OUT SaTh ~dw THP
) STATUSIE TMPHe1 —He AU
OCA ¢ a8 00 | Do | (DOD-~TMP ALU+ODD
ITMPI+1—=A LI
SR M oo o1 og % HL OUT ZaTa—te THP
sTaTUSH | TR = & LU
INX rg 0D RFP oo (AP + 1 L ¥ ’
DCX o oo RP [1611 i IRPE- 1 AR
! *
Daprpldl 049 RFP 1t ogn i % IrilACT ILTMP, AL, CY
{ACTIHTMP A Ly
Qaa o810 o111 Das-h, FLacsliol
ANAT 10146 6sss o T 18l (ACTIH THP =&
*) AACT
ANA M 1O 1B [D110 | POOUT | PCaPCHT INSTSTMPAR | tAI-ACT HL OUT CATA—t THMP
i STATUS | STATUSIS

218

w3

HLOUT {TMPI e DAT A BUS
ETATUSI?
PC OUT PC=PC £ B3 —fp=rn
Sratysi6l B
FC=PC+1 [WZ QUT, - A
STATUSH
PC=AC + 1 B3 —few WZ OUT TAF b DATA BUS
sTATUS
PC=FC+1 B o= W2 ouT DATA - L WZ QuT
STATUSIB! WZ = WEZ + 1 STATUSIE
AL OUT w2 ouT i - DATA BUS | wzouT
STATUSIE! sTaTUS(Y sTATOSOI

it

-] {ACTHHTMPL+A
] TRGT H+ THP A
tal (ACTH [TMPI+CY—-d
=] [ACTIe(YMPI+CY—A

{ACTHITMPI—A

LACT]-ITHMP A

{ACTH-ITMPL-CY—A

{ACTH-{TMPI-CY— A

e DAT A BUS

ALU—H, CY

IACTH{TMPIA

MNEMONIC OPF COUE Mtla Mz
D7 Dg DDy | D303040g 2] r2id T2 ; T4 T5 ™ T2 . T3
AN dats Tt a o119 PCAUT - PC- PG+ 1| INST-THPIR (Ad=aCT PCOUT | PC=PC+1 EZ? _|uTHE
! STATUSE ! STATSI6
LY Ter0]185ss i i L (Al-ACT] (ACTI»(TPMI-A
! 1458I~TMP
LA PN 1T o1 Tt 10 {a1—=ACT HL OUT CATA —fm-TMP
STATUSIEl
AR datw 1t 1T L aimeacT BCOUT . | PC=FG=1 B2 —{m TMP
: sTATUSEl |
DR 101 o555 |Aab=a"T [} TACTHs (TMPI—A
13580 TMP
ORA M Ter 0t LA ACT HLOWT - DATA —{mTMP
sTATLSIE |
ORI aats [Uttt (AiBCT PCAUT _ : PCRC+1 32 = THP
sTaTus |
P P a1 18 5 8§ (A -ACT 1al " {ACTIHTMPI.FLAGS
1555/ ~TMP
CHP K Tor 11 IAlAET HL OUT DATA —=THP
i STATUSS!
TPl cata 1 HEEEN) |ab=alT PEOUT | PCrPC 1 82 —=-TMF
| STATUSIE |
RLE peoo o111 (AJ ALY 18] ALes, CF
ROTATE '
ARC oo 111 LRI~ ALY 191 AL, CY
ROTATE |
RAL a6 611 1A], CY—ALU 18§ | ALUea CY
ADTATE ;
A&R oao0 1T R Lab, Cr—a Ly [l AlLU—A, CY
ADTATE
CMA, a010 111 (A-A
£ME oot 1 [AST14
!
5TC (LI I B D A I | 1+CY
JWAP aodr 11 00 [I | X PCOUT @ Pe PO+ B2 —mZ
STATUSS |
JeonaaM 11 v D, o : JUDGE CONTITION PEOUT | PLepge» 32 -feZ
' sTaTusé
CALL sddr T D0 SPmEP .1 PCOUT | PCaPCHd B2 dm2
STATUS.S
Coondaodr'? | 1 1 ¢ ¢ c1oa JHUDGE CONDITION PCAUT ' PE=PC+1 B2
IF TAUE, SP=5¢ -1 sTaTysifl |
RET v goa 100 * SPOUT | GP=SFs: pATA—=Z
T) STATUS 51 |
A cond sddr(17] TrTcCclcaon INST-TMBIIR JUDGE CONDITIGNDS! | GP=5P+1 CATA—mZ
: sTATUS. 3 |
AST n 11 NN T W PSP P OUT | SP=5R -1 IPEH —pa=DATA BUS
RST=TMPAIR STATUSE »
PCHL 1t 10 [INST-TMPAR | 1ML} .Tpc
PUSH p 1T AR 0103 d SPuSP -t SPOUT 5P« SP- 1 (rh|-re-DATA BUS
! STATUS. 8l
PLISH P5W IEEEREEEE ' P < 5P -1 SPOUT , SP-5P-1 14} —{=-DATA BUS
! 1 STATUS. 16
POP 1 t1RAP i DoQT x SPOUT - SR=gF+1 DATA-mrl
STATUSIE |
POP P3N 11 o600 H SPOUT | BP=SP+1 DATA-teFLAGS
STATUSLS
XTHL t 110 001 x ! 5R=SP+Y DATA-1eZ
. STATUSE!S |
|N et IR ; X PGOUT . PCaPC 1 B2 ez, W
§TATUsE
DUT part LR | a4 1t i ! % PCOUT PG =P+ B2 —faZ, W
. sTRTUS] 1
El 111 181 : SET {NTE F/F
o 111 o1 | RESET INTE F/F
N |
HLT a0t 1t o110 . X PCOUT HaLT MoDEt
t [} STATUS
NOP a0 f8a | a00 0 | PCOUT ! RC=PC+1iINST-TMPIR %
ATaTus |

Ma

Ma

™

Teld : T3

™

Tz13

T

T

T4

e [ALTi- TP I
] (ACTI+THPIA)
] (RCTI~ITMPk I
=] (ACT|+ThPh=a :
i3l T AACT TAPI—R,

i] TACTI-TMPL: FLAGS

i

(ACTI-ITIPY FLAGS |

5P QUT
$TaTys16l

FLAGS —a-DA T4 BUS

W2 guT
STaTusliBl

DATE —He &

SPOUT PSP -1 DATA- Saerh
sraTuslis! -
5P OUT SPatP el DATA-Jfmd
STATUSNS! -)
Gt
SP OUT OATA —jew -0aTABLS | SPOUT
STATUgIS] : STATUSLIE

W2 QuT
STATUSHB

1Al —’bD\TA aus

2-19

;?ETUJSISi (Y] 53 e grzaq-ﬂ;[lﬂ IWZ] +1=PE
;?E;JJslﬁl PC =P +1 21 " . ‘ #ﬁn{;m'm WZ) + 1 PC
;$£T"L|Tsi61 CPLERE . B3 —t g;':){'rs“m E;c:ql — P DATA BUS :?E#LTSHEJ m:u—a;- DATA BUS ;v_rz“%;[m W1 41 = PL
gﬂﬂysl FC=PC-1 a3 —wwit3l g?%ﬂs['ﬁl PCHb e DATA BUS gf#{’rs“ IPCLI—#- DATA BUS i ;zn?rﬂ;[m?i IWZ) 1= 80
gour o | sPmsEer pATA—em k - LA AN I}« 1~ FC
:f}a?#ﬂsns] SAASP Al DATA— W v;rza?ld;i“-‘ﬂ R
gf%si‘ﬂ e = LATA BUS grzngrgh 1 1 M-
g’f{;rsl‘ﬂ irly —?c-DlTA BUS

NOTES:

1. The first memaory cycle (M1} is always an instruction
fetch; the first lor only} byte, containing the op tode, is
fetched during this cycie.

2. [f the READY input from memary is not high during
T2 of each memory cycle, the processor will enter a wait
state {TW) until READY is sampied as high.

3. States T4 and T5 are present, as required, for opera-
tions which are completely internzl to the CPU, The con-
tents of the internal bus during T4 and TE are available at
the data bus; this is designed for testing purposes only. An
" X' denotes that the stata is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B [registers B and C} or rp= 0
{registers D and £} may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word
will be read,

7. Memary write sub-cycle,

8. The READY signal is not required during the second
and third sub-cycles (M2 and M3j, The HOLD signal is
accepted during M2 and M3. The SYNC signal is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced,

9. The results of these arithmetic, logical ar rotate in-
structions are not moved into the accumnulator {A) until
state T2 of the next instruction cycle, That is, A is loaded
while the next instruction is being fetched; this overlapping
of cperations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-
lator is greater than 9 ar_if the auxiliary carry bit is set, §

is added to the accumulator. If the value of the most signifi-
cant 4-bits of the accumulator is now greater than 9, or if
the carry bit is set, 6 is added to the most significant

4-bits of the accumulator.

11. This represents the first sub-cycie {the instruction
fetch} of the next instruction cycle.

220

12. 1f the condition was met, the contents of the register
pair WZ are output on the address lines {Agqg} instead of
the contents of the program counter {FC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped: the processor instead proceeds immediately to
the instruction fetch (M1} of the next instruction cycle.

14, if the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.

15. Stack read sub-cycle,

16. Stack write sub-cycie.
17, CONDITION CcCC
NZ — notzero {Z=1) 000
Z — zero (2=1} a0
NC — no carry {CY ={) 010
C — carry {CY = 1) 03t
PO — parity odd {P=0) 100
PE — parity even (P =1} 101
P — plus (S=0] 110
M — minus{S=1) 111

18, 1/0 sub-cycle: the /0 port's B-bit setect code is dupli-
cated on address lines 0-7 (Ap) and 816 {Ag.1s).

19. Output sub-cycle.

20, The processor will remain idle in the halt state until

an interrupt, a reset or a hoid is accepted, When a hold re-
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the hait
state, After a reset is accepted, the processor begins execu-
tion &t memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction),

8SSor DDD Value rp Valug

A 111 B 00

i B 000 . D 01
c 001) H ; 10
D 010 - sp | 11
E o1t i
H 100 !
L 101 |

This chapter will ilfustrate, in detail, how ta interface
the BOBO CPU with Memory and i/Q. [t will also show the
benefits and tradeoffs encountered when using a variety of
system architectures to achieve higher throughput, de-
creased component count or minimization of memory size.

8080 Microcomputer system design lends itself 10 a
simple, modular approach. Such an approach will yieid the
designer a reliable, high perfarmance systern that contains a
minimum compenent count and is easy to manufacture and
maintain,

The overall system can be thought of as a simple

block diagram. The three {3} blocks in the diagram reore-
sent the functions common to any computer system.

CPU Module* Contains the Central Processing Unit, system
timing and interface circuitry to Memary
and 1/0 devices.

Mamory Contains Read Only Memory {ROM} and
Read/Write Memory {RAM} for program and
data storage.

1O Contains circuitry that atlows the computer

system to communicate with devices ar
structures existing outside of the CPU or
Memaory array.
for example:

Paper Tape, etc.

Keyboards, Floppy Disks,

There are three busses that interconnect these blocks:

Data Bust A bi-directional path on which data can flow

between the CPU and Memeory or 1/0.

Address Bus A uni-directional group of lines that identify

a particular Memary location or 1/O device.

"“Module’’ refers to a functional block, it does not ref-
erence a printed circuit board manufactured by INTEL.

T*Bus” refers to a set of signals grouped together because
of the similarity of their functions.

31

Contral Bus A uni-directional set of signals that indicate

the type of activity in current process.

Type of activities: 1. Memory Read
2. Memory Write
3. 1/Q Read
4. 10 Write
5. Interrupt Acknowledge

T TRESS BUS
L - 7
TUIRY z
cPU
MODULE & . JEEN AN
LI] : - L
< SaTh® 5 2
= .
[PR
COMTAAL Bus ‘

Figure 3-1. Typical Computer Systam Biock Diagram

Basic System Operation

1. The CPU Maodule issues an activity command an the
Control Bus,

2. The CPL Module issues a hinary code on the Address
Bus to identify which particular Memory location or
1/Q device will be involved in the current process
activity.

3 The CPU Module receives ar transmits data with the
selected Memory location or 1/0 device.

4. The CPU Module returns to @ and issues the next
activity command.

It is =asy to see at this point that the CPU module is
the central element in any computer system,

The following pages will cover the detailed design of
the CPU Module with the 8080. The three Busses (Data,
Address and Control} will be developed and the intercon-
nection to Memoary and 1/0 will be shown,

Design phitlosophies and system architectures pre-
sented in this manual are consistent with praduqt deveiop-
ment programs underway at INTEL for the MCS-80. Thus,
the designer who uses this manual as a quide for his total
system engingering is assurgd that all new developrnents in
components and software for MCS.BO from INTEL will be

the design and te achieve operational characteristics that
are as close as possible to those of the B224 and B228.
Many auxiliary timing functions and features of the 8224
and B228 are toc compiex to practically implement in
standard components, so only the basic functions of the
8224 and B228 are generated. Since significant benefits in
system timing and compenent count reduction can be
realized by using the 8224 and 8228, this is tha preferred
methed of implementation,

compatible with his design approach. 1. 8080 CPU
The operation of the 8080 CPL) was covered in pre-
CPLU Module Design vious chaptgr!.: of this nl1anuai, s0 little reference will
be made to it in the design of the Module,
The CPU Module contains three major areas:
1. The 8080 Central Processing Unit 2. Clock Ganerator and High Level Driver
2. A Clock Generator and High Levei Driver The BOBO is a dynamic device, meaning that its inter-
3. A bidirectional Data Bus Driver and System Control nal storage elements and logic circuitry require a
Logic timing reference (Clock), suppiied by external cir-
. _) . cuitry, to refresh and provide timing control sigrals.
The following will discuss the design of the three .)
major areas contained in the CPU Module. This design is The 8080 requires two (2} §uch Clacks. Theu’_ wave-
presented as an alternative to the intei® 8224 Clock Gener- ff)"_"s must be ncn-ovgljlap;_:rlng, and comply with the
atar and Intel 8228 System Controller. By studying the timing and levels specified in the 8080 A.C. and D C.
alternative approach, the designer can mare clearly see the Characteristics, page 5-15.
censiderations involved in the specification and engineering .
of the B224 and 8228. Standard TTL components and Intel Clack Generator Design
general purpose peripheral devices are used toc impiement The Clack Generator consists of a crystal controlled,
GND —— a0 2 At)
0 Fil
ABw —.-” A1 + 4l
By —————in AZ i » A7
15 sl
AT Y —— AT 30 L¥]
M >
32
Bo80 AB + A
31
R :; 34 > :; ADDRESS 8UI3
SYSTEM OMA REQ ——— oM HOLD ag 3:5 » A
A1Q a0
Al 20 Al
SYSTEM NT HEQ, ————p INT arz |22 arz
aa |38 » 413
|6]
INT EMNABLE sh—r—{ INTE Ala - A14
arg |22 415 |
[-
D ATAL oBIN =
HLDA& 21—‘ ‘I
A 1 -
Do g
o2 8 e DHZ
T_OCK 23 wary 03 pa BIUIREC- g g 0BT
WalTARE] —M UE;RE:':THOR 21 REAQY o4 3 au'glg:::,in oBs DATA BLIS
'Zy] REsET G je— DB
=] —L]
13 SYNC 07 fe2 j s 087]
fr—— WTa
I [bt WEWI R
STaTUS STROEE Sestem L HERW| conTROL Bus
© k——s TOR
i—— 0w _

Figure 3-2. BOB(G CPU Interface

3-2

CECILLATOR

i[ll 20 MH:
L
230 330
f —
T4ED4
* OSC
TAS(M 6RO pF Y4504 l CLOCK GENERATOR
CLK 486 am
Vou DA s 00 _
oa - * 1 {TTL
a163
[——-DC ac
T48E
GND DD_ _c:[) FAH00
CLR LD * B2ITTL)
[1 = AUXILIARY FUNCTIONS
Voo E¥NC
TAHDO Tahoo
[ETETE
ELCENS
WAVEFORMS
—CLK T * A (TTL)
./
__,9?['_1"2?_4 505 waIT REQ D Of—® READY
22 f Y msons f 1 f 4524
e O
14 ! \ 750m f 1 ,‘
SYNE oma REGQ 0 Qp——s HOLD
14574
LK
5TSTE \ f

Figure 3-3. 8080 Clock Generator

20 MHZ oscillator, a four bit counter, and gating
circuits.

The oscillator provides a 20 MHZ signal to the input
of a four (4) bit, presettable, synchronous, binary
counter. By presetting the counter as shown in figure
3-5 and cloecking it with the 20 MHZ signal, a simpte
decoding of the counters outputs using standard TTL
gates, provides proper timing for the two (2) B0BD
clock inputs,

Note that the timing must actually be measured at
the cutput of the High Level Oriver to take into ac-
count the added delays and waveform distortions
within such & device.

High Level Driver Dasign

The voltage level of the clocks for the 8080 is not
TTL compatible like the other signals that input to
the BOBO. The voltage swing is from .6 volts Vit
to 11 volts (Vo) with risetimes and falltimes under
50 ns. The Capacitive Drive is 20 pf {max.}. Thus, 2
High Lewet Oriver is required to interface the outputs
of the Clock Generator (TTL} to the BQ80.

The two (2] outputs of the Clock Generator are ca-
pacitivity coupled to a dual- High Level clock driver,
The driver must be capable of complying with the
8080 clock input specifications, page 5-16. A driver
of this type usually has little problem supplying the

33

posttive transition when biased from the 8080 Vgp
supply {12V) but to achieve the low voltage specifi-
cation {Vy ¢! .8 volts Max. the driver is biased to the
8080 Vpg supply -8V} This allows the driver to
swing from GND to Vppg with the aid of a simple
resistor divider.,

A low resistance series network is added between the
driver and the 8080 to eliminate any overshoot of the
pulsed waveforms. Now a circuit is apparent that can
easily comply with the BOBD specifications. In fact
rise and falltimes of this designh are typically less than

10 ns.
12y
s
§80 oF . arn -
AT “ MRS — i}
MM 0028 b IB0EG PIN 27
R
eI, EE?U v s ar 2
1 =
SE T L ==t AR —t
T (8080 PIN 151
3
&
Tsk

By

Figure 3-4. High Level Driver

Auxiliary Timing Signals and Functions 3. Bi-Diractional Bus Driver and System Control Logic
The Clock Generator can also be used to provide The system Memory and 1/Q devices communicate
other signals that the designer can use to simplify with the CPU over the bi-directional Data Bus. The
large systern timing or the interface 1o dynamic system Control Bus is used to gate data on and off
memaories, the Data Bus within the proper timing sequences as
Functions such as power-on reset, synchronization of @ctated by the operation of the 8080 CPU. T,he data
external requests (HOLD, READY, etc) and single lings of the 80B0 CPU, Memory and 1/0 devices are
step, could easily be added to the Clock Generator 1o 3-“3‘?_'" nature, that I.s' thelrloquut arivers hava
further enhance its capabilities the ability to be forced into a high-impedance mode
’ and are, effectively, removed from the circuit. This 3~
For instance, the 20 MHZ signal from the oscillator state bus technigue allows the designer to construct a
can be buffered so that it could provide the basis for system around a single, eight (8} bit paraliel, bi-direc-
communication baud rate generation. tional Data Bus and simply gate the information on
The Clock Generator diagram alse shows how to gen- or off this bus by selecting or deselecting (3-stating)
erate an advanced timing signal {$1A] that is handy Memory and i/Q devices with signais from the Con-
te use in clocking “D* type tlipflops o synchronize trol Bus.
external requests. It can aiso be used to ganarate a A R . ,
Bi-Diregtional Data Bus Driver [
strobe [STSTB) that is the latching signal for the sta- wPirectiona’ Data Bu eHan .
tus information which is available on the Data Bus at The 8080 Data Bus {D7-DO) has two {2} major areas
the beginning of each machine cycle. A simple gating of concern for the designer;
of the SYNC signal from the 8080 and the advanced 1. Input Voltage level [V, 3.3 volts minimum,
{91A} will do the job. See Figure 3-3. 2. Output Drive Capability (lay) 1.7 mA maximum,
BUSER
"
oo 24 2 Dab
57— &
d e e
12 ln‘lr— 13
o BEN = CRa
O
2.4 —] 3
o8 = T oo
oe 3.1 [o8g
o7 AL e I L oe?
TEN TS
-~ o 157 71
3 A INTA
5 8 [p—
8080 I B 3TACK
a 2 10 HLTA
18 15 OuUT E
kL] 7 M1 ‘—D_- 1WoR
20 15 NP
22 21 MEMB
_D)——— WEMH
i) L (ER,
il — — o
MEM W

Figura 3-5. 8080 System Control

34

The input level specification imphes that any semi-
conguctor memory ar 1/O device connected to the
BOBO Data Bus must be abie to provide a minimum of
3.3 volts in its high stata. Most semiconductor mem-
ories and standard TTL 1/0 devices have an output
capability of berween 2.0 ang 2.8 volts, obviously a
direct connection unto the 8080 Data Bus would re-
quire pullup resistors, whose value should not affect
the bus speed or stress the drive capability of the
memory or /0 components,

The BOBOA output drive capability (lgp ! 1.9mA max.
is sufficient for smail systemns where Memory size and
1¥Q requirements are minimal and the entire system is
contained on a single printed circuit board. Most sys-
tems however, take advantage of the high-perfor-
mance computing power of the BOBO CPU and thus a
more typical system would reguire soma form of buf-
fering on the BO8Q Data Bus 10 support a larger array
of Memory and 1/Q devices which are likely to be on
separate boards,

A device specifically designed to do this buffering
function is the INTEL® 8216, 2 (4} four bit bi-direc-
tional bus driver whose input voltage levekis compat-
ible with standara TTL dewices and semiconductar
mamory components, and has output drive capahility
of 50 mA. At the BOBD side, the 8216 has a “high”
output of 3.65 volts that not only meets the 8080
input spec but provides the designer with a worse case
350 mVY noise margin,

A pair of B216's are connectsa directly to the 808D
Data Bus (B7-D0} as shown in figure 3-5. Note that
the DBIN signal from the 8080 is connected to the
direction control input {DIENI s0 the carrect flow of
data on the bus is maintained. The chip select (C5) of
the B216 is connected to BUS ENABLE (BUSEN) to
allow for DMA activities by deselecting the Data Bus
Buffer and forcing the outpurs of the 8216’s into
their high impeaance (3-state] mode. This allows
other devices 1o gain access to the data bus (DMA).

System Control Logic Design

The Control Bus maintains discipline of the bi-direc-
tional Data Bus, that is, it determines what type of
device will have access 1o the bus (Mamory or /0]
and generates signals to assure that these devices
transfer Data with the 8080 CPU within the proper
timing “windows'* as dictated by the CPU operational
characteristics.

As described previously, the BOBD issues Stetus infor-
mation at the beginning of each Machine Cycle on its
Data Bus to indicate what operation will take place
during that cycle. A simple (B} bit latch, like an
INTEL® 8212, connected directly to the BOBD Data
Bus (D7-D0) as shown in figure 3-5 will store the

35

Status information. The signai that loads the data
into the Status Latch comes from the Clock Gener-
ator, it is Status Strobe {STSTB) and occurs at the
start of each Machine Cycle,

Note that the Status Latch is connected onto the
B80S0 Data Bus [D7-D0) before the Bus Butfer. This is
to maintain the integrity of the Data Bus and simplify
Cantral Bus timing inDMA dependent environments.

As shown in the diagram, a simple gating of the out-
puts of the Status Latch with the DBIN and WH
signals from the 8080 generate the {4) faur Control
signals that make up the basic Control Bus,

These four signals: 1. Memory Aead (MEM R}
2. Memory Write (MEM W}
3.1/0 Read {70 R)
4. 1/0 Write (7O W)

connect directly 1o the MCSI-"-BO component family”
of ROMs, RAMs and 1/Q devices.

A fifth signal, Interrupt Acknowledge {ml is
added tc the Control Bus by gating data off the
Status Latch with the DBIN signal from the BOBOD
CPU. This signal is used to enable the Interrupt
Instruction Port which holas the BST instruction
onto the Data Bus,

COther signais that are part of the Control Bus such as
%, Stack and M1 are present to aid in the testing of
the System and also to simplify interfacing the CPU
1o dynamic memaories or very large systems that re-
quire several levels of bus buifering.

Address Buffer Design

The Address Bus |A15-A0} of the 8080, like the Data
Bus, is sufficient to support a small system that has a
moderate size Memory ang /0 structure, confined to
a single card. To expand the size of the system that
the Address Bus can support a simple buffer can be
added, as shown in figure 3-6. The INTE(® 8212 or
B216 is an excellent device for this function. They
provide low input loading {.25 mA], high output
drive and insert a minimal delay in the System
Timing.

MNote that BUS ENABLE (BUSEN) is connected to
the buffers s¢ that they are forced into their high-
impedance {3-state) mode during DMA activities so
that other devices can gain access to the Address Bus.

INTERFACING THE 8080 CPU TO MEMORY
AND 1/0 DEVICES

The 80BO interfaces with standard semiconductor
Memory companents and 1/0 devices. {n the previous text
the proper control signals and buffering were developed
which will produce a simple bus system similar to the basic
system example shown at the beginning of this chapter.

tin Figure 3-6 a simple, but exact 8080 typical system
is shown that can be used as a guide for any 8080 system,
regardless of size or complexity. It is a “three bus™ archi-
tecture, using the signals developed in the CPU module.

Note that Memory and (/O devices interface in the
same manner and that therr isolation is anly a function of
the definition of the Read-Write signals on the Cantrol Bus.
This allows the 8080 system to be configured so that Mem-
ory and (/O are treated as a single array {memary mapped
1/0} for small systems that require high thruput and have
less than 32K memory size. This approach will be brought
cut later in the chapter,

ROM INTERFACE

A ROM 15 a device that stores data in the form of
Program or other information such as “lock-up tables” and
is only read from, thus the term Read Only Memory. This
type of memory is generally non-volatile, meaning that
when the power is removed the information is retaired.

This feature eliminates the need for extra equipment ke
tape readers and disks to load programs inmitially, an im-
poriant aspect in smatl system design.

Interfacing standard ROMs, such as the devices shown
in the diagram is simple and direct. The output Data lings
are connected to the bi-directional Data Bus, the Address
inputs tie to the Address bus with possible decoding of the
most significant bits as “chip selects” and the MEMR signal
from the Cantrol Bus connected to a “chip select” or data
butfer. Basically, the CPU issues an address during the first
portion of an instruction or data fetch {T1 & T2). This
valug on the Address Bus selects a specific focation within
the ROM, then depending on the AOM's delay {access tme)
the dsta stored at the addresced location s present at the
Data output lines. At this time (T3} the CPU Data Bus is
in the “input Mode" and the control logic issugs a Memory
Read command [MEMR] that gates the addressed data on
1o the Data Bus.

RAM INTERFACE

A RAM is a device that stores data. This data can be
program, active "look-up tables,” temporary values or ex-
ternat stacks. The difference between RAM and ROM is
that dats can be written into such devices and are in
essence, Read/Write storage elements. RAMs do not hold
their data when power is removed so in the case where Pra-
gram or “look-up tables” data is stored a method to load

CATA BUS By

T

STSTE CLOCK B224
| CENERRTOR b—— F——HOLD REC
AND DRIVER
1
5YNG o7 ot AESET
IMNT bt
ADY BOBOA CPU
WA 00DT OBIN MLDA ADA15
—T f —1 1
4 | 1
l : . ,
M 4 —— T T o T Ba74 ' 210744
| e228 | 217 ADDRESE H ? 4302 g0 2 Sipae
EYSTEM || Bops BUFFERS: g704 ARG BI0E g1z Aates BN
CONTROLLEA DECODER |
[Lams OPT'ONAL) | 8ra8 BI16A §102.2 s BRI
~

L {311

CONTROL BUS 6

LTI

&]

ADDRAESS BUS HE:
- : T
. - i
/. L - 1
B251 ane -]
1 (¥
COMMUNICATION B255 PEAIPHEAAL 8212 | EmeT
'NTERFACE INTEAFACE

Figure 3-6. Microcomputer System

8

RAM memory must be provided, such as: Floppy Disk,
Paper Tape, etc.

The CPU treats RAM in exactly the same manner as
ROM for addressing data to be read. Writing data is very
similar; the RAM is issued an address during the first par-
tion of the Memory Write cyele {T1 & T2) in T3 when the
data that is ta be written is output by the CPU and is stable
on the bus an MEMW command is generated. The MEMW
signal is connected to the R/W input of the RAM and
strobes the data into the addressed location.

In Figure 3-7 a typical Memory system is illustrated
to show how standard semiconductor components interface
to the 8080 bus. The memory array shown has BK bytes
{8 bits/byte) of ROM storage, using four Intel”8216As
ang 512 bytes of RAM storage, using Inted 8111 static
RAMs. The basic interface to the bus structure detailed
here is commaon to almost any size memory, The only ad-
dition that might have to be made for larger systems is
maore buffers (8216/8212} and decoders (8205) for gener-
ating “chip salects,’”

The memories chosen for this example have an access
time of BB0 nS {max} to illustrate that siower, ecanomical
devices can be easily interfaced to the BOSO wath little ef-
fect on perfarmance. When the B030 {5 operated from a
clock generator with a tCY of 500 nS the required memory
access time is Approx, 450-550 nS. See detailed timing
specification Pg. 5-16. Using memory devices of this speed
such as InteleSOB, 81024, 81074, etc. the READY input
to the 8080 CPU can remain "high” hecause no “‘wait’
states are required. Note that the bus interface 10 memory
shown in Figure 3-7 remains the same. However, if slower
memories are to be used, such as the devices ilustrated
{8316A. 8111} that have access times slower than the min-
imum requirement a simple logic contro! of the READY
input to the 8080 CPU wili insert an extra “wait state’” that
is egual to cne or more clock periods as an access time
“adjustrment” delay to compensate, The effect of the extra
“wait'" state is naturally a slower execution time for the
instruction. A single “wait” changes the basic instruction
cycle to 2.5 micraSeconds.

8K + 512 gK

1}
RAM ROM
MEMORY MAP
ROM
=a
RAM =3 1]
1] =2]
=1
211t B 83164 £33
csa
RW 0D /014 AG-AT RW QD 1014 AQAT [01-08 AD-A10 |
AN
FTEMW WEMR AD-AT TIERIw WMEMA | AD-A7 WEMR AT-A1D i:;"

CATA BUS {8

CONTROL BUS I6)

ADDRESS BUS (18)

Figure 3-7. Typical Memory Intarface

3.7

